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Abstract. We consider the following second order differential equation with delay (Lx)(t) ≡ x′′(t) +
p

∑
j=1

aj(t)x′(t− τj(t)) +
p

∑
j=1

bj(t)x(t− θj(t)) = f (t), t ∈ [0, ω]

x(tk) = γkx(tk − 0), x′(tk) = δkx′(tk − 0), k = 1, 2, . . . , r.

In this paper we find sufficient conditions of positivity of Green’s functions for this im-
pulsive equation coupled with two-point boundary conditions in the form of theorems
about differential inequalities.
Choosing the test function in these theorems, we obtain simple sufficient conditions.
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1 Introduction

Let us consider the following impulsive equations:

(Lx)(t) ≡ x′′(t) +
p

∑
j=1

aj(t)x′(t− τj(t)) +
p

∑
j=1

bj(t)x(t− θj(t)) = f (t), t ∈ [0, ω] (1.1)

x(tk) = γkx(tk − 0), x′(tk) = δkx′(tk − 0), k = 1, 2, . . . , r, (1.2)

0 = t0 < t1 < t2 < · · · < tr < tr+1 = ω,
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x(ζ) = 0, ζ < 0 (1.3)

where f , aj, bj : [0, ω]→ R are summable functions and τj, θj : [0, ω]→ [0,+∞) are measurable
functions for j = 1, 2, . . . , p. Here p and r are natural numbers, γk and δk are real positive
numbers.

Let D be a space of functions x : [0, ω] → R such that their derivative x′(t) is absolutely
continuous on every interval t ∈ [ti, ti+1), i = 0, . . . , r, x′′ ∈ L∞, there exist the finite limits
x(ti − 0) = limt→t−i

x(t) and x′(ti − 0) = limt→t−i
x′(t) and condition (1.2) is satisfied at points

ti (i = 0, . . . , r). We understand solution x as a function x ∈ D satisfying (1.1)–(1.3). For
equation (1.1) we consider the following variants of boundary conditions:

x(0) = α0, x′(0) = β0, (1.4)

x(0) = α0, x′(ω) = β0, (1.5)

x′(0) = α0, x(ω) = β0. (1.6)

(1.7)

Differential equations with impulses have attracted the attention of many researchers.
Note the monographs [2, 4, 18, 22, 23, 26], in which problems of existence, uniqueness and
stability are considered.

In the works [7, 15, 18, 19, 22, 23, 26], impulsive ordinary differential equations are consid-
ered. Let us assume that all trajectories of solutions to non-impulsive ordinary differential
equation are known. In this case, impulses imply only choosing the trajectory between the
points of impulses, but we stay on trajectories of corresponding solutions of a non-impulsive
equation between the points of impulses ti and ti+1. In the case of impulsive equation with
delay it is not true anymore. That is why properties of delay impulsive equations can be quite
different. Oscillation/nonoscillation and stability of delay differential equations are consid-
ered in [1, 5, 6, 8, 9, 25]. Delay impulsive differential equations of second order are considered
concerning stabilization by impulses in [14,20]. For second order delay differential equations,
we note the paper [24] where their nonoscillation is studied. There are almost no results about
boundary value problems for impulsive differential equations of high orders. Note that sec-
ond order ordinary impulsive differential equations are considered in [3, 7, 15]. The Dirichlet
boundary value problem is studied in [21] and the generalized Dirichlet problem in [13,16,21].
For delay differential equations, there is only the paper [10].

Let us introduce a function C(t, s): C(·, s), as a function of t, for every fixed s : tis < s <

tis+1 (is = 0, . . . , r), satisfies the equation

x′′(t) +
p

∑
j=1

aj(t)x′(t− τj(t)) +
p

∑
j=1

bj(t)x(t− θj(t)) = 0, s ≤ t, (1.8)

x(tk) = γkx(tk − 0), x′(tk) = δkx′(tk − 0), k = is + 1, . . . , r, (1.9)

tis < s < tis+1 < · · · < tr < tr+1 = ω,

x(ζ) = 0, ζ < s. (1.10)

and the initial conditions C(s, s) = 0, ∂
∂t C(s, s) = 1. Note that C(t, s) = 0 for t < s. It is clear

that for every s this function is defined uniquely. We call this function C(t, s) as the Cauchy
function of (1.1)–(1.3). From the formula of solutions’ representation for system of delay
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impulsive equations (see [9]) follows that the general solution of (1.1)–(1.3) can be represented
in the form

x(t) = v1(t)x(0) + v2(t)x′(0) +
∫ t

0
C(t, s) f (s)ds (1.11)

where v1, v2 are the solutions of the homogeneous equation (1.12), (1.2), (1.3) where

(Lx)(t) = 0, t ∈ [0, ω] (1.12)

satisfying the initial conditions

v1(0) = 1, v′1(0) = 0, v2(0) = 0, v′2(0) = 1. (1.13)

According to the definition of C(t, s) it is clear that C(t, 0) = v2(t).
Note for example, that for the auxiliary equation (1.14), (1.2), (1.3) where

x′′(t) = f (t), (1.14)

we obtained in [11] the following formula for its Cauchy function C0(t, s)

C0(t, s) =
r

∑
i=1

i−1

∑
j=0

[
i

∏
k=j+1

γk(tj+1 − s) +
i

∑
l=j+2

i

∏
k=l

γk

l−1

∏
k=j+1

δk(tl − tl−1) +
i

∏
k=j+1

δk(t− ti)

]

× [Hti(t)− Hti+1(t)][Htj(s)− Htj+1(s)]

+
r

∑
i=0

Hs(t)(t− s)[Hti(t)− Hti+1(t)][Hti(s)− Hti+1(s)],

(1.15)

where Hti(t) is the Heaviside function

Hti(t) =

{
1, ti ≤ t,

0, t < ti.
(1.16)

From the general theory of functional differential equations [2] we have the following
fact. If every one of the boundary value problems, of equation (1.12) with a corresponding
condition

x(0) = 0, x′(0) = 0 (1.17)

x(0) = 0, x′(ω) = 0 (1.18)

x′(0) = 0, x(ω) = 0 (1.19)

has only trivial solutions, then their solution can be represented in the form

x(t) =
∫ t

0
G(t, s) f (s)ds, (1.20)

where G(t, s) is called the Green’s function of the corresponding problem. The form of Green’s
function G(t, s) of every problem can be obtained using the representation (1.11) of general
solution of (1.1)–(1.3).

In this paper, we develop the approach of [9] for second order impulsive equations (1.1)–
(1.3). This approach is based on the construction of Green’s functions of auxiliary impulsive
equations. Note that for first order functional differential equations, these Green’s functions
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even for nonlocal boundary value problems are constructed in [12]. We construct Green’s
functions for two auxiliary boundary value problems for second order impulsive equations.
Our approach is based on a reduction of the impulsive boundary value problem to an integral
equation; and then corresponding Krasnoselskii’s theorems about estimates of the spectral
radius are used [17]. On this basis, we obtain theorems on differential inequalities allowing to
make the conclusion about sign constancy of Green’s functions. Choosing the test functions,
we get conditions of positivity/negativity of the Green’s functions.

Our paper is constructed as follows. After introducing the main questions in the introduc-
tion, we construct Green’s function of the auxiliary problems in Section 2. In Section 3, we
demonstrate graphs of Green’s functions of the axuiliary problems. Then we discuss negativ-
ity of these Green’s functions and their derivatives in Section 4. In Section 5, we obtain the
main results of the paper in the form of assertions about differential and integral inequalities.
Efficient tests are also obtained on this basis in Section 5.

2 About Green’s functions for the auxiliary boundary value
problem

We want to obtain a representation of the Green’s function G1
0(t, s) of the auxiliary boundary

value problem (1.14), (1.2), (1.3), (1.5). We use the second boundary condition x′(ω) = β0 in
order to find a representation of x′(0) through α0 and β0. From the general solution (1.11) of
equation (1.1)–(1.3), we get

x′(ω) = β0 = v′1(ω)α0 +

[
∂

∂t
C0(t, 0)

]
t=ω

x′(0) +
r

∑
j=1

∫ tj+1

tj

[
∂

∂t
C0(t, s)

]
t=ω

f (s)ds.

In [11] it was obtained that

v1(t) =
r

∏
i=1

γi, t ∈ [tr, ω]

and v′1(ω) = 0. From here, we obtain for problem (1.14), (1.2), (1.3), (1.5) that

x′(0) =
β0 −∑r

j=1
∂
∂t

∫ tj+1
tj

[C0(t, s)]t=ω f (s)ds[
∂
∂t C0(t, 0)

]
t=ω

where

∂

∂t
C0(t, s) =


∂

∂t
C0(t, s), t 6= tk,

δk
∂

∂t
C0(tk − 0, s), t = tk.

where δk defines the impulse of the derivative at the point tk. The general solution for the
auxiliary boundary value problem with (1.5) can be represented now in the form:

x(t) =
j

∏
i=1

γiα0 + C0(t, 0)
β0[

∂
∂t C0(t, 0)

]
t=ω

+
∫ ω

0

C0(t, s)− C0(t, 0)

[
∂
∂t C0(t, s)

]
t=ω[

∂
∂t C0(t, 0)

]
t=ω

 f (s)ds, t ∈ (tj, tj+1).

(2.1)
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Thus the Green’s function G1
0(t, s) of problem (1.14), (1.2), (1.3), (1.5) is

G1
0(t, s) = C0(t, s)− C0(t, 0)

[
∂
∂t C0(t, s)

]
t=ω[

∂
∂t C0(t, 0)

]
t=ω

, t ∈ (tj, tj+1). (2.2)

Summarizing, we have obtained the actual representation of G1
0(t, s) and formulate the fol-

lowing lemma.

Lemma 2.1. The general solution for the auxiliary boundary value problem with impulses (1.14), (1.2),
(1.3), (1.5) can be represented in the form:

x(t) = V1(t) +
∫ ω

0
G1

0(t, s) f (s)ds, t ∈ [0, ω] (2.3)

where the Green’s function G1
0(t, s) of this problem is

G1
0(t, s) = C0(t, s)− C0(t, 0)

[
∂
∂t C0(t, s)

]
t=ω[

∂
∂t C0(t, 0)

]
t=ω

t ∈ (tj, tj+1) (2.4)

where the Cauchy function C0(t, s) of this problem is defined by (1.15) with C0(t, s) = 0 for t < s and

V1(t) =
j

∏
i=1

γiα0 + C0(t, 0)
β0[

∂
∂t C0(t, 0)

]
t=ω

, t ∈ [tj, tj+1), j = 0, 1, . . . , r, t0 = 0. (2.5)

Let us describe a formula for G1
0(t, s) using the formula of C0(t, s) described by (1.15),

t ∈ [ti, ti+1), s ∈ [tj, tj+1). We get

G1
0(t, s) = Cij(t, s)− Ci0(t, 0)

Crj(ω, s)(∆tr(ω)− ∆tr+1(ω)) + ∏r
k=j+1 δk

Cr0(ω, 0)(∆tr(ω)− ∆tr+1(ω)) + ∏r
k=1 δk

(2.6)

where

Cij(t, s) =



i

∏
k=j+1

γk(tj+1 − s) +
i

∑
l=j+2

i

∏
k=l

γk

l−1

∏
k=j+1

δk(tl − tl−1)

+
i

∏
k=j+1

δk(t− ti)

, i > j

t− s, i = j,

0, i < j,

(2.7)

and ∆tr is the Dirac delta function.
Let us get a representation of the Green’s function G2(t, s) of a general second order linear

differential equation with (1.6). The general solution for this problem is presented in equation
(1.11). Let us use the second boundary condition x(ω) = β0 in order to find a representation
of x(0) through α0 and β0. From the general solution of the problem, we get

β0 = x(ω) = x(0)v1(ω) + x′(0)v2(ω) +
∫ ω

0
C(ω, s) f (s)ds.

From here, we obtain

x(0) = − 1
v1(ω)

∫ ω

0
C(ω, s) f (s)ds− α0

v2(ω)

v1(ω)
+ β0

1
v1(ω)
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and the general solution can be represented in the form:

x(t) = −α0v1(t)
v2(ω)

v1(ω)
+ α0v2(t) + β0v1(t)

1
v1(ω)

+
∫ ω

0

[
C(t, s)− v1(t)

v1(ω)
C(ω, s)

]
f (s)ds.

Thus the Green’s function G2(t, s) of this problem is

G2(t, s) = C(t, s)− v1(t)
v1(ω)

C(ω, s). (2.8)

For our specific case, we have v1(t) = ∏
j
i=1 γi, t ∈ [tj, tj+1), v2(t) = C0(t, 0) and C(t, s) =

C0(t, s). Substituting v1(t), v2(t) and C(t, s) into this formula, we obtain the following lemma
for problem (1.14), (1.2), (1.3), (1.6).

Lemma 2.2. The general solution for the auxiliary boundary value problem with impulses (1.14), (1.2),
(1.3), (1.6) can be represented in the form:

x(t) = V2(t) +
∫ ω

0
G2

0(t, s) f (s)ds, t ∈ [0, ω], (2.9)

where the Green’s function G2
0(t, s) of this problem is

G2
0(t, s) = C0(t, s)− ∏

j
i=1 γi

∏r
i=1 γi

C0(ω, s), t ∈ [tj, tj+1), (2.10)

where the Cauchy function C0(t, s) of this problem defined by (1.15) with C0(t, s) = 0 for t < s and

V2(t) = −α0C0(ω, 0)
∏

j
i=1 γi

∏r
i=1 γi

+ α0C0(t, 0) + β0
∏

j
i=1 γi

∏r
i=1 γi

, t ∈ [tj, tj+1). (2.11)

Let us construct a formula for G2
0(t, s) in another form. By using the formula of C0(t, s) we

obtain that for t ∈ [ti, ti+1), s ∈ [tj, tj+1)

G2
0(t, s) = Cij(t, s)− Crj(ω, s)

∏
j
k=1 γk

∏r
k=1 γk

. (2.12)

3 Graphs of Green’s functions for auxiliary problems

Let us construct the graph of the Green’s function of (1.14), (1.2), (1.3), (1.5). According to
the properties of Green’s function (see [2]), the Green’s function G1

0(t, s) of the problem (1.14),
(1.2), (1.3), (1.5) is a solution of the equation x′′(t) = 0. We obtain Figure 3.1 in the case r = 4.

Let us construct the graph of the Green’s function of (1.14), (1.2), (1.3), (1.6). According to
the properties of Green’s function (see [2]), the Green’s function G2

0(t, s) of the problem (1.14),
(1.2), (1.3), (1.6) is a solution of the equation x′′(t) = 0. We obtain Figure 3.2 in the case r = 4.

4 Sign constancy of the Green’s functions and their derivatives for
the auxiliary impulsive equation

In this section, we prove positivity or negativity of the derivatives of Green’s function for one
and two-point impulsive problems with the auxiliary equation x′′(t) = f (t).
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Figure 3.1: G1
0(t, s) for s ∈ (0, ω).

Figure 3.2: G2
0(t, s) for s ∈ (0, ω).

Lemma 4.1. If 1 ≤ γk, 1 ≤ δk, k = 1, . . . , r, then the operators C0 : L∞ → L∞ and C′0 : L∞ → L∞

defined by

(C0 f )(t) =
∫ t

0
C0(t, s) f (s)ds (4.1)

(C′0 f )(t) =
d
dt

∫ t

0
C0(t, s) f (s)ds (4.2)

are positive.



8 A. Domoshnitsky, G. Landsman and Sh. Yanetz

Proof. It is clear from (1.15) (see [11]) that C0 is a positive operator. Let us assume that t ∈
(ti, ti+1) and s ∈ (tj, tj+1), where i ≥ j, i, j = 0, . . . , r, t0 = 0. If i = j, then ∂

∂t C0(t, s) = 1 ≥ 0. If
i > j, then

∂

∂t
C0(t, s) =

i

∏
k=j+1

δk ≥ 0,

since δk > 0, k = 1, . . . , r. Since 1 ≤ γk, 1 ≤ δk it is clearly to see that the operator C′0 is also
positive. Lemma 4.1 has been proven.

Lemma 4.2. If 1 ≤ γk, 1 ≤ δk, k = 1, . . . , r, then the operators G1
0 : L∞ → L∞ and G1′

0 : L∞ → L∞

defined by

(G1
0 f )(t) =

∫ ω

0
G1

0(t, s) f (s)ds

(G1′
0 f )(t) =

d
dt

∫ ω

0
G1

0(t, s) f (s)ds

are negative.

Proof. Let us assume that t ∈ (ti, ti+1) and s ∈ (tj, tj+1), where i < j, i, j = 0, . . . , r, t0 = 0.
Then

∂

∂t
G1

0(t, s) = − ∂

∂t
C0(t, 0)

[
∂
∂t C0(t, s)

]
t=ω[

∂
∂t C0(t, 0)

]
t=ω

= −
i

∏
k=1

δk
∏r

k=j+1 δk

∏r
k=1 δk

< 0.

For i > j, it is clear that ∂
∂t G1

0(t, s) = 0. For i = j we get ∂
∂t G1

0(t, s) < 0 if t < s and ∂
∂t G1

0(t, s) = 0
if s > t. From here, it is clear that the operator G1′

0 is negative. Since 1 ≤ γk, 1 ≤ δk, it is clear
that the operator G1

0 negative (see for example Figure 3.1). Lemma 4.2 has been proven.

Let us consider the following example demonstrating that this operator defined by (4.4) in
the case 0 < γ1 < 1 is not negative.

The function

x(t) =

{
t2

2 + 2t, t ∈ [0, 2),
t2

2 − 4t + 6γ + 6, t ∈ [2, 4],
(4.3)

is a solution of the problem
x′′(t) = 1, t ∈ [0, 4],

x(0) = 0, x′(4) = 0,

x(2) = γx(2− 0), x′(2) = x′(2− 0).

(4.4)

It can be easily observed that the function x(t) monotone on [0, 4] if and only if γ ≥ 1.

Lemma 4.3. If 0 < γk ≤ 1, 0 < δk ≤ 1, k = 1, . . . , r, then the operator G2
0 : L∞ → L∞ defined by

(G2
0 f )(t) =

∫ ω

0
G2

0(t, s) f (s)ds (4.5)

is negative and the operator G2′
0 : L∞ → L∞ defined by

(G2′
0 f )(z) =

d
dt

∫ ω

0
G2

0(t, s) f (s)ds (4.6)

is positive.
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Proof. From the formula of G2
0(t, s) it is clear that ∂

∂t G2
0(t, s) = ∂

∂t C0(t, s) for every t 6= ti
and for almost every s. Hence, the operators C′0, defined by (4.2) and G2′

0 defined by (4.6)
coincide. From Lemma 4.1 the operator C′0 is positive, so the operator G2′

0 is also positive.
Since 0 < γk ≤ 1, 0 < δk ≤ 1, it is clear that the operator G2

0 is negative (see for example
Figure 3.2). Lemma 4.3 has been proven.

5 Nonpositivity of Green’s function for the two-point impulsive
problems

In this section, we prove theorems about the negativity of the Green’s functions G1(t, s) and
G2(t, s) for the given problems (1.1)–(1.3), (1.5) and (1.1)–(1.3), (1.6). Then we will demonstrate
examples in order to find sufficient conditions for their negativity.

Theorem 5.1. Assume that aj ≥ 0, bj ≥ 0 for j = 1, . . . , p, 1 ≤ γk, 1 ≤ δk, for k = 1, . . . , r and
there exists the function v ∈ D and ε > 0 such that

(Lv)(t) ≤ −ε < 0, v(t) > 0, v′(t) > 0, v′′(t) < 0, t ∈ (0, ω), (5.1)

where the differential operator L is defined by (1.1). Then the Green’s function G1(t, s) of (1.1)–(1.3),
(1.5) satisfies the inequality G1(t, s) ≤ 0, (t, s) ∈ [0, ω]× [0, ω].

Proof. Let v′′(t) = z(t) where z ∈ L∞, then we can write

v(t) =
∫ ω

0
G1

0(t, s)z(s)ds + V1(t), (5.2)

where G1
0(t, s) is the Green’s function of the problem (1.14), (1.2), (1.3), (1.5). After substitution

we obtain

z(t) = (K1z) (t) + (Lv)(t)−
p

∑
j=1

aj(t)V ′1(t− τj(t))−
p

∑
j=1

bj(t)V1(t− θj(t)), (5.3)

where

(K1z) (t) =−
p

∑
j=1

aj(t)
∫ ω

0

∂

∂t
G1

0(t− τj(t), s)z(s)ds

−
p

∑
j=1

bj(t)
∫ ω

0
G1

0(t− θj(t), s)z(s)ds

(5.4)

where ∂
∂t G1

0(t − τj(t), s) = 0 if t − τj(t) < 0 and G1
0(t − θj(t), s) = 0 if t − θj(t) < 0. By

Lemma 4.2, in the case 1 ≤ γk, 1 ≤ δk, we have positivity of the operator K1 : L∞ → L∞.
Now, from the condition about existence of v satisfying (5.1), we get that z(t) = v′′(t) <

0, z̃(t) = −z(t) > 0 and then there exists ε > 0 such that z̃(t) − (K1z̃)(t) = −(Lv)(t) +
∑

p
j=1 aj(t)V ′1(t− τj(t)) + ∑

p
j=1 bj(t)V1(t− θj(t)) ≥ ε. We can write the assertion obtained in

[17, p. 86] for our case in the following form.

Lemma 5.2. If there exists a function z ∈ L∞ and positive ε such that z(t) ≥ ε, z(t)− (K1z)(t) ≥ ε

for t ∈ (0, ω), then ρ(K1) < 1.
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From here, the spectral radius ρ(K1) of the operator K1 : L∞ → L∞ is less than one.
Assume now that f ≥ 0 and demonstrate that x ≤ 0. After the substitution

x(t) =
∫ ω

0
G1

0(t, s)z(s)ds + V1(t), (5.5)

we obtain

z(t) = (K1z) (t) + f (t)−
p

∑
j=1

aj(t)V ′1(t− τj(t))−
p

∑
j=1

bj(t)V1(t− θj(t)), (5.6)

where K1 is positive operator and its spectral radius ρ(K1) < 1. Then

z(t) = (I − K1)
−1 f (t) = f (t) + K1 f (t) + K2

1 f (t) + · · · (5.7)

is nonnegative, and x obtained by (5.5) is nonpositive. Since this is true for every nonnegative
function f , we can make a conclusion that the solution of problem (1.1)–(1.3), (1.5) exists for
every summable function f . Now it is clear that the solution of this problem has the integral
representation (see (1.20)) with the kernel G1(t, s) (Green’s function of (1.1)–(1.3), (1.5)). We
proved that, for every nonpositive right hand side function f , the solution x is nonpositive.
From here, it follows that G1(t, s) ≤ 0.

Theorem 5.1 has been proven.

Example 5.3. Let us now find an example of a function v satisfying the condition of Theo-
rem 5.1. To this end, let us start with v(t) = t(2ω − t) in the interval t ∈ [0, t1) where ε is a
small positive constant. The function v in the rest of the intervals will be of the form

v(t) = v(ti) + v′(ti)(t− ti)− (t− ti)
2, t ∈ [ti, ti+1), i = 1, . . . , r, tr+1 = ω (5.8)

where {
v(ti) = γiv(ti − 0),

v′(ti) = δiv′(ti − 0).
(5.9)

Thus {
v(t) = t(2ω− t), t ∈ [0, t1),

v(t) = v(ti) + v′(ti)(t− ti)− (t− ti)
2, t ∈ [ti, ti+1),

(5.10)

where v(ti) and v′(ti) can be presented in the forms

v(ti) = t1(2ω− t1)
i

∏
j=1

γj +
i

∑
k=2

v′(tk)(tk − tk−1)
i

∏
j=k

γj

−
i

∑
k=2

(tk − tk−1)
2

i

∏
j=k

γj,

v′(ti) = 2(ω− t1)∏i
j=1 δj − 2 ∑i

k=2 (tk − tk−1)∏i
j=k δj.

(5.11)

Let us assume that v(t) > 0 and substitute this v(t) into condition (5.1) of Theorem 5.1.
For the next corollary, we use the following notation:

Ω1 = max
i=1,2,...,r

[
v′(ti)− 2ti

]
, (5.12)

Ω2 = max
[

max
i=1,2,...,r

v
(

v′(ti)

2
+ ti

)
, max

i=0,1,...,r
v(ti)

]
, (5.13)

where v(tr+1) = v(ω).
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Corollary 5.4. If aj ≥ 0, bj ≥ 0, 1 ≤ γk, 1 ≤ δk, j = 1, . . . , p, v(t) defined by (5.10) is positive for
t ∈ (0, ω) and

Ω1

p

∑
j=1

aj(t) + Ω2

p

∑
j=1

bj(t) < 2, (5.14)

then the Green’s function G1(t, s) of problem (1.1)–(1.3), (1.5) is nonpositive.

Proof. Let us substitute this v(t), defined by (5.10), into the assertion of Theorem 5.1.

−2 +
p

∑
i=1

ai(t) max
i=1,2,...,r

[
v′(ti)− 2ti

]
+

p

∑
i=1

bi(t)max
[

max
i=1,2,...,r

v
(

v′(ti)

2
+ ti

)
, max

i=0,1,...,r
v(ti)

]
< 0,

(5.15)

and we get the condition

Ω1

p

∑
j=1

aj(t) + Ω2

p

∑
j=1

bj(t) < 2. (5.16)

Let us demonstrate this with two numeric examples.

Example 5.5. If r = 1, γ1 = δ1 = 1.2, t1 = 1
2 and ω = 1, then we get the following condition

0.1
p

∑
j=1

aj(t) + 0.9
p

∑
j=1

bj(t) < 2 (5.17)

for the nonpositivity of the Green’s function.

Example 5.6. If r = 2, γ1 = δ1 = γ2 = δ2 = 1.2, t1 = 1
3 , t2 = 2

3 and ω = 1, then we get the
following condition

0.933
p

∑
j=1

aj(t) + 1.114
p

∑
j=1

bj(t) < 2 (5.18)

for the nonpositivity of the Green’s function.

In the particular case aj(t) = 0, j = 1, . . . , p, we have the following corollary.

Corollary 5.7. If bj ≥ 0, 1 ≤ γk, 1 ≤ δk, j = 1, . . . , r, and

Ω2

p

∑
j=1

bj(t) < 2, (5.19)

then the Green’s function G1(t, s) of problem (1.1)–(1.3), (1.5) is nonpositive.

Example 5.8. It is clear from the proof of Theorem 5.1 that our approach to study nonpositivity
of the solution x(t) for every nonnegative f (t) can be extended to equation with general
deviating argument (i.e. without the assumptions τ ≥ 0, θ ≥ 0). Consider the non-impulsive
equation x′′(t) + x(1) = 0. The two-point boundary value problem for this equation with the
conditions x(0) = 0, x′(1) = 0 has the nontrivial solution x(t) = t(2− t). This means that not
for every f (t) does there exist a solution for this problem and of course the Green’s function
does not exist. Computing Ω2 according to formula (5.13), we get Ω2 = v(1) = 1. We see
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that inequality (5.19) cannot be improved even in the non-impulsive case. For the equation
x′′(t) + x(g(t)) = f (t) with g(t) “close” to 1, (5.19) will give “almost exact” estimate. The
same could also be obtained in the case of the impulses ti situated “close” to 1 with γi, δi
“close” to 1.

We can estimate the interval [0, ω], where the Green’s function is nonpositive. More ex-
actly, solving the initial value problem (Lv)(t) ≤ 0, v(0) = 0, v′(0) = µ > 0. If its solution
v(t) and its derivative v′(t) are positive, then the conditions of Theorem 5.1 are fulfilled and
G1(t, s) ≤ 0.

Theorem 5.9. Assume that aj ≤ 0, bj ≥ 0 for j = 1, . . . , p, 0 < γk ≤ 1, 0 < δk ≤ 1 for k = 1, . . . , r
and there exists the function v ∈ D and ε > 0 such that

(Lv)(t) ≤ −ε < 0, v(t) > 0, v′(t) > 0, v′′(t) < 0, t ∈ (0, ω), (5.20)

where the differential operator L is defined by (1.1). Then the Green’s function G2(t, s) of (1.1)–(1.3),
(1.6) satisfies the inequality G2(t, s) ≤ 0, (t, s) ∈ [0, ω]× [0, ω].

Proof. Let v′′(t) = z(t) where z ∈ L∞, then we can write

v(t) =
∫ ω

0
G2

0(t, s)z(s)ds + V2(t), (5.21)

where G2
0(t, s) is the Green’s function of the problem (1.14), (1.2), (1.3), (1.6). After substitution

we obtain

z(t) = (K2z) (t) + (Lv)(t)−
p

∑
j=1

aj(t)V ′2(t− τj(t))−
p

∑
j=1

bj(t)V2(t− θj(t)), (5.22)

where

(K2z) (t) =−
p

∑
j=1

aj(t)
∫ ω

0

∂

∂t
G2

0(t− τj(t), s)z(s)ds

−
p

∑
j=1

bj(t)
∫ ω

0
G2

0(t− θj(t), s)z(s)ds

(5.23)

where ∂
∂t G2

0(t − τj(t), s) = 0 if t − τj(t) < 0 and G2
0(t − θj(t), s) = 0 if t − θj(t) < 0. By

Lemma 4.3, in the case 0 < γk ≤ 1, 0 < δk ≤ 1 we have positivity of the operator K2 : L∞ → L∞.
Now, from the condition about existence of v satisfying (5.20), we get that z̃(t) = v′′(t) < 0,
z(t) = −z̃(t) > 0 and then there exists ε > 0 such that z(t)− (K2z)(t) ≥ ε. From here, the
spectral radius ρ(K2) of the operator K2 : L∞ → L∞ is less than one.

Assume now that f ≥ 0 and demonstrate that x ≤ 0. After the substitution

x(t) =
∫ ω

0
G2

0(t, s)z(s)ds + V2(t), (5.24)

we obtain

z(t) = (K2z) (t) + f (t)−
p

∑
j=1

aj(t)V ′2(t− τj(t))−
p

∑
j=1

bj(t)V2(t− θj(t)), (5.25)
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where K2 is positive operator and its spectral radius ρ(K2) < 1. Then

z(t) = (I − K2)
−1 f (t) = f (t) + K2 f (t) + K2

2 f (t) + · · · (5.26)

is nonnegative, and x obtained by (5.24) is nonpositive. Since this is true for every nonnegative
function f , we can make a conclusion that the solution of problem (1.1)–(1.3), (1.6) exists for
every summable function f . Now it is clear that the solution of this problem has the integral
representation (see (1.20)) with the kernel G2(t, s) (Green’s function of (1.1)–(1.3), (1.6)). We
proved that, for every nonpositive right hand side function f , the solution x is nonpositive.
From here, it follows that G2(t, s) ≤ 0.

Theorem 5.9 has been proven.

Example 5.10. Let us now find an example of a function v satisfying all conditions of Theo-
rem 5.9. To this end, let us start with v(t) = (ω + t)(ω − t) in the interval t ∈ [0, t1) where ε

is a small positive constant. The function v in the rest of the intervals will be of the form

v(t) = v(ti) + v′(ti)(t− ti)− (t− ti)
2, t ∈ [ti, ti+1), i = 1, . . . , r, tr+1 = ω (5.27)

where {
v(ti) = γiv(ti − 0),

v′(ti) = δiv′(ti − 0).
(5.28)

Thus {
v(t) = (ω + t)(ω− t), t ∈ [0, t1),

v(t) = v(ti) + v′(ti)(t− ti)− (t− ti)
2, t ∈ [ti, ti+1),

(5.29)

where v(ti) and v′(ti) can be represented in the form

v(ti) = (ω + t1)(ω− t1)
i

∏
j=1

γj +
i

∑
k=2

v′(tk)(tk − tk−1)
i

∏
j=k

γj

−
i

∑
k=2

(tk − tk−1)
2

i

∏
j=k

γj,

v′(ti) = −2t1 ∏i
j=1 δj − 2 ∑i

k=2 (tk − tk−1)∏i
j=k δj.

(5.30)

Let us assume that v(t) > 0 and substitute this v(t) into the assertion of Theorem 5.9
For the next corollary, we use the following notation:

Ω1 = max
i=1,2,...,r

∣∣v′(ti)− 2ti
∣∣, (5.31)

Ω2 = max
[

max
i=1,2,...,r

v
(

v′(ti)

2
+ ti

)
, max

i=0,1,...,r
v(ti)

]
, (5.32)

where v(tr+1) = v(ω).

Corollary 5.11. If aj ≤ 0, bj ≥ 0, 0 < γk ≤ 1, 0 < δk ≤ 1, j = 1, . . . , p, v(t) defined by (5.29) is
positive for t ∈ (0, ω) and

Ω1

p

∑
j=1

∣∣aj(t)
∣∣+ Ω2

p

∑
j=1

bj(t) < 2, (5.33)

then the Green’s function G2(t, s) of problem (1.1)–(1.3), (1.6) is nonpositive.
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Proof. Let us substitute this v(t), defined by (5.29), into the assertion of Theorem 5.9

−2 +
p

∑
i=1
|ai(t)| max

i=1,2,...,r

∣∣v′(ti)− 2ti
∣∣

+
p

∑
i=1

bi(t)max
[

max
i=1,2,...,r

v
(

v′(ti)

2
+ ti

)
, max

i=0,1,...,r
v(ti)

]
< 0,

(5.34)

and we get the condition (5.33).

Let us demonstrate this with two numeric examples.

Example 5.12. If r = 1, γ1 = δ1 = 1.2, t1 = 1
2 and ω = 1, then Ω1 = 2.2, Ω2 = 1 and we get

the following condition

2.2
p

∑
j=1

aj(t) + 1
p

∑
j=1

bj(t) < 2 (5.35)

for the nonpositivity of the Green’s function.

Example 5.13. If r = 2, γ1 = δ1 = γ2 = δ2 = 1.2, t1 = 1
3 , t2 = 2

3 and ω = 1, then
Ω1 = 3.888, Ω2 = 16

15 and we get the following condition

3.888
p

∑
j=1

aj(t) +
16
15

p

∑
j=1

bj(t) < 2 (5.36)

for the nonpositivity of the Green’s function.

In the particular case aj(t) = 0, j = 1, . . . , p, we have the following result.

Corollary 5.14. If bj ≥ 0, 0 < γk ≤ 1, 0 < δk ≤ 1, j = 1, . . . , r, and

Ω2

p

∑
j=1

bj(t) < 2, (5.37)

then the Green’s function G2(t, s) of problem (1.1)–(1.3), (1.6) is nonpositive.

Remark 5.15. In the case of non-impulsive equation (1.1), where aj = 0, bj ≥ 0 for j = 1, . . . , p,
we have Ω2 = maxi=0,...,r+1 v(ti) = v(0) = ω2 and condition (5.33) will be of the form

p

∑
j=1

bj(t) <
2

ω2 (5.38)

This condition cannot be improved. Actually, for the equation x′′(t) + x(0) = f (t), t ∈
[0, ω], condition (5.33) is exact one, since the function x(t) = (ω − t)(t + ω) is a nontrivial
solution of the problem x′′(t) + x(0) = 0, t ∈ [0, ω], x′(0) = 0, x(ω) = 0.

It is clear that our condition will be close to optimal also for x′′(t) + x(g(t)) = f (t), where
g(t) is small enough.



Sign-constancy of Green’s function of a two-point problem 15

References

[1] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation theory of
functional differential equations with applications, Springer, 2012. MR2908263; url

[2] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the theory of functional
differential equations, Advanced Series in Math. Science and Engineering, Vol. 3, World
Federation Publisher Company, Atlanta, GA, 1995. MR1422013

[3] D. Bainov, Y. Domshlak, P. Simeonov, Sturmian comparison theory for impulsive dif-
ferential inequalities and equations, Arch. Math. (Basel) 67(1996), 35–49. MR1392051; url

[4] D. Bainov, P. Simeonov, Impulsive differential equations, Pitman Monogpaphs and Surveys
in Pure and Applied Mathematics, Vol. 66, Longman Scientific, Harlow, 1993. MR1266625

[5] L. Berezansky, E. Braverman, Oscillation of a linear delay impulsive differential equa-
tion, Commun. Appl. Nonlinear Anal. 3(1996), 61–77. MR1365179

[6] L. Berezansky, E. Braverman, Oscillation and other properties of linear impulsive and
nonimpulsive delay equations, Appl. Math. Lett. 16(2003), 1025–1030. MR2013068; url

[7] Y.-Sh. Chen, Yang-Shao, W–Zh. Feng, Oscillation of second order nonlinear ODE with
impulses, J. Math. Anal. Appl. 210(1997), 150–169. MR1449514; url

[8] A. Domoshnitsky, M. Drakhlin, On boundary value problems for first order im-
pulse functional differential equations, in: J. Henderson (Ed.), Boundary value problems
for functional-differential equations, World Scientific, River Edge, NJ, 1995, pp. 107–117.
MR1375468; url

[9] A. Domoshnitsky, M. Drakhlin, Nonoscillation of first order impulse differential equa-
tions with delay, J. Math. Anal. Appl. 206(1997), 254–269. MR1429290; url

[10] A. Domoshnitsky, M. Drakhlin, E. Litsyn, Nth order functional-differential equations
with impulses, Adv. Math. Sci. Appl. 8(1998), No. 2, 987–996. MR1657212

[11] A. Domoshnitsky, G. Landsman, S. Yanetz, About sign-constancy of Green’s functions
for impulsive second order delay equations, Opuscula Math. 34(2014), No. 2, 339–362.
MR3200260; url

[12] A. Domoshnitsky, I. Volinsky, R. Shklyar, About Green’s functions for impulsive dif-
ferential equations, Funct. Differ. Equ. 20(2013), No. 1–2, 55–81. MR3328886

[13] M. Feng, D. Xie, Multiple positive solutions of multi-point boundary value problem for
second-order impulsive differential equations, J. Comput. Appl. Math. 223(2009), 438–448.
MR2463127; url

[14] L. P. Gimenes, M. Federson, Existence and impulsive stability for second order retarded
differential equations, Appl. Math. Comput. 177(2006), No. 1, 44–62. MR2234496; url

[15] S. Hu, V. Lakshmikantham, Periodic boundary value problems for second order impul-
sive differential systems, Nonlinear Anal. 13(1989), No. 1, 75–85. MR973370; url

http://www.ams.org/mathscinet-getitem?mr=2908263
http://dx.doi.org/10.1007/978-1-4614-3455-9
http://www.ams.org/mathscinet-getitem?mr=1422013
http://www.ams.org/mathscinet-getitem?mr=1392051
http://dx.doi.org/10.1007/BF01196165
http://www.ams.org/mathscinet-getitem?mr=1266625
http://www.ams.org/mathscinet-getitem?mr=1365179
http://www.ams.org/mathscinet-getitem?mr=2013068
http://dx.doi.org/10.1016/S0893-9659(03)90090-5
http://www.ams.org/mathscinet-getitem?mr=1449514
http://dx.doi.org/10.1006/jmaa.1997.5378
http://www.ams.org/mathscinet-getitem?mr=1375468
http://dx.doi.org/10.1142/9789812812841_0009
http://www.ams.org/mathscinet-getitem?mr=1429290
http://dx.doi.org/10.1006/jmaa.1997.5231
http://www.ams.org/mathscinet-getitem?mr=1657212
http://www.ams.org/mathscinet-getitem?mr=3200260
http://dx.doi.org/10.7494/OpMath.2014.34.2.339
http://www.ams.org/mathscinet-getitem?mr=3328886
http://www.ams.org/mathscinet-getitem?mr=2463127
http://dx.doi.org/10.1016/j.cam.2008.01.024
http://www.ams.org/mathscinet-getitem?mr=2234496
http://dx.doi.org/10.1016/j.amc.2005.10.038
http://www.ams.org/mathscinet-getitem?mr=973370
http://dx.doi.org/10.1016/0362-546X(89)90036-9


16 A. Domoshnitsky, G. Landsman and Sh. Yanetz

[16] J. Jiang, L. Liu, Y. Wu, Positive solutions for second order impulsive differential equations
with Stieltjes integral boundary conditions, Adv. Difference Equ. 2012, 2012:124, 18 pp.
MR3016047; url

[17] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ja. B. Rutitskii, V. Ja. Stezenko,
Approximate methods for solving operator equations (in Russian), Moscow, Nauka, 1969.
MR0259635

[18] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equa-
tions, World Scientific, Singapore, 1989. MR1082551; url

[19] J. Li, J. J. Nieto, J. Shen, Impulsive periodic boundary value problems of first-order
differential equations, J. Math. Anal. Appl. 325(2007), 226–236. MR2273040; url

[20] X. Li, P. Weng, Impulsive stabilization of two kinds of second-order linear delay differ-
ential equations, J. Math. Anal. Appl. 291(2004), 270–281. MR2034073; url

[21] X. Lin, D. Jiang, Multiple positive solutions of Dirichlet boundary value problems for
second order impulsive differential equations, J. Math. Anal. Appl. 321(2006), 501–514.
MR2241134; url

[22] S. G. Pandit, S. G. Deo, Differential systems involving impulses, Lecture Notes in Mathe-
matics, Vol. 954, Springer-Verlag, Berlin, 1982. MR674119

[23] A. M. Samoilenko, A. N. Perestyuk, Impulsive differential equations, World Scientific,
Singapore, 1995. MR1355787; url

[24] Y. L. Tian, P. X. Weng, J. J. Yang, Nonoscillation for a second order linear delay differen-
tial equation with impulses, Acta Math. Appl. Sin. Engl. Ser. 20(2004), 101–114. MR2052709;
url

[25] J. Yan, A. Zhao, Oscillation and stability of linear impulsive delay differential equations,
J. Math. Anal. Appl. 227(1998), 187–194. MR1652915; url

[26] S. G. Zavalishchin, A. N. Sesekin, Dynamic impulse systems. Theory and applications,
Mathematics and its Applications, Vol. 394, Kluwer Academic Publishers Group, Dor-
drecht, 1997. MR1441079; url

http://www.ams.org/mathscinet-getitem?mr=3016047
http://dx.doi.org/10.1186/1687-1847-2012-124
http://www.ams.org/mathscinet-getitem?mr=0259635
http://www.ams.org/mathscinet-getitem?mr=1082551
http://dx.doi.org/10.1142/0906
http://www.ams.org/mathscinet-getitem?mr=2273040
http://dx.doi.org/10.1016/j.jmaa.2005.04.005
http://www.ams.org/mathscinet-getitem?mr=2034073
http://dx.doi.org/10.1016/j.jmaa.2003.11.002
http://www.ams.org/mathscinet-getitem?mr=2241134
http://dx.doi.org/10.1016/j.jmaa.2005.07.076
http://www.ams.org/mathscinet-getitem?mr=674119
http://www.ams.org/mathscinet-getitem?mr=1355787
http://dx.doi.org/10.1142/9789812798664
http://www.ams.org/mathscinet-getitem?mr=2052709
http://dx.doi.org/http://dx.doi.org/10.1007/s10255-004-0153-3
http://www.ams.org/mathscinet-getitem?mr=1652915
http://dx.doi.org/10.1006/jmaa.1998.6093
http://www.ams.org/mathscinet-getitem?mr=1441079
http://dx.doi.org/10.1007/978-94-015-8893-5

