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Abstract. In this paper, applying Lyapunov functional approach, we establish sufficient
conditions under which each equilibrium is globally asymptotically stable for a class of
multi-group SIR epidemic models. The incidence rate is given by nonlinear incidence
rates and distributed delays incorporating not only an exchange of individuals between
patches through migration but also cross patch infection between different groups. We
show that nonlinear incidence rates and distributed delays have no influence on the
global stability, but patch structure has. Moreover, the present results generalize known
results on the global stability of a heroin model with two delays considered in the recent
literatures. We also offer new techniques to prove the boundedness of the solutions, the
existence of the endemic equilibrium and permanence of the model.
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1 Introduction

Due to the recent development of qualitative and quantitative analysis for disease transmis-
sion models, mathematical models have widely been applied to investigate the spread of
habituation of getting addicted to drugs such as heroin (see e.g., [7, 12, 17, 22, 28, 34, 35]).

Dividing the host population into three compartments; susceptible individuals S(t), heroin
users U1(t) and heroin users undergoing treatment U2(t), White and Comiskey [35] investi-
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gated the following heroin model:

S′(t) = b− βS(t)U1(t)
N(t)

− dS(t),

U′1(t) =
βS(t)U1(t)

N(t)
− γU1(t) +

κU1(t)U2(t)
N(t)

− (d + ε)U1(t),

U′2(t) = γU1(t)−
κU1(t)U2(t)

N(t)
− (d + δ)U2(t).

(1.1)

Here b denotes the birth rate at which individuals in the general population enter the sus-
ceptible population. d denotes the death rate from natural causes. It is assumed that new
infection of a drug user arises through a standard incidence function, βS(t)U1(t)/N(t) (resp.
κU1(t)U2(t)/N(t)) with β (resp. κ) denoting the probability for susceptible individuals (resp.
drug users in treatment relapsing to untreated use) to be drug users not in treatment. Here
drug users in treatment are not assumed to be susceptible again after they quit using drugs.
γ denotes the rate at which drug users undertake treatment and ε represents a removal rate
of drug users not in treatment, a sum of drug-related deaths rate and a spontaneous recovery
rate. δ is a removal rate of drug users in treatment, a sum of drug-related death rate and a
rate of successful “care” for drug user to be in a drug-free recovery. All the parameters are
assumed to be positive.

In addition to stability analysis for a drug-free equilibrium [35, Section 3], the stability
analysis for a unique endemic equilibrium is achieved by Mulone and Straughan [22] when
κ < β. Later, Wang et al. [34] has formulated the model incorporating the mass action in-
cidence rate and established the global stability of the drug-free equilibrium and the unique
endemic equilibrium by means of the second compound matrix and under some conditions.
These systems are extended to a non-autonomous model by Samanta [28], proving that there
exists a unique positive periodic solution which is globally asymptotically stable by a direct
Lyapunov method.

Recently, Liu and Zhang [17] introduced distributed delays in the relapse term into a
heroin epidemic model without delays. Constructing a proper Lyapunov function, Huang
and Liu [12] established the global stability for the heroin epidemic model with a distributed
delay

∫ h
0 f̃ (τ)γU1(t− τ)e−(d+δ)sds in place of the term κU1(t)U2(t)/N(t) in the third equation

of the model (1.1).
Compared to the above “heavy drug” epidemic model with varying total population size

incorporating drug-related deaths as the model (1.1), Muroya et al. [25] considered the follow-
ing disease “light drug” epidemic model with “not varying total population size” eventually
and such that there are no drug-related deaths of the light drug users who are not in treatment
and in treatment.

S′(t) = b− βS(t)U1(t)
N(t)

− dS(t) + εU1(t) + δU2(t),

U′1(t) =
βS(t)U1(t)

N(t)
− γU1(t) + σU2(t)− (d + ε)U1(t),

U′2(t) = γU1(t)− σU2(t)− (d + δ)U2(t).

In this case, we have limt→+∞(S(t) + U1(t) + U2(t)) = b/d. This also implies that the total
population size does not eventually vary oscillatory but converges to a positive constant b/d.

On the other hand, Guo et al. [8] have first succeeded in the proof of global stability for a
multi-group SIR epidemic model by making use of the theory of non-negative matrices, Lya-
punov functions and a subtle grouping technique in estimating the derivatives of Lyapunov
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functions guided by graph theory. To analyze the global stability of various multi-group
epidemic models, many authors literature on multi-group models follow to use this graph
theoretic approach (see for example, [4, 10, 15, 16, 29, 30, 36, 37]).

Recently, there are some interesting papers on construction techniques of Lyapunov func-
tions to prove the global stability of equilibria (see, for e.g., Li et al. [14], Kajiwara et al. [20] and
Vargas-De-León [32]). Guo et al. [9,11] considered the stage-progression models for HIV/AIDS
with amelioration. Li et al. [14] established the global stability of a class of epidemic models
by using quite interesting approach, and Muroya et al. [24] generalized their method.

Multi-group epidemic models have played a crucial role to clarify one of the important
problems; transportation affects on the spreading pattern of the global pandemic of diseases
such as heroin (see for example, Arino [1], Bartlett [2] for a population movement among
different groups, Liu and Takeuchi [19], Liu and Zhou [18] and Nakata [26] for the effect of
transport-related infection with entry screening, Wang and Zhao [33] for an epidemic model
in a patchy environment). In particular, Muroya et al. [24] established general sufficient condi-
tions of the global stability for a multi-group SIR epidemic model with patch structure which
takes into account not only an exchange of individuals between patches through migration
but also cross patch infection between different groups.

Recently, Fang et al. [7] presented the following heroin epidemic model with two dis-
tributed delays and establish the global asymptotic stability.

S′(t) = Λ− βS(t)
∫ h1

0
f̃ (τ)U1(t− τ)e−(µ+δ1+p)τdτ − µS(t),

U′1(t) = βS(t)
∫ h1

0
f̃ (τ)U1(t− τ)e−(µ+δ1+p)τdτ + p

∫ h2

0
g̃(τ)U1(t− τ)e−(µ+δ1+p)τdτ,

U′2(t) = pU1(t)− (µ + δ2)U2(t)− p
∫ h2

0
g̃(τ)U1(t− τ)e−(µ+δ1+p)µdτ,

where
∫ h1

0 f̃ (τ)dτ = 1 and
∫ h2

0 g̃(τ)dτ = 1. Motivated by Fang et al. [7], in this paper, we aim
to investigate the global dynamics of a multi-group epidemic model related to heroin model
with nonlinear incidence rates and distributed delays. In the formulation of the model, we
divide each population into n ∈ N groups and use the following notations (in what follows,
k and j belong to {1, 2, . . . , n}):

• Sk(t): the number of susceptible individuals in city k at time t;

• Ik(t): the number of infected individuals (heroin users) in city k at time t;

• Rk(t): the number of recovered individuals (heroin users under treatment) in city k at
time t;

• bk: the recruitment rate of the population in city k;

• µki: the natural death rates of susceptible (i = 1), infected (i = 2) and recovered (i = 3)
individuals in city k, respectively, satisfying

µk1 ≤ min(µk2, µk3) for any k = 1, 2, . . . , n; (1.2)

• βkj: the transmission parameter between the susceptible individuals in city k and the
infected individuals in city j;

• γk: the recovery rate of the infected individuals in city k;
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• lkj: the per capita rate at which the susceptible individuals in city j leave toward city k
(lkk = 0);

• mkj: the per capita rate at which the infected individuals in city j leave toward city k
(mkk = 0);

• nkj: the per capita rate at which the recovered individuals in city j leave toward city k;

• fkj(τ) (0 ≤ τ ≤ h1): the distribution kernel for the time delay of infection such that∫ h1
0 fkj(τ)dτ = 1;

• gkj(σ) (0 ≤ σ ≤ h2): the distribution kernel for the time delay of movement such that∫ h2
0 gkj(σ)dσ = 1;

• pk(σ) (0 ≤ σ ≤ h3): the distribution kernel for the time delay for which a heroin user
under treatment returns to untreated user after cessation of a drug treatment program
such that

∫ h3
0 pk(σ)dσ = 1.

In what follows, we assume that gkj(σ) = 0 and pk(σ) = 0 outside of each domain. Then,

putting max(h2, h3) as h2 again, we have that
∫ h2

0 gkj(σ)dσ =
∫ h2

0 pk(σ)dσ = 1. Moreover, we
use a locally Lipschitz continuous function G(I) on [0,+∞) such that

there exists some sufficiently large positive constant b such that G(I) is monotone

increasing on [0, b] and I/G(I) is monotone increasing on (0,+∞) and

lim
I→+0

(I/G(I)) = 1.
(1.3)

Notice that from the condition (1.3), one can see that G(I) ≤ I for I > 0 and G(0) = 0. Using
these parameters, we formulate the following multi-group SIR epidemic model with nonlinear
incidence rates and distributed delays, which is related to the heroin model:

dSk(t)
dt

= bk − µk1Sk(t)− Sk(t)
n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

+
n

∑
j=1

(
lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ− ljkSk(t)

)
,

dIk(t)
dt

= Sk(t)
( n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

)
− (µk2 + γk)Ik(t)

+ γk

∫ h2

0
pk(σ)e−µk3σ Ik(t− σ)dσ

+
n

∑
j=1

(
mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ−mjk Ik(t)

)
,

dRk(t)
dt

= γk Ik(t)− γk

∫ h2

0
pk(σ)e−µk3σ Ik(t− σ)dσ− µk3Rk(t)

+
n

∑
j=1

(
nkj

∫ h2

0
gkj(σ)Rj(t− σ)dσ− njkRk(t)

)
, k = 1, 2, . . . , n.

(1.4)

In the model (1.4), the number of newly infected individuals in city k is given by a sum
of nonlinear incidence rates βkjSk(t)

∫ h1
0 fkj(τ)G(Ij(t − τ))dτ for k, j = 1, 2, . . . , n. One can
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see that the term βkjSk(t)
∫ h1

0 fkj(τ)G(Ij(t − τ))dτ with k 6= j describes the effect of cross
patch infection between groups k and j, j 6= k who travel shortly from other city j into city
k with a time delay τ ∈ [0, h1]. On the other hand, the term ∑n

j=1 lkj
∫ h2

0 gkj(σ)Sj(t − σ)dσ

(resp. ∑n
j=1 mkj

∫ h2
0 gkj(σ)Ij(t− σ)dσ) describes the inflow of susceptible individuals (resp. in-

fected individuals) from all other cities j into city k at time t. The term ∑n
j=1 ljkSk(t) (resp.

∑n
j=1 mjk Ik(t)) is the outflow of susceptible individuals (resp. infected individuals) from city

k towards all other cities j. Once an individual in patch j moves to patch k, then the indi-
vidual homogeneously mixes with individuals in patch k and is counted as an individual in
patch k since there is no track for each individual. By regarding Ik as the number of heroin
users and Rk as that of heroin users under treatment, the model (1.4) can be interpreted as the
heroin model. In the model (1.4), as in Fang et al. [7], we assume that the heroin users under
treatment can return to untreated users depending on their different characters and external
influences. Such difference can be taken into account by the time delay modulated by the
distribution kernel pk(σ).

Since the first two equations in system (1.4) do not contain the variable Rk, k = 1, 2, . . . , n,
it is equivalent to



dSk(t)
dt

= bk − µk1Sk(t)− Sk(t)
n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

+
n

∑
j=1

(
lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ− ljkSk(t)

)
,

dIk(t)
dt

= Sk(t)
( n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

)
− (µk2 + γk)Ik(t)

+ γk

∫ h2

0
pk(σ)e−µk3σ Ik(t− σ)dσ

+
n

∑
j=1

(
mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ−mjk Ik(t)

)
, k = 1, 2, . . . , n.

(1.5)

Let

κk = γk

∫ h2

0
pk(σ)e−µk3σdσ (< γk) , g̃kk(σ) =

pk(σ)e−µk3σ∫ h2
0 pk(σ)e−µk3σdσ

, γ̃k = γk − κk (> 0) .

Then, the second equation in (1.5) becomes

dIk(t)
dt

= Sk(t)
( n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

)
− (µk2 + γ̃k)Ik(t)

− κk Ik(t) + κk

∫ h2

0
g̃kk(σ)Ik(t− σ)dσ

+
n

∑
j=1,j 6=k

(
mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ−mjk Ik(t)

)
, k = 1, 2, . . . , n.

Without loss of generality, we can regard κk as mkk, g̃kk(σ) as gkk(σ) and since mkk = 0 in
original and

∫ h2
0 g̃kk(σ)dσ = 1. Furthermore, for simplicity, we omit the notation ˜ from γ̃k.
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Then, we arrive at the following main form of our model:

dSk(t)
dt

= bk − µk1Sk(t)− Sk(t)
n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

+
n

∑
j=1

(
lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ− ljkSk(t)

)
,

dIk(t)
dt

= Sk(t)
( n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

)
− (µk2 + γk)Ik(t)

+
n

∑
j=1

(
mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ−mjk Ik(t)

)
, k = 1, 2, . . . , n.

(1.6)

Note that (1.6) is an extended model of that in Muroya et al. [24] in that nonlinear incidence
rates with delays are incorporated.

The initial conditions of system (1.6) take the form

Sk,0 = φk
1 ∈ C ([−h2, 0] , R+) , Ik,0 = φk

2 ∈ C ([−h, 0] , R+) , h = max (h1, h2) , k = 1, 2, . . . , n.
(1.7)

Moreover, we assume that

the n× n matrix B =
[
βkj
]

n×n is irreducible, (1.8)

and there exists a positive vector (c1, c2, . . . , cn) such that

ckµk1 +
n

∑
j=1

(ljkck − lkjcj) > 0, k = 1, 2, . . . , n. (1.9)

The last condition (1.9) is used to guarantee the boundedness of the solutions of (1.6) for
the delayed terms of patch structure in the proof of Lemma 2.1 (cf. Muroya et al. [24]). For
example, if µk1 + ∑n

j=1(ljk − lkj) > 0, k = 1, 2, . . . , n, then (1.9) is satisfied.
Put

l̃kk =
n

∑
j=1

(1− δjk)ljk, m̃kk =
n

∑
j=1

(1− δjk)mjk, δkj =

{
1, if k = j,

0, if k 6= j,
k = 1, 2, . . . , n. (1.10)

From (1.8), one can see that ∑n
j=1(1− δkj)βkj + m̃kk > 0, k = 1, 2, . . . , n. Let H and b be an n× n

matrix and a positive n-column vector defined by

H =


µ11 + l̃11 −l12 · · · −l1n

−l21 µ21 + l̃22 · · · −l2n
...

...
. . .

...
−ln1 −ln2 · · · µn1 + l̃nn

 and b =


b1

b2
...

bn

 , (1.11)

and S0 = (S0
1, S0

2, . . . , S0
n)

T be the positive n-column vector such that

S0 = H−1b. (1.12)

By (1.10), H is an M-matrix (see, e.g., Berman and Plemmons [3] or Varga [31]), and S0

depends on lkj, k, j = 1, 2, . . . , n.
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For S = (S1, S2, · · · , Sn)T and S0 = (S0
1, S0

2, · · · , S0
n)

T defined by (1.12), let Ṽ be an n× n
matrix such that

Ṽ =


Ṽ1 0 · · · 0
0 Ṽ2 · · · 0
...

...
. . .

...
0 0 · · · Ṽn

 , Ṽk = µk2 + γk + m̃kk, k = 1, 2, . . . , n,

and F̃(S) be an n× n matrix such that

F̃(S) =


F̃11(S1) F̃12(S1) · · · F̃1n(S1)

F̃21(S2) F̃22(S2) · · · F̃2n(S2)
...

...
. . .

...
F̃n1(Sn) F̃n2(Sn) · · · F̃nn(Sn)

 =
[
F̃kj(Sk)

]
n×n ,

F̃kj(Sk) =

{
Skβkj, k = j

Skβkj + mkj, k 6= j.

Let us also define M̃(S) to be an n× n matrix such that

M̃(S) = Ṽ−1F̃(S) =
[
M̃kj

]
n×n, M̃kj =

Skβkj + (1− δkj)mkj

µk2 + γk + m̃kk
, k, j = 1, 2, . . . , n.

Let the threshold parameter R̃0 be defined by

R̃0 = ρ(M̃(S0)). (1.13)

It is easy to see that R̃0 corresponds to the well-known basic reproduction number R0 (see for
example, Diekmann and Heesterbeek [5]). We now consider the following set Γ defined by

Γ =
{
(S1, I1, S2, I2, . . . , Sn, In) ∈ R2n

+ | Sk ≤ S0
k , Sk + Ik ≤ N̄∗k , k = 1, 2, . . . , n

}
, (1.14)

where N̄∗k , k = 1, 2, . . . , n are the positive solutions of the following system:

(µk2 + m̃kk + mkk)N̄∗k −
n

∑
j=1

mkjN̄∗j = ¯̃bk, k = 1, 2, . . . , n,

and
¯̃bk := bk + max{(µk2 + γk + m̃kk)− (µk1 + l̃kk), 0}S0

k +
n

∑
j=1

max{lkj −mkj, 0}S0
j .

Since Γ is a positive invariant set (see Lemma 2.1) for the solutions of (1.6), to choose Γ

as the feasible region of (1.6), we need the last part of (1.14) (see the proof of the first part of
Theorem 1.1 for R̃0 < 1 in Section 3). Let Γ0 be the interior of Γ.

By (1.8), we have that
M̃(S) is irreducible in Γ. (1.15)

In this paper, we establish the global stability for the multi-group SIR model (1.6) with
patch structure. This implies that we extend not only the result of Fang et al. [7] for the
multi-group heroin model with patch structure, but also the result of Muroya et al. [24] for
the model with delays and nonlinear incidence rates. Moreover, we offer new techniques to
prove the boundedness of the solutions of (1.6), the existence of the endemic equilibrium and
permanence of (1.6).

The main theorem in this paper is as follows.
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Theorem 1.1.

(i) For R̃0 < 1, if there exists a positive n-column vector u = (u1, u2, . . . , un)T such that
uk(µk1 + l̃kk)−

n

∑
j=1

uj(1− δjk)ljk ≥ 0,

uk(µk2 + γk + m̃kk)−
n

∑
j=1

uj{β jkS0
j + (1− δjk)mjk} > 0, for any k = 1, 2, . . . , n,

(1.16)

then the disease-free equilibrium E0 = (S0
1, 0, S0

2, 0, . . . , S0
n, 0) of (1.6) is globally asymptotically

stable in Γ.

(ii) For R̃0 > 1, system (1.6) is uniformly persistent in Γ0 and there exists at least one endemic
equilibrium E∗ = (S∗1 , I∗1 , S∗2 , I∗2 , . . . , S∗n, I∗n) in Γ0. Moreover, if there exists a positive n-column
vector v = (v1, v2, . . . , vn)T such that

vk(µk1 + l̃kk)−
n

∑
j=1

vj(1− δjk)ljk ≥ 0,

vk(µk2 + γk + m̃kk)−
n

∑
j=1

vj

{
β jkS∗j

G(I∗k )
I∗k

+ (1− δjk)mjk

}
≥ 0, for any k = 1, 2, . . . , n,

(1.17)
then E∗ is globally asymptotically stable in Γ0.

We note that if S0
k = bk/µk1 of (1.12), for example, lkj = 0 for any k 6= j, then for R̃0 = 1, we

can conclude that the disease-free equilibrium E0 = (S0
1, 0, S0

2, 0, . . . , S0
n, 0) of (1.6) is globally

asymptotically stable in Γ, because for S0
k = bk/µk1 of (1.12), we have that by (1.8), ρ(M̃(S)) <

ρ(M̃(S0)) for any S = (S1, S2, . . . , Sn) such that 0 < Sk < S0
k , k = 1, 2, . . . , n. Otherwise, we

can not prove the fact that for R̃0 = 1, the disease-free equilibrium E0 = (S0
1, 0, S0

2, 0, . . . , S0
n, 0)

of (1.6) is globally asymptotically stable in Γ (see Proof of the first part of Theorem 1.1 for
R̃0 < 1 in Section 3).

Corollary 1.2. Assume (1.15) and R̃0 > 1. Then, there exists positive n-column vector v =

(v1, v2, . . . , vn)T such that
n

∑
j=1

vj

{
β jkS∗j

G(I∗k )
I∗k

+ (1− δjk)mjk

}
= vk(µk2 + γk + m̃kk), k = 1, 2, . . . , n, (1.18)

and for this v = (v1, v2, . . . , vn)T, if

vk(µk1 + l̃kk)−
n

∑
j=1

vj(1− δjk)ljk ≥ 0, for any k = 1, 2, . . . , n, (1.19)

then E∗ is globally asymptotically stable in Γ0.
If there exists a positive n-column vector w = (w1, w2, . . . , wn) such that

n

∑
j=1

wj(1− δjk)ljk = wk(µk1 + l̃kk), k = 1, 2, . . . , n, (1.20)

and

wk(µk2 + γk + m̃kk)−
n

∑
j=1

wj

{
β jkS∗j

G(I∗k )
I∗k

+ (1− δjk)mjk

}
≥ 0, k = 1, 2, . . . , n, (1.21)

then E∗ is globally asymptotically stable in Γ0.
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The results generalize the known results of a heroin model with two delays considered in
the recent literature and imply that nonlinear incidence rates and distributed delays have no
influence on the global stability of the model but it depends on patch structure.

The rest of the present paper is organized as follows. In Section 2, we show eventual
boundedness of solutions for system (1.6). In Section 3, we prove the global asymptotic sta-
bility of the disease-free equilibrium for R̃0 < 1 (see Theorem 3.1). In Section 4, for R̃0 > 1,
we investigate the existence of the endemic equilibrium E∗ of system (1.6) for R̃0 > 1 and the
permanence of system (1.6). In Section 5, by means of a direct Lyapunov method, under the
condition (1.17), we establish the global asymptotic stability of the endemic equilibrium to
complete the proof of Theorem 1.1 and Corollary 1.2.

2 Positivity and eventual boundedness of solutions

Adding the first and second equations of (1.6), we have that

d
dt
{Sk(t) + Ik(t)} = b̃k(t)− (µk2 + m̃kk + mkk){Sk(t) + Ik(t)}

+
n

∑
j=1

mkj

∫ h2

0
gkj(σ){Sj(t− σ) + Ij(t− σ)}dσ

where

b̃k(t) = bk + {(µk2 + γk + m̃kk)− (µk1 + l̃kk)}Sk(t) +
n

∑
j=1

(lkj −mkj)
∫ h2

0
gkj(σ)Sj(t− σ)dσ,

k = 1, 2, . . . , n. Thus, for Nk(t) = Sk(t) + Ik(t), k = 1, 2, . . . , n, we have

dNk(t)
dt

= b̃k(t)− (µk2 + m̃kk + mkk)Nk(t) +
n

∑
j=1

mkj

∫ h2

0
gkj(σ)Nj(t− σ)dσ

and b̃k(t) ≤ ¯̃bk, k = 1, 2, . . . , n.
The following lemma shows the positivity and eventual boundedness of Sk and Ik, k =

1, 2, . . . , n of (1.6) (see Muroya et al. [24, Lemma 2.1]).

Lemma 2.1. For system (1.6), it holds that

Sk(t) > 0, Ik(t) > 0, for any k = 1, 2, . . . , n and t > 0,

and 
lim sup

t→+∞
Sk(t) ≤ S0

k , k = 1, 2, . . . , n,

lim sup
t→+∞

Nk(t) ≤ N̄∗k , k = 1, 2, . . . , n,
(2.1)

and Γ is a positive invariant set.

Proof. Suppose that there exist a positive constant t1 and a positive integer k1 ∈ {1, 2, . . . , n}
such that Sk1(t1) = 0 and Sk(t) > 0 for any 0 < t < t1 and k ∈ {1, 2, · · · , n}. On the
other hand, by (1.6), we have that S′k1

(t1) ≥ bk1 > 0. This is a contradiction to the fact that
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Sk1(t) > 0 = Sk1(t1) for any 0 < t < t1. Hence, we obtain that Sk(t) > 0 for any 0 < t < +∞
and k = 1, 2, . . . , n. By (1.6) and (1.10),

Ik(t) = e−(µk2+γk+m̃kk+mkk)t Ik(0) + e−(µk2+γk+m̃kk+mkk)t
∫ t

0
e(µk2+γk+m̃kk+mkk)u

×
{

Sk(u)
( n

∑
j=1

βkj

∫ h2

0
gkj(σ)G(Ij(u− σ))dσ

)
+

n

∑
j=1

(1− δkj)mkj

∫ h2

0
gkj(σ)Ij(u− σ)dσ

}
du

for k = 1, 2, . . . , n and t > 0. This implies that Ik(t) > 0 for any k = 1, 2, . . . , n and t > 0.
On the other hand, for S̄k := lim supt→+∞ Sk(t), k = 1, 2, . . . , n, by the equation of S′k,

k = 1, 2, . . . , n of (1.6), one can see that S̄k < +∞, k = 1, 2, . . . , n. Because otherwise, for the
positive constants ck, k = 1, 2, . . . , n of (1.9), there exists an integer k̄ ∈ {1, 2, . . . , n} and a
sequence {tp}+∞

p=1 such that

lim
p→+∞

Sk̄(tp)

ck̄
= +∞, lim

p→+∞

S′k̄(tp)

ck̄
≥ 0, and

Sk(t)
ck
≤

Sk̄(tp)

ck̄
, for any − h2 ≤ t ≤ tp, k = 1, 2 . . . , n. (2.2)

By the first part of (1.6) and the fluctuation lemma, we have

0 ≤
S′k̄(tp)

ck̄
≤ bk̄

ck̄
− µk̄1

Sk̄(tp)

ck̄
+

n

∑
j=1

(
lk̄j

cj

ck̄

∫ h2

0
gk̄j(σ)

Sj(u− σ)

cj
dσ− ljk̄

Sk̄(tp)

ck̄

)

≤ bk̄
ck̄
− µk̄1

Sk̄(tp)

ck̄
+

n

∑
j=1

lk̄j
cj

ck̄
·

Sk̄(tp)

ck̄
−
( n

∑
j=1

ljk̄

)
Sk̄(tp)

ck̄

=
1
ck̄

[
bk̄ −

{
ck̄µk̄1 +

n

∑
j=1

(ljk̄ck̄ − lk̄jcj)

}
Sk̄(tp)

ck̄

]
,

from which we obtain

Sk̄(tp)

ck̄
≤ bk̄

ck̄µk̄1 + ∑n
j=1(ljk̄ck̄ − lk̄jcj)

< +∞, p = 1, 2, . . .

This is a contradiction to (2.2).
By (1.12) and the fact that H defined by (1.11) is an M-matrix, we obtain S̄k ≤ S0

k , k =

1, 2, . . . , n. Thus,
lim sup

t→+∞
Sk(t) ≤ S0

k , k = 1, 2, . . . , n,

which is the first part of (2.1), and ¯̃b < +∞, k = 1, 2, . . . , n.
Next, for the solution N̄k(t) (k = 1, 2, . . . , n) of the following system:

dN̄k(t)
dt

= ¯̃bk − (µk2 + m̃kk + mkk)N̄k(t) +
n

∑
j=1

mkj

∫ h2

0
gkj(σ)N̄j(t− σ)dσ, k = 1, 2, . . . , n, (2.3)

let us consider the following Lyapunov functional:
UN̄(t) :=

n

∑
k=1

{
N̄∗k g

(
N̄k(t)

N̄∗k

)
+

n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ)

∫ t

t−σ
g(nj(u))dudσ

}
,

g(x) := x− 1− ln x ≥ g(1) = 0, for x > 0.
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For the usage of the function g(x) in Lyapunov functions, see McCluskey [21] for instance.
We show that

dŪN(t)
dt

≤ −
n

∑
k=1

{
µk2N̄∗k g(nk(t)) + ¯̃bkg

(
1

nk(t)

)}
≤ 0, nk(t) :=

N̄k(t)
N̄∗k

, k = 1, 2, . . . , n (2.4)

and

lim
t→+∞

N̄k(t) = N̄∗k , k = 1, 2, . . . , n. (2.5)

Differentiating ŪN along the solution of (2.3) and using the equilibrium condition ¯̃bk =

(µk2 + m̃kk + mkk)N̄∗k −∑n
j=1 mkjN̄∗j , k = 1, 2, . . . , n, we obtain

dŪN(t)
dt

=
n

∑
k=1

{(
1−

N̄∗k
N̄k(t)

)
dN̄k(t)

dt
+

n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ){g(nj(t))− g(nj(t− σ))}dσ

}
,

and(
1−

N̄∗k
N̄k(t)

)
dN̄k(t)

dt

=

(
1−

N̄∗k
N̄k(t)

){
¯̃bk − (µk2 + m̃kk + mkk)N̄k(t) +

n

∑
j=1

mkj

∫ h2

0
gkj(σ)N̄j(t− σ)dσ

}

=

(
1−

N̄∗k
N̄k(t)

){
−(µk2 + m̃kk + mkk){N̄k(t)− N̄∗k }+

n

∑
j=1

mkj

∫ h2

0
gkj(σ){N̄j(t− σ)− N∗j }dσ

}

=

(
1− 1

nk(t)

){
−(µk2 + m̃kk + mkk)N̄∗k {nk(t)− 1}+

n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ){nj(t− σ)− 1}dσ

}
.

It is easy to check that the following equalities hold:

(
1− 1

nk(t)

)
{nk(t)− 1} = g(nk(t)) + g

(
1

nk(t)

)
,

and (
1− 1

nk(t)

)
{nj(t− σ)− 1} = g(nj(t− σ))− g

(
nj(t− σ)

nk(t)

)
+ g
(

1
nk(t)

)
.

It follows that(
1−

N̄∗k
N̄k(t)

)
dN̄k(t)

dt

= − (µk2 + m̃kk + mkk)N̄∗k

{
g(nk(t)) + g

(
1

nk(t)

)}
+

n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ)

{
g(nj(t− σ))− g

(
nj(t− σ)

nk(t)

)
+ g
(

1
nk(t)

)}
dσ.
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Thus, we have

dŪN(t)
dt

=
n

∑
k=1

[
−(µk2 + m̃kk + mkk)N̄∗k

{
g(nk(t)) + g

(
1

nk(t)

)}
+

n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ)

{
g(nj(t− σ))− g

(
nj(t− σ)

nk(t)

)
+ g
(

1
nk(t)

)}
dσ

+
n

∑
j=1

mkjN̄∗j
∫ h2

0
gkj(σ){g(nj(t))− g(nj(t− σ))}dσ

}]

=
n

∑
k=1

[
−(µk2 + m̃kk + mkk)N̄∗k

{
g(nk(t)) + g

(
1

nk(t)

)}
+

n

∑
j=1

mkjN̄∗j

{
g(nj(t))−

∫ h2

0
gkj(σ)g

(
nj(t− σ)

nk(t)

)
dσ + g

(
1

nk(t)

)}]
.

Since ∑n
j=1 mkjN̄∗j = (µk2 + m̃kk + mkk)N̄∗k −

¯̃bk, k = 1, 2, . . . , n, we obtain

n

∑
k=1

n

∑
j=1

mkjN̄∗j

{
g(nj(t)) + g

(
1

nk(t)

)}

=
n

∑
k=1

( n

∑
j=1

mjk

)
N∗k g(nk(t)) +

n

∑
k=1

( n

∑
j=1

mkjN̄∗j

)
g
(

1
nk(t)

)

=
n

∑
k=1

(m̃kk + mkk)N̄∗k g(nk(t)) +
n

∑
k=1

( n

∑
j=1

mkjN̄∗j

)
g
(

1
nk(t)

)

=
n

∑
k=1

(m̃kk + mkk)N̄∗k g(nk(t)) +
n

∑
k=1
{(µk2 + m̃kk + mkk)N̄∗k − ¯̃bk}g

(
1

nk(t)

)
.

Hence, we obtain (2.4), which implies (2.5). By the comparison principle, we obtain the second
part of (2.1).

By the first and second part of (2.1), it is evident that Γ is a positive invariant set. Thus, we
obtain the last part of (2.1). This completes the proof.

Lemma 2.2. For any solution of system (1.6) with initial condition (1.7), it holds that

lim inf
t→+∞

Sk(t) ≥ Ŝk :=
bk

µk1 + l̃kk + ∑n
j=1 βkjG(N̄∗j )

, k = 1, 2, . . . , n.

Proof. Let (S1(t), I1(t), R1(t), S2(t), I2(t), R2(t), . . . , Sn(t), In(t), Rn(t)) be any solution of sys-
tem (1.6) with initial condition (1.7). By (2.1), it holds that lim supt→+∞ Ik(t) ≤ N̄∗k , k =

1, 2, . . . , n. This implies that ε > 0 sufficiently small, there is a T1 > 0 such that Ik(t) < N̄∗k + ε

for t > T1, k = 1, 2, . . . , n. Therefore, from the first part of the hypothesis (1.3) that there exists
some sufficiently large positive constant b such that G(I) is monotone increasing on [0, b], we
derive

dSk(t)
dt

≥ bk −
{

µk1 + l̃kk +
n

∑
j=1

βkjG
(

N̄∗j + ε
)}

Sk(t), k = 1, 2, . . . , n,

which implies that

lim inf
t→+∞

Sk(t) ≥
bk

µk1 + l̃kk + ∑n
j=1 βkjG(N̄∗j + ε)

, k = 1, 2, . . . , n.
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Since the above inequality holds for arbitrary ε > 0 sufficiently small, it immediately follows
that

lim inf
t→+∞

Sk(t) ≥ Ŝk, k = 1, 2, . . . , n,

which completes the proof.

By Lemma 2.2, for any small positive constant ε < Ŝk, there exists a positive constant T1

such that

Sk(t) > Ŝk − ε > 0, k = 1, 2, . . . , n, for any t ≥ T1. (2.6)

3 Global stability of the disease-free equilibrium E0 for R̃0 < 1

In this section, for R̃0 < 1, we prove the first part of Theorem 1.1 by means of Lyapunov func-
tional method. We note that there always exists the disease-free equilibrium E0 = (S0

1, 0, S0
2, 0,

. . . , S0
n, 0) of (1.6) in Γ such that

bk = (µk1 + l̃kk)S0
k −

n

∑
j=1

(1− δkj)lkjS0
j , k = 1, 2, . . . , n (3.1)

holds. We rewrite (1.6) as



dSk(t)
dt

= bk − (µk1 + l̃kk + lkk)Sk(t)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ

)
,

dIk(t)
dt

=
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

)
− (µk2 + γk + m̃kk + mkk)Ik(t), k = 1, 2 . . . , n.

(3.2)

Proof of the first part of Theorem 1.1 for R̃0 < 1. It is sufficient to show that the disease-free
equilibrium E0 = (S0

1, 0, S0
2, 0, . . . , S0

n, 0) of (1.6) is globally asymptotically stable.

Assume that (1.16) holds and for this positive vector (u1, u2, . . . , un), consider the following
Lyapunov functional:

W(t) =
n

∑
k=1

uk

[
S0

k g
(

Sk(t)
S0

k

)
+ Ik(t) +

n

∑
j=1

{
βkjS0

k

∫ h1

0
fkj(τ)

∫ t

t−τ
G(Ij(u))dudτ

+ lkjS0
j

∫ h2

0
gkj(σ)

∫ t

t−σ
g
(

Sj(u)
S0

j

)
dudσ + mkj

∫ h2

0
gkj(σ)

∫ t

t−σ
Ij(u)dudσ

}]
,

g(x) = x− 1− ln x ≥ g(1) = 0, for any x > 0.
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Differentiating W(t) along the solution of (1.6), we have

dW(t)
dt

=
n

∑
k=1

uk

{(
1−

S0
k

Sk(t)

)
dSk(t)

dt
+

dIk(t)
dt

}
+

n

∑
k=1

uk

n

∑
j=1

[
βkjS0

k

∫ h1

0
fkj(τ){G(Ij(t))− G(Ij(t− τ))}dτ

+ lkjS0
j

∫ h2

0
gkj(σ)

{
g
(

Sj(t)
S0

j

)
− g
(

Sj(t− σ)

S0
j

)}
dσ

+ mkj

∫ h2

0
gkj(σ){Ij(t)− Ij(t− σ)}dσ

]
.

Put

x0
k(t) =

Sk(t)
S0

k
, k = 1, 2, . . . , n.

By (3.1) and (3.2), we have that

dSk(t)
dt

= bk − (µk1 + l̃kk + lkk)Sk(t)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ

)
= − (µk1 + l̃kk + lkk)(Sk(t)− S0

k)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − lkj

∫ h2

0
gkj(σ)(Sj(t− σ)− S0

j )dσ

)
,

and

dIk(t)
dt

=
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

)
− (µk2 + γk + m̃kk + mkk)Ik(t).

Then,

dW(t)
dt

=
n

∑
k=1

uk

[(
1−

S0
k

Sk(t)

){
−(µk1 + l̃kk + lkk)(Sk(t)− S0

k)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

− lkj

∫ h2

0
gkj(σ)(Sj(t− σ)− S0

j )dσ

)}

+

{ n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

)

− (µk2 + γk + m̃kk + mkk)Ik(t)
}

+
n

∑
j=1

(
βkjS0

k

∫ h1

0
fkj(τ){G(Ij(t))− G(Ij(t− τ))}dτ
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+ lkjS0
j

∫ h2

0
gkj(σ){g(x0

j (t))− g(x0
j (t− σ))}dσ

+ mkj

∫ h2

0
gkj(σ){Ij(t)− Ij(t− σ)}dσ

)]

=
n

∑
k=1

uk

[(
1−

S0
k

Sk(t)

){
−(µk1 + l̃kk + lkk)S0

k

(
Sk(t)

S0
k
− 1
)

+
n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ)

(
Sj(t− σ)

S0
j

− 1
)

dσ

}

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − βkjS0

k

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

)

+

{ n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

)

− (µk2 + γk + m̃kk + mkk)Ik(t)
}

+
n

∑
j=1

(
βkjS0

k

∫ h1

0
fkj(τ){G(Ij(t))− G(Ij(t− τ))}dτ

+ lkjS0
j

∫ h2

0
gkj(σ){g(x0

j (t))− g(x0
j (t− σ))}dσ

+ mkj

∫ h2

0
gkj(σ){Ij(t)− Ij(t− σ)}dσ

)]

= −
n

∑
k=1

uk

[
(µk1 + l̃kk + lkk)S0

k

(
1− 1

x0
k(t)

)
(x0

k(t)− 1)

−
n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ)

(
1− 1

x0
k(t)

)(
x0

j (t− σ)− 1
)

dσ

]

+
n

∑
k=1

uk

{ n

∑
j=1

(
βkjS0

k G(Ij(t)) + (1− δkj)mkj Ij(t)
)
− (µk2 + γk + m̃kk)Ik(t)

}

+
n

∑
k=1

uk

n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ){g(x0

j (t))− g(x0
j (t− σ))}dσ. (3.3)

Let us now consider the first part of the last equation in (3.3). Since(
1− 1

x0
k(t)

)
(x0

k(t)− 1) = x0
k(t) +

1
x0

k(t)
− 2 = g(x0

k(t)) + g
(

1
x0

k(t)

)

and (
1− 1

x0
k(t)

)
(x0

j (t− σ)− 1) = x0
j (t− σ)−

x0
j (t− σ)

x0
k(t)

+
1

x0
j (t)
− 1

= g(x0
j (t− σ))− g

( x0
j (t− σ)

x0
k(t)

)
+ g
(

1
x0

k(t)

)
,
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and by (1.10), it holds that

n

∑
k=1

uk(µk1 + l̃kk + lkk)S0
k

(
1− 1

x0
k(t)

)
(x0

k(t)− 1)

=
n

∑
k=1

uk(µk1 + l̃kk + lkk)S0
k

{
g(x0

k(t)) + g
(

1
x0

k(t)

)}
, (3.4)

and
n

∑
k=1

uk

n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ)

(
1− 1

x0
k(t)

)
(x0

j (t− σ)− 1)dσ

=
n

∑
k=1

uk

n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ)

{
g(x0

j (t− σ))− g
( x0

j (t− σ)

x0
k(t)

)
+ g
(

1
x0

k(t)

)}
dσ. (3.5)

It follows from (3.3), (3.4) and (3.5) that

dW(t)
dt

= −
n

∑
k=1

uk(µk1 + l̃kk + lkk)S0
k

{
g(x0

k(t)) + g
(

1
x0

k(t)

)}

+
n

∑
k=1

uk

n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ)

{
g(x0

j (t− σ))− g
( x0

j (t− σ)

x0
k(t)

)
+ g
(

1
x0

k(t)

)}
dσ

+
n

∑
k=1

uk

{ n

∑
j=1

(
βkjS0

k G(Ij(t)) + (1− δkj)mkj Ij(t)
)
− (µk2 + γk + m̃kk)Ik(t)

}

+
n

∑
k=1

uk

n

∑
j=1

lkjS0
j

∫ h2

0
gkj(σ){g(x0

j (t))− g(x0
j (t− σ))}dσ

= −
n

∑
k=1

(
uk(µk1 + l̃kk)−

n

∑
j=1

uj(1− δjk)ljk

)
S0

k g(x0
k(t))

−
n

∑
k=1

uk

{
(µk1 + l̃kk)S0

k −
n

∑
j=1

(1− δkj)lkjS0
j

}
g
(

1
x0

k(t)

)

−
n

∑
k=1

uk

n

∑
j=1

(1− δkj)lkjS0
j g
( x0

j (t− σ)

x0
k(t)

)

+
n

∑
k=1

uk

{ n

∑
j=1

(
βkjS0

k + (1− δkj)mkj

)
Ij(t)− (µk2 + γk + m̃kk)Ik(t)

}

+
n

∑
k=1

uk

n

∑
j=1

βkjS0
k{G(Ij(t))− Ij(t)}

=−
n

∑
k=1

(
uk(µk1 + l̃kk)−

n

∑
j=1

uj(1− δjk)ljk

)
S0

k g(x0
k(t))−

n

∑
k=1

ukbkg
(

1
x0

k(t)

)

−
n

∑
k=1

uk

n

∑
j=1

(1− δkj)lkjS0
j g
( x0

j (t− σ)

x0
k(t)

)

+
n

∑
k=1

{ n

∑
j=1

uj

(
β jkS0

j + (1− δjk)mjk

)
− uk(µk2 + γk + m̃kk)

}
Ik(t)

+
n

∑
k=1

uk

n

∑
j=1

βkjS0
k{G(Ij(t))− Ij(t)} ≤ 0. (3.6)
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Let us note that we make use of assumption (1.2), (1.16) and G(Ij(t)) ≤ Ij(t).
It is obvious from (3.6) that R0 < 1 if and only if Sk(t) = S0

k and Ik(t) ≡ 0, k = 1, 2, . . . , n.
Thus, it follows from the classical LaSalle’s invariance principle (see [13]) that the disease-free
equilibrium E0 of the system (1.6) is globally asymptotically stable. Hence, we obtain the first
part R̃0 < 1 of Theorem 1.1.

It should also be noted that if R0 = 1, then from (3.6), we can not show Sk(t) = S0
k and

Ik(t) ≡ 0, k = 1, 2, . . . , n.

4 Existence of the endemic equilibrium and permanence for R̃0 > 1

In this section, our attention is focused on the case R̃0 > 1. First, we show the existence of an
endemic equilibrium E∗ and the second, we show the permanence of system (1.6). Finally, we
prove the global asymptotic stability of it by applying Lyapunov functional method.

By (1.13), it follows from the Perron–Frobenius theorem that R̃0 = ρ(M̃(S0)) is an eigen-
value of matrix M̃(S0) associated with a positive (right) eigenvector ω = (ω1, ω2, . . . , ωn) such
that ωk > 0, k = 1, 2, . . . , n. For such ω, we have

M̃(S0)ω = ρ(M̃(S0))ω,

which is equivalent to
n

∑
j=1
{S0

k βkj + (1− δkj)mkj}ωj − ρ(M̃(S0))(µk2 + γk + mkk)ωk = 0.

Thus, by ρ(M̃(S0)) = R̃0 > 1, it holds that
n

∑
j=1
{βkjS0

k + (1− δkj)mkj}ωj − (µk2 + γk + m̃kk)ωk > 0, k = 1, 2, . . . , n.

4.1 Existence of the endemic equilibrium

First, we prove the existence of an endemic equilibrium E∗ of system (1.6) when R̃0 > 1.

Lemma 4.1. Let R̃0 and Γ be defined by (1.13) and (1.14), respectively. If R̃0 > 1, then system (1.6)
has an endemic equilibrium E∗ = (S∗1 , I∗1 , S∗2 , I∗2 , . . . , S∗n, I∗n) ∈ Γ0 such that

bk = (µk1 + l̃kk)S∗k +
n

∑
j=1

βkjS∗k G(I∗j )−
n

∑
j=1

(1− δkj)lkjS∗j ,

(µk2 + γk + m̃kk)I∗k =
n

∑
j=1

βkjS∗k G(I∗j ) +
n

∑
j=1

(1− δkj)mkj I∗j , k = 1, 2, . . . , n.
(4.1)

Proof. Since R̃0 > 1 implies that for ρ(M̃(S0)) > 1, there exists a positive eigenvector ω =

(ω1, ω2, . . . , ωn)T such that M̃(S0)ω = ρ(M̃(S0))ω, where S0
k ≤ N̄∗k , k = 1, 2, . . . , n and

F̃(S0) =
[
S0

k βkj + (1− δkj)mkj
]

n×n and Ṽ =
[
δkj(µk2 + γk + m̃kk)

]
n×n are n× n matrices.

Since by Lemma 2.1, S∗k + I∗k = N∗k = S0
k , k = 1, 2, . . . , n if the endemic equilibrium exists,

we may consider the existence of solution x = (x1, x2, . . . , xn) of the system F(x) = 0, where
F(x) = ( f1(x), f2(x), . . . , fn(x))T =

[
fk(x)

]
n×1, x = (x1, x2, . . . , xn)

T,

fk(x) = −
(

Sk(x)
n

∑
j=1

βkjG(xj)− (µk2 + γk + m̃kk)xk +
n

∑
j=1

(1− δkj)mkjxj

)
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under the conditions 0 < xk < N̄∗k and( n

∑
j=1

βkjG(xj) + (µk1 + l̃kk)

)
Sk(x)−

n

∑
j=1

(1− δkj)lkjSj(x)− bk = 0

for k = 1, 2, . . . , n. Let us also note that xk (k = 1, 2, . . . , n) correspond to the number of
infected individual for patch k (k = 1, 2, . . . , n) appeared in the endemic equilibrium E∗. One
can see that

F(x) = −
[

Sk(x)
n

∑
j=1

βkjG(xj)− (µk2 + γk + m̃kk)xk +
n

∑
j=1

(1− δkj)mkjxj

]
n×1

= − (F̃(S0)x− Ṽx)−
[

Sk(x)βkj
G(xj)

xj
− S0

k βkj

]
n×n

x,

and hence,F(ω) = −(F̃(S0)ω− Ṽω)−
[

Sk(ω)βkj
G(ωj)

ωj
− S0

k βkj

]
n×n

ω, and

−(F̃(S0)ω− Ṽω) = −Ṽ{M̃(S0)ω−ω} = −Ṽ{ρ(M̃(S0))− 1}ω < 0,

where the ordering of vectors in Rn is the usual element-wise one in Rn.
For any α > 0, we have

F(αω) = α

{
−(F̃(S0)ω− Ṽω)−

[
Sk(αω)βkj

G(αωj)

αωj
− S0

k βkj

]
n×n

ω

}
,

and by assumption (1.3) and (2.1), limI→+0 I/G(I) = 1 and by (1.12) and the last part of
(4.1), one can see that limα→0 Sk(αω) = S0

k , k = 1, 2, . . . , n. Thus, there exists a small positive
constant α < 1 such that

F(αω) ≤ 0.

On the other hand, from the second and the last part of (4.1), we have

(µk1 + l̃kk)Sk(x)−
n

∑
j=1

(1− δkj)lkjSj(x) = bk +
n

∑
j=1

(1− δkj)mkjxj − (µk2 + γk + m̃kk)xk. (4.2)

Let A = [akj]n×n be a n× n matrix defined by

akk = µk1 + l̃kk, akj = −lkj, j 6= k, k = 1, 2, . . . , n.

Then, by the theory of M-matrices, A = [akj]n×n is a nonsingular M-matrix and there exists

its nonnegative positive inverse matrix A(−1) = [a(−1)
kj ]n×n, akj > 0, k, j = 1, 2, . . . , n and

from (4.2),

Sk(x) =
n

∑
j=1

a(−1)
kj

(
bj +

n

∑
l=1

(1− δjl)mjlxl − (µj2 + γj + m̃jj)xj

)

≤
(

max
k,j=1,2,...,n

a(−1)
kj

) n

∑
j=1

(
bj +

n

∑
l=1

(1− δjl)mjlxl − (µj2 + γj + m̃jj)xj

)

=

(
max

k,j=1,2,...,n
a(−1)

kj

) n

∑
j=1

(
bj − (µj2 + γj)xj

)
,
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where we use the relation ∑n
j=1 ∑n

l=1(1− δjl)mjlxl = ∑n
j=1 ∑n

l=1(1− δjl)ml jxj = ∑n
j=1 m̃jjxj. There-

fore, for x̄ = (x̄, x̄, x̄, . . . , x̄) with x̄ > 0, we have

fk(x̄) = −
(

Sk(x̄)
n

∑
j=1

βkjG(x̄)− (µk2 + γk + m̃kk)x̄ +
n

∑
j=1

(1− δkj)mkj x̄
)

≥ −
[{(

max
k,j=1,2,...,n

a(−1)
kj

) n

∑
j=1

(
bj − (µj2 + γj)x̄

)} n

∑
j=1

βkj x̄

− (µk2 + γk + m̃kk)x̄ +
n

∑
j=1

(1− δkj)mkj x̄
]

≥ −
[{(

max
k,j=1,2,...,n

a(−1)
kj

) n

∑
j=1

(
bj − (µj2 + γj)x̄

)} n

∑
j=1

βkj

− (µk2 + γk + m̃kk) +
n

∑
j=1

(1− δkj)mkj

]
x̄,

and hence, for a sufficiently large positive constant x̄, we obtain F(x̄) ≥ 0.
Moreover, for system (4.1), the elements of the Fréchet derivative F′(x) = [∂ fk/∂xj] are

∂ fk(x1, x2, . . . , xn)

∂xj

=


−∂Sk(x̄)

∂xk

n

∑
j=1

βkjG(xj)− Sk(x̄)βkkG′(xk) + (µk2 + γk + m̃kk), for j = k, k = 1, 2, . . . , n,

−∂Sk(x̄)
∂xj

n

∑
j=1

βkjG(xj)− Sk(x̄)βkjG′(xj)−mkj ≤ 0, for j 6= k, k = 1, 2, . . . , n,

where by the last part of (4.1), ∂Sk(x̄)
∂xl

, l = 1, 2, . . . , n satisfy( n

∑
j=1

βkjG(xj) + (µk1 + l̃kk)

)
∂Sk(x̄)

∂xl
−

n

∑
j=1

(1− δkj)lkj
∂Sk(x̄)

∂xl
= −βkjG′(xj), k = 1, 2, . . . , n,

from which by the monotone property on the argument of function G and the theory of M-
matrices (see, for example, Berman and Plemmons [3] or Varga [31]), one can easily see that

∂Sk(x̄)
∂xl

≤ 0, j 6= k, k = 1, 2, . . . , n.

Then, for a sufficiently large positive constant l̄ > 0 such that

l̄ > max
{

max
1≤k≤n

(
−∂Sk(x̄)

∂xk

n

∑
j=1

βkjG(xj)− Sk(x̄)βkkG′(xk) + (µk2 + γk + m̃kk)

)
,

∂Sk(x̄)
∂xj

n

∑
j=1

βkjG(xj) + Sk(x̄)βkjG′(xj) + mkj

}
,

B = [δkj l̄−1] becomes a non-negative non-singular matrix and subinverse (see Ortega and
Rheinboldt [27] or Muroya [23]) of F′(x), i.e., BF′(x) ≤ I and F′(x)B ≤ I for the unit ma-
trix I and any x with 0 < xk < x̄k, k = 1, 2, . . . , n. Thus, to the equation F(x) = 0 in Rn,
we can apply the monotone iteration such that x0 = αω, y0 = x̄ with F(x0) ≤ 0 ≤ F(y0)
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and xp+1 = xp − BF(xp), p = 1, 2, . . . , n of Ortega and Rheinboldt [27, Theorem 4.1 and
Corollary 4.1] or Muroya [23, Theorem 3.1], we have a monotone increasing vector sequence
x0 ≤ x1 ≤ . . . ≤ xp ≤ xp+1 ≤ y0 and a limit limp→+∞ xp = x∗ = (x∗1 , x∗2 , . . . , x∗n) which is a
solution of F(x) = 0. Hence, we conclude that there exists an endemic equilibrium of (1.6).

4.2 Permanence

Now, we show the permanence of system (1.6). Let I := min1≤j≤n lim inft→+∞ Ij(t)/I∗j .
Without loss of generality, we can assume that k ∈ {1, 2, . . . , n} is an integer such that
lim inf
t→+∞

Ik(t)/I∗k ≡ I. Let us set

jk = {j ∈ {1, 2, . . . , n} | βkj > 0}.

By (1.8), we have jk 6= ∅.
Extending the result of Enatsu et al. [6, Lemma 4.1] on permanence to the model (1.6), we

introduce the following lemmas, which play a key role to obtain the permanence.

Lemma 4.2. For R0 > 1, ifSk(t) ≥ S∗k , G(Ij(t−τ))

G(I∗j )
≥ Ik(t)

I∗k
, for any 0 ≤ τ ≤ h1, and

Ij(t)
I∗j
≥ Ik(t−σ)

I∗k
, for any 0 ≤ σ ≤ h2, j = 1, 2, . . . , n,

then I′k(t) ≥ 0. If I ′k(t) ≤ 0, thenSk(t) ≤ S∗k , or G(Ij(t−τ))

G(I∗j )
≤ Ik(t)

I∗k
, for any 0 ≤ τ ≤ h1, or

Ij(t−σ)
I∗j
≤ Ik(t−σ)

I∗k
, for any 0 ≤ σ ≤ h2, j = 1, 2, . . . , n.

Proof. Assume that R0 > 1. By the second equations of (1.6) and (4.1), we have that

I′k(t) =
n

∑
j=1

βkjSk(t)G(I∗j )
∫ h1

0
fkj(τ)

G(Ij(t− τ))

G(I∗j )
dτ − (µk2 + γk + m̃kk + mkk)I∗k

Ik(t)
I∗k

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)

Ij(t− σ)

I∗j
dσ

=
n

∑
j=1

βkjSk(t)G(I∗j )
∫ h1

0
fkj(τ)

G(Ij(t− τ))

G(I∗j )
dτ −

( n

∑
j=1

βkjS∗k G(I∗j ) +
n

∑
j=1

mkj I∗j

)
Ik(t)

I∗k

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)

Ij(t− σ)

I∗j
dσ

=
n

∑
j=1

βkj{Sk(t)− S∗k}
∫ h1

0
fkj(τ)G(Ij(t− τ))dτ

+
n

∑
j=1

βkjS∗k G(I∗j )
∫ h1

0
fkj(τ)

(
G(Ij(t− τ))

G(I∗j )
− Ik(t)

I∗k

)
dτ

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)

(
Ij(t− σ)

I∗j
− Ik(t)

I∗k

)
dσ

from which we obtain the conclusion of this lemma.
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For a positive constant T1, the following lemma holds true.

Lemma 4.3. Assume that 0 < q < 1 and there exist a t ≥ T1 and some k ∈ {1, 2, . . . , n} such that
I′k(t) ≤ 0. If there exists an integer j̄ ∈ jk such that

Ij̄(t− τ)

I∗j̄
> q, for any 0 ≤ τ ≤ h1, (4.3)

then

Ik(t) > Ik( j̄; q) :=
(Ŝk − ε)βkj̄G(qI∗j̄ )

µk2 + γk + m̃kk + mkk
> 0. (4.4)

Proof. Assume that 0 < q < 1. If there exist a t ≥ T1, some k ∈ {1, 2, . . . , n} and an integer
j̄ ∈ jk such that (4.3) holds. Then, by (2.6) and (1.8), Sk(t) > Ŝk − ε > 0 and βkj̄ > 0, and by the
second equation of (1.6),

0 ≥ I′k(t) = Sk(t)
n

∑
j=1

βkj

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − (µk2 + γk + m̃kk + mkk)Ik(t)

+
n

∑
j=1

mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

> (Ŝk − ε)βkj̄G(qI∗j̄ )− (µk2 + γk + m̃kk + mkk)Ik(t),

from which we have

Ik(t) >
(Ŝk − ε)βkj̄G(qI∗j̄ )

µk2 + γk + m̃kk + mkk
> 0.

Thus, (4.4) holds. This completes the proof.

Lemma 4.4. If R0 > 1, then for any solution of system (1.6) with initial condition (1.7), it holds that

lim inf
t→+∞

Ik(t) ≥ Îq := Î(q) exp
{
− max

1≤k≤n
(µk2 + γk + m̃kk + mkk)ρ(q)

}
, k = 1, 2, . . . , n,

where for 0 < q < 1, put
Î(q) := min

1≤k≤n, j̄∈jk

Ik( j̄; q) > 0,

qG = max
1≤j≤n

G(qI∗j )

G(I∗j )
< 1, and rk = µk1 + l̃kk + lkk + qG

n

∑
j=1

βkjG(I∗j ),
(4.5)

and q is chosen sufficiently small and ρ(q) > 0 is chosen sufficiently large to satisfy the following
inequalities:

S∗k <
bk

rk
, and S∗k < S4k :=

bk

rk
(1− e−rkρ(q)), k = 1, 2, . . . , n. (4.6)

Proof. Assume that R̃0 > 1 and let (S1(t), I1(t), S2(t), I2(t), . . . , Sn(t), In(t)) be any solution of
system (1.6) with initial condition (1.7), and 0 < q < 1 and ρ(q) > 0 are a fixed sufficiently
small constant and a large constant, respectively, such that (4.6) holds.

For t ≥ T1, let k(t) ∈ {1, 2, . . . , n} be defined by

Ik(t)(t)
I∗k(t)

= min
1≤j≤n

Ij(t)
I∗j

, for any t ≥ T1, (4.7)
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and put

I(t) := Ik(t)(t), S(t) = Sk(t)(t), and β
j
= βk(t)j, for any j ∈ jk(t), and t ≥ T1.

Hereafter, for simplicity without loss of generality and for the readers’ convenience, it is better
to express k(t) temporally as k for each t ≥ T1.

Put

Dk(q) =
{

t ≥ T1

∣∣∣ Ij(t− τ)

I∗j
≤ q, for any j ∈ jk, and 0 ≤ τ ≤ h1

}
, k = 1, 2, . . . , n,

and for t ≥ T1,

I(t) =
Ik(t)

I∗k
,

where k = k(t) ∈ {1, 2, . . . , n} is an integer such that (4.7) holds.
Because by Lemma 4.3, for t ≥ T1,

Ik(t) > Îk(q) := min
j̄∈jk

Ik( j̄; q) > 0, if t 6∈ Dk(q), (4.8)

to prove that there exists a positive constant Î independent from the initial conditions (1.7)
such that

I = min
1≤j≤n

lim inf
t→+∞

Ij(t)
I∗j
≥ Î,

we may hereafter restrict our attention to the case that there exists a sufficiently large t ∈
Dk(q).

We now prove that it is impossible that there exists a nonnegative constant t0 ≥ T1 such
that t ∈ Dq(k) for all t ≥ t0. Suppose on the contrary that t ∈ Dq(k) for all t ≥ t0. Consider
the following functional:

V(t) = Ik(t) +
n

∑
j=1

(
βkj

∫ h1

0
fkj(τ)

∫ t

t−τ
Sk(u + τ)G(Ij(u))dudτ + mkj

∫ h2

0
gkj(σ)

∫ t

t−σ
Ij(u)dudσ

)
.

By (4.5) and the inequality G(Ij(t− τ)) ≤ G(qI∗j ) ≤ qGG(I∗j ), j = 1, 2, . . . , n for t ≥ t0 + h1,
one can obtain that

dSk(t)
dt

≥ bk −
(

µk + l̃kk + lkk + qG

n

∑
j=1

βkjG(I∗j )
)

Sk(t) = bk − rkSk(t), for t ≥ t0 + h1,

which yields

Sk(t) ≥ e−rk(t−t0)

(
Sk(t0) + bk

∫ t

t0

erk(s−t0)ds
)

>
bk

rk
(1− e−rk(t−t0)), for t ≥ t0 + h1. (4.9)

Hence, if we choose ρ(q) > 0 sufficiently large to satisfy S∗k < S4k := bk(1− e−rkρ(q))/rk of
(4.6), then it follows from (4.9) that

Sk(t) >
bk

rk
(1− e−rkρ(q)) = S4k > S∗k , for t ≥ t0 + h1 + ρ(q). (4.10)
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Since t ∈ Dk(q) implies Ij(t − τ)/I∗j ≤ q < 1 for j ∈ jk, 0 ≤ τ ≤ h1 and t ≥ T1, we have
Ij(t) ≤ I∗j for j ∈ jk and t ≥ t0 + h1. By the second part of the hypothesis (1.3), it holds
that G(Ij(t))/Ij(t) ≥ G(I∗j )/I∗j , which is equivalent to Ij(t)/I∗j ≤ G(Ij(t))/G(I∗j ), j ∈ jk for
t ≥ t0 + h1. Thus, by Ik(t)/I∗k ≤ Ij(t)/I∗j , j = 1, 2, . . . , n, we obtain Ik(t)/I∗k ≤ G(Ij(t))/G(I∗j ),
j = 1, 2, . . . , n for t ≥ t0 + h1.

By the above discussion and Lemma 4.2, we obtain I′k(t) ≥ 0 for any t ≥ t0 + h1 + ρ(q),
and there exists a j ∈ {1, 2, . . . , n} and an st ∈ [t− h1, t) such that Ik(t) ≥ Ij(st). For a positive
constant Î ≡ mint0+ρ(q)≤s≤t0+h1+ρ(q) Ij(s) > 0, we thus obtain that

Ik(t) ≥ Î for any t ≥ t0 + h1 + ρ(q). (4.11)

Calculating the derivative of V(t) along solutions of system (1.6) gives as follows.

dV(t)
dt

=
n

∑
j=1

βkjSk(t)
∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − (µk2 + γk + m̃kk + mkk)Ik(t)

+
n

∑
j=1

mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

+
n

∑
j=1

(
βkj

∫ h1

0
fkj(τ){Sk(t + τ)G(Ij(t))− Sk(t)G(Ij(t− τ))}dτ

+ mkj

∫ h2

0
gkj(σ){Ij(t)− Ij(t− σ)}dσ

)

=
n

∑
j=1

βkj

∫ h1

0
fkj(τ)Sk(t + τ)G(Ij(t))dτ − (µk2 + γk + m̃kk + mkk)I∗k

Ik(t)
I∗k

+
n

∑
j=1

mkj I∗j
Ij(t)
I∗j

≥
n

∑
j=1

βkjS
4
k G(I∗j )

G(Ij(t))
G(I∗j )

− (µk2 + γk + m̃kk + mkk)I∗k
Ik(t)

I∗k
+

n

∑
j=1

mkj I∗j
Ij(t)
I∗j

≥
n

∑
j=1

βkjS
4
k G(I∗j )

Ij(t)
I∗j
−

n

∑
j=1

βkjS∗k G(I∗j )
Ik(t)

I∗k
+

n

∑
j=1

mkj I∗j

(
Ij(t)
I∗j
− Ik(t)

I∗k

)

≥ (S4k − S∗k )
n

∑
j=1

βkjG(I∗j )
Ik(t)

I∗k
, for t ≥ t0 + h1 + ρ(q),

because by (4.10), Sk(t) ≥ S4k > S∗k for t ≥ t0 + h1 + ρ(q) and by t ∈ Dk(q) and the definition
of k and the above note, we have that G(Ij(t))/G(I∗j ) ≥ Ij(t)/I∗j ≥ Ik(t)/I∗k for t ≥ t0 + h1.

Thus, limt→+∞ V(t) = +∞. However, from (2.1) and the first part of the hypothesis (1.3),
it holds that

lim sup
t→+∞

V(t) ≤ N̄∗k +
n

∑
j=1
{βkjS0

kh1G(N̄∗j ) + mkjh2N̄∗j < +∞.

This leads to a contradiction. Hence the claim is proved.
By the claim and (4.8), there exist sufficiently large constants t1 < t2 and t1, t2 ∈ Dk(q)

such that for any t1 < t < t2, t ∈ Dk(q), but there exists a 0 ≤ t3 < t1 and t4 > t2 such that
t3, t4 6∈ Dk(q).

We now show that I(t) ≥ Îq for all t sufficiently large t ∈ Dk(q). Let t1 < t2 be sufficiently
large constants t1, t2 ∈ Dk(q) such that

Ik(t1) ≥ Îk(q), Ik(t2) ≥ Îk(q), t ∈ Dk(q), for any t1 < t < t2.
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Since from the second equation of system (1.6), we have

dIk(t)
dt

≥ −(µk2 + γk + m̃kk + mkk)Ik(t), for t ≥ t1.

Then,

Ik(t) ≥ Ik(t1)e−(µk1+γk+m̃kk+mkk)(t−t1)

≥ Îk(q)e
−(µk2+γk+m̃kk+mkk)ρ(q)

≥ Îq, for t1 ≤ t ≤ t1 + ρ(q).

If t2 > t1 + ρ(q), then by applying the similar discussion to (4.10) and (4.11) in place of t0 by
t1, we obtain Ik(t) ≥ Îq for t1 + ρ(q) < t ≤ t2. Hence, we prove that I(t) ≥ Îq for t1 ≤ t ≤ t2.

Since the interval t1 ≤ t ≤ t2 in Dk(q) is arbitrarily chosen, we can easily conclude that
I(t) ≥ Îq holds for all t sufficiently large t ∈ Dk(q). Thus, we obtain that lim inft→+∞ I(t) ≥ Îq.
This completes the proof.

By (2.1) and Lemmas 2.2, 4.2–4.4, we obtain the permanence of system (1.6) for R0 > 1.

5 Global stability of the endemic equilibrium E∗ for R̃0 > 1

In this section, we assume R̃0 > 1. By Lemma 4.1, there exists an endemic equilibrium

E∗ = (S∗1 , I∗1 , S∗2 , I∗2 , . . . , S∗n, I∗n)

of (1.6) in Γ0 such that (4.1) holds. We rewrite (1.6) as

dSk(t)
dt

= bk − (µk1 + l̃kk + lkk)Sk(t)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ

)
,

dIk(t)
dt

=
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)dσ

)
− (µk2 + γk + m̃kk + mkk)Ik(t), k = 1, 2 . . . , n.

(5.1)

Let us set

U(t) :=
n

∑
k=1

vk

[
S∗k g
(

Sk(t)
S∗k

)
+ I∗k g

(
Ik(t)

I∗k

)
+

n

∑
j=1

{
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)

∫ t

t−τ
g
(

G(Ij(u))
Gj(I∗j )

)
dudτ

+ lkjS∗j
∫ h2

0
gkj(σ)

∫ t

t−σ
g
(

Sj(u)
S∗j

)
dudσ

+ mkj I∗j
∫ h2

0
gkj(σ)

∫ t

t−σ
g
(

Ij(u)
I∗j

)
dudσ

}]
, (5.2)
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where v1, v2, . . . , vn will be appropriately chosen later (see (1.17)). Differentiating U along the
solutions of (1.6), we have

dU(t)
dt

=
n

∑
k=1

vk

{(
1−

S∗k
Sk(t)

)
dSk(t)

dt
+

(
1−

I∗k
Ik(t)

)
dIk(t)

dt

}
+

n

∑
k=1

vk

[ n

∑
j=1

βkjS∗k G(I∗j )
∫ h1

0
fkj(τ)

{
g
(

G(Ij(t))
G(I∗j )

)
− g
(

G(Ij(t− τ))

G(I∗j )

)}
dτ

+
n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g
(

Sj(t)
S∗j

)
− g
(

Sj(t− σ)

S∗j

)}
dσ

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)

{
g
(

Ij(t)
I∗j

)
− g
(

Ij(t− σ)

I∗j

)}
dσ

]
.

For simplicity, we put

xk(t) =
Sk(t)

S∗k
, yk(t) =

Ik(t)
I∗k

, ỹj(t) =
G(Ij(t))
G(I∗j )

, k, j = 1, 2, . . . , n.

From (4.1) and (5.1), we derive that for k = 1, 2, . . . , n,

dSk(t)
dt

= bk − (µk1 + l̃kk + lkk)Sk(t)

−
n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − lkj

∫ h2

0
gkj(σ)Sj(t− σ)dσ

)
= − (µk1 + l̃kk + l̃kk + lkk)(Sk(t)− S∗k )

−
n

∑
j=1

{
βkj

(
Sk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ − S∗k G(I∗j )

)
− lkj

∫ h2

0
gkj(σ)(Sj(t− σ)− S∗j )dσ

}
= − (µk1 + l̃kk + lkk)S∗k (xk(t)− 1)

−
n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)(xk(t)ỹj(t− τ)− 1)dτ

− lkjS∗j
∫ h2

0
gkj(σ)(xj(t− σ)− 1)dσ

)
,

and
dIk(t)

dt
=

n

∑
j=1

(
βkjSk(t)

∫ h1

0
fkj(τ)G(Ij(t− τ))dτ + mkj

∫ h2

0
gkj(σ)Ij(t− σ)

)
− (µk2 + γk + m̃kk + mkk)Ik(t)

=
n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)xk(t)ỹj(t− τ)dτ + mkj I∗j

∫ h2

0
gkj(σ)yj(t− σ)dσ

)
− (µk2 + γk + m̃kk + mkk)I∗k yk(t)

=
n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)(xk(t)ỹj(t− τ)− yk(t))dτ

+ mkj I∗j
∫ h2

0
gkj(σ)(yj(t− σ)− yk(t))dσ

)
.
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Then, we have
n

∑
k=1

vk

{(
1−

S∗k
Sk(t)

)
dSk(t)

dt
+

(
1−

I∗k
Ik(t)

)
dIk(t)

dt

}
=

n

∑
k=1

vk

[(
1− 1

xk(t)

){
−(µk1 + l̃kk + lkk)S∗k (xk(t)− 1)

−
n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)(xk(t)ỹj(t− τ)− 1)dτ

− lkjS∗j
∫ h2

0
gkj(σ)(xj(t− σ)− 1)dσ

)}

+

(
1− 1

yk(t)

) n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)(xk(t)ỹj(t− τ)− yk(t))dτ

+ mkj I∗j
∫ h2

0
gkj(σ)(yj(t− σ)− yk(t))dσ

)]

= −
n

∑
k=1

vk

[
(µk1 + l̃kk + lkk)S∗k

(
1− 1

xk(t)

)
(xk(t)− 1)

−
n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

(
1− 1

xk(t)

)
(xj(t− σ)− 1)dσ

]

+
n

∑
k=1

vk

[ n

∑
j=1

βkjS∗k G(I∗j )
∫ h1

0
fkj(τ)

{(
1− 1

xk(t)

)
(1− xk(t)ỹj(t− τ))

+

(
1− 1

yk(t)

)
(xk(t)ỹj(t− τ)− yk(t))

}
dτ

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)

(
1− 1

yk(t)

)
(yj(t− σ)− yk(t))dσ

]
. (5.3)

For the first part of the last equation in (5.3), we have(
1− 1

xk(t)

)
(xk(t)− 1) = xk(t) +

1
xk(t)

− 2

= g(xk(t)) + g
(

1
xk(t)

)
and (

1− 1
xk(t)

)
(xj(t− σ)− 1) = xj(t− σ)−

xj(t− σ)

xk(t)
+

1
xk(t)

− 1

= g(xj(t− σ))− g
(

xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)
,

and hence, by (1.10),

n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

(
1− 1

xk(t)

)
(xk(t)− 1)

=
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
,
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and

n

∑
k=1

vk

n

∑
j=1

lkjS∗j

(
1− 1

xk(t)

)
(xj(t− σ)− 1)

=
n

∑
k=1

vk

n

∑
j=1

lkjS∗j

{
g(xj(t− σ))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
.

For the remaining parts of the last equation in (5.3), we have(
1− 1

xk(t)

)
(1− xk(t)ỹj(t− τ)) +

(
1− 1

yk(t)

)
(xk(t)ỹj(t− τ)− yk(t))

=

(
1− 1

xk(t)
− xk(t)ỹj(t− τ) + ỹj(t− τ)

)
+

(
xk(t)ỹj(t− τ)−

xk(t)ỹj(t− τ)

yk(t)
− yk(t) + 1

)
= 2− 1

xk(t)
+ ỹj(t− τ)−

xk(t)ỹj(t− τ)

yk(t)
− yk(t)

= − g
(

1
xk(t)

)
− g
(

xk(t)ỹj(t− τ)

yk(t)

)
+ {g(ỹj(t− τ))− g(yk(t))},

and (
1− 1

yk(t)

)
(yj(t− σ)− yk(t)) = yj(t− σ)−

yj(t− σ)

yk(t)
− yk(t) + 1

= − g
(

yj(t− σ)

yk(t)

)
+ {g(yj(t− σ))− g(yk(t))}.

Then,

n

∑
k=1

vk

[ n

∑
j=1

βkjS∗k G(I∗j )
∫ h1

0
fkj(τ)

{(
1− 1

xk(t)

)
(1− xk(t)ỹj(t− τ))

+

(
1− 1

yk(t)

)
(xk(t)ỹj(t− τ)− yk(t))

}
dτ

+

(
1− 1

yk(t)

) n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ)(yj(t− σ)− yk(t))dσ

]

= −
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]
+

n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ){g(ỹj(t− τ))− g(yk(t))}dτ

+ mkj I∗j
∫ h2

0
gkj(σ){g(yj(t− σ))− g(yk(t))}dσ

)
.
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We finally obtain that

dU(t)
dt

= −
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
+

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g(xj(t− σ))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
dσ

−
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]

+
n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ){g(ỹj(t− τ))− g(yk(t))}dτ

+ mkj I∗j
∫ h2

0
gkj(σ){g(yj(t− σ))− g(yk(t))}dσ

)

+
n

∑
k=1

vk

( n

∑
j=1

βkjS∗k G(I∗j )
∫ h1

0
fkj(τ){g(ỹj(t))− g(ỹj(t− τ))}dτ

+
n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ){g(xj(t))− g(xj(t− σ))}dσ

+
n

∑
j=1

mkj I∗j
∫ h2

0
gkj(σ){g(yj(t))− g(yj(t− σ))}dσ

)

= −
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
+

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g(xj(t))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
dσ

−
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]

+
n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k G(I∗j ){g(ỹj(t))− g(yk(t))}+ mkj I∗j {g(yj(t))− g(yk(t))}

)

≤ −
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
+

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g(xj(t))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
dσ

−
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]

+
n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k G(I∗j ){g(yj(t))− g(yk(t))}+ mkj I∗j {g(yj(t))− g(yk(t))}

)
. (5.4)
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Here, we use the relation g(ỹj(t)) ≤ g(yj(t)), j = 1, 2, . . . , n (see Enatsu et al. [6, Lemma
3.2]), because yj(t) = Ij(t)/I∗j ≥ 1 if and only if

yj(t)− ỹj(t) =
Ij(t)
I∗j
−

G(Ij(t))
G(I∗j )

=
G(Ij(t))

I∗j

(
Ij(t)

G(Ij(t))
−

I∗j
G(I∗j )

)
≥ 0,

which yields

dU(t)
dt

≤ −
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
+

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g(xj(t))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
dσ

−
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]

+
n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k

G(I∗j )

I∗j
+ (1− δkj)mkj

)
I∗j {g(yj(t))− g(yk(t))}. (5.5)

On the other hand, by (4.1), we have that

n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k

G(I∗j )

I∗j
+ (1− δkj)mkj

)
I∗j {g(yj(t))− g(yk(t))}

=
n

∑
k=1

vk

n

∑
j=1

(
βkjS∗k

G(I∗j )

I∗j
+ (1− δkj)mkj

)
I∗j g(yj(t))

−
n

∑
k=1

vk

{ n

∑
j=1

(
βkjS∗k

G(I∗j )

I∗j
+ (1− δkj)mkj

)
I∗j

}
g(yk(t))

=
n

∑
j=1

vj

n

∑
k=1

(
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

)
I∗k g(yk(t))−

n

∑
k=1

vk(µk2 + γk + m̃kk)I∗k g(yk(t))

=
n

∑
k=1

{ n

∑
j=1

vj

(
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

)
− vk(µk2 + γk + m̃kk)

}
I∗k g(yk(t)). (5.6)

From (5.5) and (5.6), we therefore obtain that

dU(t)
dt

≤ −
n

∑
k=1

vk(µk1 + l̃kk + lkk)S∗k

{
g(xk(t)) + g

(
1

xk(t)

)}
+

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)

{
g(xj(t))− g

(
xj(t− σ)

xk(t)

)
+ g
(

1
xk(t)

)}
dσ

−
n

∑
k=1

vk

n

∑
j=1

[
βkjS∗k G(I∗j )

{
g
(

1
xk(t)

)
+
∫ h1

0
fkj(τ)g

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

}

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

]

+
n

∑
k=1

{ n

∑
j=1

vj

(
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

)
− vk(µk2 + γk + m̃kk)

}
I∗k g(yk(t))
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=−
n

∑
k=1

{
vk(µk1 + l̃kk + lkk)−

n

∑
j=1

vjljk

}
S∗k g(xk(t))

−
n

∑
k=1

vk

{( n

∑
j=1

βkjG(I∗j ) + (µk1 + l̃kk + lkk

)
S∗k −

n

∑
j=1

lkjS∗j

}
g
(

1
xk(t)

)

−
n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)g

(
xj(t− σ)

xk

)
dσ

−
n

∑
k=1

vk

n

∑
j=1

{
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

}

+
n

∑
k=1

{ n

∑
j=1

vj

(
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

)
− vk(µk2 + γk + m̃kk)

}
I∗k g(yk(t)).

Hence, by (4.1),

dU
dt
≤−

n

∑
k=1

{
vk(µk1 + l̃kk + lkk)−

n

∑
j=1

vjljk

}
S∗k g(xk(t))

−
n

∑
k=1

vkbkg
(

1
xk(t)

)
−

n

∑
k=1

vk

n

∑
j=1

lkjS∗j
∫ h2

0
gkj(σ)g

(
xj(t− σ)

xk

)
dσ

−
n

∑
k=1

vk

n

∑
j=1

{
βkjS∗k G(I∗j )

∫ h1

0
fkj(τ)

(
xk(t)ỹj(t− τ)

yk(t)

)
dτ

+ mkj I∗j
∫ h2

0
gkj(σ)g

(
yj(t− σ)

yk(t)

)
dσ

}

+
n

∑
k=1

{ n

∑
j=1

vj

(
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

)
− vk(µk2 + γk + m̃kk)

}
I∗k g(yk(t)), (5.7)

from which one can obtain the following lemma.

Lemma 5.1. For R̃0 > 1, if there exists a positive n-column vector v = (v1, v2, . . . , vn)T such that
(1.17) holds, then U′(t) ≤ 0.

Proof of Theorem 1.1. Theorem 3.1 denotes the first part R̃0 ≤ 1 of Theorem 1.1. For the case
R̃0 > 1, by Lemma 4.1, there exists at least one endemic equilibrium E∗ = (S∗1 , I∗1 , S∗2 , I∗2 , . . . ,
S∗n, I∗n) and by Lemmas 2.1 and 4.4, system (1.6) is permanent in Γ0. We now suppose that
there exists a positive n-column vector v such that (1.17) holds. By Lemma 5.1, it hold (5.7)
for (5.2) and U′(t) = 0, if and only if

xk(t) = 1, and yk(t) = yj(t− σ), for any 0 ≤ σ ≤ h2, t > 0, j = 1, 2, . . . , n, k = 1, 2, . . . , n.

Then, there exists a positive constant c such that

Ik(t)
I∗k

= c, for any t > 0, j = 1, 2, . . . , n, k = 1, 2, . . . , n,
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and
Sk(t) = S∗k and Ik(t) = cI∗k , for any t > 0, k = 1, 2, . . . , n.

From the first equation of system (1.6), we obtain that

0 = bk − (µk1 + l̃kk + lkk) + c
n

∑
j=1

βkjS∗k G(I∗j )− lkjS∗j , for any k = 1, 2, . . . , n. (5.8)

Since the right-hand side of (5.8) is strictly decreasing in c, (5.8) holds if and only if c = 1. This
implies that (S1(t), I1(t), S2(t), I2(t), . . . , Sn(t), In(t)) = E∗. Then, the only compact invariant
subset where U′(t) = 0 is the singleton {E∗}. Therefore, by Lemmas 2.1, 2.2 and 4.4, and
a similar argument as in Section 3, we obtain that for R̃0 > 1, E∗ is globally asymptotically
stable in Γ0. Hence, the proof is completed.

Concerning condition (1.18), we have the following lemma (see Guo et al. [8, Lemma 2.1]).

Lemma 5.2. The following system:

n

∑
j=1

vj

{
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

}
= vk(µk2 + γk + m̃kk), k = 1, 2, . . . , n (5.9)

has a positive solution (v1, v2, . . . , vn) defined by

(v1, v2, · · · , vn) = (C11, C22, . . . , Cnn), (5.10)

where

β̃kj =

(
βkjS∗k

G(I∗j )

I∗j
+ (1− δkj)mkj

)
I∗j , 1 ≤ k, j ≤ n,

and

B̃ =


∑j 6=1 β̃1j −β̃21 · · · −β̃n1

−β̃12 ∑j 6=2 β̃2j · · · −β̃n2
...

...
. . .

...
−β̃1n −β̃2n · · · ∑j 6=n β̃nj

 ,

and Ckk denotes the cofactor of the k-th diagonal entry of B̃, 1 ≤ k ≤ n.

Proof. Consider a basis for the solution space of the linear system:

B̃v = 0, (5.11)

which can be written as (5.10) (see for example, Berman and Plemmons [3]). By the irre-
ducibility of B, one can see that

[
β̃kj
]

n×n is irreducible and vk = Ckk > 0, k = 1, 2, . . . , n. Then,
by (5.11), we have that


β̃11 β̃21 · · · β̃n1

β̃12 β̃22 · · · β̃n2
...

...
. . .

...
β̃1n β̃2n · · · β̃nn




v1

v2
...

vn

 =



( n

∑
j=1

β̃1j

)
v1( n

∑
j=1

β̃2j

)
v2

...( n

∑
j=1

β̃nj

)
vn


,
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from which we have that

n

∑
j=1

vj β̃ jk = vk

n

∑
j=1

β̃kj, k = 1, 2, . . . , n,

which is equivalent to

n

∑
j=1

vj

{
β jkS∗j

G(I∗j )

I∗j
+ (1− δjk)mjk

}
I∗k = vk

n

∑
j=1

{
βkjS∗k

G(I∗k )
I∗k

+ (1− δkj)mkj

}
I∗j

= vk(µk2 + γk + m̃kk)I∗k ,

for k = 1, 2, . . . , n. By I∗k > 0, one can see that (5.9) has a positive solution (v1, v2, . . . , vn)

defined by (5.10).

Proof of Corollary 1.2. For system (1.6), it follows from Lemma 5.2 that there exists a positive
n-column vector v = (v1, v2, . . . , vn)T such that (1.18) and (1.19) hold. By Theorem 1.1, we
obtain the conclusion of the first part of this corollary. If there exists positive n-column vector
w = (w1, w2, . . . , wn)T such that (1.20) and (1.21) hold, then by Theorem 1.1, we obtain the
conclusion of the second part of this corollary.

By Corollary 1.2, we obtain the following corollaries.

Corollary 5.3. If R̃0 ≤ 1 and

µk1 + l̃kk ≥ µk2 + γk + m̃kk, and

β jkS0
j + (1− δjk)mjk ≥ (1− δjk)ljk, for any j, k = 1, 2, . . . , n,

or,

µk1 + l̃kk ≤ µk2 + γk + m̃kk, and

β jkS0
j + (1− δjk)mjk ≤ (1− δjk)ljk, for any j, k = 1, 2, . . . , n,

(5.12)

then E0 is globally asymptotically stable in Γ.
If R̃0 > 1 and

µk1 + l̃kk ≥ µk2 + γk + m̃kk, and

β jkS∗j
G(I∗k )

I∗k
+ (1− δjk)mjk ≥ (1− δjk)ljk, for any j, k = 1, 2, . . . , n,

or,

µk1 + l̃kk ≤ µk2 + γk + m̃kk, and

β jkS∗j
G(I∗k )

I∗k
+ (1− δjk)mjk ≤ (1− δjk)ljk, for any j, k = 1, 2, . . . , n,

(5.13)

then E∗ is globally asymptotically stable in Γ0.

Corollary 5.4. If {
µk1 + l̃kk ≥ µk2 + γk + m̃kk, and

mjk ≥ ljk, for any j 6= k, k = 1, 2, . . . , n,
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then for R̃0 ≤ 1, E0 is globally asymptotically stable in Γ, and for R̃0 > 1, E∗ is globally asymptotically
stable in Γ0.
If {

µk1 + l̃kk ≤ µk2 + γk + m̃kk, and

β jkS0
j + (1− δjk)mjk ≤ (1− δjk)ljk, for any j, k = 1, 2, . . . , n,

(5.14)

then for R̃0 ≤ 1, E0 is globally asymptotically stable in Γ, and for R̃0 > 1, E∗ is globally asymptotically
stable in Γ0, where Ī∗k , k = 1, 2, . . . , n are determined by the following equation.

(µk2 + γk + m̃kk) Ī∗k =
n

∑
j=1
{βkjS0

k + (1− δkj)mkj} Ī∗j , k = 1, 2, . . . , n.

Note that G(I∗k ) < Ī∗k , k = 1, 2, . . . , n, if I∗k > 0, k = 1, 2, . . . , n exist (see (4.1)).

6 Discussion

In this paper, we have formulated the multi-group SIR epidemic model (1.4) with nonlinear in-
cidence rates and distributed delays, which is related to the heroin model in which the heroin
users under treatment can return to untreated users depending on their different characters
and external influences. We have simplified the model to (1.6) and investigated the global
asymptotic stability of its equilibria. We have defined the threshold parameter R̃0 as in (1.13)
and proved that if R̃0 < 1 and there exists a positive n-column vector u such that (1.16) holds,
then the disease-free equilibrium E0 is globally asymptotically stable, while if R̃0 > 1 and
there exists a positive n-column vector v such that (1.17) holds, then the endemic equilibrium
E∗ is globally asymptotically stable (see Theorem 1.1).

The condition (5.14) in Corollary 5.4, as well as the latter part of the conditions (5.12) and
(5.13) in Corollary 5.3, implies that βkk = 0 for all k = 1, 2, . . . , n. It is worth noting that the
condition βkk = 0 for all k = 1, 2, . . . , n is valid, since the matrix B is assumed to be irreducible.
For the case µk1 + l̃kk ≤ µk2 + γk + m̃kk and βkk > 0 for some k = 1, 2, . . . , n, it would be an
interesting open problem to find the sufficient conditions under which each of equilibria E0

and E∗ is globally stable.
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