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Abstract

In this paper we deal with the asymptotic problem

(

a(t)Φ(x′)
)′

+ b(t)F (x) = 0 , lim
t→∞

x′(t) = 0 , x(t) > 0 for large t . (∗)

Motivated by searching for positive radially symmetric solutions in a fixed ex-
terior domain in R

N for partial differential equations involving the curvature
operator, the global positiveness and uniqueness of (*) is also considered.

Several examples illustrate the discrepancies between the bounded and un-
bounded Φ. The results for the curvature operator and the classical Φ-Laplacian
are compared, too.

Key words and phrases: Ordinary differential equations, nonlinear boundary value
problems, bounded Φ-Laplacian, nonoscillation.
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1 Introduction

In this paper we deal with the second order nonlinear differential equation

(

(a(t)Φ(x′)
)′

+ b(t)F (x) = 0, (t ≥ t0), (1)

where:
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(i) Φ: R → (−σ, σ), 0 < σ ≤ ∞, is an increasing odd homeomorphism, such that
Φ(u)u > 0 for u 6= 0;

(ii) F : R → R is a continuous increasing function such that F (u)u > 0 for u 6= 0;

(iii) a, b : [t0,∞) → (0,∞) are continuous functions and

∫ ∞

t0

b(t) dt <∞ .

Our aim is to study the existence of positive solutions x of (1) satisfying the asymp-
totic boundary conditions

lim
t→∞

x(t) = ℓx , lim
t→∞

x′(t) = 0 , 0 < ℓx <∞ , (2)

lim
t→∞

x(t) = ∞ , lim
t→∞

x′(t) = 0 . (3)

The prototype of (1) is the equation

(

a(t)ΦC(x′)
)′

+ b(t)F (x) = 0 , (t ≥ t0) , (4)

where the map ΦC : R → (−1, 1) is given by

ΦC(u) =
u

√

1 + |u|2
. (5)

This equation arises in the study of the radially symmetric solutions of partial differ-
ential equation with the curvature operator

div

(

g(|x|) ∇u
√

1 + |∇u|2

)

+B(|x|)F (u) = 0 , (6)

where x = (x1, . . . xn) ∈ R
n, n ≥ 2, ∇u = (D1u, . . . , Dnu), Di = ∂/∂xi, i = 1, . . . n,

|x| =
√

∑n
i=1 x

2
i , E = {x ∈ Rn : |x| ≥ d}, d > 0 and g : R

+ → R
+ is a weight function.

Denote r = |x| and du
dr

= ur the radial derivative of u. Since ∇u = x
r
ur, we have

g(r)
∇u

√

1 + |∇u|2
= x

g(r)

r
ΦC(ur)

and, by a direct computation, we get that the function u is a radially symmetric solution
of (6) if and only if the function y = y(r) = u(|x|) is a solution of

(

rn−1g(r)ΦC(y′)
)′

+ rn−1B(r)F (y) = 0 , (r ≥ d) ,

which is a special case of (1).
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Boundary value problems on a compact interval associated to the partial differential
equations with the mean curvature operator have been investigated in [4, 5, 6]; see also
the references therein.

When Φ is the classical Φ-Laplacian, i.e.

Φ(u) = |u|p−2u , p > 1 ,

various types of asymptotic problems for equation (1) have been deeply investigated.
We refer to [2, 3, 8, 13, 14] and the monographs [1, 10] for further references.

In a recent paper [9], the authors studied all possible types of nonoscillatory solu-
tions of (1) and their mutual coexistence under the assumption that there exists λ > 0
such that

λa−1(t) ∈ Im Φ for any t ≥ t0 . (7)

This classification depends on the asymptotic behavior of the vector (x, x[1]), where
x is a solution of (1) and x[1] denotes its quasiderivative

x[1](t) = a(t)Φ(x′(t)) .

If σ = ∞, i.e. Im Φ is unbounded, then (7) is satisfied for any λ > 0. So, condition (7)
plays a role only when Im Φ is bounded and requires

lim inf
t→∞

a(t) > 0 . (8)

Moreover, when (8) holds, then

lim
t→∞

x[1](t) = 0 =⇒ lim
t→∞

x′(t) = 0

for any solution x of (1). If lim inf
t→∞

a(t) = 0, then this is not in general true.

For these reasons, particular attention will be devoted to the equation (1) with Φ
bounded and its special case (4). Consequently, throughout this paper, we assume

Im Φ is bounded, lim inf
t→∞

a(t) = 0 . (Hp)

It is easy to show (see below) that, when (Hp) holds, any nonoscillatory solution x
of (1) satisfies lim

t→∞
x[1](t) = 0.

Moreover, the global positiveness and uniqueness of solutions of (1)–(2) will be also
considered. This problem is motivated by searching for positive radially symmetric
solutions in a fixed exterior domain in R

N for (6).

We will show that the lack of the homogeneity property of Φ can produce several
new phenomena, which are illustrated by some examples. With minor changes, our
results can be applied also when σ = ∞ and so they complement the previous ones
stated in [7, 9] for a general Φ and in [8] for the classical Φ-Laplacian. Similarities
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and discrepancies with these cases complete the paper jointly with a discussion on the
meaning of the assumption (Hp).

Finally, we introduce the integral

Jµ =

∫ ∞

Φ∗

(

µ
1

a(t)

∫ ∞

t

b(s) ds

)

dt ,

where Φ∗ denotes the inverse function to Φ and µ is a positive constant. This integral
plays a crucial role for the asymptotic behavior of solutions, similarly as in case when
Φ is unbounded ([7, 8, 9]).

2 Necessary Conditions

Throughout this paper we shall consider only the solutions of (1) which exist on some
ray [tx,∞), where tx ≥ t0 may depend on the particular solution. As usual, a solution
x of (1) defined in some neighborhood of infinity is said to be nonoscillatory if x(t) 6= 0
for large t, and oscillatory otherwise.

If x is eventually positive [negative], then its quasiderivative x[1] is decreasing [in-
creasing] for large t. The following holds.

Lemma 2.1. Assume (Hp). Then any nonoscillatory solution x of (1) satisfies

x(t)x[1](t) > 0 for large t and lim
t→∞

x[1](t) = 0 .

Proof. Let x be a nonoscillatory solution of (1) and, without loss of generality,
assume x(t) > 0 for t ≥ T ≥ t0. From (Hp), there exists {tk}, tk → ∞ such that
limk x

[1](tk) = 0 and, because x[1] is eventually decreasing, the assertion follows.
In virtue of Lemma 2.1, nonoscillatory solutions of (1) are eventually monotone.

Necessary conditions for the solvability of (1)–(2), or (1)–(3), are given by the following.

Proposition 2.1. Assume (Hp).
i1) If

lim sup
t→∞

1

a(t)

∫ ∞

t

b(s) ds = ∞ ,

then any continuable solution of (1) is oscillatory.
i2) Assume lim

|u|→∞
|F (u)| = ∞. If

lim sup
t→∞

1

a(t)

∫ ∞

t

b(s) ds > 0 , (9)

then (1) does not have unbounded nonoscillatory solutions.
i3) If

lim inf
t→∞

1

a(t)

∫ ∞

t

b(s) ds > 0 ,
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Asymptotic Problems 5

then (1) does not have bounded nonoscillatory solutions. In addition, if lim
|u|→∞

|F (u)| =

∞, then any continuable solution of (1) is oscillatory.
i4) If

lim
t→∞

1

a(t)

∫ ∞

t

b(s) ds = 0 , (10)

then any bounded nonoscillatory solution x of (1) satisfies

lim
t→∞

x′(t) = 0 . (11)

Conversely, if (1) has nonoscillatory solutions x satisfying (11), then (10) holds.

Proof. Let x be a nonoscillatory solution of (1). In view of Lemma 2.1 we can
suppose, without loss of generality, x(t) > 0, x′(t) > 0 for t ≥ T .

Claim i1). Integrating (1), we obtain for t ≥ T

x[1](t) =

∫ ∞

t

b(s)F
(

x(s)
)

ds ≥ F
(

x(t)
)

∫ ∞

t

b(s) ds (12)

or
σ

F (x(t))
>

1

a(t)

∫ ∞

t

b(s) ds

which yields a contradiction as t→ ∞.
Claim i2). Now assume lim

t→∞
x(t) = ∞. Using the same argument, we obtain for

t ≥ T

σ > Φ
(

x′(t)
)

≥ F
(

x(t)
) 1

a(t)

∫ ∞

t

b(s) ds

which contradicts (9) as t→ ∞.
Claim i3). From (12) it follows that

Φ(x′(t)) ≥ F (x(T ))
1

a(t)

∫ ∞

t

b(s) ds , (13)

so lim inf
t→∞

x′(t) > 0, i.e. x is unbounded. The second assertion follows from claim i2).

Claim i4). If lim
t→∞

x(t) = ℓx <∞, then for t ≥ T we have

Φ∗

(

F (ℓx)
1

a(t)

∫ ∞

t

b(s) ds

)

≥ x′(t) ≥ Φ∗

(

F (x(T ))
1

a(t)

∫ ∞

t

b(s)ds

)

,

which yields (11). Conversely, from (13), the condition (10) immediately follows.
From (13) the following result follows.

Proposition 2.2. Assume (Hp). If Jµ = ∞ for any sufficiently small µ > 0, then
bounded nonoscillatory solutions of (1) do not exist.
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Remark 2.1. Proposition 2.1-i2) remains to hold if the unboundedness of F is replaced
by

lim
|u|→∞

|F (u)| = MF <∞ , lim sup
t→∞

1

a(t)

∫ ∞

t

b(s) ds >
σ

MF
. (14)

The following example shows that the condition (14) is optimal.

Example 2.1. The equation

(

t−1ΦC(x′)
)′

+

√
t2 + 4√
5t3

ΦC(x) = 0 , (t ≥ 1) ,

has the unbounded solution x(t) = t/2, i.e., the statement of Proposition 2.1-i2) does
not hold. In this case

lim sup
t→∞

1

a(t)

∫ ∞

t

b(s) ds = lim sup
t→∞

t

∫ ∞

t

1

s2
ds = 1 ,

so (14) is not verified. However, Proposition 2.1-i3) is applicable and any nonoscillatory
solutions is unbounded.

3 Nonoscillatory Bounded Solutions

In this section we deal with solutions of (1) satisfying the asymptotic conditions (2)
and with their global positiveness and uniqueness.

Theorem 3.1. Assume (Hp),

lim sup
t→∞

1

a(t)

∫ ∞

t

b(s) ds <∞ (15)

and there exists a positive constant µ such that

Jµ =

∫ ∞

Φ∗

(

µ

a(t)

∫ ∞

t

b(s) ds

)

dt <∞ .

Then, for each L > 0, L sufficiently small, (1) has nonoscillatory solutions, x, such
that lim

t→∞
x(t) = L.

In addition, if (10) holds, then lim
t→∞

x′(t) = 0, i.e. the asymptotic problem (1)–(2)

is solvable.

Proof. In view of (15), there exists L > 0 such that F (L) < µ and

sup
t≥t0

F (L)

a(t)

∫ ∞

t

b(s) ds < σ .
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Choose t1 ≥ t0 large so that
∫ ∞

t1

Φ∗

(

F (L)

a(t)

∫ ∞

t

b(s) ds

)

dt ≤ L

2
. (16)

Denote with C[t1,∞) the Fréchet space of all continuous functions on [t1,∞) endowed
with the topology of uniform convergence on compact subintervals of [t1,∞) and con-
sider the set Ω ⊂ C[t1,∞) given by

Ω = {u ∈ C[t1,∞) : L/2 ≤ u(t) ≤ L} .
Define on Ω the operator T as follows

T (u)(t) = L−
∫ ∞

t

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (u(τ)) dτ

)

ds .

Obviously, T (u)(t) ≤ L. From (16), because it results for s ≥ t1
∫ ∞

s

b(τ)F (u(τ)) dτ ≤ F (L)

∫ ∞

s

b(τ) dτ ,

we obtain T (u)(t) ≥ L/2, that is T maps Ω into itself. Let us show that T (Ω) is
relatively compact, i.e. T (Ω) consists of functions equibounded and equicontinuous on
every compact interval of [t1,∞). Because T (Ω) ⊂ Ω, the equiboundedness follows.
Moreover, in view of the above estimates, for any u ∈ Ω we have

0 <
d

dt
T (u)(t) ≤ Φ∗

(

F (L)

a(s)

∫ ∞

s

b(τ) dτ

)

,

which proves the equicontinuity of the elements of T (Ω). The continuity of T in Ω
follows by using the Lebesgue dominated convergence theorem and taking into account
(16). Thus, by the Tychonov fixed point theorem, there exists a fixed point x of T.
Clearly, x is a solution of (1) such that limt→∞ x(t) = L and the solvability of the BVP
(1)-(2) follows from Proposition 2.1–i4).

Theorem 3.1 answers the existence problem of bounded eventually positive solutions
of (1). For the equation (4) this result can be improved by obtaining sufficient condi-
tions for their global positivity and uniqueness. To this end, the following Gronwall
type lemma is needed.

Lemma 3.1 ([11, Lemma 4.1]). Let w and ψ be two nonnegative continuous functions
such that ψ ∈ L1[T,∞) and wψ ∈ L1[T,∞). If

w(t) ≤ A+

∫ ∞

t

ψ(s)w(s) ds , (t ≥ T ) ,

for some nonnegative constant A, then

w(t) ≤ A exp

(
∫ ∞

t

ψ(s) ds

)

, (t ≥ T ) .

If, in particular, A = 0, then w(t) = 0 identically on [T,∞).
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Theorem 3.2. Assume (Hp) and suppose that F is continuously differentiable in a
neighborhood of zero such that

lim
u→0

F (u)

u
= 0 . (17)

If conditions (15) and

I =

∫ ∞

t0

1

a(t)

∫ ∞

t

b(s) ds dt <∞ (18)

are verified, then for any positive and sufficiently small L, there exists a unique solution
x of (4) such that

x(t) > 0 for t ≥ t0 , lim
t→∞

x(t) = L . (19)

Proof. In view of (15), there exists λ > 0 such that for any t ≥ t0

sup
t≥t0

λ

a(t)

∫ ∞

t

b(s) ds <
1

2
. (20)

Thus

Φ∗
C

(

λ

a(t)

∫ ∞

t

b(s) ds

)

<
2√
3

λ

a(t)

∫ ∞

t

b(s) ds (21)

and so, from (18), we have Jλ < ∞. In virtue of (17), choose L > 0 such that F is
continuously differentiable on (0, L] and

F (L) < min

{

λ,

√
3L

4 I

}

.

From (21) we get

∫ ∞

t0

Φ∗
C

(

F (L)

a(t)

∫ ∞

t

b(s) ds

)

dt <
2√
3
I F (L) <

L

2

and so (16) is satisfied with t1 = t0. Reasoning as in the proof of Theorem 3.1-i1), there
exists at least one solution x of (4) satisfying the boundary conditions (19). It remains
to show the uniqueness of this solution. Let z, y be two solutions of (4) satisfying (19).
Since z and y are increasing, we have 0 < y(t) < L, 0 < z(t) < L on [t0,∞). Setting

hw(t) =
1

a(t)

∫ ∞

t

b(s)F (w(s)) ds,

in view of (20) we have 0 < hy(t) < 2−1, 0 < hz(t) < 2−1. Integrating (4), we obtain

|y(t) − z(t)| ≤
∫ ∞

t

|Φ∗
C(hy(s)) − Φ∗

C(hz(s))| ds . (22)
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A direct calculation gives

d

du
Φ∗

C(u) ≤ 8√
27

on [0,
1

2
] ,

and so, the mean value theorem implies

|Φ∗
C(hy(t)) − Φ∗

C(hz(t))| ≤
8√
27

|hy(t) − hz(t)|

≤ 8√
27a(t)

∫ ∞

t

b(r) |F (y(r)) − F (z(r))| dr .

Using again the mean value theorem, we get

|Φ∗
C(hy(t)) − Φ∗

C(hz(t))| ≤
8ML√
27a(t)

∫ ∞

t

b(r) |y(r) − z(r)| dr , (23)

where

ML = max
ξ∈[0,L]

dF

du |u=ξ
.

Putting
w(t) = sup

ξ≥t
|y(ξ) − z(ξ)| ,

from (22) and (23) we get

w(t) ≤ 8√
27
ML

∫ ∞

t

(

1

a(s)

∫ ∞

s

b(r) dr

)

w(s) ds

and applying Lemma 3.1 the assertion follows.

Remark 3.1. As already claimed, Theorem 3.2 plays an important role in searching
for positive radially symmetric solutions in a fixed exterior domain in R

N for the partial
differential equation (6). Moreover, Theorem 3.2 can be easily extended to an equation
involving a more general Φ, by assuming that Φ is continuously differentiable in a
neighborhood of zero. The details are left to the reader.

A closer examination of proofs of Theorems 3.1 and 3.2 shows that these results hold
also when Im Φ is unbounded. So, in particular, they can be applied to the equation
associated to the Sturm-Liouville operator

(a(t)z′)
′
+ b(t)F (z) = 0 . (24)

The boundedness of nonoscillatory solutions of (24) is strongly related to the bound-
edness of nonoscillatory solutions of (4). We make this observation precise in Corol-
lary 3.1. To show this fact, the following lemma concerning the map ΦC is needed.
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Lemma 3.2. Assume (15) and let

H = sup
t≥t0

1

a(t)

∫ ∞

t

b(s) ds .

For any µ > 0 such that
µH < 1 (25)

we have

I =

∫ ∞

t0

1

a(t)

∫ ∞

t

b(s) ds dt <∞ ⇐⇒ JC
µ =

∫ ∞

t0

Φ∗
C

(

µ

a(t)

∫ ∞

t

b(s) ds

)

dt <∞ .

Then, in particular, the convergence of the integral JC
µ does not depend on the values

of the parameter µ, i.e. either JC
µ <∞ or JC

µ = ∞ for any µ > 0 satisfying (25).

Proof. From (25) we have

sup
t≥t0

µ

a(t)

∫ ∞

t

b(s) ds < 1 .

Then

µ

a(t)

∫ ∞

t

b(s)ds ≤ Φ∗
C

(

µ
1

a(t)

∫ ∞

t

b(s) ds

)

≤ µ√
1 −H2

1

a(t)

∫ ∞

t

b(s) ds

and the assertion follows.

Corollary 3.1. Assume (15) and

lim inf
t→∞

a(t) = 0 . (26)

Then the following statements are equivalent.
i1) Equation (24) has bounded nonoscillatory solutions.
i2) Equation (4) has bounded nonoscillatory solutions.
i3) I <∞.

Proof. i1) =⇒i2). If
∞
∫

t0

1
a(t)

dt <∞, then I <∞ and Lemma 3.2 yields JC
µ <∞ for

any µ > 0 satisfying (25). So, the assertion follows from Theorem 3.1. If
∞
∫

t0

1
a(t)

dt = ∞,

then I < ∞, as it follows by applying to the equation (24), for instance, [7, Theorem
4.2-i1)] or [13, Theorem 2.2]. Hence, using the same argument, the assertion again
follows.

i2) =⇒ i3). From Proposition 2.2 we have JC
µ <∞ for a sufficiently small constant

µ > 0. So, in view of Lemma 3.2, the assertion follows.
i3) =⇒ i1). The assertion follows by applying Theorem 3.1, which, as claimed, holds

also when σ = ∞.
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4 Asymptotic Estimates

When Φ is the classical Φ-Laplacian, for two bounded nonoscillatory solutions x, y,
such that lim

t→∞
x(t) = ℓx 6= 0, lim

t→∞
y(t) = ℓy 6= 0 we have that the limit

lim
t→∞

x(t) − ℓx
y(t) − ℓy

= lim
t→∞

x′(t)

y′(t)

is finite and different from zero. Roughly speaking, all bounded nonoscillatory solutions
of (1) with the classical Φ-Laplacian have an equivalent growth at infinity. This fact
can fail for a general Φ, with Im Φ bounded, as the following example illustrates.

Example 4.1. Consider the equation

(1

t
Φ(x′)

)′

+
log t− 1

(t log t)2
x = 0 (t ≥ 3) , (27)

where Φ: R → (−1, 1) is a continuous odd function such that

Φ(u) = −(log u)−1 if 0 < u < 1/e . (28)

Let us show that (27) has two bounded solutions such that

lim
t→∞

x′(t)

y′(t)
= ∞ . (29)

We have
Φ∗(w) = e−1/w if 0 < w < 1 .

Because
1

a(t)

∫ ∞

t

b(s) ds = −t
∫ ∞

t

d

ds

(

1

s log s

)

ds =
1

log t
,

we get for λ ∈ (0, 1]

Φ∗

(

λ
1

a(t)

∫ ∞

t

b(s) ds

)

dt =
1

t1/λ
. (30)

Taking into account that

sup
t≥3

1

a(t)

∫ ∞

t

b(s) ds < 1 ,

in virtue of Theorem 3.1 and its proof, there exist two bounded nonoscillatory solutions
x, y of (27) such that lim

t→∞
x(t) = 2−1, lim

t→∞
y(t) = 8−1. The l’Hopital rule yields

lim
t→∞

Φ(x′(t))

(log t)−1
=

1

2
, lim

t→∞

Φ(y′(t))

(log t)−1
=

1

8
.

Hence there exists T ≥ t0 such x′(t) > t−3, y′(t) < t−4 for t > T . Then x′(t) > ty′(t)
and (29) follows.
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A sufficient condition, in order that bounded nonoscillatory solutions have an equiv-
alent growth at infinity, is given by the following.

Corollary 4.1. Assume (Hp), (10) and that

lim
u→0+

Φ(u)

uα
= d , 0 < d <∞ , (31)

for some α > 0. If x, y are two bounded nonoscillatory solutions of (1) such that

lim
t→∞

x(t) = cx , lim
t→∞

y(t) = cy , 0 < cx, cy <∞ , (32)

then the limit

lim
t→∞

x(t) − cx
y(t) − cy

is finite and different from zero. Moreover, any bounded nonoscillatory solution x of
(1) satisfies

x′(t) = O

(

(

1

a(t)

∫ ∞

t

b(s) ds

)1/α
)

as t→ ∞ . (33)

Proof. Without loss of generality, let x, x[1], y and y[1] be positive for t ≥ T ≥ t0.
Hence, the l’Hopital rule gives

lim
t→∞

Φ(x′(t))

Φ(y′(t))
= lim

t→∞

x[1](t)

y[1](t)
=
F (cx)

F (cy)
.

In virtue of Theorem 3.1 we have lim
t→∞

x′(t) = 0, lim
t→∞

y′(t) = 0. Thus

Φ(x′(t))

Φ(y′(t))
=

Φ(x′(t))

(x′(t))α

(y′(t))α

Φ(y′(t))

(

x′(t)

y′(t)

)α

which implies that the limit

lim
t→∞

x′(t)

y′(t)

is finite and different from zero and the first assertion follows.
Finally, let x be a solution of (1) such that limt→∞ x(t) = ℓx, 0 < ℓx < ∞. In view

of Proposition 2.1-i4), we have limt→∞ x′(t) = 0 and, from (31),

lim
t→∞

Φ(x′(t))

(x′(t))α
= d .

Since
a(t)(x′(t))α

∫∞

t
b(s)ds

=
(x′(t))α

Φ(x′(t))

x[1](t)
∫∞

t
b(s) ds

,

by using Lemma 2.1 and the l’Hopital rule, we obtain (33).
It follows from the proof of Corollary 4.1 that bounded solutions for equations with

the map ΦC have the same growth as that ones with Sturm-Liouville operator.
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Corollary 4.2. Assume (10) and (26). If x is a bounded nonoscillatory solution of
(4) and z is a bounded nonoscillatory solution of (24) such that lim

t→∞
x(t) = lim

t→∞
z(t),

then

x′(t) − z′(t) = o

(

1

a(t)

∫ ∞

t

b(s)ds

)

as t→ ∞ .

Proof. Without loss of generality, suppose x, x′, z, z′ are positive for t ≥ T ≥ t0. In
virtue of Proposition 2.1-i4), we have lim

t→∞
x′(t) = 0. Because the same argument holds

for (24), we have also lim
t→∞

z′(t) = 0. Moreover, since a(t)z′(t) is positive decreasing for

t ≥ T and (26) holds, we get
lim
t→∞

a(t)z′(t) = 0 .

From the equality

x′(t) − z′(t)

a−1(t)
∫∞

t
b(s) ds

=
x′(t)

ΦC(x′(t))

x[1](t)
∫∞

t
b(s)ds

− a(t)z′(t)
∫∞

t
b(s) ds

,

taking into account Lemma 2.1, by using the l’Hopital rule, the assertion follows.

5 Unbounded Solutions

In this section we study the existence of solutions of (1) satisfying the asymptotic
conditions (3).

Theorem 5.1. Let (Hp) be satisfied. Assume there exists k, 0 < Φ(k) < σ, such that
∫ ∞

t0

b(s)F (ks) ds <∞ (34)

and

lim
t→∞

1

a(t)

∫ ∞

t

b(s)F (ks) ds = 0 . (35)

If there exists a positive constant µ ∈ Im F such that

Jµ =

∫ ∞

t0

Φ∗

(

µ
1

a(t)

∫ ∞

t

b(s) ds

)

dt = ∞ , (36)

then the asymptotic problem (1)–(3) is solvable.

Proof. Let L be such that
F (L) = µ . (37)

In virtue of (35), we can choose t1 > 0 so large that

sup
t≥t1

1

a(t)

∫ ∞

t

b(s)F (ks) ds ≤ Φ(k) , kt1 > L . (38)
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14 Z. Došlá, M. Cecchi & M. Marini

Now, as in the proof of Theorem 3.1, denote by C[t1,∞) the Fréchet space of all
continuous functions on [t1,∞) endowed with the topology of uniform convergence on
compact subintervals of [t1,∞) and consider the set Ω ⊂ C[t1,∞) given by

Ω = {u ∈ C[t1,∞) : L ≤ u(t) ≤ kt} .

Define in Ω the operator T as follows

T (u)(t) = L+

∫ t

t1

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (u(τ)) dτ

)

ds .

In view of (38), we have

T (u)(t) ≤ L+

∫ t

t1

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (kτ) dτ

)

≤ L+ k(t− t1) ≤ kt.

Obviously, T (u)(t) ≥ L and so T maps Ω into itself. Reasoning as in the proof of
Theorem 3.1 and applying the Tychonov fixed point theorem, there exists a solution x
of the integral equation

x(t) = L+

∫ t

t1

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (x(τ)) dτ

)

ds.

Clearly, x is a solution of (1). Because

Φ(x′(t)) =
1

a(t)

∫ ∞

t

b(τ)F (x(τ)) dτ ≤ 1

a(t)

∫ ∞

t

b(τ)F (kτ) dτ ,

in virtue of (35), we obtain lim
t→∞

x′(t) = 0. Moreover, from (37) we have

∫ t

t1

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (x(τ)) dτ

)

ds ≥
∫ t

t1

Φ∗

(

1

a(s)

∫ ∞

s

b(τ)F (L) dτ

)

ds =

∫ t

t1

Φ∗

(

µ

a(s)

∫ ∞

s

b(τ) dτ

)

and so (36) yields lim
t→∞

x(t) = ∞.

Remark 5.1. Theorem 5.1 holds for a general map Φ, bounded or unbounded, and
complements similar results stated in [7, Theorem 3.1], [8, Theorem 3.3], and [9, The-
orem 1].

The following example illustrates Theorem 5.1.

Example 5.1. Consider the equation
(

(t−3ΦC(x′)
)′

+ t−5
√

|x| sgn x = 0 , (t ≥ 1) .

Because all the assumptions of Theorem 5.1 are satisfied for any k > 0 and µ > 0, this
equation has unbounded nonoscillatory solutions x such that lim

t→∞
x′(t) = 0.
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Remark 5.2. When (8) holds and Im Φ is bounded, the existence of nonoscillatory
solutions x of (1) such that lim

t→∞
x[1](t) = 0 has been obtained in [9] as limit of a

sequence {zn}, where zn are solutions of (1) such that lim
t→∞

z
[1]
n (t) > 0. Hence, in virtue

of Lemma 2.1, the argument used in [9, Theorem 1] cannot be adapted to the case here
considered.

In the next theorem, we give an asymptotic estimate for unbounded solutions of
(1).

Theorem 5.2. Let (Hp) be satisfied. Assume that for some α > 0 the function Φ
satisfies (31) and the function F satisfies (35) and

lim
u→∞

F (u)

uα
= k , 0 < k <∞ . (39)

If x is a solution of the BVP (1)– (3), then

x′(t) = o

(

( 1

a(t)

∫ ∞

t

b(s)F (ks) ds
)1/α

)

as t→ ∞ .

Proof. We have by the l’Hopital rule

lim
t→∞

x(t)

kt
= 0 .

Proceeding as in the proof of Corollary 4.1, we have

a(t)(x′(t))α

∫∞

t
b(s)F (ks) ds

=
(x′(t))α

Φ(x′(t))

x[1](t)
∫∞

t
b(s)F (ks) ds

and by (39)

lim
t→∞

F (x(t))

F (kt)
= lim

t→∞

F (x(t)

xα(t)

(kt)α

F (kt)

(x(t)α

(kt)α
= 0 .

The assertion follows by the l’Hopital rule.

6 Coexistence Result

From Theorems 3.1 and 5.1 we have the following coexistence result.

Corollary 6.1. Let (Hp) be satisfied. Assume there exists k, 0 < Φ(k) < σ, such that
(34) and (35) hold. If there exist two positive constants λ and µ, λ < µ ∈ ImF such
that Jλ < ∞ and Jµ = ∞, then (1) has both bounded and unbounded nonoscillatory
solutions x such that lim

t→∞
x′(t) = 0.

The following example illustrates Corollary 6.1.
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Example 6.1. Consider the equation

(1

t
Φ(x′)

)′

+
log t− 1

(t log t)2
F (x) = 0, (t ≥ 3) , (40)

where Φ: R → (−1, 1) is, as in Example 4.1, a continuous odd function defined by (28)
and F is a continuous odd function such that

F (u) =
log u

log log u
on [9,∞) .

We have for t ≥ 9

b(t)F (t) ≤ log t− 1

(t log t)2

(

log t

log(log t)
+

1

(log(log t))2

)

≤ 1

t2 log(log t)
+

1

t2 log t(log(log t))2
= − d

dt

1

t(log(log t))
.

Thus (34), (35) are verified with k = 1. Reasoning as in Example4.1, condition (30)
holds for λ ∈ (0, 1]. Hence J1/2 < ∞ and J1 = ∞ and from Corollary 6.1, equation
(40) has both bounded and unbounded solutions x such that lim

t→∞
x′(t) = 0

Example 6.1 also shows that the convergence of the integral Jµ can depend on the
values of the parameter µ. In view of Lemma 3.2, for the map Φ∗

C this fact does not
occur when (15) holds. Because (35) implies (15), Corollary 6.1 cannot be applied to
equation (4).

7 Open Problems and Suggestions

(1) Asymptotic estimations for bounded solutions. Does (33) hold for any
bounded nonoscillatory solution, x, by assuming, instead of (31), that Φ is asymptot-
ically homogeneous near zero, i.e.

lim
u→0

Φ(λu)

Φ(u)
= λα for λ ∈ (0, 1] and some α > 0 ? (41)

Condition (41) means that Φ is a regularly varying function at zero. This notion, and
the analogous one at infinity, are often used both in searching for radial solutions of
elliptic problems and in asymptotic theory of ordinary differential equations, see, e.g.,
[6, 12] and references therein.

(2) The growth of solutions. When (Hp) and lim sup
t→∞

a(t) > 0 hold, then, in

virtue of Lemma 2.1, equation (1) does not have unbounded solutions x such that
lim
t→∞

x′(t) = ℓx, 0 < ℓx ≤ ∞. Nevertheless, when

lim
t→∞

a(t) = 0 ,
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equation (1) can have unbounded solutions x such that lim
t→∞

x′(t) = ℓx with 0 < ℓx ≤ ∞,

as the following example shows.

Example 7.1. Consider the equation

(

√
1 + t2

t2
ΦC(x′)

)′

+
8

t8
x3 = 0 (t ≥ 1) , (42)

A direct calculation shows that x(t) = 2−1t2 is a solution of (42). Observe that the
conditions (34) and (35) are verified, while JC

µ <∞ for any small µ. In addition, from
Theorem 3.1, equation (42) has also nonoscillatory bounded solutions.

It should be interesting to give criteria for the existence of unbounded solutions x
of (1) satisfying the boundary condition lim

t→∞
x′(t) = ℓx, 0 < ℓx ≤ ∞.

(3) Coexistence result. When the convergence of the integral Jµ does not depend on
µ, the coexistence result stated in Corollary 6.1 cannot be applied. If Jµ diverges for µ
in a neighboorhod of zero, then, by Proposition 2.2, bounded nonoscillatory solutions
of (1) do not exist.

When Jµ converges for any µ > 0, Example 7.1 illustrates that bounded and un-
bounded nonoscillatory solutions of (1) can coexist. It is an open problem if in this
case always bounded and unbounded solutions satisfying (11) coexist.
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