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Abstract. The aim of this paper is the investigation of some discrete iterative mod-
els that can be used for modeling spatial disease propagation. In our model, we take
into account the spatial inhomogenity of the densities of the susceptible, infected and
recovered subpopulations and we also suppose vital dynamics. We formulate some
characteristic qualitative properties of the model such as nonnegativity and monotonic-
ity and give sufficient conditions that guarantee these properties a priori. Our discrete
model can be considered as some discrete approximation of continuous models of the
disease propagation given in the form of systems of partial or integro-differential equa-
tions. In this way we will be able to give conditions for the mesh size and the time step
of the discretisation method in order to guarantee the qualitative properties. Some of
the results are demonstrated on numerical tests.
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1 Introduction

The construction of mathematical models is one of the tools of the understanding of the
mechanism of communicable diseases. These models can predict how to prevent the outbreak
of an epidemic or can give ideas how to curb an epidemic with appropriate and affordable
means (e.g. hygiene, vaccination).

The most popular and well investigated models are the so-called compartmental models
[1,3,4,7,10]. In these models the population is considered to be homogeneously mixed and the
individuals are classified according to their relation to the disease. For example, the so-called
SIRS-model [4] has the form

S′ = −aSI + dI + (c + d)R,

I′ = aSI − (b + d)I,

R′ = bI − (c + d)R,

(1.1)
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where S = S(t), I = I(t) and R = R(t) denote, respectively, the number of susceptible,
infective and recovered individuals as a function of time t. The contact rate a and recovery
coefficient b (1/b is the infectious period) are positive known numbers. The mortality rate
d (1/d (d 6= 0) is the expected life time) is a nonnegative number. The total population is
maintained by the compensation of the mortality with an equal birth input d(S + I + R) in
the susceptible class. The recovered individuals become susceptible again with the rate c.
The special condition c = d = 0 (so-called SIR-model) means that there is no vital dynamics
in the model (birth and death are neglected) and the recovered individuals do not become
susceptible again.

The compartmental model cannot take into account the spatial distribution of the individ-
uals. In order to bring also the spatial dependence into the picture we can divide the original
population into subpopulations (metapopulations) according to some geopolitical consider-
ations and connect them somehow into a network by some prescribed rules for the disease
propagation [3]. Another possibility is that we take into account the movement of the individ-
uals. This results in a partial differential equation of reaction–diffusion type [4, 7–9]. In order
to obtain a partial differential equation with spatial dependence but without the movement of
the individuals, Kendall [9] suggested changing the term aI in (1.1) to the integral∫

N(x)
W(‖x′ − x‖)I(x′, t)dx′. (1.2)

This integral describes how the infectives at the points x′ affect the infection of the susceptibles
at the point x. The nonnegative weighting function W is supposed to depend only on the
distance of the points x′ and x, and N(x) denotes a prescribed neighbourhood of the point x.
With the above modification we arrive at the system of integro-differential equations

S′t(x, t) = −
(∫

N(x)
W(‖x′ − x‖)I(x′, t)dx′

)
S(x, t) + dI(x, t) + (c + d)R(x, t),

I′t(x, t) =
(∫

N(x)
W(‖x′ − x‖)I(x′, t)dx′

)
S(x, t)− (b + d)I(x, t),

R′t(x, t) = bI(x, t)− (c + d)R(x, t)

(1.3)

(equipped with some initial conditions), where now S = S(x, t), I = I(x, t) and R = R(x, t)
depend also on the spatial position and give the densities of the corresponding compartments
of the population.

For ordinary differential equation models the number and the type of the equilibria are
generally investigated. while for partial differential equation models travelling waves or non-
trivial epidemic states are sought. However, only a little attention is devoted to obtaining
qualitatively adequate solutions of different continuous and discrete models (e.g. [5, 11]). In
this paper, we will investigate some consistent discretizations of the system (1.3) from the
qualitative point of view. We will suppose that the spatial dimension of the problem is one,
and that N(x) is a symmetric interval around any fixed point x.

The paper is organized as follows. In Section 2, we define a discrete space–time disease
propagation model. This model will include also vital dynamics, and so it can be considered
as a generalization of the results of paper [6]. We give sufficient conditions that guarantee
some basic qualitative properties of the models. Because the models can be considered as
certain discretizations of the system (1.3), we will be able to give a priori conditions for the
spatial mesh size and the time step in Section 3. We close the paper with some numerical test
examples in Section 4.
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2 A discrete space–time disease propagation model

In this section we construct a discrete one-step iteration model of spatial disease propagation
and give the conditions of its qualitative properties.

We suppose that the population is located in one-dimension along the segment L = [0, l]
(l > 0) and that the individuals do not have spatial movements. The last property essentially
means that the speed of the individuals can be neglected compared to the propagation speed
of the disease.

The interval L is divided into 0 < N ∈ N congruent subintervals with length h = l/N:
Lk = [(k − 1)h, kh] (k = 1, . . . , N). We set a time step τ > 0. The density of the susceptible
individuals is denoted by sn

k on Lk and at the time instant nτ. Thus hsn
k means the number of

the susceptibles. Similar notation is used for the infected and recovered individuals: in
k and

rn
k . Furthermore, we introduce the vectors sn = [sn

1 , . . . , sn
N ]

T ∈ RN , in = [in
1 , . . . , in

N ]
T ∈ RN

and rn = [rn
1 , . . . , rn

N ]
T ∈ RN , where the superscript T denotes the matrix transpose. In order

to simplify the notations, in vector operations we will apply a general convention like it is
defined in Matlab: if an operation cannot be carried out in a standard way, then it must be
computed elementwise. The relations are also meant elementwise.

We will consider the following discrete one-step iteration model for the disease propaga-
tion

sn+1 − sn

τ
= −(σsn+1 + (1− σ)sn)pn + d(σin+1 + (1− σ)in)

+(c + d)(σrn+1 + (1− σ)rn),

in+1 − in

τ
= (σsn+1 + (1− σ)sn)pn − (b + d)(σin+1 + (1− σ)in),

rn+1 − rn

τ
= b(σin+1 + (1− σ)in)− (c + d)(σrn+1 + (1− σ)rn).

(2.1)

Here n = 0, 1, . . . and s0, i0 and r0 are given initial vectors. The parameters b > 0 and c, d ≥ 0
are given real numbers. (The coincidence with the parameters in (1.1) is intentional because
the discrete model will be considered later as a certain discretization of some modification
of the continuous model.) The parameter σ is a fixed weighting parameter from the interval
[0, 1]. As it is usual, if σ = 0 then the iteration process is called explicit otherwise it is implicit.
The vector pn ∈ RN is derived from the vector in and the mesh size h, and it describes the
dynamics of the process how the susceptible individuals become infected.

It is a natural requirement for the models of any real life phenomenon that the solutions
of the continuous/discrete models must possess some basic adequate qualitative properties of
the original process. In the present case for the discrete model (2.1) such qualitative properties
are as follows. Suppose s0, i0 and r0 are nonnegative vectors.

[P1] Because the individuals do not move, the total size of the population at a given spatial
position cannot change in time. This means that sn + in + rn must be constant, that is
independent of n.

[P2] The number of the susceptible, infective and recovered members must be nonnegative.
That is sn, in and rn must be nonnegative if s0, i0 and r0 are nonnegative.

[P3] If c = d = 0, then besides property [P2] we also require that the number of the suscepti-
bles cannot grow and the number of the recovered cannot decrease in time. That is sn is
a nonincreasing and rn is a nondecreasing function of n (elementwise).
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The validity of the qualitative properties [P1]–[P3] can be guaranteed by the following
lemmas and theorems.

Lemma 2.1. Let n ∈N be any fixed natural number. Then

sn + in + rn = sn+1 + in+1 + rn+1,

that is property [P1] is satisfied without any condition.

Proof. The statement simply follows by adding the three equations in (2.1).

The maximum element of the vector s0 + i0 + r0 will be denoted by M. Based on the
previous lemma, hence M = max(sn + in + rn) for all n is also true.

Lemma 2.2. If conditions
(C1) τ(max{c, b}+ d)(1− σ) ≤ 1,

(C2) pn ≥ 0 and τ(1− σ)pn ≤ 1
(2.2)

are satisfied then sn ≥ 0, in ≥ 0, rn ≥ 0 imply that sn+1 ≥ 0, in+1 ≥ 0, rn+1 ≥ 0. When c = d = 0
then the monotonicity conditions sn+1 ≤ sn and rn+1 ≥ rn are also true.

Proof. We reorder the equations in (2.1) such that we put the vectors with the superscript n+ 1
into the left-hand sides and the other terms to the right-hand sides. We obtain the system of
linear equations

An

 sn+1

in+1

rn+1

 = Bn

 sn

in

rn

 (2.3)

for the unknown vectors sn+1, in+1, rn+1, where

An =

 1 + τσpn −τdσ −τ(c + d)σ
−τσpn 1 + τ(b + d)σ 0

0 −τbσ 1 + τ(c + d)σ

 ,

Bn =

 1− τ(1− σ)pn τd(1− σ) τ(c + d)(1− σ)

τ(1− σ)pn 1− τ(b + d)(1− σ) 0
0 τb(1− σ) (1− τ(c + d)(1− σ))

 .

(2.4)

We recall that here the matrix–vector product is meant in the usual way and vectors are mul-
tiplied by vectors elementwise. Moreover, in the matrix Bn, the vector pn generally depends
on the vector in.

It follows directly from conditions (C1)–(C2) that Bn is nonnegative. Hence the nonnega-
tivity of the vectors sn, in and rn yields that the right-hand side of the system is nonnegative.

It is known that if a square matrix A has nonpositive offdiagonal elements and there is a
positive vector g > 0 such that Ag > 0 then A is nonsingular and its inverse is nonnegative.
In this case A is called an M-matrix (e.g. [2]).

Under the conditions (C1)–(C2) the transpose of An is an M-matrix. The offdiagonal ele-
ments are trivially nonpositive. Moreover, the product with the positive vector g = [1, 1, 1]T

is [1, 1, 1]T, which is a positive vector. This implies that the transpose matrix is nonsingular
and its inverse is nonnegative. Thus, the original matrix is also nonsingular and its inverse is
nonnegative. We note that it follows from the above facts that the original matrix is also an
M-matrix.
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Because the right-hand side vector in (2.3) is nonnegative and the inverse of An is also
nonnegative, the conditions sn+1, in+1, rn+1 ≥ 0 are satisfied.

If c = d = 0 then the monotonicity of sn and rn can be deduced in the following way. From
the first equation in (2.3) we obtain

sn+1 =
1− τ(1− σ)pn

1 + τσpn sn =

(
1− τpn

1 + τσpn

)
sn.

Then it follows from condition (C2) that the coefficient vector of sn is nonnegative and is not
greater than one. Thus by the nonnegativity of sn+1, we have sn+1 ≤ sn. The relation rn+1 ≥ rn

follows from the third equation in (2.3) in view of the nonnegativity of the vectors in and in+1.
This completes the proof.

The direct consequence of the previous lemmas is the following theorem that guarantees
the validity of the qualitative properties [P1]–[P3].

Theorem 2.3. If conditions (C1)–(C2) are valid for all time-levels then properties [P1]–[P3] are satis-
fied.

We will see that conditions (C1)–(C2) can be guaranteed a priori for all time levels by
choosing the time step to be sufficiently small.

Now we consider some special forms of the model (2.1). A particular choice could be
σ = 0, pn = ain (a > 0) but in this case the development of the disease on each subinterval
would be independent of the disease states of the surrounding subintervals. The disease
would develop on each interval separately, which is not interesting from practical point of
view.

In the sequel, the dynamics of the development of the disease is defined by the vector

pn = ϑin +
ϕ

h2 Qin, (2.5)

where ϑ and ϕ are positive parameters and Q ∈ RN×N has negative diagonal and non-
negative offdiagonal elements (that is −Q is a so-called Z-matrix). We use the notations:
D = diag(Q) (the diagonal part of Q) and F = Q − D (the offdiagonal part). Thus, under
our assumptions, D ≤ 0 and F ≥ 0. Moreover, let Dmax = ‖D‖∞ and Fmax = ‖F‖∞. (Clearly,
Dmax = maxi=1,...,N{−Qii} and Fmax = maxi=1,...,N{∑N

j=1,j 6=i Qij}). We suppose that Fmax 6= 0,
otherwise, the diseases on the different subintervals would be independent.

With the above defined vector pn, we give two (an explicit and an implicit) special models
with spatial dependence and investigate the conditions of the qualitative properties [P1]–[P3].

In the first model we set σ = 0. Thus, (2.3) takes the form

sn+1 = (1− τpn)sn + τdin + τ(c + d)rn,

in+1 = τsn pn + (1− τ(b + d))in,

rn+1 = τbin + (1− τ(c + d))rn.

(2.6)

The qualitative properties of the model can be guaranteed by the next theorem.

Theorem 2.4. Consider the explicit discrete one-step iteration (2.6) with pn given in (2.5). Suppose
that at the initial state p0 ≥ 0, moreover assume that

τ ≤ min {τ1, τ2} , (2.7)
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where
τ1 =

1
max{c, b}+ d + DmaxϕM/h2 , τ2 =

1
M(ϑ + Fmaxϕ/h2)

and M = max(sn + in + rn). Then the iteration satisfies the qualitative properties [P1]–[P3].

Proof. We apply Theorem 2.3 and show that if s0, i0, r0 ≥ 0 then conditions (C1)–(C2) are
true for all time levels. From the assumption τ ≤ τ1 in (2.7), the validity of (C1) follows
immediately. Moreover, we have

τp0 = τ
(

ϑi0 +
ϕ

h2 Qi0
)
≤ τ

(
ϑi0 +

ϕ

h2 Fi0
)
≤ τM

(
ϑ +

Fmaxϕ

h2

)
≤ 1 (2.8)

and together with the condition p0 ≥ 0 this yields that condition (C2) is satisfied for n = 0.
It follows from Lemma 2.2 that s1 ≥ 0, i1 ≥ 0, r1 ≥ 0, that is 0 ≤ i1 ≤ s1 + i1 + r1 ≤ M, and
the estimate (2.8) can be repeated changing the superscript 0 to 1. Thus condition τp1 ≤ 1 has
been shown. Now we show that p1 ≥ 0. Using the second equation in (2.6) and then (2.5), we
can rewrite p1 as

p1 = ϑi1 +
ϕ

h2 Qi1

= ϑ(τs0 p0 + (1− (b + d)τ)i0) +
ϕ

h2 Q(τs0 p0 + (1− (b + d)τ)i0)

= (1− (b + d)τ)
(

ϑi0 +
ϕ

h2 Qi0
)

︸ ︷︷ ︸
p0

+τϑs0 p0 + τ
ϕ

h2 Q(s0 p0)

= (1− (b + d)τ + τϑs0)p0 + τ
ϕ

h2 Q(s0 p0).

(2.9)

Due to the nonnegativity of the vector s0 p0 and since F ≥ 0, we have Q(s0 p0) =

(D + F)(s0 p0) ≥ D(s0 p0) ≥ −Dmaxs0 p0. Hence, based on (2.9),

p1 ≥
(

1− (b + d)τ + τϑs0 − τ
ϕ

h2 Dmaxs0
)

p0 =
(

1− τ
(

b + d− ϑs0 +
ϕ

h2 Dmaxs0
))

p0.

The nonnegativity of p1 can be guaranteed by the condition

τ
(

b + d− ϑs0 +
ϕ

h2 Dmaxs0
)
≤ 1,

which follows from the assumption τ ≤ τ1 in (2.7). The above expressions show that condition
(C2) is also valid with n = 1.

Then we can apply induction for n. The step from n to n + 1 can be carried out similarly
as we did from n = 0 to n = 1. This completes the proof.

Thus if s0 ≥ 0, i0 ≥ 0, r0 ≥ 0 and the vector p0 defined with i0 is also nonnegative then
with a suitably chosen (sufficiently small) time step the required qualitative properties are
fulfilled for the explicit model.

Let us turn to the second model. With the choice σ = 1, system (2.3) takes the form 1 + τpn −τd −τ(c + d)
−τpn 1 + τ(b + d) 0

0 −τb 1 + τ(c + d)

 sn+1

in+1

rn+1

 =

 sn

in

rn

 . (2.10)

The qualitative properties [P1]–[P3] can be guaranteed for the above model by the follow-
ing theorem.
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Theorem 2.5. Consider the implicit discrete one-step iteration (2.10) with pn given in (2.5). Suppose
that at the initial state p0 ≥ 0 and

τ ≤
{
((Dmax ϕ/h2 − ϑ)M)−1, if h < h?,

arbitrary, if h ≥ h?,
(2.11)

where h? = (Dmaxϕ/ϑ)1/2. Then the iteration satisfies the qualitative properties [P1]–[P3].

Proof. We apply Theorem 2.3. We show that if s0, i0, r0 ≥ 0 then conditions (C1)–(C2) are valid
for all time steps. Let us notice, that with σ = 1 conditions (C1)–(C2) simplify only to pn ≥ 0.

Based on the assumptions of the theorem we have p0 ≥ 0. Lemma 2.2 implies that s1 ≥ 0,
i1 ≥ 0, r1 ≥ 0, moreover i1 ≤ M. We show that p1 ≥ 0. Using the iteration (2.10) and then
(2.5), we obtain

p1 = ϑi1 +
ϕ

h2 Qi1

= ϑ

(
τ

1 + τ(b + d)
s1 p0 +

1
1 + τ(b + d)

i0
)

+
ϕ

h2 Q
(

τ

1 + τ(b + d)
s1 p0 +

1
1 + τ(b + d)

i0
)

=
1

1 + τ(b + d)

(
ϑi0 +

ϕ

h2 Qi0
)

︸ ︷︷ ︸
p0

+
τ

1 + τ(b + d)

(
ϑs1 p0 +

ϕ

h2 Q(s1 p0)
)

=
1

1 + τ(b + d)
p0 +

τ

1 + τ(b + d)

(
ϑs1 p0 +

ϕ

h2 Q(s1 p0)
)

.

(2.12)

Due to the nonnegativity of the vector s1 p0 we have Q(s1 p0) = (D + F)(s1 p0) ≥ D(s1 p0) ≥
−Dmaxs1 p0. Hence, based on (2.12),

p1 ≥ 1
1 + τ(b + d)

(
1 + τ

(
ϑ− ϕDmax

h2

)
s1
)

p0.

If h ≥ h? then the right-hand side is nonnegative. In the case of h < h? the nonnegativity
is guaranteed by the condition τ ≤ ((Dmaxϕ/h2 − ϑ)M)−1. Thus, condition (2.11) guarantees
the nonnegativity of p1. Then we apply induction for n. The step from n to n + 1 can be
showed as we did in the step from 0 to 1. This completes the proof.

3 Discretizations of continuous models and their qualitative prop-
erties

In this section we show how the system (1.3) in the one-dimensional case can be discretized
in the form discussed in the previous section and we give sufficient conditions for the model
parameters and the discretization mesh that guarantee the qualitative properties [P1]–[P3]. In
the remainder of the paper, we use the special choice N(x) = [x− δ, x + δ] with some positive
parameter δ > 0.

In order to discretize in space and in time, we define a uniform spatial grid

ωh = {xk ∈ [0, l] | xk = −h/2 + kh, k = 1, . . . , N, h = l/N}
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and a time step τ > 0. The functions S, I and R are approximated respectively by the vectors
sn, in and rn at the nth time level t = nτ. For example, the value sn

k , the k-th element of the
vector sn, approximates the value S(xk, nτ). For n = 0, the grid functions are known from the
initial conditions.

We discuss two types of discretization methods: numerical integration and Taylor expan-
sion with finite difference discretization.

Method of numerical integration. We set h = δ and approximate the integral (1.2) in (1.3) by
the trapezoidal rule. We apply the rule separately on the intervals [x− h, x] and [x, x + h] and
add the results to get a suitable approximation of the integral. To help this, we extend the grid
ωh with the virtual points x0 = x1 − h and xN+1 = xN + h. At the point x = xk (k = 1, . . . , N)

and at the nth time level we get the approximation∫
N(xk)

W(|x′ − xk|)I(x′, nτ)dx′ ≈ h
2
(W(δ)in

k−1 + W(δ)in
k+1 + 2W(0)in

k ) = pn
k .

This value will be denoted by pn
k , and the vector pn has the form (2.5) with

ϑ = h(W(0) + W(δ)), ϕ =
h3

2
W(δ) (3.1)

and

Q =



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −1


. (3.2)

Here homogeneous Neumann boundary conditions were applied, thus we set in
0 = in

1 and
in
N+1 = in

N . The fully discretized problem takes the final form (2.1) with the above notations.
For the matrix Q we have Fmax = Dmax = 2.

Remark 3.1. The choice h = δ is motivated by the following considerations. When we choose
h < δ then the numerical integration formulas become much more complicated. At the same
time, by the choice h > δ, the numerical integration formulas on N(xk) would use only the
value in

k . This would mean that the disease on each subinterval would develop independently
of the surrounding subintervals, as we noted in the previous section.

We get the following sufficient conditions of the qualitative properties [P1]–[P3].

Theorem 3.2. Let δ > 0 be given. If in the discretization (2.1) of system (1.3) we choose h = δ,
σ = 0 and the composite trapezoidal rule, then we arrive at system (2.6) with pn defined in (2.5) and
parameters ϑ, ϕ and Q given in (3.1) and (3.2), respectively. If at the initial state p0 ≥ 0, moreover

τ ≤ min
{

1
max{c, b}+ d + hMW(δ)

,
1

Mh(W(0) + 2W(δ))

}
(3.3)

then the discrete scheme satisfies the qualitative properties [P1]–[P3].

Proof. The statement follows from Theorem 2.4.

In the implicit case we do not get upper bound for the time step τ.



Qualitatively adequate spatial SIRS-type disease propagation 9

Theorem 3.3. Let δ > 0 be given. If in the discretization of system (1.3) we choose h = δ, σ = 1 and
the composite trapezoidal rule, then we arrive at system (2.10) with pn defined in (2.5) and parameters
ϑ, ϕ and Q given in (3.1) and (3.2), respectively. If at the initial state p0 ≥ 0 then the discrete scheme
satisfies the qualitative properties [P1]–[P3].

Proof. We apply Theorem 2.5. In view of the relation

ϑ− ϕDmax

h2 = h(W(0) + W(δ))− 2h3W(δ)/2
h2 = hW(0) ≥ 0,

the condition h ≥ h? is satisfied, thus the time step can be chosen to be arbitrary. This
completes the proof.

Taylor expansion and finite difference approximation. Let us approximate the function I with
its second order Taylor polynomial in x. In this way we arrive at the system [7]

S′t = −S
(
ϑI + ϕI′′xx

)
+ dI + (c + d)R,

I′t = S
(
ϑI + ϕI′′xx

)
− (b + d)I,

R′t = bI − (c + d)R,

(3.4)

where

ϑ =
∫ δ

−δ
W(|u|)du, ϕ =

1
2

∫ δ

−δ
u2W(|u|)du. (3.5)

We notice that the values in (3.1) are the approximations of the above integrals with the
trapezoidal rule.

We solve the system (3.4) numerically by the finite difference method on the finite spatial
interval [0, l]. At the two ends of the interval homogeneous Neumann boundary conditions
are applied.

Let us consider the following explicit discretization scheme, where the time differences
and the second order spatial derivatives are approximated in the standard way with forward
and centred differences, respectively:

sn+1
k − sn

k
τ

= −sn
k

(
ϑin

k + ϕ
in
k−1 − 2in

k + in
k+1

h2

)
+ din

k + (c + d)rn
k ,

in+1
k − in

k
τ

= sn
k

(
ϑin

k + ϕ
in
k−1 − 2in

k + in
k+1

h2

)
− (b + d)in

k ,

rn+1
k − rn

k
τ

= bin
k − (c + d)rn

k ,

(3.6)

k = 1, . . . , N. From the homogeneous Neumann boundary conditions, it follows that in
0 = in

1
and in

N+1 = in
N for all n = 1, 2, . . . The above scheme can be written in the one-step vector

iteration form (2.6) with pn defined in (2.5), and with Q defined in (3.2). Theorem 2.4 implies
the following statement directly.

Theorem 3.4. Let us suppose that at the initial state p0 ≥ 0, moreover assume that

τ ≤ min
{

1
max{c, b}+ d + 2ϕM/h2 ,

1
M(ϑ + 2ϕ/h2)

}
. (3.7)

Then the explicit finite difference discretization (3.6) of (3.4) satisfies the qualitative properties [P1]–
[P3].
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After the investigation of the explicit scheme for the system (3.4), we turn to the implicit
scheme

sn+1
k − sn

k
τ

= −sn+1
k

(
ϑin

k + ϕ
in
k−1 − 2in

k + in
k+1

h2

)
+ din+1

k + (c + d)rn+1
k ,

in+1
k − in

k
τ

= sn+1
k

(
ϑin

k + ϕ
in
k−1 − 2in

k + in
k+1

h2

)
− (b + d)in+1

k ,

rn+1
k − rn

k
τ

= bin+1
k − (c + d)rn+1

k .

(3.8)

Since (3.8) is the model (2.10) with the matrix Q in (3.2), similarly to the explicit case, Theo-
rem 2.5 can be applied. We get the following result.

Theorem 3.5. Let us suppose that at the initial state p0 ≥ 0 and

τ ≤
{
((2ϕ/h2 − ϑ)M)−1, if h < h?,

arbitrary, if h ≥ h?,
(3.9)

where h? = (2ϕ/ϑ)1/2. Then the implicit finite difference discretization (3.8) of (3.4) with pn given in
(2.5) satisfies the qualitative properties [P1]–[P3].

Comparing conditions (3.7) and (3.9) one can easily see that the condition for the time step
τ is less restrictive in the case of the implicit scheme. Thus from the qualitative point of view
the implicit scheme can be preferred.

4 Numerical tests

We show some numerical tests that demonstrate the results given in the previous section. For
the sake of brevity, we consider only the implicit model. As we have seen in the previous sec-
tion, the restrictions for the mesh parameters are less severe than in the explicit case, although,
in the implicit case we have to solve a system of linear equations in each iteration step. We
solve the system with the standard Gauss elimination process.

First we consider tests that demonstrate the result of Theorem 3.5. In these simulations
we use the weighting function W(u) = 1− |u|/δ with |u| ∈ [0, δ]. With the above choice we
will have ϑ = δ and ϕ = δ3/12. We set l = 10, δ = 0.07, b = 0.05, c = 0.03 or c = 0 and
d = 0.01 or d = 0. The spatial step size is set to h = 0.025. The initial density functions for
the investigated three subpopulations can be seen on the left panel of Figure 4.1. The right
panel shows the total population density function. Obviously, for this setting the condition
p0 ≥ 0 is satisfied. The figure shows a population with a constant basic susceptible density
1.6, excepting the neighbourhood of the point x = 2, where the density of the susceptibles
is higher (around 2.3). Infected individuals are located only around the point x = 5. Their
maximal density is 1.2. Here the 43% of the individuals are infected in the initial time instant.
For these initial functions the maximum of the sum of the density functions is M = 2.8.

When we solve the system (3.4) with the parameters defined above using the implicit finite
difference discretization (3.8) then in order to guarantee the properties [P1]–[P3] we have to
choose the time-step according to the relation (3.9). In view that h? = 0.02858 and h = 0.025,
the properties can be guaranteed by choosing the time step to be τ ≤ 16.6371. We notice that
in the explicit case we would have to choose much smaller time steps, namely below 1.4120.

When we choose τ = 50 (thus above the given bound), c = 0.03 and d = 0.01 then we get
the qualitatively inadequate solution given in Figure 4.2. Namely, the number of the infectives
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Figure 4.1: The initial density functions and the population density function.

Figure 4.2: A qualitatively inadequate solution with the implicit scheme (3.8) and with
τ = 50 at the time level t = 1350. The number of infectives is negative

around the points x = 3.5 and x = 6.5.

is negative around the points x = 3.5 and x = 6.5. During the iteration process we get negative
concentration values several times but at the same time the sum sn

k + in
k + rn

k remains constant
at fixed points xk. After these iterations, the stationary solution will be qualitatively correct
(Figure 4.3). We notice that S is not a constant function. Because ϕ is relatively small in this
example the change of S is not noticeable in the figure.

When we choose τ = 15, thus below the computed upper bound, then the solution will
be qualitatively correct (Figure 4.4). In the models epidemic waves can be seen. These waves
occur because the concentration of the susceptibles are high enough to conduct such waves.
In Figure 4.4 the epidemic wave reaches the point x = 2, where the number of susceptibles
drop down drastically.

For the case when c = d = 0 similar phenomena can be seen. With time steps below the
computed upper bound the solution is qualitatively correct, but above the bound incorrect
solutions can occur. Here after a certain period of time the disease dies out and leaves back
only recovered individuals and some susceptibles who were not infected by the disease. This
final state, obtained by the implicit method (3.8) with τ = 16 can be seen in Figure 4.5.
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Figure 4.3: The stationary state at the time level t = 11200
using implicit scheme (3.8) and τ = 50.

Figure 4.4: Solution with the implicit scheme (3.8) and τ = 15 at the time level t = 1860.

Now we demonstrate Theorem 3.3. We set the weighting function to W(u) = (−4|u|/δ +

5)/6, |u| ∈ [0, δ] and obtain the parameters ϑ = h, ϕ = h3/12. The parameters are set to be
l = 10, δ = 0.05, b = 0.05, c = 0.03, d = 0.01. The spatial step size is set to h = 0.05 = δ. The
initial functions are the same as in the previous tests (Figure 4.1). Based on the statement of
Theorem 3.3, the numerical solution will be qualitatively adequate (satisfies properties [P1]–
[P3]) independently of the time step. Indeed, when we choose τ = 200, the iteration produces
qualitatively correct states. The state at t = 26400 and the stationary state at t = 70000 can be
seen in Figure 4.6.

Thus the numerical tests verify the results obtained in the previous section.
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Figure 4.5: The final state at the time level t = 9000. The parameters are:
c = d = 0, τ = 15 and the implicit scheme (3.8) is used.

Figure 4.6: The state at t = 26400 and the final state at t = 70000
obtained with the time step τ = 200.

5 Summary and future work

We defined a discrete one-step iteration that can be considered as some suitable discretization
of a continuous disease propagation model that takes into account the spacial inhomogeneity.
We gave sufficient conditions that guarantee the basic characteristic properties of the disease
propagation to the discrete iteration model and deduced sufficient conditions for the choice of
the mesh parameters in the discretization processes. We considered two discretization meth-
ods: one with numerical integration and one with Taylor expansion in combination with finite
differences. Using our results, we can guarantee a priori a qualitatively adequate numerical
solution for the continuous model by choosing the meshes appropriately.

We are planning to extend our investigation for higher dimensional problems. It is also
interesting to consider other important qualitative properties, other discretization methods
or other boundary conditions. A larger step would be the inclusion of the motion of the
individuals into the model and repeat a similar qualitative investigation.
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