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The Structure of Rooted Weighted Trees Modeling

Layered Cyber-security Systems
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Abstract

In this paper we consider the structure and topology of a layered-security
model in which the containers and their nestings are given in the form of a
rooted tree T . A cyber-security model is an ordered three-tuple M = (T,C, P )
where C and P are multisets of penetration costs for the containers and target-
acquisition values for the prizes that are located within the containers, respec-
tively, both of the same cardinality as the set of the non-root vertices of T .
The problem that we study is to assign the penetration costs to the edges
and the target-acquisition values to the vertices of the tree T in such a way
that minimizes the total prize that an attacker can acquire given a limited
budget. The attacker breaks into containers starting at the root of T and once
a vertex has been broken into, its children can be broken into by paying the
associated penetration costs. The attacker must deduct the corresponding
penetration cost from the budget, as each new container is broken into. For a
given assignment of costs and target values we obtain a security system. We
show that in general it is not possible to develop an optimal security system
for a given cyber-security model M . We define P- and C-models where the
penetration costs and prizes, respectively, all have unit value. We show that
if T is a rooted tree such that any P- or C-model M = (T,C, P ) has an
optimal security system, then T is one of the following types: (i) a rooted
path, (ii) a rooted star, (iii) a rooted 3-caterpillar, or (iv) a rooted 4-spider.
Conversely, if T is one of these four types of trees, then we show that any P-
or C-model M = (T,C, P ) does have an optimal security system. Finally, we
study a duality between P- and C-models that allows us to translate results
for P-models into corresponding results for C-models and vice versa. The re-
sults obtained give us some mathematical insights into how layered-security
defenses should be organized.
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1 Introduction

According to [6], the global cyber-security market cost in 2017 is expected to top
120 billion US dollars. This site also reports that there are 18 victims of a cyber
crime every single second! Other sources report similarly alarming and worsening
statistics. There is agreement that the number of cyber attacks is increasing rapidly,
and the consequences of such attacks are greater than ever on economics, national
security, and personal data. Threats come from nation states with advanced cyber
warfare commands, nation states having less technical capabilities but intent on
doing harm, ideologically motivated groups of hackers or extremists, profit-seeking
criminals, and others. As a result, quite a bit of work has been done where cyber-
security systems, or more generally layered computer systems, are modeled as a
fixed weighted trees. For example, in [1, 3, 4, 8, 10, 12] the authors consider finding
weight-constrained, maximum-density subtrees and similar structures given a fixed
weighting of a tree as part of the input. In these cases weights are specified on both
vertices and edges. There has also been some research on network fortification and
problems related to that topic. For example, in [13] stochastic linear programming
games are studied and it is demonstrated how these can, among other things,
model certain network fortifications. In [14] the problem of network interdiction is
studied – how to minimize the maximum amount of flow an adversary/enemy can
push through a given network from a source s to a sink t. There each edge/arc is
provided with a fixed integer capacity and an integer resource (required to delete
the edge/arc). This is a variation of the classical Max-Flow-Min-Cut Theorem.
Although interesting in their own way, neither of these papers or related papers
that we have found in the literature address directly what we study in this paper.
To build secure systems requires first principles of security. “In other words, we
need a science of cyber-security that puts the construction of secure systems onto a
firm foundation by giving developers a body of laws for predicting the consequences
of design and implementation choices” [11]. To this end, Schneider called for more
models and abstractions to study cyber security [11]. This paper is a step in that
direction. We hope that others will build on this work to develop even better and
more realistic models, overcome the shortcomings of our model, as well as develop
additional foundational results.

Building on the work done in [3], in this paper we study a layered-security
model and strategies for assigning penetration costs and target-acquisition values
so as to minimize the amount of damage an attacker can do to a system. That is,
we examine security systems. The approach we take here is to assign weights to
the vertices and edges of a tree in order to build a cyber defense that minimizes the
amount of prize an attacker can accumulate given a limited budget. To the best
of our knowledge this approach is new in that the usual approach is to consider a
particular weighted tree as input. In [3] the following question was posed: Can one
mathematically prove that the intuition of storing high-value targets deeper in the
system and having higher penetration costs on the outer-most layers of the system
results in the best or at least good security? In this paper we answer this question
and obtain more general and specific results. We define three types of security
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systems: improved, good, and optimal. We show that not all cyber-security models
admit optimal security systems, but prove that paths and stars do. We define and
study P- and C-models where all penetration costs, or all prizes, are set to one,
respectively. We classify the types of trees that have optimal security systems for
both P- and C-models. We then discuss a duality between P- and C-models, which
provides a dictionary to translate results for P-models into corresponding results
for C-models, and vice versa.

The outline of this article is as follows. In Section 2 we present the rationale
for our layered-security model. In Section 3 we define the framework for security
systems and present the definitions of improved, good, and optimal security sys-
tems, and state some related observations and examples. In Section 4 we explore
optimal security systems and prove that they do not always exist, but they exist
if and only if the underlying tree T of the given security system is either a path
rooted at a leaf, or a star rooted at its center vertex. In Section 5 we define P- and
C-models and show that any cyber-security model M = (T,C, P ) is equivalent to
both a P-model M ′ and a C-model M ′′. We further show that if T is a rooted tree
such that any P- or C-model M has an optimal security system, then T is one of the
following four types: (i) a rooted path, (ii) a rooted star, (iii) a rooted 3-caterpillar,
or (iv) a rooted 4-spider. In Section 6 we prove that if T is one of the four types
of rooted trees mentioned above, then any P-model does indeed have an optimal
security system. In Section 7 we define a duality between equivalence classes of
P-models and equivalence classes of C-models that serves as a dictionary allowing
us to obtain equivalent results for C-models from those of the P-models that were
obtained in Section 6. In particular, we obtain Theorem 7.2 that completely classi-
fies which P- and which C-models have optimal security systems. Conclusions and
open problems are discussed in Section 8.

2 Rationale for Our Layered-Security Model

In defining our layered-security model to study defensive cyber security, we need to
strike a balance between simplicity and utility. If the model is too simple, it will not
be useful to provide insight into real situations; if the model is too complex, it will
be too cumbersome to apply, and we may get bogged down in too many details. The
model described in this paper is a step toward gaining a better understanding of a
broad range of security systems in a graph-theoretical setting for a layered-security
model.

Many systems contain layered security or what is commonly referred to as
defense-in-depth, where valuable assets are hidden behind many different layers
or secured in numerous ways. For example, a host-based defense might layer secu-
rity by using tools such as signature-based vendor anti-virus software, host-based
systems security, host-based intrusion-prevention systems, host-based firewalls, en-
cryption, and restriction policies, whereas a network-based defense might provide
defense-in-depth by using items such as web proxies, intrusion-prevention systems,
firewalls, router-access control lists, encryption, and filters [9]. To break into such
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a system and steal a valuable asset requires that several levels of security be pen-
etrated, and, of course, there is an associated cost to break into each level, for
example, money spent, time used, or the punishment served for getting caught.

Our model focuses on the layered aspect of security and is intended to capture
the notion that there is a cost associated with penetrating each additional level
of a system and that attackers have finite resources to utilize in a cyber attack.
Defenders have the ability to secure targets using defense mechanisms of various
strengths and to secure targets in desired locations and levels. We assume that
the structure where targets will be stored, that is, the container nestings; is given
as part of the input in the form of a rooted tree. In this way we can study all
possible structures at a single time, as they can be captured in the definition of
our problems. This methodology is as opposed to having the defender actually
construct a separate defense structure for each input.

For any specific instance of a problem, a defender of a system will obviously
consider the exact details of that system and design a layered-security approach
to fit one’s actual system. Similarly, a traveling salesman will be concerned about
constructing a tour of his particular cities, not a tour of any arbitrary set of cities
with any arbitrary set of costs between pairs of cities. Nevertheless, researchers
have found it extremely helpful to consider a general framework in which to study
the Traveling Salesman Problem. And, in studying the general problem,
insights have been gained into all instances of the problem. Thus, we believe it
is worthwhile to consider having a fixed structure as part of our input, and this
approach is not significantly different from that used in complexity theory to study
problems [5, 7].

In this paper we focus on a static defense. We pose as an open problem the
question of how to create a defense and an attack strategy if the defender is allowed
to move targets around dynamically or redistribute a portion of a prize. We also
consider the total prize as the sum of the individual values of the targets collected
although one could imagine using other or more complex functions of the target
values to quantify the damage done by an attacker. Our defensive posture is formed
by assigning to the edges and vertices of the rooted tree in question the input-
provided penetration costs and target-acquisition values, respectively. We formalize
the model, the notion of a security system, and the concept of a system attack in
the next section.

3 Cyber-Security Model and Security Systems

Let N = {1, 2, 3, . . .}, Q be the rational numbers, and Q+ be the non-negative
rational numbers.

Definition 3.1. A cyber-security model (CSM) M is given by a three-tuple M =
(T,C, P ), where T is a directed tree rooted at r having n ∈ N non-root vertices, C
is a multiset of penetration costs c1, . . . , cn ∈ Q+, and P is a multiset of target-
acquisition-values (or prizes for short) p1, . . . , pn ∈ Q+.
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Remark. As mentioned right after Observation5.1, strictly speaking, we could
have stated the above definition using the set N of natural numbers instead of non-
negative rationals Q+ for possible penetrations costs and prizes. We do, however,
prefer the most general definition we can discuss.

Throughout V (T ) = {r, u1, . . . , un}, where r is the designated root that indi-
cates the start of a system attack, and E(T ) = {e1, . . . , en} denotes the set of edges
of T , where our labeling is such that ui is always the head of the edge ei. The
prize at the root is set to 0. The penetration costs model the expense for breaking
through a layer of security, and the target-acquisition-values model the amount of
prize one acquires for breaking through a given layer and exposing a target. The
penetration costs will be weights that are assigned to edges in the tree, and the
target-acquisition-values, or the prizes, are weights that will be assigned to vertices
in the tree.

Sometimes we do not distinguish a target from its acquisition value or prize,
nor a container, which is a layer of security, from its penetration cost. Note that
one can think of each edge in the rooted tree as another container, and as one
goes down a path in the tree, as penetrating additional layers of security. We can
assume that the number of containers and targets is the same. Since if we have
a container housing another container (and nothing else), we can just look at this
“double” container as a single container of penetration cost equal to the sum of the
two nested ones. Also, if a container includes many prizes, we can just lump them
all into a single prize, which is the sum of them all.

Recall that in a rooted tree T , each non-root vertex u ∈ V (T ) has exactly one
parent, and that we assume the edges of T are directed naturally away from the
root r in such a way that each non-root vertex has an in-degree of one. The root
is located at level 0 of the tree. Level 1 of the tree consists of the children of the
root, and, in general, level i of the tree consists of the children of those vertices at
level i− 1 for i ≥ 1. We next present some key definitions about a CSM that will
allow us to study questions about security systems.

Definition 3.2. A security system (SS) with respect to a cyber-security model
M = (T,C, P ) is given by two bijections c : E(T ) → C and p : V (T ) \ {r} → P .
We denote the security system by (T, c, p).

A system attack (SA) in a security system (T, c, p) is given by a subtree τ of T
that contains the root r of T .

• The cost of a system attack τ with respect to a security system (T, c, p) is
defined by

cst(τ, c, p) =
∑

e∈E(τ)

c(e).

• The prize of a system attack τ with respect to a security system (T, c, p) is
defined by

pr(τ, c, p) =
∑

u∈V (τ)

p(u).
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• For a given budget B ∈ Q+ the maximum prize pr?(B, c, p) with respect to
B is defined by

pr?(B, c, p) :=

max{pr(τ, c, p) : for all system attacks τ ⊆ T, where cst(τ, c, p) ≤ B}.

A system attack τ whose prize is a maximum with respect to a given budget
is called an optimal attack.

The bijection c in Definition 3.2 specifies how difficult it is to break into the
various containers, and the bijection p specifies the prize associated with a given
container. Note that for any SS (T, c, p) we have cst(r, c, p) = 0 ≤ B ∈ Q+. When
T = ({r},∅), then pr?(B, c, p) = 0 for any B ∈ Q+. When two bijections are given
specifying a SS, we call the resulting weighted tree a configuration of the CSM. Any
configuration represents a defensive posture and hence the name security system.
Note that the CSM can be used to model any general security system and not just
cyber-security systems. We are interested in configurations that make it difficult
for an attacker to accumulate a large prize. It is natural to ask if a given defensive
stance can be improved. Next we introduce the notion of an improved security
system that will help us to address this question.

Definition 3.3. Given a CSM M = (T,C, P ) and a SS (T, c, p), an improved
security system (improved SS) with respect to (T, c, p) is a SS (T, c′, p′) such that
for any budget B ∈ Q+ we have pr?(B, c′, p′) ≤ pr?(B, c, p), and there exists some
budget B′ ∈ Q+ such that pr?(B′, c′, p′) < pr?(B′, c, p).

Definition 3.3 captures the idea of a better placement of prizes and/or penetra-
tion costs so that an attacker cannot do as much damage. That is, in an improved
SS one can never acquire a larger overall maximum prize with respect to any bud-
get B; and furthermore, there must be at least one particular budget where the
attacker actually does worse. Notice that there can be an improved SS (T, c′, p′),
where for some budget B ∈ Q+, there is a SA τ whose cost is less than or equal to
B for both SSs such that pr(τ, c′, p′) > pr(τ, c, p). In this case an attacker obtains
a larger prize in the improved SS; and, of course, this situation is undesirable and
means a weaker defense against this specific attack. We, however, are interested
in improved SSs with respect to a given budget rather than a particular SA. Since
we have exactly n penetration costs and n prizes to assign, it is difficult to imagine
an improved SS for all but the most-restricted trees in which all SAs would be
improved in the sense just described. Next, we formalize the notion of an optimal
security system.

Definition 3.4. Let M = (T,C, P ) be a given CSM. (i) For a budget B ∈ Q+, a
SS (T, c, p) is optimal w.r.t. B if there is no other SS (T, c′, p′) for M such that
pr?(B, c′, p′) < pr?(B, c, p). (ii) (T, c, p) is optimal if it is optimal w.r.t. any budget
B ∈ Q+.

Notice that an optimal SS is not necessarily the best possible. We could define
a critically optimal security system to be one where for every single SA the SS was
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at least as good as all others and for at least one better. And, in a different context,
these SSs might be interesting. However, in light of Theorem 4.1 in the following
section, which shows that even an optimal SS may not exist for a given CSM, we do
not pursue critically optimal SSs further in this paper. By Definitions 3.3 and 3.4
we clearly have the following.

Observation 3.1. A SS (T, c, p) for a CSM M = (T,C, P ) is optimal if and only
if no improved SS for (T, c, p) exists.

We next introduce the concept of two closely-related configurations of a CSM,
and this notion will give us a way to relate SSs.

Definition 3.5. Given a CSM M = (T,C, P ), the two configurations (T, c, p), and
(T, c′, p′) are said to be neighbors if

1. there exists an edge (u, v) ∈ E(T ) such that

p′(v) = p(u)

p′(u) = p(v)

p′(w) = p(w), otherwise, or

2. there exist two edges (u, v), (v, w) ∈ E(T ) such that

c′((u, v)) = c((v, w))

c′((v, w)) = c((u, v))

c′((x, y)) = c((x, y)), otherwise.

The notion of neighboring configurations will be useful in developing algorithms
for finding good security systems, which we define next.

Definition 3.6. A good security system (good SS) is a SS (T, c, p) such that no
neighboring configuration results in an improved security system.

Given a SS (T, c, p) for a CSM M , a natural question to pose is whether a
local change to the SS can be made in order to strengthen the SS, that is, make
the resulting SS improved. In a practical setting one may not be able to redo the
security of an entire system, but instead may be able to make local changes.

Suppose (u, v) ∈ E(T ) where p(u) ≥ p(v), and let p′ be the prize assignment
obtained from p by swapping the prizes on u and v, that is p′(u) = p(v), p′(v) =
p(u), and p′(w) = p(w) otherwise. If now τ is any SA, then pr(τ, c, p′) = pr(τ, c, p) if
either both u, v ∈ V (τ) or neither u nor v are vertices of τ , or pr(τ, c, p′) ≤ pr(τ, c, p)
if u ∈ V (τ) and v 6∈ V (τ). In either case pr(τ, c, p′) ≤ pr(τ, c, p) and therefore we
have for any budget B that

pr?(B, c, p′) ≤ pr?(B, c, p). (1)

Similarly, if (u, v), (v, w) ∈ E(T ) where c((u, v)) ≤ c((v, w)), let c′ be the cost
assignment obtained from c by swapping the costs on the incident edges (u, v) and
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(v, w) and leave all the other edge-costs unchanged, that is c′((u, v)) = c((v, w)),
c′((v, w)) = c((u, v)) and c′(e) = c(e) otherwise. If τ is a SA, then clearly we
always have pr(τ, c′, p) = pr(τ, c, p). Also, if either both (u, v), (v, w) ∈ E(τ) or
neither (u, v) nor (v, w) are edges in τ , then cst(τ, c′, p) = cst(τ, c, p), and if (u, v) ∈
E(τ) and (v, w) 6∈ E(τ), then cst(τ, c′, p) ≥ cst(τ, c, p). In either case we have
cst(τ, c′, p) ≥ cst(τ, c, p). Hence, if B is any budget, then by mere definition we
have that

pr?(B, c′, p) ≤ pr?(B, c, p). (2)

By (1) and (2) we have the following proposition.

Proposition 3.1. Let M = (T,C, P ) be a CSM. A SS given by (T, c, p) is a good
SS if for all (u, v), (v, w) ∈ E we have c((u, v)) ≥ c((v, w)) and for all non-root
vertices u, v ∈ V (T ) with (u, v) ∈ E(T ) we have p(u) ≤ p(v).

Note that Proposition 3.1 says that on any root to leaf path in T the penetration
costs occur in decreasing order and the prizes occur in increasing order.

From any configuration resulting from a SS (T, c, p) for a CSM, Proposition 3.1
gives a natural O(n2) algorithm for computing a good SS by repeatedly moving to
improved neighboring configurations until no more such neighboring configurations
exist. We can do better than this method by first sorting the values in C and P
using O(n log n) time, and then conducting a breath-first search of T in O(n) time.
We can then use the breath-first search level numbers to define bijections c and p
that meet the conditions of a good SS. We summarize in the following.

Observation 3.2. Given a CSM M = (T,C, P ), there is an O(n log n) algorithm
for computing a good SS for M .

If we could eliminate the sorting step, we would have a more efficient algorithm
for obtaining a good SS, or if we restricted ourselves to inputs that could be sorted
in O(n) time. Also, notice that a good SS has the heap property, if we ignore the
root. However, in our case we cannot “choose” the shape of the heap, but we must
use the structure that is given to us as part of our input.

Suppose that our SS (T, c, p) for M satisfies a strict inequality p(u) > p(v)
for some (u, v) ∈ E(T ), or that c((u, v)) < c((v, w)) for some incident edges
(u, v), (v, w) ∈ E(T ). A natural question is whether the prize and cost assign-
ments p′ and c′ as in (1) and (2) will result in an improved SS as in Definition 3.3.
In Example 3.1 we will see that that is not the case.

Convention: Let Tp(`) denote the rooted tree whose underlying graph is a
path on 2`+ 1 vertices V (Tp(`)) = {r, u1, . . . , u2`} and directed edges

E(Tp(`)) = {(r, u1), (r, u2), (u1, u3), (u2, u4), . . . , (u2`−3, u2`−1), (u2`−2, u2`)}

rooted at its center vertex. We label the edges by the same index as their heads:
e1 = (r, u1), e2 = (r, u2),..., e2`−1 = (u2`−3, u2`−1), and e2` = (u2`−2, u2`), see
Figure 1.

Example 3.1.
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Let (Tp(3), c, p) be a SS for a CSM M where

c(e1, e2, e3, e4, e5, e6) := (1, 1, 1, 1, 1, 2),

p(u1, u2, u3, u4, u5, u6) := (10, 2, 10, 3, 10, 40),

where the penetration costs and the prizes have been simultaneously assigned in
the obvious way. We see that for any budget B ∈ Q+ we have

pr?(B, c, p) =

 10bBc for 0 ≤ B < 4,
10bBc+ 5 for 4 ≤ B ≤ 7,
75 for 7 < B.

If now p′(u1, u2, u3, u4, u5, u6) = (10, 3, 10, 2, 10, 40) is the prize assignment ob-
tained from p by swapping the prizes on the neighboring vertices u2 and u4, and
c′(e1, e2, e3, e4, e5, e6) = (1, 1, 1, 2, 1, 1) be the edge-cost assignment obtained from
c be swapping the costs of the incident edges e4 and e6, then

pr?(B, c, p′) = pr?(B, c′, p) = pr?(B, c, p),

for any non-negative budget B ∈ Q+, showing that locally swapping either prize as-
signments on adjacent vertices, or edge-costs on incident edges, does not necessarily
improve the SS.

In Theorem 4.1 in Section 4, we show that there are CSMs for which no optimal
SS exists. In such cases obtaining a locally optimal SS, as defined in Definition 3.6,
may provide us with a reasonable defensive posture.

4 Optimal Security Systems

One of the most natural and important questions to consider for a given CSM M is
whether an optimal SS exists and if it does, what it would look like. Unfortunately,
Theorem 4.1 shows that there are small and simple CSMs for which no optimal
SS exists. Still we would like to know for what CSMs optimal SSs do exist, and,
if possible, have a way to find these optimal SSs efficiently. Corollary 4.1 and
Theorem 4.2 show that optimal SSs exist for CSMs M = (T,C, P ) when T is a
path or a star, respectively. These theorems also yield O(n log n) algorithms for
producing optimal SSs in these cases. But, these results are not satisfying, as they
are limited. In Sections 5, 6, and 7 we study P- and C-models and completely
characterize the types of trees that have optimal SSs.

We begin with a lemma showing that all optimal SSs must have the highest
penetration costs assigned to the edges involving the root and level-one vertices.

Lemma 4.1. Let M = (T,C, P ) be a CSM, where T rooted at r contains at least
one non-root vertex. Let V1 ⊆ T (V ) denote the level-one vertices of T , and let CL
be the multiset of the largest |V1| values in C. If an optimal (T, c, p) SS for M ,
exists, then c(e) ∈ CL for e ∈ {(r, v) | v ∈ V1}.
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Proof. Suppose we have an optimal SS (T, c, p) that does not meet the conditions
of the lemma. Let cs 6∈ CL be the smallest penetration cost assigned by c to an
edge between the root r and a vertex vs ∈ V1, that is, c((r, vs)) = cs ≤ c((r, v)) for
all v ∈ V1 − {vs}. Let es = (r, vs) and let el be an edge not between the root and
a level-one vertex where c(el) ∈ CL. We know that such an edge exists because
(T, c, p) does not meet the conditions of the lemma. To show that (T, c, p) cannot be
an optimal SS, we define a SS (T, c′, p) by letting c′(es) = c(el), c

′(el) = c(es), and
c′(e) = c(e) otherwise. Notice that for the budget B = cs, we have pr?(B, c, p) =
p(vs) > 0 = pr?(B, c′, p). This fact contradicts that (T, c, p) is an optimal SS.

If an optimal SS exists, Lemma 4.1 tells us something about its form. In the
next theorem we show that there are CSMs for which no optimal SS exists.

Theorem 4.1. There is a CSM M = (T,C, P ) for which no optimal security
system exists.

Proof. Consider M = (T, {1, 2, 3}, {1, 2, 3}), Where T is the tree given by V (T ) =
{r, u1, u2, u3} and E(T ) = {e1, e2, e3} where e1 = (r, u1), e2 = (r, u2), and e3 =
(u1, u3). By Lemma 4.1 we know that an optimal SS (T, c, p) has c(e3) = 1, and
we can further assume that p(u3) = 3. By considering the budget of B = 2, we
can also assume the prize of the head of the edge of cost 2 to by 1. Therefore, we
have only two possible optimal SSs for M : (T, c, p) with c(e1, e2, e3) = (3, 2, 1) and
p(u1, u2, u3) = (2, 1, 3), or (T, c′, p′) with c′(e1, e2, e3) = (2, 3, 1) and p′(u1, u2, u3) =
(1, 2, 3), see Figure 2. Since pr?(3, c, p) = 2 and pr?(3, c′, p′) = 4, we see that
(T, c′, p′) is not optimal, and since pr?(4, c, p) = 5 and pr?(4, c′, p′) = 4, we see that
(T, c, p) is not optimal either. Hence, no optimal SS for M exists.

Although Theorem 4.1 showed that there are CSMs for which no optimal SS
exists, we are interested in finding out for which trees T optimal SSs do exist. We
should point out that the values of the weights in C and P also play an important
role in whether or not an optimal SS exists for a given tree. In the next theorem
we show that an optimal SS exists for CSMs in which the tree in the model is a
path, and this result is independent of the values of the weights in C and P .

Consider a CSM M = (T,C,M) where T is a path rooted at a leaf, so

V (T ) = {u0, u1, . . . , un}, E(T ) = {e1, . . . , en}, (3)

where u0 = r and ei = (ui−1, ui), for each i ∈ {1, . . . , n}. For a SS (T, c, p) for M ,
then for convenience let pi = p(ui) and ci = c(ei) for each i. If we have pi ≤ pi+1

and ci ≥ ci+1 for each i ∈ {1, . . . , n − 1} (so the prizes are ordered increasingly
and the edge-costs decreasingly as we go down the path from the root), then by
Proposition 3.1 the SS (T, c, p) is a good SS as in Definition 3.6. But, we can say
slightly more here when T is a path, in terms of obtaining an improved SS as in
Definition 3.3.

Lemma 4.2. Let M = (T,C,M) be a CSM where T is a path with its vertices and
edges labeled as in (3).
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Figure 1: Tp(3) is a path on seven vertices rooted at its center.
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(T, c′, p′)

Figure 2: Only two possible SSs for M = (T, {1, 2, 3}, {1, 2, 3}).
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(i) If (T, c, p) is a SS for M and there is an i with pi > pi+1 and ci+1 > 0, then
the SS (T, c, p′) where p′ is obtained by swapping the prizes on ui and ui+1 is an
improved SS.

(ii) If (T, c, p) is a SS for M and there is an i with ci < ci+1, then the SS
(T, c′, p) where c′ is obtained by swapping the edges costs on ei and ei+1 is an
improved SS.

Proof. By Proposition 3.1 we only need to show (i) there is a budget B′ such
that pr?(B′, c, p′) < pr?(B′, c, p) and (ii) a budget B′′ such that pr?(B′′, c′, p) <
pr?(B′′, c, p). For each j let τj = T [e1, . . . , ej ] be the rooted sub-path of T that
contains the first j edges of T .

For B′ = c1 + · · ·+ ci we clearly have

pr?(B′, c, p′) = pr(τi, c, p
′)

= p1 + · · ·+ pi−1 + pi+1

< p1 + · · ·+ pi

= pr(τi, c, p)

= pr?(B′, c, p),

showing that (T, c, p′) is an improved SS for M .
Likewise, we have

pr?(B′, c′, p) = pr(τi−1, c
′, p)

= p1 + · · ·+ pi−1

< p1 + · · ·+ pi

= pr(τi, c, p)

= pr?(B′, c, p),

showing that (T, c′, p) is also an improved SS for M .

Given any SS (T, c, p) for M as in Lemma 4.2 when T is a rooted path, by bubble
sorting the prizes and the edge costs increasingly and decreasingly respectively, as
we go down the path T from the root, we obtain by Lemma 4.2 a SS (T, c′, p′) such
that for any budget B we have pr?(B, c′, p′) ≤ pr?(B, c, p). We therefore have the
following corollary.

Corollary 4.1. If M = (T,C,M) is a CSM where T is a rooted path with its
vertices and edges labeled as in (3), then there is an optimal SS for M , and it is
given by assigning the penetration costs to the edges and the prizes to the vertices
in a decreasing order and increasing order respectively from the root.

We now show that an optimal SS exists for M = (T,C, P ) when T is a star.
Let T be a star with root r and non-root vertices u1, . . . , nn and edges ei = (r, ui)
for i = 1, . . . , n. Suppose the costs and prizes are given by C = {c1, . . . , cn} and
P = {p1, . . . , pn}. When considering an arbitrary security system (T, c, p) where
c(ui) = ci and p(ei) = pi for each i, we can without loss of generality assume the
edge-costs to be in an increasing order c1 ≤ · · · ≤ cn.
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Lemma 4.3. Suppose T is a star and (T, c, p) is a SS as above. If p′ is another
prize assignment obtained from p by swapping the prizes pi and pj where i < j and
pi ≤ pj, then for any budget B we have pr?(B, c, p) ≤ pr?(B, c, p′).

Proof. Let B be a given budget and τ ⊆ T an optimal attack with respect to p, so
pr(τ, c, p) = pr?(B, c, p). We consider the following cases.

Case one: If both of ui and uj are in τ , or neither of them are, then we haef
pr?(B, c, p) = pr(τ, c, p) = pr(τ, c, p′) ≤ pr?(B, c, p′).

Case two: If ui ∈ V (τ) and uj 6∈ V (τ), then pr?(B, c, p) = pr(τ, c, p) ≤
pr(τ, c, p)− pi + pj = pr(τ, c, p′) ≤ pr?(B, c, p′).

Case three: If ui 6∈ V (τ) and uj ∈ V (τ), then τ ′ = (τ − uj) ∪ ui is a rooted
subtree of T with c(τ ′) = c(τ)− cj + ci ≤ B and is therefore within the budget B.
Hence, pr?(B, c, p) = pr(τ, c, p) = pr(τ ′, c, p′) ≤ pr?(B, c, p′).

Therefore, in all cases we have pr?(p, c, B) ≤ pr?(p′, c, B).

Since any permutation is a composition of transpositions, we have the following
theorem as a corollary.

Theorem 4.2. Let M = (T,C, P ) be a CSM where T is a star rooted at its center
vertex. Then there is an optimal SS for M , and it is given by assigning the prizes
to the vertices in the same increasing order as the costs are assigned increasingly
to the corresponding edges.

For rooted trees on n non-root vertices, Corollary 4.1 and Theorem 4.2 give rise
to natural sorting-based O(n log n) algorithms for computing optimal SSs. Notice
that in an optimal SS in a general tree, the smallest prize overall must be assigned
to a level-one vertex u which has the largest penetration cost assigned to its corre-
sponding edge, (r, u), to the root. And, furthermore, we cannot say more than this
statement for arbitrary trees as the next assignment of a prize will depend on the
relative values of the penetration costs, prizes, and structure of the tree. In view
of the fact that optimal SSs do not exist, except for paths and stars as we will see
shortly in Observation 5.1, we turn our attention to restricted CSMs and classify
them with respect to optimal SSs.

5 Specific Security Systems, P-Models,
and C-Models

In this section we extend CSMs to include penetration costs and prizes of value
zero. For a CSM M = (T,C, P ) with no optimal SS and a rooted super-tree T † of
which T is a rooted subtree, we can always assign the prize of zero to the nodes in
V (T †)\V (T ) and likewise the penetration cost of zero to the edges in E(T †)\E(T ),
thereby obtaining a CSM M† = (T †, C†, E†) that also has no optimal SS. Note
that if T is the rooted tree in the proof of Theorem 4.1, then the only rooted trees
that do not have T as a rooted subtrees are paths rooted at one of their leaves or
stars rooted at their center vertices. Hence, by the example provided in the proof
of Theorem 4.1, we have the following observation.
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Observation 5.1. If T is a rooted tree, such that for any multisets C and P of
penetration costs and prizes, respectively, the CSM M = (T,C, P ) has an optimal
SS, then T is either a path rooted at one of its leaves, or a star rooted at its center
vertex.

In light of Observation 5.1, we seek some natural restrictions on our CSM M
that will guarantee it having an optimal SS. Since both the penetration costs and
the prizes of M = (T,C, P ) take values in Q+ we can, by an appropriate scaling,
obtain an equivalent CSM where both the costs and prizes take values in N ∪ {0},
that is, we may assume c(e) ∈ N ∪ {0} and p(u) ∈ N ∪ {0} for every e ∈ E(T ) and
u ∈ V (T ), respectively.

First, we consider the restriction on a CSM M = (T,C, P ) where C consists
of a single penetration-cost value, that is, C = {1, 1, . . . , 1} consists of n copies
of the unit penetration cost one. From a realistic point of view, this assumption
seems to be reasonable; many computer networks consist of computers with similar
password/encryption security systems on each computer (that is, the penetration
cost is the same for all of the computers), whereas the computers might store data
of vastly distinct values (that is, the prizes are distinct).

Convention: In what follows, it will be convenient to denote the multiset
containing n (or an arbitrary number of) copies of 1 by I. In a similar way, we
will denote by 1 the map that maps each element of the appropriate domain to 1.
As the domain of 1 should be self-evident each time, there should be no ambiguity
about it each time.

Definition 5.1. A P-model is a CSM M = (T, I, P ) where T has n non-root
vertices and where I is constant, consisting of n copies of the unit penetration cost.

Consider a SS (T, c, p) of a CSM M = (T,C, P ). We can obtain an equivalent
SS (T ′,1, p′) of a P-model M ′ = (T ′, I, P ′) in the following way: for each edge
e = (u, v) ∈ E(T ) with penetration cost c(e) = k ∈ N and prizes p(u), p(v) ∈ N of
its head and tail, respectively, replace the 1-path (u, e, v) with a directed path of
new vertices and edges (u, e1, u1, e2, u2, . . . , uk−1, ek, v) of length k. We extend the
penetration cost and prize functions by adding zero-prize vertices where needed,
that is, 1(f) = 1 for each f ∈ E(T ′), and we let

p′(u) = p(u), p′(v) = p(v), and p′(u1) = p′(u2) = · · · = p′(uk−1) = 0.

In this way we obtain a SS (T ′, c′, p′) of a P-model M ′ = (T ′, I, P ′). We view the
vertices V (T ) of positive prize as a subset of V (T ′) (namely, those vertices of T ′

with positive prize).1

Recall that T is a rooted contraction of T ′ if T is obtained from T ′ by a sequence
of simple contractions of edges, and where any vertex contracted into the root
remains the root. This means precisely that T is a rooted minor of T ′ [2, p. 54].

1Note that there are some redundant definitions on the prizes of the vertices when considering
incident edges, but the assignments do agree, as they have the same prize values as in T .
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Proposition 5.1. Any SS (T, c, p) of a CSM M = (T,C, P ) is equivalent to a SS
(T ′,1, p′) of a P-model M ′ = (T ′, I, P ′) where (i) T is rooted minor of T ′, and (ii)
p′(u) = p(u) for each u ∈ V (T ) ⊆ V (T ′), and p′(u) = 0, otherwise.

Proof. (Sketch) Given a budget B ∈ Q+, clearly any optimal attack τ on a SS
(T, c, p) with pr(τ, c, p) = pr?(B, c, p) has an equivalent attack τ ′ on a SS (T ′,1, p′)
of the same cost cst(τ ′,1, p′) = cst(τ, c, p) and hence within the budget B, where τ ′

is the smallest subtree of T ′ that contains all of the vertices of τ . By construction,
we also have that pr(τ ′,1, p′) = pr(τ, c, p) = pr?(B, c, p) since all of the vertices
from τ are in τ ′ and have the same prize there, and the other vertices in τ ′ have
prize zero. This shows that pr?(B, c, p) ≤ pr?(B,1, p′).

Conversely, an optimal attack τ ′ on (T ′,1, p′) with pr(τ ′,1, p′) = pr?(B,1, p′)
yields an attack τ on (T, c, p) by letting τ be the subtree of T induced by the vertices
V (τ ′) ∩ V (T ). In this way pr(τ, c, p) = pr(τ ′,1, p′) and cst(τ, c, p) ≤ cst(τ ′,1, p′),
since some of the vertices of τ ′ might have zero prize, as they are not in τ . By
definition of pr?(·) we have that pr?(B,1, p′) ≤ pr?(B, c, p). Hence, the SS (T, c, p)
and (T ′,1, p′) are equivalent.

Secondly, and dually, we can restrict our attention to the case where the multiset
of prizes P consists of a single unit prize value, so P = I = {1, 1, . . . , 1} consists of
n copies of the unit prize.

Definition 5.2. A C-model is a CSM M = (T,C, I), where T has n non-root
vertices and where I is constant, consisting of n copies of the unit prize.

As before, consider a SS (T, c, p) of a CSM M = (T,C, P ). We can obtain
an equivalent SS (T ′′, c′′,1) of a C-model M ′′ = (T ′′, C ′′, I) in the following way:
for each edge e = (u, v) ∈ E(T ) with penetration cost c(e) = k ∈ N and prizes
p(u), p(v) ∈ N of its head and tail, respectively, replace the 1-path (u, e, v) with a
directed path of new vertices and edges (u, e, u1, e1, u2, . . . , uk−1, ek−1, v) of length
k. We extend the penetration cost and prize functions by adding zero-cost edges
where needed, that is, 1(w) = 1 for every w ∈ V (T ′′), and we let

c′′(e) = c(e) and c′′(e1) = c′′(e2) = · · · = c′′(ek−1) = 0.

In this way we obtain a SS (T ′′, c′′,1) of a C-model M ′′ = (T ′′, C ′′, I), where the
multiset of prizes consists of a single unit prize value (

∑
u∈V (T )\{r} p(u) copies

of it). We also view the edges E(T ) of positive penetration cost as a subset of
E(T ′′) (namely, those edges of T ′′ with positive penetration cost). We also have
the following proposition that is dual to Proposition 5.1.

Proposition 5.2. Any SS (T, c, p) of a CSM M = (T,C, P ) is equivalent to a SS
(T ′′, c′′,1) of a C-model M ′′ = (T ′′, C ′′, I), where (i) T is rooted minor of T ′′, and
(ii) c′′(e) = c(e) for each e ∈ E(T ) ⊆ E(T ′′), and c′′(e) = 0, otherwise.

Proof. (Sketch) Suppose we are given a budget B ∈ Q+ and an optimal attack τ on
a SS (T, c, p) with pr(τ, c, p) = pr?(B, c, p). Here (T ′′, c′′,1) has an equivalent attack
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τ ′′, where τ ′′ is the largest subtree of T ′′ that contains all of the edges of τ and no
other edges of T . Note that cst(τ ′′, c′′,1) = cst(τ, c, p) since all of the additional
edges of τ ′′ that are not in V (τ) have zero penetration cost, and so τ ′′ is within the
budget B. Also, by construction we have pr(τ ′′, c′′,1) = pr(τ, c, p) = pr?(B, c, p).
This result shows that pr?(B, c, p) ≤ pr?(B, c′′,1).

Conversely, consider an optimal attack τ ′′ on (T ′′, c′′,1) with pr(τ ′′, c′′,1) =
pr?(B, c′′,1). By the optimality of τ ′′, every leaf of τ ′′ is a tail of an edge of T , since
otherwise we can append that edge (of zero penetration cost), and thereby obtain
an attack with a prize strictly more than pr(τ ′′, c′′,1), a contradiction. The edges
E(τ ′′) ∩ E(T ) induce a subtree τ of T of the same cost cst(τ, c, p) = cst(τ ′′, c′′,1);
and moreover, τ ′′ is, by its optimality, the largest subtree of T ′′ that contains
exactly all of the edges of τ , and so pr(τ, c, p) = pr(τ ′′, c′′,1) = pr?(B, c′′,1). This
result shows that pr?(B, c′′,1) ≤ pr?(B, c, p). This proves that the SS (T, c, p) and
(T ′′, c′′,1) are equivalent.

We now present some examples of both P- and C-models that will play a pivotal
role in our discussion to come.

Definition 5.3. Let T (2) denote the rooted tree given as follows:

V (T (2)) = {r, u1, u2, u3, u4, u5},
E(T (2)) = {(r, u1), (r, u2), (u1, u3), (u2, u4), (u2, u5)}.

Note that T (2) has all of its non-root vertices on two non-zero levels. Similarly, let
T (3) denote the rooted tree given as follows:

V (T (3)) = {r, u1, u2, u3, u4},
E(T (3)) = {(r, u1), (r, u2), (u2, u3), (u3, u4)}.

Note that T (3) has all of its vertices on three non-zero levels.

Convention: For convenience we label the edges of both T (2) and T (3) with
the same index as their heads (see Figures 3 and 4):

T (2) : e1 = (r, u1), e2 = (r, u2), e3 = (u1, u3), e4 = (u2, u4), e5 = (u2, u5).

T (3) : e1 = (r, u1), e2 = (r, u2), e3 = (u1, u3), e4 = (u3, u4).

Example 5.1.

Consider a P-model (with c = 1) on the rooted tree T (2), where the prize values
are given by P = {0, 1, 2, 2, 3}.

Prize Assignment (A): Consider the case where the prizes have been simultane-
ously assigned to the non-root vertices of T (2) by p(u1, u2, u3, u4, u5) := (0, 1, 3, 2, 2)
in the obvious way. We will use a similar shorthand notation later for the bijection
c. In this case we see that for budgets of B = 2, 3, we have pr?(2,1, p) = 3 and
pr?(3,1, p) = 5, respectively.
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Figure 3: T (2) has all of its non-root vertices on two non-zero levels.
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Figure 4: T (3) has all of its non-root vertices on three non-zero levels.
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Prize Assignment (B): Consider now the case where the prizes have been si-
multaneously assigned to the non-root vertices of T (2) by p′(u1, u2, u3, u4, u5) :=
(1, 0, 3, 2, 2). In this case we see that for the same budgets of B = 2, 3 as in (A),
we have pr?(2,1, p′) = 4 and pr?(3,1, p′) = 4, respectively.

From these assignments we see that for budget B = 2, the SS in (A) is better
than the one in (B), and for B = 3, the SS in (B) is better than the one in (A).

Example 5.2.

Consider a P-model on the rooted tree T (3), where the prize values are given by
P = {0, 0, 1, 1}.

Prize Assignment (A): Consider the case where the prizes have been simulta-
neously assigned to the non-root vertices of T (3) by p(u1, u2, u3, u4) := (0, 0, 1, 1).
In this case we see that for budgets of B = 1, 3, we have pr?(1,1, p) = 0 and
pr?(3,1, p) = 2, respectively.

Prize Assignment (B): Consider now the case where the prizes have been simul-
taneously assigned to the non-root vertices of T (3) by p′(u1, u2, u3, u4) := (1, 0, 0, 1).
In this case we see that for the same budgets of B = 1, 3 as in (A), we have
pr?(1,1, p′) = 1 and pr?(3,1, p′) = 1, respectively.

From these assignments we see that for budget B = 1, the SS in (A) is better
than the one in (B), and for B = 3, the SS in (B) is better than the one in (A).

Considering the budget B = 1 for the P-model in Example 5.1, we see that in
order for a prize assignment to be optimal we must have the prizes of u1 and u2
to be 0 and 1. Considering further B = 2 we see that an optimal prize assignment
in this case must be p or p′ as in Example 5.1, or p′′ where p′′(u1, u2, u3, u4, u5) :=
(1, 0, 2, 3, 2). Since pr?(B,1, p′′) = pr?(B,1, p) for any B, we see that the P-model
in Example 5.1 has no optimal SS. As the P-model in Example 5.2 can be analysed
in the same way, we have the following observation.

Observation 5.2. For general prize values P , neither of the P-models M =
(T (2), I, P ) nor M = (T (3), I, P ) have optimal SSs.

We will now consider the dual cases of the C-models.

Example 5.3.

Consider a C-model (with p = 1) on the rooted tree T (2), where the penetration
costs are given by C = {0, 1, 1, 2, 3}.

Cost Assignment (A): Consider the case where the penetration costs have been
simultaneously assigned to the edges of T (2) by c(e1, e2, e3, e4, e5) := (3, 2, 0, 1, 1).
In this case we see that for budgets of B = 2, 4, we have pr?(2, c,1) = 1 and
pr?(4, c,1) = 3, respectively.

Cost Assignment (B): Consider now the case where the penetration costs have
been assigned to the edges of T (2) by c′(e1, e2, e3, e4, e5) := (2, 3, 0, 1, 1). In this
case we see that for the same budgets of B = 2, 4 as in (A), we have pr?(2, c′,1) = 2
and pr?(4, c′,1) = 2, respectively.
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From these assignments we see that for budget B = 2, the SS in (A) is better
than the one in (B), and for B = 4, the SS in (B) is better than the one in (A).

Example 5.4.

Consider now a C-model on the rooted tree T (3), where the penetration costs are
given by C = {0, 0, 1, 1}.

Cost Assignment (A): Consider the case where the penetration costs have been
simultaneously assigned to the edges of T (3) by c(e1, e2, e3, e4) := (1, 1, 0, 0). In this
case we see that for budgets of B = 0, 1, we have pr?(0, c,1) = 0 and pr?(1, c,1) = 3,
respectively.

Cost Assignment (B): Consider now the case where the penetration costs have
been assigned to the edges of T (3) by c′(e1, e2, e3, e4) := (0, 1, 1, 0). In this case we
see that for the same budgets of B = 0, 1 as in (A), we have pr?(0, c′,1) = 1 and
pr?(1, c′,1) = 2, respectively.

From these assignments we see that for budget B = 0, the SS in (A) is better
than the one in (B), and for B = 1, the SS in (B) is better than the one in (A).

In a similar way as we obtained Observation 5.2, we see from the previous two
examples the following.

Observation 5.3. For general penetration costs C, neither of the C-models M =
(T (2), C, I) nor M = (T (3), C, I) have optimal SSs.

Remark 5.1. (i) Note that in Examples 5.1 and 5.3 involving the rooted tree T (2),
we have that the prize assignments to the non-root vertices and cost assignments
to the corresponding edges sum up to a constant vector for both assignments (A)
and (B):

(A) : p(u1, u2, u3, u4, u5) + c(e1, e2, e3, e4, e5)

= (0, 1, 3, 2, 2) + (3, 2, 0, 1, 1) = (3, 3, 3, 3, 3),

(B) : p′(u1, u2, u3, u4, u5) + c′(e1, e2, e3, e4, e5)

= (1, 0, 3, 2, 2) + (2, 3, 0, 1, 1) = (3, 3, 3, 3, 3),

and similarly for the rooted tree T (3):

(A) : p(u1, u2, u3, u4) + c(e1, e2, e3, e4) = (0, 0, 1, 1) + (1, 1, 0, 0) = (1, 1, 1, 1),

(B) : p′(u1, u2, u3, u4) + c′(e1, e2, e3, e4) = (1, 0, 0, 1) + (0, 1, 1, 0) = (1, 1, 1, 1).

This duality is not a coincidence and will discussed in more detail in Section 7. (ii)
Although special cases of Theorems 6.1, 6.2, 7.3 and 7.4, it is an easy combinatorial
exercise to see that both a C- or P-model M = (T,C, P ), where T is a proper rooted
subtree of either T (2) or T (3) does indeed have an optimal SS, and so T (2) and
T (3) are the smallest rooted trees, in either model, with no optimal SS. This point
will also be discussed and stated explicitly in Sections 6 and 7.
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Consider now a given rooted tree T and another rooted tree T † containing T
as a rooted subtree, so T ⊆ T †. Assume that the P-model M = (T, I, P ) has no
optimal SS. Extend M to a P-model on T † by adding a zero prize for each vertex in
V (T †)\V (T ), so P † = P ∪Z, where Z is the multiset consisting of |V (T †)|−|V (T )|
copies of 0. In this case we have the following.

Observation 5.4. If M = (T, I, P ) is a P-model with no optimal SS, and T †

contains T as a rooted subtree, then the P-model M† = (T †, I, P †) has no optimal
SS.

Proof. (Sketch) For any budget consisting of B = m edges and a SS (T,1, p), there
is a rooted subtree τ of T with m edges such that pr(τ,1, p) = pr?(m,1, p). Let
1 and p† be the obvious extensions of 1 and p to T †, by letting 1(e) = 1 for all
e ∈ E(T †) and p†(u) = 0 for any u ∈ V (T †) \ V (T ). If τ ′ is a rooted subtree of
T † with m edges, then τ ′ ∩ T is a rooted subtree of both T and T † on m or fewer
edges. Since any vertex of V (τ ′) \ V (T ) has zero prize, we have

pr(τ ′,1, p†) = pr(τ ′ ∩ T,1, p†) = pr(τ ′ ∩ T,1, p) ≤ pr?(m,1, p),

with equality for τ ′ = τ since τ ⊆ T ⊆ T †. Hence, pr?(m,1, p†) = pr?(m,1, p),
and we conclude that if M = (T, I, P ) has no optimal SS, then neither does M† =
(T †, I, P †).

Dually, assume that we have a C-model M = (T,C, I) that has no optimal SS,
and similarly, let T † be a rooted subtree containing T as a rooted subtree. Extend
M to a C-model on T † by adding penetration costs of ∞2 for each edge of T † that
is not in T , so C† = C ∪ Y , where Y is the multiset consisting of |E(T †)| − |E(T )|
copies of ∞.

Observation 5.5. If M = (T,C, I) is a C-model with no optimal SS, and T †

contains T as a rooted subtree, then the C-model M† = (T †, C†, I) has no optimal
SS.

Proof. (Sketch) The proof is similar to the one for Observation 5.4. For any budget
B ∈ Q+ and a SS (T, c,1) of M , there is a rooted subtree τ of T with m edges such
that pr(τ, c,1) = pr?(B, c,1). Let c† and 1 be the obvious extensions of c and 1 to
T †, by letting c†(e) = ∞ for all e ∈ E(T †) \ E(T ). If τ ′ is a rooted subtree of T †

within the attacker’s budget of B <∞, then every edge of τ ′ must be in T , and so
τ ′ ⊆ T ⊆ T †. Since c† agrees with c on the edges of T we have

pr(τ ′, c†,1) = pr(τ ′, c,1) ≤ pr?(B, c,1),

with equality for τ ′ = τ . Hence, pr?(B, c†,1) = pr?(B, c,1), and we conclude that
if M = (T,C, I) has no SS, then neither does M† = (T †, C†, I).

By Observations 5.2, 5.3, 5.4, and 5.5 we have the following corollary.

2Where here we can choose∞ to be the number of edges of T plus one, that is, a large number
exceeding any sensible attack budget.
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Corollary 5.1. If T is a rooted tree such that any P- or C-model M = (T,C, P )
has an optimal SS, then T contains neither T (2) nor T (3) as rooted subtrees.

Let T be a rooted tree such that any CSM M = (T,C, P ) has an optimal SS.
Assume further that T is not a path rooted at one of its two leaves. If T has at
least three non-zero levels (we consider the root r to be the unique level-0 vertex),
then T must contain T (3) as a rooted subtree and hence, by Corollary 5.1, there
is a CSM M = (T,C, P ) with no optimal SS, contradicting our assumption on T .
Consequently, T has at most two non-zero levels.

If T has at most two non-zero levels, and it has two leaves of distance four apart
(with the root r being midways between them), then neither parent of the leaves
is of degree three or more, because then T has T (2) as a rooted subtree. And, so
again, by Corollary 5.1, there is a CSM M = (T,C, P ) with no optimal SS. This
observation again contradicts our assumption on T . As a result, either (i) T has a
diameter of three and is obtained by attaching an arbitrary number of leaves to the
end vertices of a single edge and then rooting it at one of the end-vertices of the
edge, or (ii) T has diameter of four and each level-one vertex has degree at most
two.

Recall that a caterpillar tree is a tree where each vertex is within distance one
of a central path, and that a spider tree is a tree with one vertex of degree at least
three and all other vertices of degree at most two.

Definition 5.4. A rooted path is a path rooted at one of its two leaves.

A rooted star is a star rooted at its unique center vertex.

A 3-caterpillar is a caterpillar tree of diameter three.

A rooted 3-caterpillar is a 3-caterpillar rooted at one of its two center vertices.

A 4-spider is a spider tree of diameter four with its unique center vertex of
degree at least three.

A rooted 4-spider is a 4-spider rooted at its unique center vertex.

By Corollary 5.1 and the discussion just before Definition 5.4, we therefore have
the following main theorem of this section.

Theorem 5.1. If T is a rooted tree such that any P- or C-model M = (T,C, P )
has an optimal SS, then T is one of the following types: (i) a rooted path, (ii) a
rooted star, (iii) a rooted 3-caterpillar, or (iv) a rooted 4-spider.

It remains to be seen whether or not a rooted 3-caterpillar or a rooted 4-spider
T is such that any P- or C-model M = (T,C, P ) has an optimal SS. This item will
be the main topic of the next two sections.

6 P-models with Optimal Security Systems

In this section we prove that if T is one of the four types of rooted trees mentioned
in Theorem 5.1, then any P-model M = (T, I, P ) indeed has an optimal SS. The
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C-models will be discussed in Section 7. We already have that any P-model M =
(T, I, P ) (in fact, any CSM M = (T,C, P )), where T is a rooted path or a rooted
star, does have an optimal SS, so it suffices to consider rooted 3-caterpillars and
rooted 4-spiders.

Let T be a rooted 3-caterpillar on vertices {r, u1, . . . , un} with edges given by

E(T ) = {(r, u1), . . . , (r, uk), (u1, uk+1), . . . , (u1, un)}, (4)

where 2 ≤ k ≤ n − 1. As before, we label the edges by the index of their heads,
so ei = (r, ui) for i ∈ {1, . . . , k} and ei = (u1, ui) for i ∈ {k + 1, . . . , n}. Our first
result is the following.

Theorem 6.1. Let M = (T, I, P ) be a P-model where T is a rooted 3-caterpillar
and P = {p1, . . . , pn} is a multiset of possible prizes indexed increasingly p1 ≤ p2 ≤
· · · ≤ pn. Then the SS (T,1, p), where p(ui) = pi for each i ∈ {1, . . . , n} is an
optimal SS for M .

Proof. Let B = m ∈ {0, 1, . . . , n} be the attacker’s budget, that is the number of
edges an adversary can afford to penetrate. We want to show that pr?(m,1, p) ≤
pr?(m,1, p′) for any prize assignment p′ to the vertices of the rooted 3-caterpillar
T .

Let τ ⊆ T be a rooted subtree of T on m edges with pr(τ,1, p) = pr?(m,1, p).
There are two cases we need to consider.

First case: e1 ∈ E(τ). Since all the leaves are connected to one of the end-
vertices of e1 = (r, u1), the remaining m − 1 edges of τ must be incident to the
m−1 maximum prize vertices, and so pr?(m,1, p) = pr(τ,1, p) = pn+pn−1 + · · ·+
pn−m+2+p1. If p′ is another prize assignment to the vertices of T , then p′(u1) = pc,
where c ∈ {1, . . . , n}. Therefore, pr?(m,1, p′) ≥ pr(τ ′,1, p′), where τ ′ is a rooted
subtree of T that contains e1 and contains all the remaining m−1 maximum prizes,
and so

pr(τ ′,1, p′) =

{
pn + pn−1 + · · ·+ pn−m+1 if c ∈ {n−m+ 1, . . . , n},
pn + pn−1 + · · ·+ pn−m+2 + pc if c 6∈ {n−m+ 1, . . . , n}.

In either case we have pr(τ ′,1, p′) ≥ pn + pn−1 + · · · pn−m+2 + p1 = pr?(m,1, p),
and so pr?(m,1, p′) ≥ pr?(m,1, p) in this case.

Second case: e1 6∈ E(τ). For this case to be possible we must have m ≤ k−1,
since otherwise e1 must be in τ . Secondly, we must have that τ contains all the
maximum prize vertices on level one and so pr?(m,1, p) = pr(τ,1, p) = pk +pk−1 +
· · ·+ pk−m+1. In particular, we must have

pk + pk−1 + · · ·+ pk−m+1 ≥ pn + pn−1 + · · ·+ pn−m+2 + p1,

since a tree containing e1 does not have a greater total prize than τ . If p′ is another
prize assignment to the vertices of T , then let {`1, . . . , `k} be the indices of the prizes
assigned to vertices on level one by p′, that is, {p`1 , . . . , p`k} = {p′(u1), . . . , p′(uk)}
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as multisets. If now τ ′ is the rooted subtree of T with m edges containing the m
vertices with the largest prizes, then, since p`i ≥ pi for each i ∈ {1, . . . , k}, we have

pr?(m,1, p′) ≥ pr(τ ′,1, p′)

= p`k + p`k−1
+ · · ·+ p`k−m+1

≥ pk + pk−1 + · · ·+ pk−m+1

= pr?(m,1, p),

in this case as well. This completes the proof that the SS (T, p) is optimal.

Now, let T be a rooted 4-spider on vertices {r, u1, . . . , un} with edges given by

E(T ) = {(r, u1), . . . , (r, uk), (u1, uk+1), (u2, uk+2), . . . , (un−k, un)}, (5)

where n/2 ≤ k ≤ n − 2. As before, the edges are labeled by the index of their
heads: ei = (r, ui) for i ∈ {1, . . . , k} and ei = (ui−k, ui) for i ∈ {k + 1, . . . , n}. Our
second result is the following.

Theorem 6.2. Let M = (T, I, P ) be a P-model, where T is a rooted 4-spider
and P = {p1, . . . , pn} is a multiset of possible prizes indexed increasingly p1 ≤
p2 ≤ · · · ≤ pn. Then the SS (T,1, p), where p(ui) = pi for i ∈ {1, . . . , k} and
p(ui) = pn+k+1−i for i ∈ {k + 1, . . . , n} is an optimal SS for M .

Before we prove Theorem 6.2, we need a few lemmas that will come in handy
for the proof.

Lemma 6.1. Let T be a 4-spider presented as in (5) and m ∈ N. Let p be a prize
assignment on V (T ) such that pi = p(ui) ≤ p(uj) = pj, where ui is on level one
and uj is a leaf of T . If p′ is the prize assignment obtained from p by swapping the
prizes of ui and uj, then pr?(m,1, p) ≤ pr?(m,1, p′).

Proof. If j = k + i, so uj is the unique child of ui, then the lemma holds by (1).
Hence, we can assume that uj is not a child of ui. Let τ ⊆ T be a max-prize rooted
subtree on m edges, so pr(τ,1, p) = pr?(m,1, p). We now consider the following
cases.

If either both ui and uj are vertices of τ , or neither of them are, then clearly
pr?(m,1, p) = pr(τ,1, p) = pr(τ,1, p′) ≤ pr?(m,1, p′).

If ui ∈ V (τ) and uj 6∈ V (τ), then

pr?(m,1, p) = pr(τ,1, p) ≤ pr(τ,1, p)− pi + pj = pr(τ,1, p′) ≤ pr?(m,1, p).

If ui 6∈ V (τ) and uj ∈ V (τ), then, since ui is on level one and uj is a leaf of
τ , we have that τ ′ = (τ − uj) ∪ ui is also a rooted subtree of T on m vertices
and pr?(m,1, p) = pr(τ,1, p) = pr(τ ′,1, p′) ≤ pr?(m,1, p′), which completes our
proof.
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Let M = (T, I, P ) be a P-model where T is a rooted 4-spider, P = {p1, . . . , pn},
and p′ be an arbitrary prize assignment on V (T ). Since every vertex of T on
level two is automatically a leaf, we can, by repeated use of Lemma 6.1, obtain a
prize assignment with smaller max-prize with respect to any m that has its n− k
largest prizes on its level-two vertices, and hence has its k smallest prizes on the
level-one vertices u1, . . . , uk of T . By further use of the same Lemma 6.1 when
considering these level-one vertices of T , we can obtain a prize assignment p that
has its smallest prizes on the non-leaf vertices on level one and yet with smaller
max-prize, so pr?(m,1, p) ≤ pr?(m,1, p′) for any m. Note that our p satisfies

p({u1, . . . , un−k}) = {p1, . . . , pn−k}, p({uk+1, . . . , un}) = {pk+1, . . . , pn}.

As the level-one vertices of T can be assumed to be ordered by their prizes, we
summarize in the following.

Corollary 6.1. From any prize assignment p′ we can by repeated use of Lemma 6.1
obtain a prize assignment p on our 4-spider T , presented as in (5), such that

p(ui) = pi for all i ∈ {1, . . . , k}, and p(ui) = pπ(i) for all i ∈ {k + 1, . . . , n},

where π is a permutation of {k + 1, . . . , n}, and with pr?(m,1, p) ≤ pr?(m,1, p′)
for any m ∈ N.

Our next lemma provides our final tool in proving Theorem 6.2.

Lemma 6.2. Let T be a 4-spider presented as in (5) and m ∈ N. Let p be a prize
assignment on V (T ) such that for some i, j ∈ {1, . . . , n − k} with i < j, we have
p(ui) ≤ p(uj) and p(ui+k) ≥ p(uj+k). If p′ is a prize assignment where the prizes
on ui+k and uj+k have been swapped, then pr?(m,1, p) ≤ pr?(m,1, p′).

Proof. Let τ ⊆ T be a max-prize rooted subtree on m edges with respect to p, so
pr(τ,1, p) = pr?(m,1, p). We now consider the following cases.

If either both ui+k and uj+k are vertices of τ , or neither of them are, then
clearly pr?(m,1, p) = pr(τ,1, p) = pr(τ,1, p′) ≤ pr?(m,1, p′).

If ui+k 6∈ V (τ) and uj+k ∈ V (τ), then

pr?(m,1, p) = pr(τ,1, p)

≤ pr(τ,1, p)− p(uj+k) + p(ui+k)

= pr(τ,1, p′)

≤ pr?(m,1, p′).

If ui+k ∈ V (τ) and uj+k 6∈ V (τ), then we consider two (sub-)cases. If uj ∈ V (τ),
then since uj is a leaf in τ , we have that τ ′ = (τ−ui+k)∪uj+k is also a rooted subtree
of T on m vertices and pr?(m,1, p) = pr(τ,1, p) = pr(τ ′,1, p′) ≤ pr?(m,1, p′). If
uj 6∈ V (τ), then τ ′′ = (τ − {ui, ui+k})∪ {uj , uj+k} is also a rooted subtree of T on
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m vertices, and

pr?(m,1, p) = pr(τ,1, p)

≤ pr(τ,1, p)− p(ui)− p(uj+k) + p(uj) + p(ui+k)

= pr(τ ′′,1, p′)

≤ pr?(m,1, p′),

which completes the proof.

Proof of Theorem 6.2. Let T be a 4-spider, p a prize assignment as given in Theo-
rem 6.2, and m ∈ N. Let p′ be an arbitrary prize assignment of the vertices of T .
By Corollary 6.1 we can obtain a prize assignment p′′ such that

p′′(ui) = pi for all i ∈ {1, . . . , k}, and p′′(ui) = pπ(i) for all i ∈ {k + 1, . . . , n},

where π is a permutation of {k + 1, . . . , n}, and with pr?(m,1, p′′) ≤ pr?(m,1, p′)
for any m ∈ N. By Lemma 6.2 we can obtain a prize assignment p on V (T )
from p′′ simply by ordering the prizes on the level-two leaves in a decreasing order,
thereby obtaining the very prize assignment p from Theorem 6.2 that satisfies
pr?(m,1, p) ≤ pr?(m,1, p′′) for any m ∈ N. This proves that for any m ∈ N we
have pr?(m,1, p) ≤ pr?(m,1, p′′) ≤ pr?(m,1, p′), and since p′ was an arbitrary
prize assignment, the proof is complete.

As a further observation, we can describe the optimal SAs on the P-model
M = (T, I, P ), where T is a rooted 4-spider with the vertices and edges labeled as
in (5), as follows.

Observation 6.1. Let T be a 4-spider, p a prize assignment as in Theorem 6.2,
and m ∈ N. Then there is a max-prize rooted subtree τ ⊆ T on m edges with respect
to p, so pr(τ,1, p) = pr?(m,1, p), with the following property:

1. If n ≤ 2k − 1, then all the leaves of τ are leaves in T , and hence in the set
{un−k+1, . . . , un}.

2. If n = 2k, then τ has at most one leaf on level one, in which case it can
assumed to be uk.

Proof. Suppose τ has two leaves ui, uj ∈ {u1, . . . , un−k}. In this case τ ′ = (τ −
uj)∪uk+i is also a rooted subtree of T on m edges and has pr(τ ′,1, p) ≥ pr(τ,1, p).
Hence, we can assume τ to have at most one leaf from {u1, . . . , un−k}.

Suppose τ has one leaf ui ∈ {u1, . . . , un−k}. We now consider the two cases;
k > n− k and k = n− k.

First case: k > n − k or n ≤ 2k − 1. If τ has another additional leaf uj ∈
{un−k+1, . . . , nk}, then, as above, τ ′ = (τ − uj)∪ uk+i has pr(τ ′,1, p) ≥ pr(τ,1, p).
Otherwise, τ has no leaves from {un−k+1, . . . , nk} 6= ∅. In this case τ ′′ = (τ−ui)∪uk
is a rooted subtree of T on m edges with pr(τ ′′,1, p) ≥ pr(τ,1, p). Hence, we can
assume that τ has no leaves from {u1, . . . , un−k}, which proves or claim in this
case.
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Second case: k = n−k or n = 2k. In this case τ has the unique level-one leaf
ui. If i < k, then uk has a unique child u2k in τ , and so τ ′ = (τ − u2k) ∪ uk+i has
the unique level-one leaf uk and pr(τ ′,1, p) ≥ pr(τ,1, p). Hence, we can assume
that τ has its unique level-one leaf uk.

Remark. Note that in the case n ≤ 2k− 1 in the proof of Observation 6.1, all the
level-one leaves of τ can be assumed to be from {un−k+1, . . . , uk}. If we have ` of
them, then they can further be assumed to be uk−`+1, . . . , uk.

7 Duality between P- and C-Models

In this section we state and use a duality between the P- and C-models, which then
can be used to obtain similar results for C-models that we obtained for P-models in
the previous section. In particular, we will demonstrate that if T is one of the four
types of rooted trees mentioned in Theorem 5.1, then any C-model M = (T,C, I)
indeed has an optimal SS, as we proved was the case for the P-model. As with
the P-model, we already have that any C-model M = (T,C, I) (in fact, any CSM
M = (T,C, P )), where T is a rooted path or a rooted star, does have an optimal
SS.

As mentioned in Remark 5.1 right after Observation 5.3, we now explicitly
examine an example of a rooted proper subtree Tp(2) of T (2), for which any P-
or C-model M = (Tp(2), C, P ) has an optimal security system. For the next two
examples, and just as in the convention right before Example 3.1, let Tp(2) denote
the rooted tree, whose underlying graph is a path, on five vertices V (Tp(2)) =
{r, u1, u2, u3, u4} and edges E(Tp(2)) = {(r, u1), (r, u2), (u1, u3), (u2, u4)} rooted at
its center vertex. We continue the convention of labeling the edges by the same
index as their heads: e1 = (r, u1), e2 = (r, u2), e3 = (u1, u3), and e4 = (u2, u4), see
Figure 5.

r

u1 u2

u3 u4

e1 e2

e3 e4

Tp(2)

Figure 5: The underlying graph of Tp(2) is a path on five vertices.
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Example 7.1.

Consider a P-model (with c = 1) on the rooted tree Tp(2) where the prize values
P = {p1, p2, p3, p4} are general real positive values ordered increasingly p1 ≤ p2 ≤
p3 ≤ p4. By Theorem 6.2 an optimal SS for our CSM M = (Tp(2), I, P ) is obtained
by assigning the prizes as p(u1, u2, u3, u4) := (p1, p2, p4, p3). We can explicitly
obtain the max-prize subtree for each given budgets B ∈ R that yields the following:

pr?(B,1, p) =


0 for B < 1,
p2 for 1 ≤ B < 2,
max(p1 + p4, p2 + p3) for 2 ≤ B < 3,
p1 + p2 + p4 for 3 ≤ B < 4,
p1 + p2 + p3 + p4 for 4 ≤ B.

Example 7.2.

Consider a C-model (with p = 1) on the rooted tree Tp(2) where the penetration
cost values C = {c1, c2, c3, c4} are general real positive values ordered decreasingly
c1 ≥ c2 ≥ c3 ≥ c4. It is now an easy combinatorial exercise to verify directly
that an optimal SS for our CSM M = (Tp(2), C, I) can be obtained by assigning
penetration costs as c(u1, u2, u3, u4) := (c1, c2, c4, c3), in the same (index-)order as
for the P-model in Example 7.1. We explicitly obtain the max-prize subtree for
each given budget B ∈ R that yields the following:

pr?(B, c,1) =


0 for B < c2,
1 for c2 ≤ B < min(c1 + c4, c2 + c3),
2 for min(c1 + c4, c2 + c3) ≤ B < c1 + c2 + c4,
3 for c1 + c2 + c4 ≤ B < c1 + c2 + c3 + c4,
4 for c1 + c2 + c3 + c4 ≤ B.

Let K be a sufficiently large cost number (any real number ≥ max(c1, . . . , c4) + 1
will do), and write each edge-cost of the form ci = K − c′i. In this way pr?(B, c,1)
will take the following form

pr?(B, c,1) =


0 for B < K − c′2,
1 for K − c′2 ≤ B < 2K −max(c′1 + c′4, c

′
2 + c′3),

2 for 2K −max(c′1 + c′4, c
′
2 + c′3) ≤ B < 3K − (c′1 + c′2 + c′4),

3 for 3K − (c′1 + c′2 + c′4) ≤ B < 4K − (c′1 + c′2 + c′3 + c′4),
4 for 4K − (c′1 + c′2 + c′3 + c′4) ≤ B.

From the above we see the evident resemblance to the expression for pr?(B,1, p) of
the P-model in Example 7.1. This is a glimpse of a duality between the P-models
and the C-models that we will now describe.

Convention: In what follows, it will be convenient to view the cost and prize
assignments c and p not as functions as in Definition 3.2, but rather as vectors
c̃ = (c1, . . . , cn) and p̃ = (p1, . . . , pn) in the n-dimensional Euclidean space Rn,
which can be obtained by a fixed labeling of the n non-root vertices u1, . . . , un and
a corresponding labeling of the edges e1, . . . , en, with our usual convention that for
each i the vertex ui is the head of ei, and by letting ci := c(ei) and pi := p(ui).
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For a given n ∈ N, let B(Rn) denote the group of all bijections Rn → Rn with
respect to compositions of maps. For a ∈ Q+ and b ∈ Q the affine map α : Rn → Rn
given by α(x̃) = ax̃ + b1̃, where 1̃ = (1, . . . , 1) ∈ Rn, is bijective with an inverse
α−1(x̃) = 1

a x̃ −
b
a 1̃ of the same type. Further, if α′(x̃) = a′x̃ + b′1̃ is another such

map, then the composition (α′ ◦α)(x̃) = a′ax̃+ (a′b+ b′)1̃ is also a bijection of this
very type. Since the identity map of Rn has a = 1 ∈ Q+ and b = 0 ∈ Q, we have
the following.

Observation 7.1. If n ∈ N then Gn = {α ∈ B(Rn) : α(x̃) = ax̃+b1̃, for some a ∈
Q+ and b ∈ Q} is a subgroup of B(Rn).

By letting Gn act on the set Rn in the natural way, (α, x̃) 7→ α(x̃), then the
group orbits Gn(x̃) = {α(x̃) : α ∈ Gn} yield a partition of Rn into corresponding
equivalence classes Rn =

⋃
x̃∈Rn Gn(x̃). By intersecting with Qn+ we obtain the

following equivalence classes that we seek.

Definition 7.1. For each x̃ ∈ Qn+ let [x̃] denote the equivalence class of x̃ with
respect to the partition of Rn into the Gn orbits: [x̃] = Gn(x̃) ∩Qn+.

We now justify the above equivalence of vectors of Qn+. The following observa-
tion is obtained directly from Definition 3.2.

Observation 7.2. Let T be a rooted tree on n labeled non-root vertices and edges,
τ a rooted subtree of T , and α ∈ Gn given by α(x̃) = ax̃ + b1̃. If c̃, p̃ ∈ Qn+ are a
cost and prize vector, respectively, then we have

pr(τ, c̃, α(p̃)) = apr(τ, c̃, p̃) + |E(τ)|b,
cst(τ, α(c̃), p̃) = acst(τ, c̃, p̃) + |E(τ)|b.

If J ⊆ {1, . . . , n} and ΣJ : Rn → R is given by x̃ 7→
∑
i∈J xi, then we clearly

have
ΣJ(α(x̃)) ≤ ΣJ(α(ỹ))⇔ ΣJ(x̃) ≤ ΣJ(ỹ), (6)

and hence the following corollary.

Corollary 7.1. Let T be a rooted tree on n labeled non-root vertices and edges,
B ∈ Q+ a budget, and α ∈ Gn given by α(x̃) = ax̃+ b1̃.

(i) If p̃ ∈ Qn+ is a prize vector, then we have

pr?(B, 1̃, α(p̃)) = apr?(B, 1̃, p̃) + bbBc. (7)

Further, both max prizes in (7) are attained at the same rooted subtree τ of T where
|E(τ)| = bBc.

(ii) If c̃ ∈ Qn+ is a cost vector, then we have

pr?(aB + bm, α(c̃), 1̃) = m⇔ pr?(B, c̃, 1̃) = m,

and further, both max prizes are attained at the same rooted subtree τ of T within
the budget; that is, |E(τ)| = m and cst(τ, c̃, 1̃) ≤ B.
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Remark. (i) That both max prizes are attained at the same rooted subtree τ in
(i) in Corollary 7.1 simply means that

pr(τ, 1̃, α(p̃)) = pr?(B, 1̃, α(p̃))⇔ pr(τ, 1̃, p̃) = pr?(B, 1̃, p̃),

which is a direct consequence of Observation 7.2 and (7). (ii) Also, for a rooted
subtree τ with |E(τ)| = m and cst(τ, c̃, 1̃) ≤ B, then by Observation 7.2 we also
have cst(τ, α(c̃), 1̃) ≤ aB + bm, and

pr(τ, c̃, 1̃) = m = pr?(B, c̃, 1̃)⇔ pr(τ, α(c̃), 1̃) = m = pr?(aB + bm, α(c̃), 1̃).

We can, in fact, say a tad more than Corollary 7.1 for C-models M = (T,C, I).

Definition 7.2. Let M = (T,C, I) be a C-model. For a given cost vector c̃ ∈ Qn+
let Bm(c̃) denote the smallest cost B ∈ Q+ with pr?(B, c̃, 1̃) = m.

Note that
pr?(B, c̃, 1̃) = m⇔ Bm(c̃) ≤ B < Bm+1(c̃).

We also have the following useful lemma.

Lemma 7.1. If α ∈ Gn is given by α(x̃) = ax̃+b1̃, then Bm(α(c̃)) = aBm(c̃)+bm.

Proof. By definition of Bm(c̃) we have pr?(Bm(c̃), c̃, 1̃) = m, and hence by Corol-
lary 7.1 pr?(aBm(c̃) + bm, α(c̃), 1̃) = m as well. Suppose that pr?(B′, α(c̃), 1̃) = m,
where B′ < aBm(c̃) + bm. If now B′ = aB′′ + bm, then B′′ < Bm(c̃) and we have
again by Corollary 7.1 that pr?(B′′, c̃, 1̃) = m. This contradicts the definition of
Bm(c̃). Hence, Bm(α(c̃) = aBm(c̃) + bm.

Proposition 7.1. For m ∈ {0, 1, . . . , n} and a cost vectors c̃ and c̃′ we have
Bm(c̃) ≥ Bm(c̃′) if and only if for every budget B with pr?(B, c̃, 1̃) = m we have
pr?(B, c̃, 1̃) ≤ pr?(B, c̃′, 1̃).

Proof. Suppose Bm(c̃) ≥ Bm(c̃′), and let B be a budget with pr?(B, c̃, 1̃) = m.
By definition we then have B ≥ Bm(c̃) and hence B ≥ Bm(c̃′) and therefore
pr?(B, c̃′, 1̃) ≥ m = pr?(B, c̃, 1̃).

Conversely, if for every budget B with pr?(B, c̃, 1̃) = m we have pr?(B, c̃, 1̃) ≤
pr?(B, c̃′, 1̃), then, in particular for B = Bm(c̃) we have m = pr?(Bm(c̃), c̃, 1̃) ≤
pr?(Bm(c̃), c̃′, 1̃), and hence, by definition, Bm(c̃′) ≤ Bm(c̃).

Convention: For a vector x̃ = (x1, . . . , xn) ∈ Qn+ let {x̃} denote its underlying
multiset. So if (T, c̃, p̃) is an SS for a CSM M = (T,C, P ), then we necessarily have
C = {c̃} and P = {p̃} as multisets. Also, we have {1̃} = I as the multiset containing
n copies of 1.

Suppose pr?(B, 1̃, p̃) ≤ pr?(B, 1̃, p̃′) for all p̃′ with {p̃′} = {p̃}. Then by Corol-
lary 7.1 we get for any α ∈ Gn with α(x̃) = ax̃+ b1̃, that

pr?(B, 1̃, α(p̃)) = apr?(B, 1̃, p̃) + bbBc ≤ apr?(B, 1̃, p̃′) + bbBc = pr?(B, 1̃, α(p̃′)),

and so we have the following.
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Proposition 7.2. The SS (T, 1̃, p̃) is optimal for the P-model M = (T, I, {p̃}) with
respect to the budget B ∈ Q+ if and only if the SS (T, 1̃, α(p̃)) is optimal for the
P-model M = (T, I, {α(p̃)}) with respect to B.

In a similar way, we have by Proposition 7.1 that pr?(B, c̃, 1̃) = m ≤ pr?(B, c̃′, 1̃)
whenever Bm(c̃) ≤ B < Bm+1(c̃) and {c̃′} = {c̃} if and only if Bm(c̃) ≥ Bm(c̃′),
which by Lemma 7.1 holds if and only if

Bm(α(c̃)) = aBm(c̃) + bm ≥ aBm(c̃′) + bm = Bm(α(c̃′)).

In other words, pr?(B, c̃, 1̃) ≤ pr?(B, c̃′, 1̃) when Bm(c̃) ≤ B < Bm+1(c̃) holds if
and only if pr?(B′, α(c̃), 1̃) ≤ pr?(B′, α(c̃′), 1̃) when Bm(α(c̃)) ≤ B′ < Bm+1(α(c̃)).
Since this holds for every α ∈ Gn, which is a group with each element having an
inverse, then we have the following.

Proposition 7.3. The SS (T, c̃, 1̃) is optimal for the C-model M = (T, {c̃}, I) with
respect to B ∈ [Bm(c̃), Bm+1(c̃)[∩Q+ if and only if the SS (T, α(c̃), 1̃) is optimal for
the C-model M ′ = (T, {α(c̃)}, I) with respect to B′ ∈ [Bm(α(c̃)), Bm+1(α(c̃))[∩Q+.

Combining Propositions 7.2 and 7.3, we have the following summarizing corol-
lary.

Corollary 7.2. Let α ∈ Gn.
The SS (T, 1̃, p̃) is optimal for the P-model M = (T, I, {p̃}) if and only if the

SS (T, 1̃, α(p̃)) is optimal for the P-model M ′ = (T, I, {α(p̃)}).
The SS (T, c̃, 1̃) is optimal for the C-model M = (T, {c̃}, I) if and only if the SS

(T, α(c̃), 1̃) is optimal for the C-model M ′ = (T, {α(p̃)}, I).

Corollary 7.2 shows that optimality of security systems of both C- and P-models
is Gn-invariant when applied to the prize and cost vector, respectively.

Recall the equivalence class [x̃] = Gn(x̃)∩Qn+ from Definition 7.1. We can now
define induced equivalence classes of SS of both C- and P-models. By Corollary 7.2
the following definition is valid (that is, the terms are all well defined).

Definition 7.3. For a C-model M = (T,C, I) and a SS (T, c̃, 1̃) of M , we let

[(T, c̃, 1̃)] := {(T, x̃, 1̃) : x̃ ∈ [c̃]}.

We say that [(T, c̃, 1̃)] is optimal if one (T, x̃, 1̃) ∈ [(T, c̃, 1̃)] is optimal for its
corresponding M = (T, {x̃}, I), since then each element in [(T, c̃, 1̃)] is also optimal.

Likewise, for a P-model M = (T, I, P ) and a SS (T, 1̃, p̃) of M , we let

[(T, 1̃, p̃)] := {(T, 1̃, ỹ) : ỹ ∈ [p̃]}.

We say that [(T, 1̃, p̃)] is optimal if one (T, 1̃, ỹ) ∈ [(T, 1̃, p̃)] is optimal for its
corresponding M = (T, I, {ỹ}), since then each element in [(T, 1̃, p̃)] is also optimal.

With the setup just presented we now can define the dual of both vector classes
and SS classes for C- and P-models in the following.
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Definition 7.4. For a vector x̃ and [x̃] = Gn(x̃) ∩ Qn+ as in Definition 7.1, then
[x̃]∗ := [−x̃] is the dual vector class of [x̃].

For a C-model M = (T,C, I) and a SS (T, c̃, 1̃) of M , then [(T, c̃, 1̃)]∗ :=
[(T, 1̃,−c̃)] is the corresponding dual P-model security system class (dual P-model
SS class) of the C-model class [(T, c̃, 1̃)].

Likewise, for a P-model M = (T, I, P ) and a SS (T, 1̃, p̃) of M , then the class
[(T, 1̃, p̃)]∗ := [(T,−p̃, 1̃)] is the corresponding dual C-model security system class
(dual C-model SS class) of the P-model class [(T, 1̃, p̃)].

Note that the double-dual yields the original class in each case: [x̃]∗∗ = [−x̃]∗ =
[x̃], and

[(T, c̃, 1̃)]∗∗ = [(T, 1̃,−c̃)]∗ = [(T, c̃, 1̃)], [(T, 1̃, p̃)]∗∗ = [(T,−p̃, 1̃)]∗ = [(T, 1̃, p̃)].

For a P-model M = (T, I, P ) and a SS P-model class [(T, 1̃, p̃)] we can always
assume the prize vector p̃ is such pi ∈ [0, 1] ∩ Q+ for each i, since α(x̃) = ax̃ is
indeed an element of Gn for any a > 0. In this way c̃ = 1̃− p̃ ∈ ([0, 1] ∩Q+)n is a
legitimate cost vector, and we have [p̃]∗ = [1̃− p̃] and [(T, 1̃, p̃)]∗ = [(T, 1̃− p̃, 1̃)]. In
what follows, we will call such a prize vector scaled. The following is easy to show.

Claim 7.1. For a scaled prize vector p̃ with pi ∈ [0, 1]∩Q+ for each i, and a rooted
subtree τ of T with |E(τ)| = m, then pr(τ, 1̃, p̃) + cst(τ, 1̃− p̃, 1̃) = m.

Let p̃ be a scaled prize vector and assume B is a budget with pr?(B, 1̃−p̃, 1̃) = m.
Then there is a rooted subtree τ of T on m edges such that cst(τ, 1̃ − p̃, 1̃) ≤ B,
and hence there is such a τ of smallest cost. Hence, we may assume τ is indeed
such a rooted subtree of smallest cost. By Claim 7.1 applied to 1̃− p̃, which is also
scaled, we then have pr(τ, 1̃, p̃) = m−cst(τ, 1̃− p̃, 1̃) with the smallest cst(τ, 1̃− p̃, 1̃)
among rooted subtrees τ on m edges, and hence pr(τ, 1̃, p̃) is maximum among all
rooted subtrees τ on m edges, and so pr(τ, 1̃, p̃) = pr?(m, 1̃, p̃). Hence,

B ≥ cst(τ, 1̃− p̃, 1̃) = m− pr(τ, 1̃, p̃) = m− pr?(m, 1̃, p̃).

Since cst(τ, 1̃− p̃, 1̃) is the smallest cost among all rooted subtrees on m edges, then

B′ = cst(τ, 1̃− p̃, 1̃) = m− pr?(m, 1̃, p̃)

is indeed the smallest cost with pr?(B′, 1̃ − p̃, 1̃) = m. By Definition 7.2 we then
have the following.

Lemma 7.2. For m ∈ {0, 1, . . . , n} and a scaled (prize) vector p̃, we have

Bm(1̃− p̃) = m− pr?(m, 1̃, p̃).

As a direct consequence of Lemma 7.2, we then have

Corollary 7.3. For any m ∈ {0, 1, . . . , n} and scaled vectors p̃ and p̃′, we have

Bm(1̃− p̃) ≥ Bm(1̃− p̃′)⇔ pr?(m, 1̃, p̃) ≤ pr?(m, 1̃, p̃′).
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We can now prove one of the main results in this section.

Theorem 7.1. Let M = (T, I, P ) be a P-model, (T, 1̃, p̃) a SS for M where p̃ is
scaled, and m ∈ {0, 1, . . . , n}. Then pr?(m, 1̃, p̃) ≤ pr?(m, 1̃, p̃′) for any p̃′ with
{p̃′} = P if and only if pr?(B, 1̃ − p̃, 1̃) ≤ pr?(B, 1̃ − p̃′, 1̃) for any budget B with
pr?(B, 1̃− p̃, 1̃) = m and for any p̃′ with {p̃′} = P .

Proof. By Corollary 7.3 we have that pr?(m, 1̃, p̃) ≤ pr?(m, 1̃, p̃′) for any p̃′ with
{p̃′} = P if and only if Bm(1̃ − p̃) ≥ Bm(1̃ − p̃′) for any p̃′ with {p̃′} = P which,
by Proposition 7.1, holds if and only if pr?(B, 1̃ − p̃, 1̃) ≤ pr?(B, 1̃ − p̃′, 1̃) for all
budgets B with pr?(B, 1̃− p̃, 1̃) = m and for all p̃′ with {p̃′} = P .

Note that by Theorem 7.1 we have that pr?(B, 1̃, p̃) ≤ pr?(B, 1̃, p̃′) for any
budget B and any p̃′ with {p̃′} = {p̃}, if and only if pr?(B, 1̃ − p̃, 1̃) ≤ pr?(B, 1̃ −
p̃′, 1̃) for any budget B and any p̃′ with {p̃′} = {p̃}. Hence, by Corollary 7.2
and Theorem 7.1 we therefore have the main conclusion of this section in light of
Definition 7.3.

Corollary 7.4. For a rooted tree T and a prize vector p̃ ∈ Qn+, then [(T, 1̃, p̃)] is

an optimal P-model SS class if and only if the dual C-model SS class [(T, 1̃, p̃)]∗ =
[(T,−p̃, 1̃)] is optimal.

In particular, if p̃ is scaled, then the SS (T, 1̃, p̃) is optimal for the P-model
M = (T, I, {p̃}) if and only if the SS (T, 1̃− p̃, 1̃) is optimal for the C-model M =
(T, {1̃− p̃}, I).

Consequently, by Corollary 4.1, Theorems 4.2, 5.1, 6.1 and 6.2 and Corollary 7.4,
we have the following summarizing result.

Theorem 7.2. For a rooted tree T on n non-root vertices the following are equiv-
alent:

1. Any P-model M = (T, I, P ) has an optimal SS.

2. Any C-model M = (T,C, I) has an optimal SS.

3. T is one of the following types: (i) a rooted path, (ii) a rooted star, (iii) a
rooted 3-caterpillar, or (iv) a rooted 4-spider.

Note that by (6) we have, in particular, that each α ∈ Gn preserves the order
of the entries of each x̃ ∈ Qn+, so each x̃ ∈ [p̃] has the same order of its entries as p̃
does. But clearly, the dual operation on [x̃]∗ = [−x̃] is order reversing, that is, we
have that xi ≤ xj for any x̃ ∈ [p̃] if and only if yi ≥ yj for any ỹ ∈ [−p̃] = [p̃]∗. Since
the optimal assignments of prizes from a given multiset P are given in Theorems 6.1
and 6.2, we then have by Corollary 7.4 the following theorems for C-models as well.

Theorem 7.3. Let M = (T,C, I) be a C-model where T is a rooted 3-caterpillar as
in (4) and C = {c1, . . . , cn} is a multiset of possible edge-costs indexed decreasingly
c1 ≥ c2 ≥ · · · ≥ cn. Then the SS (T, c,1), where c(ei) = ci for each i ∈ {1, . . . , n}
is an optimal SS for M .
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Theorem 7.4. Let M = (T,C, I) be a P-model, where T is a rooted 4-spider as
in (5) and C = {c1, . . . , cn} is a multiset of possible edge-costs indexed decreasingly
c1 ≥ c2 ≥ · · · ≥ cn. Then the SS (T, c,1), where c(ei) = ci for i ∈ {1, . . . , k} and
c(ei) = cn+k+1−i for i ∈ {k + 1, . . . , n} is an optimal SS for M .

8 Summary and Conclusions

This paper defined a cyber-security model to explore defensive security systems.
The results obtained mathematically support the intuition that it is best to place
stronger defenses in the outer layers and more-valuable prizes in the deeper layers.
We defined three types of SSs: improved, good, and optimal. We showed that it is
not always possible to find an optimal SS for a given CSM, but demonstrated for
rooted paths and stars that optimal SSs do exist. The results mathematically show
that a path produces the best cyber-security, however, burying something n levels
deep for large n may prevent the friendly side from accessing the “information”
effectively. The results show, in general, that trees having greater depth provide
more security in this setting.

We showed that any CSM is equivalent to a CSM where either all the edge
penetration costs are unit priced (a P-model) or where all the vertices have a unit
prize (C-model), by allowing larger underlying rooted trees. We then characterised
for which trees a P-model has an optimal SSs, and we also did that for the C-
models. We noted that the P- and C-models have optimal SSs for exactly the same
types of rooted trees. This was then explained by obtaining a duality between the
P- and C-models in the penultimate section of the paper.

We gave an O(n log n) algorithm for producing a good SS that was based on
sorting. It is not clear how strong such a good SS is, as there may be many such
good SSs, and some may be better than others. It would be interesting to come up
with a comparison metric to rank various good SSs. We must continue to explore
models of cyber-security systems to develop the foundations needed to combat the
ongoing and increasing number of cyber attacks. This work is but one step in that
direction.

We conclude the paper with a number of questions.

1. Can we find an efficient algorithm to develop optimal SSs in the cases where
all penetration costs or all targets are from a finite set of possible values?
Say, if we have two possible penetrations costs or three? Similarly for prizes?

2. In a two-player version of the model, what would be the best strategy for a
defender who is allowed to reposition a prize or a portion of a prize after each
move by an attacker? And, what would the complexity of this problem be?

3. Are there on-line variants of the model that are interesting to study? For
example, a version where the topology of the tree changes dynamically or
where only a partial description is known to the attacker.
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4. Could a dynamic programming approach be used to obtain a SS that is some-
how quantifiably better than a good SS or allow us to pick the “best” good
SS?

5. Is there a more useful definition of neighboring configuration that could lead
to an efficient algorithm for producing better SSs, for example, perhaps a
definition where sibling vertices or edges can have their prizes or penetration
costs swapped, respectively?
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