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Abstract. New explicit results on exponential stability, improving recently published
results by the authors, are derived for linear delayed systems

ẋi(t) = −
m

∑
j=1

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)), i = 1, . . . , m

where t ≥ 0, m and rij, i, j = 1, . . . , m are natural numbers, ak
ij : [0, ∞) → R are measur-

able coefficients, and hk
ij : [0, ∞)→ R are measurable delays. The progress was achieved

by using a new technique making it possible to replace the constant 1 by the constant
1 + 1/e on the right-hand sides of crucial inequalities ensuring exponential stability.
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1 Introduction

The objective of the present investigation is to derive easily verifiable explicit exponential
stability conditions for the following non-autonomous linear delay differential system

ẋi(t) = −
m

∑
j=1

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)), i = 1, . . . , m (1.1)

where t ≥ 0, m is a natural number, rij, i, j = 1, . . . , m are natural numbers, the coefficients
ak

ij : [0, ∞)→ R and delays hk
ij : [0, ∞)→ R are measurable functions.

The equation

ẋ(t) = −
r

∑
k=1

ak(t)x(hk(t)), (1.2)

BCorresponding author. Email: diblik.j@fce.vutbr.cz

http://www.math.u-szeged.hu/ejqtde/


2 L. Berezansky, J. Diblík, Z. Svoboda and Z. Šmarda

which is a special scalar case of (1.1), has been studied, e.g., in [6, 12, 14, 15, 20, 25]. A review
on stability results to equation (1.2) can be found in [7]. Below, we cite some selected results
from the above papers or give extracts of them.

From [20, Theorem 1.2], we get the following corollary.

Theorem 1.1. Let there be constants a0, Ak and τk, k = 1, 2, . . . , r such that

0 ≤ ak(t) ≤ Ak,
r

∑
k=1

ak(t) ≥ a0 > 0, 0 ≤ t− hk(t) ≤ τk, t ≥ 0.

If, moreover,
r

∑
k=1

Akτk ≤ 1, (1.3)

then the equation (1.2) is uniformly asymptotically stable and the constant 1 on the right-hand side
of (1.3) is the best one possible.

A corollary deduced from [20, Theorem 1.1] follows.

Theorem 1.2. Let there be constants Ak and τk, k = 1, 2, . . . , r such that

ak(t) ≡ Ak > 0, 0 ≤ t− hk(t) ≤ τk, t ≥ 0.

If, moreover,
r

∑
k=1

Akτk <
3
2

, (1.4)

then the equation (1.2) is uniformly asymptotically stable and the constant 3/2 on the right-hand side
of (1.4) is the best one possible.

From [25, Corollary 2.4] we get the following theorem.

Theorem 1.3. Let ak(t) and hk(t), k = 1, . . . , r, t ≥ 0 be continuous functions and

ak(t) ≥ 0,
∫ ∞

0

r

∑
k=1

ak(t)dt = ∞, 0 < h1(t) ≤ h2(t) ≤ · · · ≤ hr(t) ≤ t.

If, moreover,

lim sup
t→∞

r

∑
k=1

∫ t

h1(t)
ak(s)ds <

3
2

,

then the equation (1.2) is asymptotically stable.

The following result reproduces [15, Proposition 4.4].

Theorem 1.4. Let ak(t) ≡ ak > 0, k = 1, 2, . . . , r and let a constant α ∈ [0, 1] exist such that

α

e
r
∑

i=1
ai

≤ max
k

(t− hk(t)), t ≥ t0

and
r

∑
i=1

ai lim sup
t→∞

(t− hi(t)) < 1 +
α

e
.

Then, the equation (1.2) is uniformly asymptotically stable.
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Now we give a corollary of [7, Lemma 3.1].

Theorem 1.5. Let ak(t) be Lebesgue measurable essentially bounded functions and let there be con-
stants a0 and τk, k = 1, 2, . . . , r such that

ak(t) ≥ 0,
∫ ∞

t0

r

∑
k=1

ak(s)ds = ∞, 0 ≤ t− hk(t) ≤ τk, t ≥ t0.

If, moreover,

lim sup
t→∞

r

∑
k=1

ak(t)
∑r

i=1 ai(t)

∫ t

hk(t)

r

∑
i=1

ai(s)ds < 1 +
1
e

, (1.5)

then the equation (1.2) is uniformly exponentially stable.

Except for the paper [15], the above mentioned papers consider stability problems for
scalar equations only. In [15], linear systems with constant matrices are treated. Unfortunately,
there are no results on the stability of general systems of the form (1.1), which can be reduced
to Theorems 1.1–1.5 in the scalar case. To illustrate this claim, consider several known results.

In [24], the authors consider the non-autonomous system

ẋi(t) = −
m

∑
j=1

aij(t)xj(hij(t)), i = 1, . . . , m (1.6)

where t ∈ [t0, ∞), t0 ∈ R, aij(t), hij(t) are continuous functions, hij(t) ≤ t, hij(t) are monotone
increasing and such that limt→∞ hij(t) = ∞, i, j = 1, . . . , m.

Theorem 1.6 ([24, Theorem 2.2]). Assume that, for t ≥ t0, there exist non-negative numbers bij,
i, j = 1, . . . , m, i 6= j such that |aij(t)| ≤ bijaii(t), i, j = 1, . . . , m, i 6= j, aii(t) ≥ 0 and

∫ ∞
aii(s)ds = ∞, di = lim sup

t→∞

∫ t

hii(t)
aii(s)ds < 3/2, i = 1, . . . m.

Let B̃ = (b̃ij)
m
i,j=1 be an m×m matrix with entries b̃ii = 1, i = 1, . . . , m and, for i 6= j, i, j = 1, . . . , m,

b̃ij =


−
(

2 + d2
i

2− d2
i

)
bij, if di < 1,

−
(

1 + 2di

3− 2di

)
bij, if di ≥ 1.

If B̃ is a nonsingular M-matrix, then system (1.6) is asymptotically stable.

This theorem can be viewed as a certain generalization of Theorems 1.2 and 1.3 to systems
but only for the case of “one delay” (rij = 1, i, j = 1, . . . , m).

Paper [13] gives a generalization of Theorem 1.4 to linear systems with constant coefficients
and delays.

In our recent paper [8], we considered general system (1.1) deriving the following result.

Theorem 1.7 ([8, Theorem 4]). Let there be constants a0 and τ such that, for t ≥ t0,

a∗i (t) :=
rii

∑
k=1

ak
ii(t) ≥ a0 > 0, 0 ≤ t− hk

ij(t) ≤ τ, i = 1, . . . , m (1.7)
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and

max
i=1,...,m

ess sup
t≥t0

1
a∗i (t)

 rii

∑
k=1
|ak

ii(t)|
∫ t

max{0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds +
m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)|

 < 1. (1.8)

Then, the system (1.1) is uniformly exponentially stable.

Requiring that all assumptions of Theorem 1.5 and Theorem 1.7 are valid simultaneously,
condition (1.8) in Theorem 1.7 turns, in the case of equation (1.2) where ak(t) ≥ 0, into

ess sup
t≥t0

1
∑r

k=1 ak(t)

r

∑
k=1

ak(t)
∫ t

max{0,hk(t)}

r

∑
l=1

al(s)ds < 1

and, for t0 sufficiently large, coincides with the left-hand side of inequality (1.5).
Nevertheless, Theorem 1.7 is not an extension of Theorem 1.5 to system (1.1) since the

right-hand side in the inequality (1.8) is equal to 1 instead of 1 + 1/e on the right-hand side
of inequality (1.5) in Theorem 1.5.

The aim of the paper is to improve all the results of [8] and replace the constant 1 by the
constant 1 + 1/e not only on the right-hand side of inequality (1.8), but in all explicit stability
conditions derived in [8]. The only limitation in this paper in comparison with paper [8] is
the condition

ak
ii(t) ≥ 0, i = 1, . . . , m, k = 1, . . . , rii. (1.9)

Since this condition does not necessarily hold for equations considered in [8], all results of
this paper and in [8] are independent.

Our approach is based on estimates of the fundamental solution for scalar delay differen-
tial equations and on the Bohl–Perron type result. Some ideas and schemes of [8] are utilized
as well.

2 Preliminaries

Let t0 ≥ 0. We consider an initial problem

x(t) = ϕ(t), t ≤ t0 (2.1)

for (1.1) where ϕ = (ϕ1, . . . , ϕm)T : (−∞, t0]→ Rm is a vector-function. Throughout the rest of
the paper, we assume (a1)–(a3) where

(a1) ak
ij : [0, ∞) → R, i, j = 1, . . . , m, k = 1, . . . , rij are Lebesgue measurable and essentially

bounded functions, ak
ii(t) ≥ 0;

(a2) hk
ij : [0, ∞)→ R, i, j = 1, . . . , m, k = 1, . . . , rij are Lebesgue measurable functions, hk

ij(t) ≤
t, and t− hk

ij(t) ≤ K, t ≥ 0 where K is a positive constant;

(a3) ϕ : (−∞, t0]→ Rm is a Borel measurable bounded vector-function.

For a vector x = (x1, . . . , xm)T ∈ Rm, we define |x| := maxi=1,...,m |xi|.
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Remark 2.1. The function ϕ in (2.1) is defined on (−∞, t0]. By (a2), there exists a positive
constant K such that t − hk

ij(t) ≤ K, i, j = 1, . . . , m, k = 1, . . . , rij. Thus, the domain of the
definition of the initial function ϕ in (2.1) in the following consideration can be, in principle,
restricted to the finite interval [t0 − K, t0]. In the following computations, it is often necessary
to estimate differences t−max{t0, hk

ii(t)} (or similar) from above. Obviously,

t−max{t0, hk
ii(t)} ≤ K.

Definition 2.2. A locally absolutely continuous vector-function x : R→ Rm is called a solution
of the problem (1.1), (2.1) for t ≥ t0, if its components xi(t), i = 1, . . . , m satisfy (1.1) for almost
all t ∈ [t0, ∞) and (2.1) holds for t ≤ t0.

Definition 2.3. Equation (1.1) is called uniformly exponentially stable if there exist constants
M > 0 and µ > 0 such that the solution x : R→ Rm of (1.1), (2.1) satisfies

|x(t)| ≤ M e−µ(t−t0) sup
t≤t0

|ϕ(t)|, t ≥ t0

where M and µ do not depend on t0.

A non-homogeneous system

ẋi(t) = −
m

∑
j=1

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)) + fi(t), i = 1, . . . , m (2.2)

where fi : [0, ∞)→ R is a Lebesgue measurable locally essentially bounded function together
with the initial problem

x(t) = θ, t ≤ t0, (2.3)

where θ = (0, . . . , 0)T ∈ Rm, will be used together with homogeneous system (1.1).
In what follows, Lm

∞[t0, ∞) denotes the space of all essentially bounded real vector-
functions y : [t0, ∞)→ Rm with the essential supremum norm

‖y‖Lm
∞
= ess sup

t≥t0

|y(t)|.

As Cm[t0, ∞) we denote the space of all continuous m-dimensional bounded real vector-
functions on [t0, ∞) equipped with the supremum norm.

The proof of our main result uses the Bohl–Perron type result ([1–5, 11, 16]).

Theorem 2.4. If the solution of initial problem (2.2), (2.3) belongs to Cm[t0, ∞) for any f ∈ Lm
∞[t0, ∞),

f = ( f1, . . . , fm)T, then equation (1.1) is uniformly exponentially stable.

Note that, without loss of generality, we can assume f (t) ≡ θ on the interval [t0, t1] for
some t1 > t0 in Lemma 2.4.

Consider the scalar homogeneous initial problem

ẋ(t) = −
r

∑
k=1

ak(t)x(hk(t)), t ≥ s ≥ t0, (2.4)

x(t) = 0, t < s, x(s) = 1, (2.5)

where ak : [0, ∞) → R, k = 1, . . . , r are Lebesgue measurable and essentially bounded func-
tions, hk : [0, ∞)→ R, k = 1, . . . , r are Lebesgue measurable functions, hk(t) ≤ t.



6 L. Berezansky, J. Diblík, Z. Svoboda and Z. Šmarda

Definition 2.5. A solution x = X(t, s) of (2.4), (2.5) is called the fundamental function of (1.1).

The associated non-homogeneous equation to (2.4) is

ẋ(t) = −
r

∑
k=1

ak(t)x(hk(t)) + f (t), t ≥ t0. (2.6)

We will need the following representation formula (see, e.g. [1–5]) for solution of (2.6) (with a
locally Lebesgue integrable right-hand side f ) satisfying the initial problem

x(t) = 0, t ≤ t0. (2.7)

Theorem 2.6. The solution of initial problem (2.6), (2.7) is given by the formula

x(t) =
∫ t

t0

X(t, s) f (s)ds. (2.8)

The following lemma is taken from [12].

Theorem 2.7. Let ak(t) ≥ 0 and ∫ t

mink{hk(t)}

r

∑
k=1

ak(s)ds ≤ 1
e

where t ≥ t0, k = 1, . . . , r. Then, the fundamental function X(t, s) of (2.4) satisfies X(t, s) > 0 for
t ≥ s ≥ t0.

We will finish this section by an auxiliary result from [6]. In its formulation, X(t, s) is the
fundamental function of (2.4).

Theorem 2.8. Let ak(t) ≥ 0, X(t, s) > 0, t ≥ s ≥ t0, t− hk(t) ≤ K, t ≥ t0, k = 1, . . . , r. Then,

0 ≤
∫ t

t0

X(t, s)

(
r

∑
k=1

ak(s)

)
ξ(s)ds ≤ 1, t ≥ t0,

where ξ is the characteristic function of the interval [t0 + K, ∞).

3 Main result

The main result (Theorem 3.1 below) gives sufficient conditions for the uniform exponential
stability to system (1.1). We underline that this theorem is a significant improvement to The-
orem 1.7 because almost the same expression is estimated by the constant 1 + 1/e on the
right-hand side of inequality (3.4) rather than by the constant 1 on the right-hand side of
inequality (1.8).

Let Ai, i = 1, . . . , m be functions defined as

Ai(t) :=
1

ai(t)

 rii

∑
k=1

ak
ii(t)

∫ t

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds +
m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)|


where

ai(t) :=
rii

∑
k=1

ak
ii(t). (3.1)
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Theorem 3.1 (Main result). Let

ai(t) ≥ a0 > 0, i = 1, . . . , m, t ≥ t0, (3.2)

max
i=1,...,m

ess sup
t≥t0

1
ai(t)

m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)| < 1 (3.3)

and
max

i=1,...,m
ess sup

t≥t0

Ai(t) < 1 +
1
e

. (3.4)

Then, the system (1.1) is uniformly exponentially stable.

Proof. Define auxiliary functions Hk
i : [t0, ∞)→ R, i = 1, . . . , m, k = 1, . . . , rii as follows:

i) If ∫ t

hk
ii(t)

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds ≤ 1
e

, (3.5)

then
Hk

i (t) := hk
ii(t).

ii) If ∫ t

hk
ii(t)

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds >
1
e

, (3.6)

then Hk
i (t) is a unique solution of an implicit equation∫ t

Hk
i (t)

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds =
1
e

.

Consider the problem (2.2), (2.3) assuming that

fi(t) ≡ 0 if t ∈ [t0, t0 + K], i = 1, . . . , m. (3.7)

Condition (3.7) implies that for the solution of the problem (2.2), (2.3) we have xi(t) = 0,
i = 1, . . . , m if t ∈ [t0, t0 + K].

System (2.2) can be transformed to

ẋi(t) = −
rii

∑
k=1

ak
ii(t)xi(Hk

i (t)) +
rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

hk
ii(t)

ẋi(s)ds

−
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)) + fi(t), t ≥ t0, i = 1, . . . , m. (3.8)

It is easy to see that (due to (2.3)) system (3.8) is equivalent with

ẋi(t) = −
rii

∑
k=1

ak
ii(t)xi(Hk

i (t)) +
rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

max{t0,hk
ii(t)}

ẋi(s)ds

−
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)) + fi(t), t ≥ t0, i = 1, . . . , m. (3.9)
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Moreover, utilizing (2.2), (3.9), it can be transformed to

ẋi(t) = −
rii

∑
k=1

ak
ii(t)xi(Hk

i (t))

−
rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1

al
ij(s)xj(hl

ij(s))ds

−
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij(t)xj(hk

ij(t)) + pi(t), t ≥ t0, i = 1, . . . , m (3.10)

where

pi(t) = fi(t) +
rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

max{t0,hk
ii(t)}

fi(s)ds.

By assumption (a2), the definition of Hk
i (note that hk

ii(t) ≤ Hk
i (t) ≤ t), and (3.7) we get

pi(t) ≡ 0 if t ≤ t0 + K.

Let Xi(t, s), i = 1, . . . , m be the fundamental function (see Definition 2.5) of the scalar initial-
value problem

ẋi(t) = −
rii

∑
k=1

ak
ii(t)xi(Hk

i (t)), t ≥ t0,

xi(t) = 0, t ≤ t0.

By virtue of (a1), the definition of Hk
i (t), i = 1, . . . , m and Lemma 2.7, we have Xi(t, s) > 0,

t ≥ s ≥ t0, i = 1, . . . , m. Using formula (2.8) in Lemma 2.6, from (3.10), we get

xi(t) =−
∫ t

t0

Xi(t, s)

 rii

∑
k=1

ak
ii(s)

∫ Hk
i (s)

max{t0,hk
ii(s)}

m

∑
j=1

rij

∑
l=1

al
ij(τ)xj(hl

ij(τ))dτ

+
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij(s)xj(hk

ij(s))

 ds + gi(t), t ≥ t0, i = 1, . . . , m (3.11)

where

gi(t) =
∫ t

t0

Xi(t, s)pi(s)ds

and

pi(t) = gi(t) ≡ 0 if t ≤ t0 + K.

Next, we explain why gi, i = 1, . . . , m are essentially bounded functions. By (a1), properties
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of fi and Hk
i , i = 1, . . . , m, definition (1.7), Remark 2.1, and Lemma 2.8, we deduce

ess sup
t≥t0

|gi(t)|

= ess sup
t≥t0

∣∣∣∣∫ t

t0

Xi(t, s)pi(s)ds
∣∣∣∣

= ess sup
t≥t0+K

∣∣∣∣∫ t

t0

Xi(t, s)pi(s)ds
∣∣∣∣

≤ ess sup
t≥t0+K

∫ t

t0

Xi(t, s)ai(s)
|pi(s)|
ai(s)

ds ≤ ess sup
t≥t0+K

|pi(t)|
ai(t)

≤ 1
a0

ess sup
t≥t0+K

|pi(t)|

≤ 1
a0

(
ess sup
t≥t0+K

| fi(t)|+ ess sup
t≥t0+K

rii

∑
k=1

ak
ii(t) ess sup

t≥t0+K
| fi(t)| · ess sup

t≥t0+K
(Hk

i (t)−max{t0, hk
ii(t)})

)
< ∞.

System (3.11) can be written in an operator form

xi(t) = (Gix)(t) + gi(t), t ≥ t0, i = 1, . . . , m

where

(Gix)(t) =−
∫ t

t0

Xi(t, s)

 rii

∑
k=1

ak
ii(s)

∫ Hk
i (s)

max{t0,hk
ii(s)}

m

∑
j=1

rij

∑
l=1

al
ij(τ)xj(hl

ij(τ))dτ

+
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij(s)xj(hk

ij(s))

 ds, t ≥ t0, i = 1, . . . , m

or as
x = Gx + g (3.12)

where
G : Lm

∞ → Lm
∞, (Gx)(t) = ((G1x)(t), . . . , (Gmx)(t))T

and g(t) = (g1(t), . . . , gm(t))T. Estimate the norm ‖G‖Lm
∞

of the operator G. Since xi(t) ≡ 0, if
t ∈ [t0, t0 + K], i = 1, . . . , m, then

|(Gix)(t)| ≤
∫ t

t0+H
Xi(t, s)ai(s)Ai(s)ds · ‖x‖L∞

, i = 1, . . . , m

where

Ai(t) :=
1

ai(t)

 rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds +
m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)|

 .

Hence, by Lemma 2.8,
‖G‖Lm

∞
≤ max

i=1,...,m
ess sup

t≥t0

Ai(t) (3.13)
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If (3.5) holds, then Hk
i (t) = hk

ii(t), i = 1, . . . , m, k = 1, . . . , rii and, consequently,

Ai(t) ≤
1

ai(t)

 m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)|

 .

By (3.3) we get

max
i=1,...,m

ess sup
t≥t0

Ai(t) ≤ max
i=1,...,m

ess sup
t≥t0

1
ai(t)

 m

∑
j=1
j 6=i

rij

∑
k=1
|ak

ij(t)|

 < 1. (3.14)

If (3.6) is valid, then ∫ t

Hk
i (t)

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds =
1
e

.

Hence

1
ai(t)

rii

∑
k=1

ak
ii(t)

∫ Hk
i (t)

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds

=
1

ai(t)

rii

∑
k=1

ak
ii(t)

[∫ t

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds−
∫ t

Hk
i (t)

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds

]

=
1

ai(t)

rii

∑
k=1

ak
ii(t)

[∫ t

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds− 1
e

]

=
1

ai(t)

rii

∑
k=1

ak
ii(t)

∫ t

max{t0,hk
ii(t)}

m

∑
j=1

rij

∑
l=1
|al

ij(s)|ds− 1
e

. (3.15)

In this case, using (3.15) and (3.4), we get

max
i=1,...,m

ess sup
t≥t0

Ai(t) ≤ max
i=1,...,m

ess sup
t≥t0

(
Ai(t)−

1
e

)
< 1. (3.16)

Finally, from (3.13), (3.14) and (3.16), we deduce ‖G‖Lm
∞
< 1. Therefore, the operator equa-

tion (3.12) has a unique solution x ∈ Lm
∞ This solution solves the system (2.2) and belongs to

the space Cm[t0, ∞). By Lemma 2.4, system (1.1) is uniformly exponentially stable.

4 Corollaries to the main result

The purpose of this part is to consider some special cases of the system (1.1) and from Theo-
rem 3.1, deduce simple corollaries on uniform exponential stability. In the proofs, we verify
the assumptions of Theorem 3.1 for the case considered. It is often obvious and we omit the
unnecessary details.

Corollary 4.1. Assume that

aii(t) ≥ a0 > 0, i = 1, . . . , m, t ≥ t0, (4.1)
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max
i=1,...,m

ess sup
t≥t0

1
aii(t)

m

∑
j=1
j 6=i

|aij(t)| < 1 (4.2)

and

max
i=1,...,m

ess sup
t≥t0

∫ t

max{t0,hii(t)}

m

∑
j=1
|aij(s)|ds +

1
aii(t)

m

∑
j=1
j 6=i

|aij(t)|

 < 1 +
1
e

. (4.3)

Then, the system

ẋi(t) = −
m

∑
j=1

aij(t)xi(hij(t))), i = 1, . . . , m (4.4)

is uniformly exponentially stable.

Proof. Let rij = 1, ak
ij(t) = aij(t), hk

ij(t) = hij(t), ai(t) = aii(t), i, j = 1, . . . , m. Then, the
system (1.1) reduces to (4.4) and we can apply Theorem 3.1 since assumptions (3.2), (3.3)
and (3.4) are, in the particular case, reduced to assumptions (4.1), (4.2) and (4.3).

Corollary 4.2. Assume that, for t ≥ t0, we have ak
ii(t) ≥ 0,

rii

∑
k=1

ak
ii(t) ≥ αi > 0, |ak

ij(t)| ≤ ak
ij, t− hk

ij(t) ≤ τk
ij

where i, j = 1, . . . , m, k = 1, . . . , rij, αi, ak
ij, τk

ij are constants,

max
i=1,...,m

1
αi

m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij < 1, (4.5)

and

max
i=1,...,m

1
αi


(

rii

∑
k=1

ak
iiτ

k
ii

)(
m

∑
j=1

rij

∑
l=1

al
ij

)
+

m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij

 < 1 +
1
e

. (4.6)

Then, the system (1.1) is uniformly exponentially stable.

Proof. We have for t ≥ t0

Ai(t) ≤
1
αi

 rii

∑
k=1

ak
ii

(
m

∑
j=1

rij

∑
l=1

al
ij

)
τk

ii +
m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij

 =
1
αi


(

rii

∑
k=1

ak
iiτ

k
ii

)(
m

∑
j=1

rij

∑
l=1

al
ij

)
+

m

∑
j=1
j 6=i

rij

∑
k=1

ak
ij


and (4.6) implies (3.4).

Corollary 4.3. Assume that aii(t) ≥ αi > 0, |aij(t)| ≤ aij, t− hij(t) ≤ τij for i, j = 1, . . . , m and
t ≥ t0 where αi, aij, and τij are constants and

max
i=1,...,m

1
αi

m

∑
j=1
j 6=i

aij < 1, max
i=1,...,m

τii

m

∑
j=1

aij +
1
αi

m

∑
j=1
j 6=i

aij

 < 1 +
1
e

. (4.7)

Then, the system (4.4) is uniformly exponentially stable.
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Proof. This result follows from Corollary 4.1.

Now we give stability conditions for the following linear autonomous system with constant
delays

ẋi(t) = −
m

∑
j=1

rij

∑
k=1

ak
ijxj(t− τk

ij), i = 1, . . . , m. (4.8)

Corollary 4.4. Assume that ak
ii ≥ 0, conditions (4.5) and (4.6) hold where

αi :=
rii

∑
k=1

ak
ii > 0, i = 1, . . . , m.

Then, the autonomous system (4.8) is uniformly exponentially stable.

Proof. This follows directly from Corollary 4.2.

Consider the linear autonomous system with constant delays

ẋi(t) = −
m

∑
j=1

aijxj(t− τij), i = 1, . . . , m. (4.9)

Corollary 4.5. Assume that aii > 0 and inequalities (4.7) hold where αi = aii, i = 1, . . . , m. Then,
the autonomous system (4.9) is uniformly exponentially stable.

Proof. This follows directly from Corollary 4.3.

Corollary 4.6. Assume that m = 1, ak(t) ≥ 0, k = 1, . . . , r and, for t ≥ t0, at least one of the
following conditions hold (a0, ai and τi, i = 1, . . . , r are constants):

1) ∑r
k=1 ak(t) ≥ a0 > 0,

ess sup
t≥t0

1
∑r

k=1 ak(t)

[
r

∑
k=1

ak(t)
∫ t

max{t0,hk(t)}

r

∑
l=1

al(s)ds

]
< 1 +

1
e

. (4.10)

2) ai(t) ≡ ai, ∑r
i=1 ai > 0, t− hi(t) ≤ τi, i = 1, . . . , r, and

r

∑
i=1

aiτi < 1 +
1
e

. (4.11)

Then, the scalar equation (1.2) is uniformly exponentially stable.

Proof. Let condition 1) be true. Then, inequality (3.4) turns into inequality (4.10) for m = 1.
Let condition 2) be true. Since ai(t) ≡ ai, inequality (4.10) is transformed to

ess sup
t≥t0

r

∑
k=1

ak(t−max{t0, hk(t)}) < 1 +
1
e

.

Since

ess sup
t≥t0

r

∑
k=1

ak(t−max{t0, hk(t)}) ≤ ess sup
t≥t0

r

∑
k=1

akτk

inequality (4.11) implies (4.10).
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Now we consider two particular cases of system (1.1),

Ẋ(t) = −B(t)X(h(t)) (4.12)

and
Ẋ(t) = −A(t)X(t)− B(t)X(h(t)) (4.13)

where A(t) = (aij(t))m
i,j=1, B(t) = (bij(t))m

i,j=1 are m× m matrices with Lebesgue measurable
and locally essentially bounded entries

aij : [0, ∞)→ R, bij : [0, ∞)→ R, i, j = 1, . . . , m

and X(t) = (x1(t), . . . , xm(t))T. Assume that, for the delay h : [0, ∞)→ R, the relevant adapta-
tion of condition (a2) holds, i.e., h is Lebesgue measurable, h(t) ≤ t and t− h(t) ≤ K, t ∈ [0, ∞)

and lim supt→∞(t− h(t)) < ∞.
The following two Corollaries 4.7 and 4.8 deal with the exponential stability of systems

(4.12), (4.13).

Corollary 4.7. Assume that, for t ≥ t0, at least one of the conditions hold (b0, τ, αi and b∗ij, i, j =
1, . . . , r are constants):

a) bii(t) ≥ b0 > 0, i = 1, . . . , m,

max
i=1,...,m

ess sup
t≥t0

1
bii(t)

m

∑
j=1
j 6=i

|bij(t)| < 1,

and

max
i=1,...,m

ess sup
t≥t0

∫ t

max{t0,h(t)}

m

∑
j=1
|bij(s)|ds +

1
bii(t)

m

∑
j=1
j 6=i

|bij(t)|

 < 1 +
1
e

.

b) bii(t) ≥ αi > 0, |bij(t)| ≤ b∗ij, t− h(t) ≤ τ, i, j = 1, . . . , m,

max
i=1,...,m

1
αi

m

∑
j=1
j 6=i

b∗ij < 1, max
i=1,...,m

τ
m

∑
j=1

b∗ij +
1
αi

m

∑
j=1
j 6=i

b∗ij

 < 1 +
1
e

.

Then, the system (4.12) is uniformly exponentially stable.

Proof. System (4.12) can be written in the form

ẋi(t) = −
m

∑
j=1

bij(t)xj(h(t)), i = 1, . . . , m.

Now, the corollary directly follows from Corollaries 4.1 and 4.3.

Corollary 4.8. Assume that, for t ≥ t0,

aii(t) ≥ 0, bii(t) ≥ 0, aii(t) + bii(t) ≥ a0 > 0, i = 1, . . . , m,



14 L. Berezansky, J. Diblík, Z. Svoboda and Z. Šmarda

where a0 is a constant,

max
i=1,...,m

ess sup
t≥t0

1
aii(t) + bii(t)

m

∑
j=1
j 6=i

(|aij(t)|+ |bij(t)|) < 1,

and

max
i=1,...,m

ess sup
t≥t0

1
aii(t) + bii(t)

bii(t)
∫ t

max{t0,h(t)}

m

∑
j=1

(|aij(s)|+ |bij(s)|)ds +
m

∑
j=1
j 6=i

(|aij(t)|+ |bij(t)|)


< 1 +

1
e

. (4.14)

Then, the system (4.13) is uniformly exponentially stable.

Proof. We can write system (4.13) as

ẋ(t) = −
m

∑
j=1

aij(t)xj(t))−
m

∑
j=1

bij(t)xj(h(t)), i = 1, . . . , m

and use Theorem 3.1 for the choice rii = 2, a1
ij(t) = aij(t), a2

ij(t) = bij(t), h1
ij(t) = t, h2

ij(t) = h(t),
i, j = 1, . . . , m. Hence, ai(t) = aii(t) + bii(t), i = 1, . . . , m and inequality (4.14) coincides
with (3.4).

Consider particular cases of systems (4.12), (4.13)

Ẋ(t) = −BX(t− τ) (4.15)

and
Ẋ(t) = −AX(t)− BX(t− τ) (4.16)

where A = (aij)
m
i,j=1 and B = (bij)

m
i,j=1 are constant matrices, τ > 0, and aii ≥ 0, bii ≥ 0,

i = 1, . . . , m.

Corollary 4.9. Assume that bii > 0, i = 1, 2, . . . , m, and

max
i=1,...,m

1
bii

m

∑
j=1
j 6=i

|bij| < 1, max
i=1,...,m

τ
m

∑
j=1
|bij|+

1
bii

m

∑
j=1
j 6=i

|bij|

 < 1 +
1
e

.

Then, the system (4.15) is uniformly exponentially stable.

Proof. This follows from Corollary 4.7 (b) where αi = bii.

Corollary 4.10. Assume that aii ≥ 0, bii ≥ 0, aii + bii > 0,

1
aii + bii

m

∑
j=1
j 6=i

(|aij|+ |bij|) < 1,

and

1
aii + bii

τbii

m

∑
j=1

(|aij|+ |bij|) +
m

∑
j=1
j 6=i

(|aij|+ |bij|)

 < 1 +
1
e

(4.17)

for i = 1, . . . , m. Then, the system (4.16) is uniformly exponentially stable.
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Proof. Estimating the left-hand side of inequality (4.14) in the case of system (4.16) and us-
ing (4.17), we obtain

max
i=1,...,m

ess sup
t≥t0

1
aii(t) + bii(t)

bii(t)
∫ t

max{t0,h(t)}

m

∑
j=1

(|aij(s)|+ |bij(s)|)ds +
m

∑
j=1
j 6=i

(|aij(t)|+ |bij(t)|)



≤ max
i=1,...,m

1
aii + bii

τbii

m

∑
j=1

(|aij|+ |bij|) +
m

∑
j=1
j 6=i

(|aij|+ |bij|)

 < 1 +
1
e

.

Therefore, inequality (4.14) holds and Corollary 4.10 is a consequence of Corollary 4.8.

5 Concluding remarks

First we will compare the stability results obtained in the paper with some known result. Let
system (1.1) be of the form

ẋ1(t) = −a11(t)x1(h11(t))− a12(t)x2(h12(t)),

ẋ2(t) = −a21(t)x1(h21(t))− a22(t)x2(h22(t)).
(5.1)

Here, m = 2 and rij = 1, i, j = 1, 2. Assume that there are constants αi, Aij, τij, i, j = 1, 2
such that 0 < αi ≤ aii(t), |aij(t)| ≤ Aij and t− hij(t) ≤ τij ≤ K and, for a constant q ∈ (0, 1),
|a12(t)| ≤ qa11 and |a21(t)| ≤ qa22, t ∈ [t0, ∞). Then, (3.2) and (3.3) hold. Inequality (3.4) holds
if

(A11 + A12)τ11 +
A12

α1
< 1 +

1
e

,

(A22 + A21)τ22 +
A21

α2
< 1 +

1
e

.
(5.2)

By Theorem 3.1, system (5.1) is uniformly exponential stable. The above assumptions are
valid, e.g., for the choice

aii(t) ≡ Aii = αi = 0.1, aij(t) ≡ Aij = 0.099, i 6= j, τij = 1.89 (5.3)

in (5.1) if i, j = 1, 2.
Apply Theorem 1.6 if t − hij(t) ≡ τij ≤ K, aii(t) ≡ Aii = αi > 0, aij(t) ≡ Aij if i 6= j,

i, j = 1, 2 in (5.1). Let 0 < a12 = b12a11 and 0 < a21 = b21a22, t ∈ [t0, ∞). We get di = Aiiτii,
i = 1, 2. If di < 1, then

b̃12 = −
(

2 + A2
11τ2

11

2− A2
11τ2

11

)
A12

A11
,

b̃21 = −
(

2 + A2
22τ2

22

2− A2
22τ2

22

)
A21

A22
.

Theorem 1.6 implies (recall that a square matrix is a nonsingular M-matrix if its inverse is a
positive matrix)) the following result. If

Aiiτii < 1, b̃12b̃21 < 1,

then system (5.1) is asymptotically stable.
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Let (5.3) is set in (5.1). Then,

Aiiτii = 0.189 < 1, b̃12b̃21
.
= 1.053 6< 1

and Theorem 1.6 is not applicable.
It is not difficult to derive examples when conditions (5.2) hold, but stability conditions of

another known results are not valid.
The stability conditions derived in the paper are written in the form of inequalities with the

right-hand sides which are equal the constant 1 + 1/e. As we mentioned in the introduction,
the purpose of this paper was to improve all the results of [8] with the extra condition (1.9).
The first open problem is to remove this condition in all statements of this paper.

Nevertheless, there is another challenge for a possible continuation of investigations. An-
alysing some stability results (e.g. [18, Theorem 5.9]) where in the inequalities considered,
the constant 3/2 plays a significant role as a non-improvable bound, an open problem arises,
if we can expect that our results can be improved by replacing the constant 1 + 1/e by the
constant 3/2 in the inequalities used. An alternative problem is to prove or disprove that,
for the general case of variable coefficients and delays, the constant 1 + 1/e is the best one
possible.

For further results on the stability of linear delay differential systems, we refer, e.g., to
the review paper [23] and to [19, 21]. Recent results on global asymptotic stability for delay
differential systems can be found in [9, 10, 17, 22].

Another research challenge is the following. In this paper and in all known papers on the
stability of linear delay differential systems, the conditions sufficient for stability involve only
diagonal delays. It will be interesting to obtain stability conditions such that all delays are
utilized in the relevant inequalities.

As noted in [8], only few necessary stability conditions are known for systems. One of
the interesting problems is the following. To prove or disprove the following conjecture: if
system (1.1) is asymptotically stable, then the sum of the diagonal elements is nonnegative,
i.e.,

m

∑
i=1

rii

∑
k=1

ak
ii(t) ≥ 0, t ≥ t0.

Finally, we recall a problem tacitly mentioned in the introduction – for system (1.1), derive
stability results that could be reduced to Theorems 1.1–1.5 in the scalar case.
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