
Electronic Journal of Qualitative Theory of Differential Equations

Spec. Ed. I, 2009 No. 5, 1–11; http://www.math.u-szeged.hu/ejqtde/

THE FRIEDRICHS EXTENSION OF CERTAIN
SINGULAR DIFFERENTIAL OPERATORS, II

Grey M. Ballard and John V. Baxley

Department of Mathematics, Wake Forest University
Winston-Salem, NC 27109 USA

email: grey.ballard@gmail.com, baxley@wfu.edu

Honoring the Career of John Graef on the Occasion of His Sixty-Seventh Birthday

Abstract

We study the Friedrichs extension for a class of 2nth order ordinary differen-

tial operators. These selfadjoint operators have compact inverses and the central

problem is to describe their domains in terms of boundary conditions.
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1 Introduction

An unbounded symmetric operator L with domain D(L) dense in a Hilbert space H
with inner product (u, v) is called semibounded below if (Lu, u) ≥ c(u, u) for some
constant c and every u ∈ D(L). By adding a multiple of the identity operator to
L, without loss of generality it may be assumed that c > 0. The largest such c is
called the lower bound. Such an operator has a particular selfadjoint extension F ,
called the Friedrichs extension [9]. A characteristic of the Friedrichs extension is that
it preserves the lower bound: (Fu, u) ≥ c(u, u) for every u ∈ D(F ). Even a cursory
examination of the development of the Friedrichs extension in [8, Section XII.5] shows
that this extension depends critically on the domain D(L) of the operator. In fact, the
domain of the Friedrichs extension of L is obtained by intersecting D(L∗), the domain
of the adjoint operator L∗, with a subset of the Hilbert space H which is obtained
by completing D(L), considered as an incomplete metric space, with the “new” inner
product (Lu, u). The proof of the existence of the Friedrichs extension leaves open the
possibility of the existence of additional selfadjoint extensions which preserve the lower
bound.

For selfadjoint ordinary differential operators, domains are usually specified by the
imposition of boundary conditions. Ever since [10], it has been of interest to find a
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2 G. Ballard & J. Baxley

boundary condition description of the domain of the Friedrichs extension of specific
operators.

Let τ be the formal differential operator defined by

τu(x) = −
1

m(x)
(p(x)u′)′,

where m(x) > 0, p(x) > 0, m, p are infinitely differentiable on (0, 1] and

M =

∫ 1

0

m(x)

[
∫ 1

x

1

p(t)
dt

]

dx < ∞. (1)

By varying the initial domain, Baxley [2, 3] considered several different semibounded
symmetric operators defined by the nth iterate τn in the Hilbert space L2(0, 1; m) of

functions u satisfying
∫ 1

0
|u(x)|2m(x)dx < ∞ and with inner product

(u, v) =

∫ 1

0

u(x)v(x)m(x) dx.

In each case, the Friedrichs extension was a selfadjoint operator with compact inverse.
The main goal was to describe the domains of these Friedrichs extensions in the usual
way in terms of boundary conditions. The motivation for this earlier work was an
application to the theory of Toeplitz matrices [4].

We return again to this problem, with a similar motivation. Now the application
is to the theory of Toeplitz integral operators associated with the Hankel transform
(see [6, 7] for related earlier results), work which will appear elsewhere. The Friedrichs
extension obtained here is most closely related to the one which was designated Gn in
[3]. It is possible that the Friedrichs extension obtained here is the same as that Gn,
but we have been unable to verify this conjecture. In any case, the initial domain here
is different and is more convenient for our application; the development is also simpler
and more self-contained.

In recent years, much attention has been given to characterizing the domains of
Friedrichs extensions of ordinary differential operators (see [11, 13, 14, 15]), as well as
partial differential operators (see [5], which contains further references).

2 Preliminary Results

For a given positive integer n, let C2n(0, 1) denote the collection of all functions on
(0, 1) with continuous derivatives up to and including 2n, and let

Cn =
{

u ∈ C2n(0, 1) : u(j)(1) = 0 for j = 0, 1, · · · , n − 1, (τn−1u)′(x) = 0 near x = 0 ,

and for n ≥ 2, p(x)(τ ju)′(x) → 0 as x → 0+, for 0 ≤ j ≤ n − 2
}

.
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Friedrichs Extensions 3

It is clear that if u ∈ Cn, then τu ∈ Cn−2. The conditions u(j)(1) = 0, j = 0, 1, · · · , n−1
are equivalent to the conditions

τ ju(1) = 0, (τ ju)′(1) = 0, j = 0, 1, · · · ,
n

2
− 1, if n is even

and, if n is odd, u(1) = 0 together with

(τ j−1u)′(1) = 0, (τ ju)(1) = 0 for j = 1, 2, · · · ,
n − 1

2
, if n ≥ 3.

Lemma 2.1 If u ∈ Cn, then τ ju(x) is bounded as x → 0+, for j = 0, 1, · · · , n − 1.

Proof: For u ∈ Cn, since (τn−1u)′(x) = 0 for x near 0, τn−1u(x) is constant near
x = 0 and therefore bounded as x → 0+. We complete the proof by showing that if
g(x) = τ ju(x) (1 ≤ j ≤ n − 1) is bounded as x → 0+, then so is τ j−1u(x). Since g is
bounded on (0, 1] and

τ j−1u(x) = −

∫ 1

x

1

p(y)

[
∫ y

0

m(t)g(t) dt

]

dy,

then
∣

∣τ j−1u(x)
∣

∣ ≤ K

∫ 1

x

1

p(y)

[
∫ y

0

m(t) dt

]

dy.

Since the integral in (1) is finite, applying Fubini’s theorem, we see that

∫ 1

0

1

p(y)

[
∫ y

0

m(t) dt

]

dy

is also finite and we are done.

Lemma 2.2 If u ∈ Cn, the following conditions hold:

1. For i, j ≥ 1, i + j ≤ n, then (τ iu, τ ju) = (τ i+ju, u).

2. For 0 < x1 < x2 ≤ 1, |u(x2) − u(x1)|
2 ≤ (τu, u)

∫ x2

x1

1
p(t)

dt.

3. For n ≥ 2 and 0 < x1 < x2 ≤ 1, |p(x2)u
′(x2)−p(x1)u

′(x1)|
2 ≤ (τ 2u, u)

∫ x2

x1

m(t)dt.

Proof: Statement 1 follows by integrating by parts using Lemma 2.1 and the definition
of Cn to see that all boundary terms vanish.

For 2, we use the Schwarz inequality and integration by parts to get, for 0 < x1 <
x2 ≤ 1,

|u(x2) − u(x1)|
2 =

∣

∣

∣

∣

∫ x2

x1

u′(t)dt

∣

∣

∣

∣

2

≤

∫ x2

x1

1

p(t)
dt

∫ 1

0

p(t)|u′(t)|2dt = (τu, u)

∫ x2

x1

1

p(t)
dt.
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4 G. Ballard & J. Baxley

For 3, we similarly write

|p(x2)u(x2) − p(x1)u(x1)|
2 =

∣

∣

∣

∣

∫ x2

x1

(p(t)u′(t))′ dt

∣

∣

∣

∣

2

≤

∫ x2

x1

m(t) dt

∫ 1

0

1

m(t)
|(p(t)u′(t))′|

2
dt

= (τ 2u, u)

∫ x2

x1

m(t) dt.

Lemma 2.3 Let u ∈ Cn and 0 < x1 < x2 ≤ 1. Then for k odd, k = 2j + 1 ≤ n,

∣

∣τ ju(x2) − τ ju(x1)
∣

∣

2
≤ (τku, u)

∫ x2

x1

1

p(t)
dt

and for k even, k = 2j ≤ n,

∣

∣p(x2)(τ
j−1u)′(x2) − p(x1)(τ

j−1u)′(x1)
∣

∣

2
≤ (τku, u)

∫ x2

x1

m(t) dt.

Proof: In the first case, τ ju ∈ Cn−2j and n − 2j ≥ 1. In the second case, τ j−1u ∈
Cn−2(j−1) and n − 2(j − 1) ≥ 2, so these statements follow quickly from Lemma 2.2.

Lemma 2.4 If u ∈ Cn, then (τ iu, u) ≤ M(τ i+1u, u) for 0 ≤ i ≤ n − 1.

Proof: Consider the i = 0 case. Since u ∈ Cn, from Lemma 2.2 (2 ) we have

|u(x2) − u(x1)|
2 ≤ (τu, u)

∫ x2

x1

1

p(t)
dt.

Letting x1 = x and x2 = 1 gives

|u(x)|2 ≤ (τu, u)

∫ 1

x

1

p(t)
dt,

and integrating we have

(u, u) =

∫ 1

0

|u(x)|2 m(x) dx ≤ (τu, u)

∫ 1

0

m(x)

[
∫ 1

x

1

p(t)
dt

]

dx = M(τu, u).

If i = 2j ≤ n − 1 is even, since u ∈ Cn implies τ ju ∈ Cn−2j with n − 2j ≥ 1, then
Lemma 2.2 (1 ) and the above argument give

(τ iu, u) = (τ ju, τ ju) ≤ M(τ j+1u, τ ju) = M(τ i+1u, u).

If i = 2j + 1 ≤ n − 1 is odd,

‖τ ju‖2 = (τ ju, τ ju) ≤ M(τ j+1u, τ ju) ≤ M‖τ j+1u‖ ‖τ ju‖

which implies ‖τ ju‖ ≤ ‖τ j+1u‖, so

(τ iu, u) = (τ j+1u, τ ju) ≤ M‖τ j+1u‖2 = M(τ j+1u, τ j+1u) = M(τ i+1u, u).
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Friedrichs Extensions 5

3 The Friedrichs Extension

Let C∞(0, 1) be the collection of all infinitely differentiable functions on (0, 1) and let
Lnu = τnu for u ∈ D(Ln) where

D(Ln) =
{

u ∈ C∞(0, 1) : u(x) = 0 near x = 1, (τn−1u)′(x) = 0 near x = 0 ,

and for n ≥ 2, p(x)(τ ju)′(x) → 0 as x → 0+, for 0 ≤ j ≤ n − 2
}

.

Note that D(Ln) ⊂ Cn. Let C∞

0 (0, 1) consist of all functions in C∞(0, 1) with compact
support in (0, 1). The next lemma is obvious.

Lemma 3.1 C∞

0 (0, 1) ⊂ D(Ln) ⊂ D(Ln+1) for all n ≥ 1.

We view Ln as an operator in the weighted Hilbert space L2(0, 1; m) defined earlier.
From Lemma 3.1, D(Ln) is dense in L2(0, 1; m) for each n.

Theorem 3.1 The operator Ln is symmetric and nonnegative for all n ≥ 1.

Proof: Symmetry follows directly from Lemma 2.2 (1 ). We note that for n = 2j even,

(Lnu, u) = (τnu, u) = (τ ju, τ ju) =

∫ 1

0

|τ ju(x)|2m(x) dx ≥ 0,

and for n = 2j + 1 odd,

(Lnu, u) = (τnu, u) = (τ j+1u, τ ju) =

∫ 1

0

p(x)|(τ ju)′(x)|2 dx ≥ 0,

and so Ln is nonnegative for all k ≥ 1.

Iterating Lemma 2.4, we see that (u, u) ≤ Mn(Lnu, u) for any u ∈ D(Ln). Thus
M−n is a positive lower bound for Ln.

For each n, Theorem 3.1 shows that Ln has a Friedrichs extension, which we denote
by L̃n.

Lemma 3.2 Let u ∈ D(L̃n). Then

1. u(i)(1) = 0 for 0 ≤ i ≤ n − 1,

2. |u(x2) − u(x1)|
2 ≤ Mn−1(L̃nu, u)

∫ x2

x1

1
p(t)

dt, for 0 < x1 < x2 ≤ 1,

3. (u, u) ≤ Mn(L̃nu, u).
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6 G. Ballard & J. Baxley

Proof: If u ∈ D(L̃n), then from [8, p. 1242], there exists ui ∈ D(Ln) such that
‖ui − u‖ → 0 and (Lnui, ui) → (L̃nu, u) as i → ∞.

Since ui ∈ D(Ln) implies τkui ∈ D(Ln) for any integer k ≥ 0, we can use Lemma
2.3 and Lemma 2.4 to conclude,

∣

∣τ jui(x2) − τ jui(x1)
∣

∣

2
≤ Mn−k(Lnui, ui)

∫ x2

x1

1

p(t)
dt

for k = 2j + 1 ≤ n and

∣

∣p(x2)(τ
j−1ui)

′(x2) − p(x1)(τ
j−1ui)

′(x1)
∣

∣

2
≤ Mn−k(Lnui, ui)

∫ x2

x1

m(t) dt.

for k = 2j ≤ n, whenever 0 < x1 < x2 ≤ 1. Since τ jui and (τ jui)
′ vanish for x = 1,

it follows that all the sequences {τ jui}, for 2j + 1 ≤ n, and {p(τ jui)
′}, for 2j ≤ n,

are uniformly bounded and equicontinuous on any compact subset of (0, 1]. Using
Ascoli’s theorem and a familiar diagonalization argument, by passing to a subsequence
we can assume without loss of generality that all of these sequences converge uniformly
on any compact subset of (0, 1]. Since ‖ui − u‖ → 0, then ui → u uniformly on
any such compact subset of (0, 1]. Thus u(1) = 0. Letting v = limi→∞ u′

i, we write

−ui(x) =
∫ 1

x
u′

i(t)dt and take limits using the bounded convergence theorem to get

−u(x) =
∫ 1

x
v(t)dt. Differentiating gives u′(x) = v(x) for 0 < x ≤ 1. So u′ = limi→∞ u′

i.
Continuing in this way, we find that each of these convergent sequences converge to
the appropriate derivative of the limit function u, and it is easy to see that u(j)(1) = 0
for 0 ≤ j ≤ n − 1.

From Lemma 2.4, we have (τui, ui) ≤ Mn−1(τnui, ui) = (Lnui, ui). Then from
Lemma 2.2 (2 ),

|ui(x2) − ui(x1)|
2 ≤ Mn−1(Lnui, ui)

∫ x2

x1

1

p(t)
dt

for 0 < x1 < x2 ≤ 1. Taking limits, we have

|u(x2) − u(x1)|
2 ≤ Mn−1(L̃nu, u)

∫ x2

x1

1

p(t)
dt.

Letting x1 = x and x2 = 1 and integrating, we have (u, u) ≤ Mn(L̃nu, u).

Theorem 3.2 All eigenvalues of L̃n are strictly positive and L̃n has a compact inverse.

Proof: Let u be an eigenfunction of L̃n. Then from Lemma 3.2, (u, u) ≤ Mn(L̃nu, u) =
Mnλ(u, u) where λ is the corresponding eigenvalue. Hence all eigenvalues of L̃n are
strictly positive. Thus L̃−1

n exists. To show L̃−1
n is compact, suppose there is a sequence

{L̃nui} such that ‖L̃nui‖ ≤ K for n = 1, 2, · · ·. We will show that {L̃−1
n (L̃nui)} = {ui}
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Friedrichs Extensions 7

has a convergent subsequence. From Lemma 3.2 (3 ), ‖ui‖ ≤ Mn‖L̃nui‖, and so we
have

(L̃nui, ui) ≤ MnK2 for all n = 1, 2, · · · .

Then from Lemma 3.2 (2 ),

|ui(x2) − ui(x1)|
2 ≤ M2n−1K2

∫ x2

x1

1

p(t)
dt, for 0 < x1 < x2 ≤ 1

and so with x2 = 1, x1 = x

|ui(x)|2 ≤ M2n−1K2

∫ 1

x

1

p(t)
dt, for 0 < x ≤ 1.

Thus the functions {ui} are equicontinuous and uniformly bounded on compact subin-
tervals of (0, 1]. From Ascoli’s theorem and a diagonalization argument we may assume
the sequence converges uniformly to a limit function u on each compact subinterval
of (0, 1]. Since the last inequality also holds for the limit function u, the dominated
convergence theorem guarantees ui converges to u in L2(0, 1; m), so L̃−1

n is compact.

The following lemma is immediate since 0 is not in the spectrum of L̃n.

Lemma 3.3 The range of L̃n is all of L2(0, 1; m).

Because of the previous three lemmas, it follows from the theory of compact self-
adjoint operators that all eigenvalues of the operator L̃n are positive and have finite
multiplicity, and the eigenfunctions span L2(0, 1; m).

To prepare for the next lemma, for 0 ≤ x ≤ 1, we define Q0(x) = 1 and

Qj+1(x) =

∫ x

0

1

p(y)

[
∫ y

0

m(t)Qj(t) dt

]

dy for j = 0, 1, · · · , n − 2,

and we define R0(x) =
∫ 1

x
1

p(t)
dt and

Rj+1(x) =

∫ 1

x

1

p(y)

[
∫ 1

y

m(t)Ri(t) dt

]

dy, for j = 0, 1, · · · , n − 2.

Just as in the proof of Lemma 2.1, it follows by induction that each Qj is well-defined
and bounded.

Lemma 3.4 If w ∈ N(Ln
∗), then for some constants aj, w =

n−1
∑

j=0

ajQj(x).
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8 G. Ballard & J. Baxley

Proof: It is easy to verify that

τ iQj = (−1)iQj−i, for i ≤ j, and τ iQj = 0 for i > j (2)

and
p(τ iRj)

′ = (−1)ipR′

j−i for i < j and p(τ jRj)
′ = (−1)j+1. (3)

Thus, τn maps all of the functions Q0, R0, · · · , Qk−1, Rk−1 to 0 and it is easy to show
that the functions Qj and Rj are linearly independent. Since w ∈ N(Ln

∗), it follows
as in [8, pp. 1291-1294], that w ∈ C∞(0, 1) and τnu = 0. Thus the 2n functions
{Q0, R0, · · · , Qk−1, Rk−1} must span N(Ln

∗). Therefore for w ∈ N(Ln
∗),

w =

n−1
∑

j=0

(ajQj + bjRj)

for some constants aj and bj . We need to show that bj = 0 for all j = 0, 1, · · · , k − 1.
Suppose bγ 6= 0 where bj = 0 for γ + 1 ≤ j ≤ k − 1. Choose u ∈ C∞(0, 1) such that
u(x) = Qn−γ−1(x) for 0 ≤ x ≤ 1/4 and u(x) = 0 for 3/4 ≤ x ≤ 1. Then u ∈ D(Ln)
and

(τnu, w) = (Lnu, w) = (u, Ln
∗w) = (u, τnw).

Repeated integration by parts gives

(τnu, w) =
n−1
∑

i=0

(τ iu)p(x)(τn−i−1w)′
∣

∣

1

0
−

n−1
∑

i=0

p(x)(τ iu)′(τn−i−1w)
∣

∣

1

0
+ (u, τnw)

and thus
n−1
∑

i=0

(τ iu)p(x)(τn−i−1w)′
∣

∣

1

0
−

n−1
∑

i=0

p(x)(τ iu)′(τn−i−1w)
∣

∣

1

0
= 0.

Since u(x) ≡ 0 for 3/4 ≤ x ≤ 1 our equation simplifies to

lim
x→0

[

n−1
∑

i=0

(τ iu)p(x)(τn−i−1w)′ −

n−1
∑

i=0

p(x)(τ iu)′(τn−i−1w)

]

= 0.

For 0 ≤ x ≤ 1/4, u(x) = Qn−γ−1(x) so from (2), τn−γ−1u = (−1)n−γ−1Q0 ≡ (−1)n−γ−1.
Thus we have

lim
x→0

[

n−γ−1
∑

i=0

(τ iQn−γ−1)p(x)(τn−i−1w)′ −

n−γ−2
∑

i=0

p(x)(τ iQn−γ−1)
′(τn−i−1w)

]

= 0. (4)

Substituting for w, we see that any term with a product of the form (τ iQj)p(x)(τkQm)′

tends to 0, so all terms in w involving the Qj ’s vanish and we may as well assume that

w =

γ
∑

j=0

bjRj .
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In the second sum in (4), we encounter only factors of the form τkRj where k ≥ γ + 1
and j ≤ γ. So by (3), all these terms tend to zero. In the first sum in (4), we encounter
only factors of the form p(x)(τkRj)

′ where k ≥ γ and j ≤ γ. By (3), the only term
which does not tend to zero is the one for which k = j = γ so i = n − γ − 1 and (2),
(3) give

lim
x→0

(τn−γ−1Qn−γ−1)p(x)(τγbγRγ)
′ = (−1)nbγ = 0.

Thus bγ = 0, a contradiction.

Since 0 is a point of regular type of Ln [1, pp. 91-94], the deficiency indices of L∗

n are
equal to the dimension of the null space of L∗

n. By Lemma 3.4, these deficiency indices
are each n. The following theorem almost follows from the general theory [8] which
states that every selfadjoint extension of Ln comes by the imposition of n boundary
conditions, all at the regular endpoint x = 1. The problem is that the general theory
in [8] is all developed by starting with the initial domain C∞

0 (0, 1) and one would have
to re-do that theory in this new context. It is likely that this approach would work,
but it is not hard to give a direct proof.

Theorem 3.3 D(L̃n) = {u ∈ D(Ln
∗) : u(i)(1) = 0 for i = 0, 1, · · · , n − 1}.

Proof: Since D(L̃n) ⊂ D(Ln
∗) and Lemma 3.2 (1 ) implies the boundary conditions are

satisfied for u ∈ D(L̃n), we need only show the set described is a subset of D(L̃n).
Let u ∈ D(Ln

∗) such that u(i)(1) = 0 for i = 0, 1, · · · , n − 1. From Lemma 3.3, the
range of L̃n is all of L2(0, 1; m), so there exists v ∈ D(L̃n) such that L̃nv = Ln

∗u. We
let w = u − v and we will show that w = 0. Since D(L̃n) ⊂ D(Ln

∗), w ∈ N(Ln
∗), and

from Lemma 3.4, w has the form

w =
k−1
∑

j=0

ajQj(x). (5)

It is easy to verify that w satisfies the conditions required for membership in Cn as
x → 0+. Since u satisfies the boundary conditions by hypothesis and v satisfies the
boundary conditions by Lemma 3.2 (1 ), we have w(i)(1) = 0 for i = 0, 1, · · · , n − 1,
and so w ∈ Cn. Iterating Lemma 2.4, we find

(w, w) ≤ Mn(τnw, w),

so the Schwarz inequality gives ‖w‖ ≤ Mn‖τnw‖, implying w = 0 or u = v ∈ D(L̃n).

A reader for whom the theory in [8] is not well-known might be worried that some
functions in D(Ln

∗) would lack sufficient smoothness for the boundary conditions in
Theorem 3.3 to make sense. Although it follows from [8, Theorem 10, p. 1294] that all
such functions have 2n−1 continuous derivatives, it is easy to see without this general
theory that any u ∈ D(Ln

∗) has at least n − 1 continuous derivatives. Returning to
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10 G. Ballard & J. Baxley

the proof of Theorem 3.3, one sees that u = w + v, where w ∈ C∞(0, 1) (as noted in
the proof of Lemma 3.4), and v ∈ D(L̃n), which (as shown in the proof of Lemma 3.2)
has at least n − 1 continuous derivatives.

We now identify the eigenfunctions and eigenvalues of L̃1 in one special case that
arises in the case of Toeplitz integral operators associated with the Hankel transform.

Theorem 3.4 Suppose m(x) = p(x) = x2ν where ν > 0 is a constant. Then the eigen-

values Λk of L̃1 have multiplicity one and Λk = z2
k, where zk is the kth positive zero of

the Bessel function Jν−1/2. An eigenfunction corresponding to Λk is x1/2−νJν−1/2(zkx).

Proof: If Λ is an eigenvalue of L̃1 and u is a corresponding eigenfunction, then Λ > 0,
u is in the null space of L̃1 − ΛI and we have the equation

L∗

1u − Λu = L̃1u − Λu = 0.

Again, using [8, pp. 1291-1294], u is infinitely differentiable and τu = Λu. This
equation reduces to

u′′ +
2ν

x
u′ + β2u = 0

where Λ = β2. It is easy to verify that the general solution of this equation is

u = c1x
1/2−νu1(βx) + c2x

1/2−νu2(βx),

where u1, u2 are any two linearly independent solutions of Bessel’s equation. We may
choose u1(x) = Jν−1/2(x) and u2(x) = Yν−1/2(x). Let w2(x) = x1/2−νu2(βx). Known
behavior (see [12]) of u2(x) as x → 0 shows that

lim
x→0

x2νw′

2(x) = d 6= 0

for some constant d. Choosing v in the domain of L1 so that v(x) = 1 in a right
neighborhood of x = 0, we can integrate by parts to get

(L1v, w2) = (τv, w2) = −d + (v, τw2),

so that w2 is not in the domain of L∗

1. Thus c2 = 0. A similar calculation shows that
x1/2−νu2(βx) is in the domain of L∗

1. Then u is in the domain of L̃1 if and only if
u(1) = 0, which occurs if and only if u1(β) = Jν−1/2(β) = 0. Thus β must be a zero zk

of this Bessel function.
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