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Abstract. Sturm theorems have appeared as one of the fundamental subjects in qualita-
tive theory to determine properties of the solutions of differential equations. Motivated
by some recent developments for half-linear type elliptic equations, we obtain Picone-
type inequalities for two pairs of elliptic type equations with damping and external
terms in order to establish Sturmian comparison theorems. Some oscillation results are
given as applications.
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1 Introduction

Differential equations are widely used to construct mathematical models for various types of
problems. Therefore, we want to examine the solutions of the differential equations. General
solutions of most differential equations cannot be obtained by elementary methods analyti-
cally, that is, the solution cannot be expressed by a formula. For this reason, the qualitative
approach helps us to describe some properties of the solutions without finding the analytical
solution.

The determination of the qualitative character of half linear equations is a current inter-
est; oscillatory behavior of solutions has been studied by many authors. Sturm comparison
theorems and Picone identities or Picone-type inequalities play an important role in deter-
mining the oscillatory behavior of half linear elliptic equations. There are many papers (and
books) dealing with Picone identities and Picone-type inequalities for certain type differential
equations. For example see [5, 11, 12, 16, 18, 19, 23, 28–30, 35–37].

After the pioneering work of Sturm [27] in 1836, Sturmian comparison theorems have been
derived for differential equations of various types, especially via Picone type inequalities. We
refer to Kreith [21, 22], Swanson [29] for Picone identities and Sturmian comparison theorems
for linear elliptic equations, and to Allegretto [3], Allegretto and Huang [5, 6], Bognár and
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Došlý [9], Dunninger [13], Jaroš et al. [16,17,19,20], Kusano et al. [23], Yoshida [36,38], Tiryaki
[31], Tiryaki and Sahiner [33] for Picone identities, Sturmian comparison and/or oscillation
theorems for half linear elliptic equations.

It is known that, there are several results dealing with the solutions of linear equations.
Thus, comparing the behavior of solutions of nonlinear equations with linear equations would
help us to learn more about nonlinear equations. For instance in [17], Jaroš et al. considered
the linear elliptic operator

¯̀(u) =
n

∑
i,j=1

∂

∂xi

(
aij(x)

∂u
∂xj

)
+ c(x)u (1.1)

with the nonlinear elliptic operators

L̄(v) =
n

∑
i,j=1

∂

∂xi

(
Aij(x)

∂v
∂xj

)
+ C(x)|v|β−1v (1.2)

and

L̃(v) =
n

∑
i,j=1

∂

∂xi

(
Aij(x)

∂v
∂xj

)
+ C(x)|v|β−1v + D(x)|v|γ−1v, (1.3)

where β and γ are positive constants with β > 1 and 0 < γ < 1, (aij(x)) and (Aij(x)) are
matrices. They derived Sturm comparison theorems on the basis of the Picone-type inequali-
ties for the pairs of ¯̀(u) = 0, L̄(v) = f (x) and ¯̀(u) = 0, L̃(v) = 0, and they gave oscillation
theorems for the equations L̄(v) = f (x) and L̃(v) = 0.

Recently, motivated by this paper, Şahiner et al. [33] obtained some new results related
to Sturmian comparison theory for a damped linear elliptic equation and a forced nonlinear
elliptic equation with a damping term. They considered the damped linear elliptic operator

`∗(u) = ∇ · (a(x)∇u) + 2b(x) · ∇u + c(x)u (1.4)

with a forced nonlinear elliptic operator with damping term of the form

P∗(v) = ∇ · (A(x)|∇v|α−1∇v) + (α + 1)|∇v|α−1B(x) · ∇v + g(x, v),

g(x, v) = C(x)|v|α−1v +
`

∑
i=1

Di(x)|v|βi−1v +
m

∑
j=1

Ej(x)|v|γj−1v,
(1.5)

where | · | denotes the Euclidean length, and “ · ”denotes the scalar product. It is assumed
that 0 < γj < α < βi, (i = 1, 2, . . . , `; j = 1, 2, . . . , m).

Here the following question arises: is it possible to extend the Sturm comparison results in
[33] such that equations (1.4) and (1.5) are replaced with equations with matrix coefficients?
The objective of this paper is to give an affirmative answer to this question.

We organize this paper as follows: in Section 2, we establish Picone-type inequalities for
a pair of {`∗, P∗} with matrix coefficients. In Section 3, we present Sturmian comparison
theorems, and Section 4 is left for applications.

2 Picone-type inequalities

In this section we establish Picone-type inequalities and some Sturmian comparsion results for
a pair of differential equations. In this respect, we examine the following damped operators:

`(u) :=
m

∑
k=1
∇ · (ak(x)∇u) + 2b(x) · ∇u + c(x)u (2.1)
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and

P(v) :=
m

∑
k=1
∇ ·

(
Ak(x)

∣∣∣√Ak(x)∇v
∣∣∣α−1
∇v
)

+ (α + 1)
∣∣∣√Ak(x)∇v

∣∣∣α−1
B(x) · ∇v + g(x, v), (2.2)

where

g(x, v) = C(x)|v|α−1v +
`

∑
i=1

Di(x)|v|βi−1v +
m

∑
j=1

Ej(x)|v|γj−1v.

It is noted that ∇ = ( ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

)T and the operator norm ‖A(x)‖2 of an n × n matrix
function A(x) is defined by

‖A(x)‖2 = sup{|A(x)ξ|; ξ ∈ Rn, |ξ| < 1}.

For a real, symmetric positive definite matrix A(x), there exists a unique symmetric positive
semidefinite matrix

√
Ak(x) satisfying (

√
Ak(x))2 = A(x) and (Ak(x))−1 is the inverse of the

matrix Ak(x).
It is known that

‖A(x)‖2 =
√

λmax(AT(x)A(x))

where the superscript T denotes the transpose and λmax(AT(x)A(x)) denotes the eigenvalue
of AT(x)A(x).

It is assumed that βi > α > γj > 0, (i = 1, 2, . . . , `; j = 1, 2, . . . , m). When m = 1 and
A1(x) is the identity matrix In, the principal part of (2.2) reduced to the p-Laplacian
∇ · (|∇v|p−2∇v), p = α + 1. We know that a variety of physical phenomena are modeled
by equations involving the p-Laplacian [2, 7, 8, 24–26]. We refer the reader to Diaz [10] for
detailed references on physical background of the p-Laplacian.

In this section, we first establish Picone-type inequalities for a pair of differential equations
`(u) = 0 and P(v) = 0 and then for `(u) = 0 and P(v) = f (x), where the operators ` and P
are defined by (2.1) and (2.2), respectively.

Let G be a bounded domain in Rn with piecewise smooth boundary ∂G. We assume that:
matrices ak(x), Ak(x) ∈ C(Ḡ, Rn×n), (k = 1, 2, . . . , m) are symmetric and positive semidef-
inite in G; b(x), B(x) ∈ C(Ḡ, Rn); c(x), C(x) ∈ C(Ḡ, R); Di(x), (i = 1, 2, . . . , `), Ej(x) ∈
C(Ḡ, R+ ⋃{0}), (j = 1, 2, . . . , m) and f (x) ∈ C(Ḡ, R).

The domain D`(G) of `(u) is defined to be set of all functions u of class C1(Ḡ, R) with
the property that ak(x)∇u ∈ C1(G, Rn) ∩ C(Ḡ, Rn). The domain DP(G) of P is defined to be
the set of all functions v of class C1(Ḡ, R) with the property that Ak(x)|

√
Ak(x)∇v|α−1∇v ∈

C1(G, Rn) ∩ C(Ḡ, Rn).
Let N = min{`, m},

C1(x) = C(x) +
N

∑
i=1

H1(βi, α, γi; Di(x), Ei(x)), (2.3)

where

H1(β, α, γ; D(x), E(x)) =
β− γ

α− γ

(
β− α

α− γ

) α−β
β−γ

(D(x))
α−γ
β−γ (E(x))

β−α
β−γ ,
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and

C2(x) = C(x) +
N

∑
i=1

H2(βi, α, Di(x), f (x)), (2.4)

where

H2(β, α, D(x), f (x)) =
(

β

α

)(
β− α

α

) α−β
β

(D(x))
α
β | f (x)|

β−α
β .

We need the following lemma in order to give the proof of our results.

Lemma 2.1 ([23]). The inequality

|ξ|α+1 + α|η|α+1 − (α + 1)|η|α−1ξ · η ≥ 0

is valid for any ξ ∈ Rn and η ∈ Rn, where the equality holds if and only if ξ = η.

Theorem 2.2 (Picone-type inequality for `(u) = 0 and P(v) = 0). If u ∈ D`(G) and v ∈ DP(G),
v 6= 0 in G, then for any u ∈ C1(G, R) the following Picone-type inequality holds:

m

∑
k=1
∇ ·

(
u

ϕ(v)

[
ϕ(v)ak(x)∇u− ϕ(u)Ak(x)

∣∣∣√Ak(x)∇v
∣∣∣α−1
∇v
])

≥ −
m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ (∇u)T ·
( m

∑
k=1

ak(x)
)
(∇u)− |b(x)||∇u|2

− (|b(x)|+ c(x))u2 + C1(x)|u|α+1 − u
ϕ(v)

(ϕ(v)`(u)− ϕ(u)P(v))

+
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
,

(2.5)

where ϕ(s) = |s|α−1s, s ∈ R , Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C1(x) is defined by (2.3).

Proof. We easily see that

u`(u) = u
m

∑
k=1
∇ · (ak(x)∇u) + 2ub(x) · ∇u + c(x)u2

or
m

∑
k=1
∇ · (uak(x)∇u) = (∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)− 2ub(x) · ∇u− c(x)u2. (2.6)

Using Young’s inequality, we have,

2ub(x) · ∇u ≤ |b(x)|(u2 + |∇u|2). (2.7)

Using (2.6) and (2.7), we obtain the following inequality:

m

∑
k=1
∇ ·

(
u

ϕ(v)
[ϕ(v)ak(x)∇u]

)
≥ (∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)− |b(x)|∇u|2 − (|b(x)|+ c(x))u2

(2.8)
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On the other hand, we observe that the following identity holds:

−
m

∑
k=1
∇ ·

(
uϕ(u)

Ak(x)|
√

Ak(x)∇v|α−1∇v
ϕ(v)

)
= −

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
+

uϕ(u)
ϕ(v)

g(x, v)− uϕ(u)
ϕ(v)

P(v)

(2.9)

and that

uϕ(u)
ϕ(v)

g(x, v) = C(x)|u|α+1 + |u|α+1

(
`

∑
i=1

Di(x)|v|βi−α +
m

∑
j=1

Ej(x)|v|γj−α

)
.

By Young’s inequality,

`

∑
i=1

Di(x)|v|βi−α +
m

∑
j=1

Ej(x)|v|γj−α ≥
N

∑
i=1

(
Di(x)|v|βi−α + Ei(x)|v|γi−α

)
≥

N

∑
i=1

H1(βi, α, γi; Di(x), Ei(x)),

(2.10)

which yields

uϕ(u)
ϕ(v)

g(x, v) ≥
(

C(x) +
N

∑
i=1

H1(βi, α, γi; Di(x), Ei(x))

)
|u|α+1

= C1(x)|u|α+1.

(2.11)

Combining (2.8), (2.9) and (2.11) we get the desired inequality (2.5).

Theorem 2.3 (Picone-type inequality for P(v) = 0). If v ∈ DP(G), v 6= 0 in G, then for any
u ∈ C1(G, R), the following Picone-type inequality holds:

−
m

∑
k=1
∇ ·

(
uϕ(u)
ϕ(v)

Ak(x)
∣∣∣√Ak(x)∇v

∣∣∣α−1
∇v
)

≥ −
m

∑
k=1

∣∣∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)

∣∣∣∣∣
α+1

+ C1(x)|u|α+1

+
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)(Ak(x))−1
)
·Φ
(u

v

√
Ak(x)∇v

)]
− uϕ(u)

ϕ(v)
P(v), (2.12)

where ϕ(s) = |s|α−1s, s ∈ R, Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C1(x) is defined by (2.3).
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Proof. Combining (2.9) with (2.11) yields the desired inequality (2.12).

Theorem 2.4 (Picone-type inequality for `(u) = 0 and P(v) = f (x)). If u ∈ D`(G) and v ∈
DP(G), v 6= 0 in G and v f (x) ≤ 0 in G, then for any u ∈ C1(G, R) the following Picone-type
inequality holds:

m

∑
k=1
∇ ·

(
u

ϕ(v)

[
ϕ(v)ak(x)∇u− ϕ(u)Ak(x)

∣∣∣√Ak(x)∇v
∣∣∣α−1
∇v
])

≥ −
m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ (∇u)T ·
( m

∑
k=1

ak(x)
)
(∇u)− |b(x)||∇u|2

− (|b(x)|+ c(x))u2 + C2(x)|u|α+1 − uϕ(u)
ϕ(v)

[P(v)− f (x)]

+
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
,

(2.13)

where ϕ(s) = |s|α−1s, s ∈ R , Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C2(x) is defined with (2.4).

Proof. We easily obtain that:

−
m

∑
k=1
∇ ·

(
uϕ(u)

Ak(x)|
√

Ak(x)∇v|α−1∇v
ϕ(v)

)
= −

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+
uϕ(u)
ϕ(v)

(g(x, v)− f (x))− uϕ(u)
ϕ(v)

[P(v)− f (x)]

+
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
,

(2.14)

and it is clear that

uϕ(u)
ϕ(v)

(
C(x)|v|α−1v +

`

∑
i=1

Di(x)|v|βi−1 +
m

∑
j=1

Ej(x)|v|γj−1 − f (x)
)

≥
(

C(x) +
`

∑
i=1

Di(x)|v|βi−αv− f (x)
|v|α−1v

)
|u|α+1.

(2.15)

It can be shown that by using v f (x) ≤ 0 and Young’s inequality,

C(x) +
`

∑
i=1

Di(x)|v|βi−αv− f (x)
|v|α−1v

= C(x) +
`

∑
i=1

Di(x)|v|βi−αv +
| f (x)|
|v|α

≥ C(x) +
N

∑
i=1

H2(βi, α; Di(x), f (x)).
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Finally,
uϕ(u)
ϕ(v)

(g(x, v)− f (x)) ≥ C2(x)|u|α+1. (2.16)

Combining (2.8), (2.14) and (2.16), we get the desired inequality (2.13).

Theorem 2.5 (Picone-type inequality for P(v) = f (x)). If v ∈ DP(G), v 6= 0 in G and v f (x) ≤ 0
in G, then for any u ∈ C1(G, R) the following Picone-type inequality holds:

−
m

∑
k=1
∇ ·

(uϕ(u)
ϕ(v)

Ak(x)
∣∣∣√Ak(x)∇v

∣∣∣α−1
∇v
)

≥
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)(Ak(x))−1
)
·Φ
(u

v

√
Ak(x)∇v

)]
−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ C2(x)|u|α+1

− uϕ(u)
ϕ(v)

[P(v)− f (x)], (2.17)

where ϕ(s) = |s|α−1s, s ∈ R, Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C2(x) is defined with (2.4).

Proof. Combining (2.14) with (2.16) yields the desired inequality (2.17).

By using the ideas in [41], the condition on f (x) can be removed if we impose another
condition on v, as |v| ≥ k0. The proofs of the following theorems are similar to that of
Theorems 2.2–2.5 and Lemma 1 in [41], and hence are omitted.

Theorem 2.6 (Picone-type inequality for `(u) = 0 and P(v) = f (x)). If u ∈ D`(G) of `(u) = 0,
v ∈ DPα(G) and |v| ≥ k0 then the following Picone-type inequality holds for any u ∈ C1(G, R):

m

∑
k=1
∇ ·

(
u

ϕ(v)

[
ϕ(v)ak(x)∇u− ϕ(u)Ak(x)

∣∣∣√Ak(x)∇v
∣∣∣α−1
∇v
])

≥ −
m

∑
k=1

∣∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣∣α+1

+ (∇u)T ·
( m

∑
k=1

ak(x)
)
(∇u)− |b(x)||∇u|2

− (|b(x)|+ c(x))u2 + (C1(x)− k−α
0 )|u|α+1

+
m

∑
k=1

[ ∣∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣∣α+1

+ α

∣∣∣∣uv
√

Ak(x)∇v
∣∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
− uϕ(u)

ϕ(v)
[P(v)− f (x)], (2.18)

where ϕ(s) = |s|α−1s, s ∈ R , Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C1(x) is defined with (2.3).
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Theorem 2.7 (Picone-type inequality for P(v) = f (x)). If v ∈ DPα(G) and |v| ≥ k0 then the
following Picone-type inequality holds for any u ∈ C1(G, R):

−
m

∑
k=1
∇ ·

(uϕ(u)
ϕ(v)

Ak(x)
∣∣∣√Ak(x)∇v

∣∣∣α−1
∇v
)

≥
m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)(Ak(x))−1
)
·Φ
(u

v

√
Ak(x)∇v

)]
−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ (C1(x)− k−α
0 )|u|α+1

− uϕ(u)
ϕ(v)

[P(v)− f (x)], (2.19)

where ϕ(s) = |s|α−1s, s ∈ R, Φ(ξ) = |ξ|α−1ξ, ξ ∈ Rn and C1(x) is defined with (2.3).

3 Sturmian comparison theorems

In this section we establish some Sturmian comparison results on the basis of the Picone-type
inequalities obtained in Section 2. Let us begin with the differential equations `(u) = 0 and
P(v) = 0 which contain damping terms.

Theorem 3.1. Assume ∑m
k=1

√
Ak(x) is positive definite in G. If there is a nontrivial function u ∈

C1(Ḡ, R) such that u = 0 on ∂G and

M[u] :=
∫

G

m

∑
k=1

{∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1
− C1(x)|u|α+1

}
dx ≤ 0, (3.1)

then every solution v ∈ DP(G) of P(v) = 0 vanishes at some point of Ḡ. Furthermore, if ∂G ∈ C1,
then every solution v ∈ DP(G) of P(v) = 0 has one of the following properties:

(1) v has a zero in G, or

(2) u = k0eα(x)v, where k0 6= 0 is a constant and ∇α(x) = ∑m
k=1(Ak(x))−1B(x).

Proof. (The first statement) Suppose to the contrary that there exists a solution v ∈ DP(G) of
P(v) = 0 and v 6= 0 on Ḡ. Then the inequality (2.12) of Theorem 2.4 holds. Integrating (2.12)
over G and then using divergence theorem, we get

M[u] ≥
∫

G

m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(√

Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
)
·Φ
(u

v

√
Ak(x)∇v

)]
. (3.2)

Since u = 0 on ∂G and v 6= 0 on Ḡ, we observe that u 6= k0eα(x)v and hence ∇
( u

v

)
−

B(x)(Ak(x))−1 u
v 6= 0. We see that∫

G

m

∑
k=1

[∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(
∇u− u

(√
Ak(x)

)−1
B(x)

)
·Φ
(u

v

√
Ak(x)∇v

)]
dx > 0, (3.3)
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which together with (3.2) implies that M[u] > 0. This contradicts the hypothesis M[u] ≤ 0 .
The proof of the first statement (1) is complete.

(The second statement) Next we consider the case where ∂G ∈ C1. Let v ∈ DP(G) be a
solution of P(v) = 0 and v 6= 0 on G. Since ∂G ∈ C1, u ∈ C1(Ḡ, R) and u = 0 on ∂G, we find
that u belongs to the Sobolev space W1,α+1

0 (G) which is the closure in the norm

‖w‖ :=
( ∫

G

[
|w|α+1 +

m

∑
k=1

∣∣∣ ∂w
∂xi

∣∣∣α+1
]

dx
) 1

α+1

(3.4)

of the class C∞
0 (G) of infinitely differentiable functions with compact supports in G, [1, 14].

Let uj be a sequence of functions in C∞
0 (G) converging to u in the norm (3.4). Integrating

(2.12) with u = uj over G and then applying the divergence theorem, we observe that

M[uj] ≥
∫

G

m

∑
k=1

[∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
+ α
∣∣∣uj

v

√
Ak(x)∇v

∣∣∣α+1

−(α + 1)
(√

Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

)
·Φ
(uj

v

√
Ak(x)∇v

)]
dx

≥ 0.

(3.5)

We first claim that limj→∞ M[uj] = M[u] = 0. Since C(x), Di(x), (i = 1, 2, . . . , `), and f (x) are
bounded on Ḡ, there exists a constant K1 > 0 such that

|C1(x)| ≤ K1.

It is easy to see that

|M[uj]−M[u]| ≤ +
∫

G

m

∑
k=1

{∣∣∣∣∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1

−
∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
∣∣∣∣} dx

+ K1

∫
G

∣∣∣|uj|α+1 − |u|α+1
∣∣∣ dx

(3.6)

It follows from the mean value theorem that∣∣∣∣∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
−
∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
∣∣∣∣

≤ (α + 1)
(∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣+ ∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣)α

×
(∣∣∣√Ak(x)∇(uj − u) +

(√
Ak(x)

)−1
B(x)(uj − u)

∣∣∣)
≤ (α + 1)

(∥∥∥√Ak(x)
∥∥∥

2

(
|∇uj|+ |∇u|

)
+ |B(x)|

∥∥∥(√Ak(x)
)−1∥∥∥

2
|uj|+ |B(x)|

∥∥∥(√Ak(x)
)−1∥∥∥

2
|u|
)α

×
(∥∥∥√Ak(x)

∥∥∥
2
|∇(uj − u)|+

∥∥∥(√Ak(x)
)−1∥∥∥

2
|uj − u||B(x)|

)
.

Since also B(x) is bounded on Ḡ, there is a constant K3 such that |B(x)|‖(Ak(x))−1‖ ≤ K3

on Ḡ. Thus,
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∣∣∣∣∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
−
∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
∣∣∣∣

≤ (α + 1)
(

K2(|∇uj|+ |∇u|) + K3(|uj|+ |u|)
)α(

K2|∇(uj − u)|+ K3|uj − u|
)

, (3.7)

where K2 = maxx∈Ḡ ‖
√

Ak(x)‖2.
Let us take Nk = max{1, K2, K3}. From the above inequality we have∣∣∣∣∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
−
∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
∣∣∣∣

≤ (α + 1)Nα+1
k

(
|∇uj|+ |∇u|+ |uj|+ |u|

)α(
|∇(uj − u) + |uj − u||

)
. (3.8)

Using (3.8) and applying Hölder’s inequality, we find that

∫
G

∣∣∣∣∣ m

∑
k=1

∣∣∣√Ak(x)∇uj − uj

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
−
∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
∣∣∣∣∣ dx

≤ (α + 1)Nα+1
k

(∫
G
(|∇uj|+ |∇u|+ |uj|+ |u|)α+1dx

) α
α+1

×
(∫

G

(
|∇(uj − u)|α+1 + |uj − u|

)α+1
dx
) 1

α+1

≤ (α + 1)Nα+1
k nα

(
‖uj‖+ ‖u‖

)α ‖uj − u‖. (3.9)

Similarly we obtain∫
G

∣∣∣uj|α+1 − |u|α+1
∣∣∣ dx ≤ (α + 1)

(
‖uj‖+ ‖u‖

)α ‖uj − u‖. (3.10)

Combining (3.6), (3.9) and (3.10), we have

|M[uj]−M[u]| ≤ (α + 1)K4
(
‖uj‖+ ‖u‖

)α ‖uj − u‖

for some positive constant K4 depending on Nk, α, n and m, from which it follows that
limj→∞ M[uj] = M[u]. We see from (3.1) that M[u] ≥ 0, which together with (3.2) implies
M[u] = 0 .

Let B be an arbitrary ball with B̄ ⊂ G and define

QB [w] :=
∫

G

m

∑
k=1

[∣∣∣√Ak(x)∇w− w
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

+ α
∣∣∣w

v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(
∇w− w

(√
Ak(x)

)−1
B(x)

)
·Φ
(w

v

√
Ak(x)∇v

)]
(3.11)

for w ∈ C1(G; R). It is easily verified that

0 ≤ QB [uj] ≤ QG[uj] ≤ M[uj], (3.12)

where QG[uj] denotes the right hand side of (3.11) with w = uj and with B replaced by G. By
a simple computation,

|QB(uj)−QB(u)| ≤ K5(‖uj‖B + ‖u‖B)α‖uj − u‖B
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+ K6(‖uj‖B)α‖uj − u‖B + K7‖ϕ(uj)− ϕ(u)‖Lq
(B)
‖u‖B , (3.13)

where q = α+1
α , the constants K5, K6 and K7 are independent of k, and the subscript B indicates

the integrals involved in the norm (3.4) are to be taken over B instead of G. It is known that
Nemitski operator ϕ : Lα+1(G) → Lq(G) is continuous [6] and it is clear that ‖uj − u‖B → 0
as ‖uj − u‖G → 0. Therefore, letting j→ ∞ in (3.12), we find that QB [u] = 0. In view of (3.11),
we obtain[∣∣∣√Ak(x)∇u− u

(√
Ak(x)

)−1
B(x)

∣∣∣α+1
+ α
∣∣∣u
v

√
Ak(x)∇v

∣∣∣α+1

− (α + 1)
(
∇u− u

(√
Ak(x)

)−1
B(x)

)
·Φ
(u

v

√
Ak(x)∇v

)]
≡ 0 in B, (3.14)

from which Lemma 2.1 implies that√
Ak(x)∇u− u

(√
Ak(x)

)−1
B(x) ≡ u

v

√
Ak(x)∇v or ∇

(u
v

)
− B(x)(Ak(x))−1 u

v
≡ 0 in B.

Hence, we observe that u/v = k0eα(x) in B for some constant k0 and some continuous function
α(x) satisfying α(x) = ∑m

k=1(
√

Ak(x))−1B(x). Since B is an arbitrary ball with B̄ ⊂ G , we
conclude that u/v = k0eα(x) in G , where k0 6= 0 in the view of the hypothesis that u is
nontrivial and therefore v is a function such that u = k0eα(x)v in G. This completes the proof
of the second statement.

Remark 3.2. If we omit the damping term, that is B(x) ≡ 0 in M[u] in Theorem 3.1 (with
Di(x) ≡ 0, (i = 1, 2, . . . , `), Ej(x) ≡ 0, (j = 1, 2, . . . , m), we obtain Theorem 2.4 given in [38]. If
B(x) ≡ 0 in Theorem 3.1, the Theorem 4 given in [40] is observed. Furthermore, in this case
we can derive the Wirtinger inequality as given by Corollary 3 in [40]. If we take m = α = 1
and B(x) ≡ 0 with D1 ≡ C(x), Di ≡ Ej(x) ≡ 0, (i = 2, . . . , `), (j = 1, 2, . . . , m), we obtain the
inequality (14) in [17] and (2.21) in [20]. Therefore, Theorem 3.1 is a partial extension of the
theorems that are cited above.

Theorem 3.3 (Sturmian comparison theorem). Assume that ∑m
k=1

√
Ak(x) is positive definite in

G. If there is a nontrivial solution u ∈ D`(G) of `(u) = 0 such that u = 0 on ∂G and

V[u] :=
∫

G

{
(∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

− |b(x)||∇u|2 + C1(x)|u|α+1 − (|b(x)|+ c(x)) u2
}

dx ≥ 0,

then every solution v ∈ DP(G) of P(v) = 0 in G must vanish at some point of Ḡ. Furthermore, if
∂G ∈ C1, then every solution v ∈ DP(G) of P(v) = 0 in G has one of the following properties:

(1) v has a zero in G or

(2) u = k0eα(x)v, where k0 6= 0 is a constant and ∇α(x) = ∑m
k=1 B(x)(Ak(x))−1.

Proof. This theorem can be proven by applying the same argument used in the proof of The-
orem 3.1 via Picone inequality (2.5). But we prefer to give an alternative proof here. By using
the definition of M[u] and V[u], we have

M[u] = −V[u] +
∫

G

{
(∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)− |b(x)||∇u|2 − (c(x) + |b(x)|)u2

}
dx.
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For the last integral over G, considering the integral of the inequality (2.8), by using the
divergence theorem, and in view of the above inequality, implies that M[u] ≤ 0. Then the
conclusion of the theorem follows from Theorem 3.1.

Remark 3.4. If we set α = 1 in P(v) = 0 and take b(x) ≡ 0 in `(u) = 0, V[u] in Theorem 3.3
becomes the following:

V[u] =
∫

G

m

∑
k=1

{
(∇u)T(ak(x)− Ak(x)

)
(∇u)

+
(

C1(x)− c(x)− B(x)
(√

Ak(x)
)−1

BT(x)−∇ · B(x)
)

u2
}

dx ≥ 0.

It can be shown that V[u] ≥ 0 for any u ∈ C1(Ḡ, R) if ∑m
k=1(ak(x)− Ak(x)) is positive semidef-

inite in G and

C1(x) ≥ c(x) +∇ · B(x) +
m

∑
k=1

B(x)(Ak(x))−1BT(x) in G.

Remark 3.5. For a special case if we set α = 1 in P(v) = 0 and take b(x) ≡ 0 and B(x) ≡ 0 in
`(u) = 0 and P(v) = 0, respectively, that is for the following equations:

m

∑
k=1
∇ · (ak(x)∇u) + c(x)u = 0 (3.15)

and
m

∑
k=1
∇ · (Ak(x)∇v) + C(x)v +

`

∑
i=1

Di(x)|v|βi−1v +
m

∑
j=1

Ej(x)|v|γj−1v = 0, (3.16)

V[u] in Theorem 3.3 can be expressed as:

V[u] =
∫

G

m

∑
k=1

{
(∇u)T ·

(
ak(x)− Ak(x)

)
(∇u) + (C1(x)− c(x))u2

}
dx ≥ 0. (3.17)

For the equation (3.15) and (3.16) the following corollary can be given as a result of special
case of Theorem 3.3.

Corollary 3.6. Assume that ∑m
k=1

√
Ak(x) is positive definite in G, and furthermore assume that

ak(x)− Ak(x), (k = 1, 2, . . . , m) are positive semidefinite in G

C1(x) ≥ c(x) in G.

If there is a nontrivial solution u of (3.15) such that u = 0 on ∂G, then every solution v of (3.16) must
vanish at some point of Ḡ.

Note that Corollary 3.6 gives Corollary 1 in the case α = 1 in [40]. We have used Picone-
type inequalities that we obtained in Theorem 2.2 and Theorem 2.3 to establish Theorem 3.1
and Theorem 3.3 in Section 2. Inspired by Yoshida’s paper [41], we obtained alternative
Picone-type inequalities to establish the following theorems.
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Theorem 3.7. Let k0 > 0 be a constant. Assume ∑m
k=1

√
Ak(x) is positive definite in G. If there is a

nontrivial function u ∈ C1(Ḡ, R) such that u = 0 on ∂G and

M̃[u] :=
∫

G

m

∑
k=1

{∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1
− (C2(x)− k−α

0 )|u|α+1
}

dx ≤ 0, (3.18)

then for every solution v ∈ DPα(G) of P(v) = 0, either v has a zero on Ḡ or |v(x0)| < k0 for some
x0 ∈ G.

Theorem 3.8. Assume that ∑m
k=1

√
Ak(x) is positive definite in G. If there is a nontrivial solution

u ∈ D`(G) of `(u) = 0 such that u = 0 on ∂G and

Ṽ[u] :=
∫

G

{
(∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

− |b(x)||∇u|2 + (C2(x)− k−α
0 )|u|α+1 − (|b(x)|+ c(x)) u2

}
dx ≥ 0,

then every solution v ∈ DPα(G) of Pα(v) = 0 in G must vanish at some point of Ḡ or |v(x0)| < k0 for
x0 ∈ G.

These theorems can be proven by using the same ideas in the proof of Theorems 3.1 and
3.3 and Theorem 1 in [41]; hence the proofs are omitted.

Recently there has been considerable interest in studying forced differential equations and
their oscillations. Yoshida studied the forced oscillations of second order elliptic equations.
For additional examples about oscillation of forced differential equations, the reader may refer
to [15, 17, 20, 33, 39] and the references cited therein.

Now we continue to give Sturmian comparison result on the basis of the Picone-type
inequality obtained in Theorems 2.4 and 2.5 for the differential equations `(u) = 0 and P(v) =
f (x) that contain damping and forcing terms.

Theorem 3.9. Assume ∑m
k=1

√
Ak(x) is positive definite in G. If there is a nontrivial function u ∈

C1(Ḡ, R) such that u = 0 on ∂G and

M̃G[u] :=
∫

G

m

∑
k=1

{∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1
− C2(x)|u|α+1

}
dx ≤ 0, (3.19)

then every solution v ∈ DP(G) of P(v) = f (x) satisfying v f (x) ≤ 0 in G must vanish at some point
of Ḡ. Furthermore, if ∂G ∈ C1, then every solution v ∈ DP(G) of P(v) = f (x) satisfying v f (x) ≤ 0
in G has one of the following properties:

(1) v has a zero in G or

(2) u = k0eα(x)v, where k0 6= 0 is a constant and ∇α(x) = B(x)(Ak(x))−1.

Proof. Suppose, to the contrary that, there is a solution v ∈ DP(G) of P(v) = f (x) satisfying
v f (x) ≤ 0 and v 6= 0 on Ḡ. Then the inequality (2.17) of Theorem 2.5 holds for the nontrivial
function u. Integrating the inequality (2.17) over G and applying the same idea used in the
proof of Theorem 3.1 we observe that M̃G[u] > 0, which contradicts the hypothesis M̃G[u] ≤ 0.
This completes the proof of the first statement. In the case where ∂G ∈ C1, let v ∈ DP(G) be
a solution of P(v) = f (x) such that v 6= 0 in G. By the same arguments as in the proof of
Theorem 2.2, we obtain that M̃G[u] = 0, which implies that u and v can be written in the form
u = k0eα(x)v, where k0 6= 0 is a constant and ∇α(x) = B(x)(Ak(x))−1. Thus, the proof of the
theorem is complete.
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Remark 3.10. If we omit the damping term, that is B(x) ≡ 0 in M[u] in Theorem 3.1, we obtain
Theorem 8 given in [40] and the inequality (14) in [17] for m = α = 1. Furthermore if we take
m = α = 1 with D1(x) ≡ C(x), Di(x) ≡ 0, (i = 2, . . . , `) and Ej(x) ≡ 0, (j = 1, 2, . . . , m), we get
the inequality (2.23) in [20]. Therefore this theorem is a partial extension of these theorems
cited above.

Corollary 3.11. Let ∑m
k=1

√
Ak(x) be positive definite in G. Assume that f (x) ≥ 0 (or f (x) ≤ 0)

in G. If there is a nontrivial function u ∈ C1(G, R) such that u = 0 on ∂G and M̃G[u] ≤ 0, then
P(v) = f (x) has no negative (or positive) solution on Ḡ .

Proof. Suppose that P(v) = f (x) has a negative (or positive) solution v on Ḡ. Then v f (x) ≤ 0
in G, and therefore it follows from Theorem 3.3 that v must vanish at some point of Ḡ. This is
a contradiction and the proof is complete.

Theorem 3.12 (Sturmian comparison theorem). Assume that ∑m
k=1

√
Ak(x) is positive definite in

G. If there is a nontrivial solution u ∈ D`(G) of `(u) = 0 such that u = 0 on ∂G and

ṼG[u] :=
∫

G

{
(∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

− |b(x)||∇u|2 + C2(x)|u|α+1 − (|b(x)|+ c(x)) u2
}

dx ≥ 0,

then every solution v ∈ DP(G) of P(v) = f (x) satisfying v f (x) ≤ 0 in G must vanish at some point
of Ḡ.

Proof. Let us apply the same argument that we used in the proof of Theorem 3.3. We get

M̃G[u] = −ṼG[u] +
∫

G

{
(∇u)T·

( m

∑
k=1

ak(x)
)
(∇u)− |b(x)||∇u|2− (c(x)+ |b(x)|)u2

}
dx. (3.20)

If we integrate both sides of inequality (2.8) over G and use the divergence theorem, we get
M̃G[u] ≤ 0. Thus Theorem 3.12 follows from Theorem 3.9.

Remark 3.13. If we take m = α = 1, C(x) ≡ 0, D1(x) ≡ C(x), Di(x) ≡ Ej(x) ≡ 0,
(i = 2, . . . , `; j = 1, 2, . . . , m) in ṼG[u] in Theorem 3.12, we observe Theorem 2.6 in [20]. Fur-
thermore, by omitting the damping terms, that is b(x) ≡ B(x) ≡ 0 and m = α = 1, Theorem
3.12 becomes Theorem 4 in [17]. If we take α = 1, b(x) ≡ B(x) ≡ 0 and Di(x) ≡ 0, (i = 1, . . . , `)
and Ej(x) ≡ 0, (j = 1, 2, . . . , m) in ṼG[u] in the Theorem 3.12, we see this theorem becomes
Theorem 2.3 in the case α = 1 in [38].

By using the Picone-type inequalities that are obtained in Theorems 2.6 and 2.7, and by
using the same idea in [41], the following theorems can be established.

Theorem 3.14. Let k0 > 0 be a constant. Assume ∑m
k=1

√
Ak(x) is positive definite in G. If there is a

nontrivial function u ∈ C1(Ḡ, R) such that u = 0 on ∂G and

˜̃MG[u] :=
∫

G

m

∑
k=1

{∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1
− (C1(x)− k−α

0 )|u|α+1
}

dx ≤ 0,

then for every solution v ∈ DPα(G) of P(v) = f (x), either v has a zero on Ḡ or |v(x0)| < k0 for some
x0 ∈ G.
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Theorem 3.15 (Sturmian comparison theorem). Assume that ∑m
k=1

√
Ak(x) is positive definite in

G. If there is a nontrivial solution u ∈ D`(G) of `(u) = 0 such that u = 0 on ∂G and

˜̃VG[u] :=
∫

G

{
(∇u)T ·

( m

∑
k=1

ak(x)
)
(∇u)−

m

∑
k=1

∣∣∣√Ak(x)∇u− u
(√

Ak(x)
)−1

B(x)
∣∣∣α+1

− |b(x)||∇u|2 + (C1(x)− k−α
0 )|u|α+1 − (|b(x)|+ c(x)) u2

}
dx ≥ 0,

then for every solution v ∈ DPα(G) of P(v) = f (x), either v has a zero on Ḡ or |v(x0)| < k0 for some
x0 ∈ G.

The proofs of the Theorems 3.14 and 3.15 can be given by following the same steps in
Theorems 3.9 and 3.12 respectively, hence omitted.

However Theorems 3.14 and 3.15 cannot guarantee a zero in Ḡ, Theorems 3.9 and 3.12
guarantee a zero in Ḡ. But considering the Theorems 3.14 and 3.15, can be used to obtain
other results as in [41].

Theorem 3.16. Let ∑m
k=1

√
Ak(x) be positive definite in G. Assume that G is divided into subdomains

G1 and G2 by an (n− 1)-dimensional piecewise smooth hypersurface in such a way that

f (x) ≥ 0 in G1 and f (x) ≤ 0 in G2 (3.21)

If there are nontrivial functions uk ∈ C1(Ḡk, R) such that uk = 0, on ∂Gk (k = 1, 2) and M̃G[uk] ≤ 0
then every solution v ∈ DP(G) of P(v) = f (x) has a zero on Ḡ.

Proof. Suppose that P(v) = f (x) has a solution v ∈ DP1(G) with no zero on Ḡ. Then either
v < 0 on Ḡ or v > 0 on Ḡ. If v < 0 on Ḡ, then v < 0 on Ḡ1, so that v f (x) ≤ 0 in Ḡ1.
Using Corollary 3.11, we see that no solution of P(v) = f (x) can be negative on Ḡ1. This
contradiction shows that it is impossible to have v < 0 on Ḡ. In the case where v > 0 on Ḡ, a
similar argument leads us to a contradiction and the proof is complete.

4 Applications

In this section we will give an oscillation result for the equations P(v) = 0 and P(v) = f (x) in
an unbounded domain Ω ⊂ Rn which contains {x ∈ Rn; |x| ≥ r0} for some r0 > 0 where

Ωr := Ω ∩ {x ∈ R; |x| > r}.

Definition 4.1. A bounded domain G with Ḡ ⊂ Ω is said to be a nodal domain for `(u) = 0 in
G and u = 0 on ∂G. The equation `(u) = 0 is called nodally oscillatory in Ω if it has a nodal
domain contained in Ωr for any r > 0.

It is assumed that matrices (ak(x)), (Ak(x)) ∈ C(Ω, Rn×n), (k = 1, 2, . . . , m) are symmetric
and positive definite in Ω, b(x), B(x) ∈ C(Ω, Rn); c(x), C(x) ∈ C(Ω, R); Di(x), (i = 1, 2, . . . , `),
Ej(x) ∈ C(Ω, R+ ⋃{0}), (j = 1, 2, . . . , m) and f (x) ∈ C(Ω, R).

Theorem 4.2. Let bi(x) ≡ 0 in `(u) = 0 and α = 1 in P(v) = 0, and assume that

(ak(x)− Ak(x)) is positive semidefinite in Ω,

c(x) +∇ · B(x) + B(x)(Ak(x))−1BT(x) ≤ C1(x) in Ω.
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Every solution v ∈ DP(Ω) of

m

∑
k=1
∇ ·

(
Ak(x)∇v

)
+ 2B(x) · ∇v + C(x)v +

`

∑
i=1

Di(x)|v|βi−1v +
m

∑
j=1

Ej(x)|v|γj−1v = 0 (4.1)

is oscillatory in Ω if `(u) = 0 is nodally oscillatory in Ω.

Proof. Since `(u) = 0 is nodally oscillatory in Ω, there exists a nodal domain G ⊂ Ωr for any
r > 0, and therefore there is a nontrivial solution u of `(u) = 0 in G such that u = 0 on ∂G. It
follows from the hypotheses of the theorem that V[u] defined in Theorem 3.3 is nonnegative.
Theorem 3.3 implies that every solution v ∈ DP(Ω) of (4.1) must vanish at some point of Ḡ,
that is, v has a zero in Ωr for any r > 0. This implies that v is oscillatory in Ω.

The following corollary is an immediate result of Theorem 4.2.

Corollary 4.3. If the elliptic equation

∇u +

(
C(x) +

N

∑
i=1

H1(βi, 1 γi, Di(x), Ei(x))−∇ · B(x)− |B(x)|2
)

u = 0

is nodally oscillatory in Ω, then every solution v ∈ C2(Ω, R) of

∇v + 2B(x) · ∇v + C(x)v +
`

∑
i=1

Di(x)|v|βi−1v +
`

∑
j=1

Ej(x)|v|γj−1v = 0

is oscillatory in Ω.

Note that Corollary 5.3 in [20] can also be given as an application of Theorem 4.2.

Definition 4.4. A function v ∈ C(Ω, R) is said to be oscillatory in Ω if v has a zero in Ωr for
any r > 0.

Assume that the matrix functions Ak(x) ∈ C(Ω; Rn×n), k = 1, 2, . . . , n are symmetric and
positive definite in Ω, C(x) ∈ C(Ω, R); Di(x), Ej(x) ∈ C(Ω, R), (i = 1, 2 . . . , `; j = 1, 2, . . . , m)
and f (x) ∈ C(Ω, R). The domain DP(Ω) of P is defined to be the set of all functions v of class
C1(Ω, R) with the property Ak(x)|

√
Ak(x)∇v|α−1∇v ∈ C1(Ω, Rn) ∩ C(Ω, Rn).

Theorem 4.5. Assume that for any r > 0 there exists a bounded and piecewise smooth domain G with
Ḡ ⊂ Ωr which can be divided into subdomains G1 and G2 by an (n − 1) dimensional hypersurface
in such a way that f (x) ≥ 0 and G1 and f (x) ≤ 0 in G2. Assume furthermore that Di(x) ≥ 0,
(i = 1, 2, . . . , `) and Ej(x) ≥ 0, (j = 1, 2, . . . , m) in G and that there are nontrivial functions uk ∈
C1(Ḡk, R) such that uk = 0 on ∂Gk and M̃Gk [uk] ≤ 0, (k = 1, 2) where M̃G is defined by (3.19). Then
every solution v ∈ DP(Ω) of P(v) = f (x) is oscillatory in Ω.

Proof. We need to apply Theorem 3.16 to make sure that v has a zero in any domain G as
mentioned in the hypotheses of Theorem 4.5. Theorem 3.16 implies that every solution of
P(v) = f (x) has a zero on Ḡ ⊂ Ωr, that is, v is oscillatory in Ω.

Example 4.6. Consider the forced quasilinear elliptic equation

∂

∂x1

[{
2
(

∂v
∂x1

)2

+ 5
(

∂v
∂x2

)2
}

∂v
∂x1

]
+

∂

∂x2

[
2

{(
∂v
∂x1

)2

+ 5
(

∂v
∂x2

)2
}

∂v
∂x2

]

+ 4

(
2
(

∂v
∂x1

)2

+ 5
(

∂v
∂x2

)2
)

∂v
∂x1

+ K(sin x1 sin x2)|v|β−1v = cos x1 sin x2, (x1, x2) ∈ Ω,
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where β and K are the constants with β > 3, K > 0, and Ω is an unbounded domain in R2

containing a horizontal strip such that [2π, ∞)× [0, π] ⊂ Ω. Here m = n = 2, ` = 1, α = 3,
β1 = β, A1(x) =

(
1 0
0 1

)
and A2(x) =

(
1 0
0 4

)
, it can be easily shown that

√
A1(x) +

√
A2(x) =(

1 0
0 3

)
positive definite matrix. B(x) = (1, 0)T C(x) ≡ 0, D1(x) = K sin x1 sin x2, Di(x) ≡ 0,

(i = 2, . . . , `), Ej(x) ≡ 0, j = 1, 2, . . . , m, f (x) = cos x1 sin x2. For any fixed j ∈ N, we consider
the rectangular region,

Gj = (2jπ, (2j + 1)π)× (0, π),

which is divided into two subdomains

Gj
1 = (2jπ, (2j + (1/2))π)× (0, π),

Gj
2 = ((2j + (1/2))π, (2j + 1)π)× (0, π),

by the vertical line x1 = (2j + (1/2))π. We observe that f (x) ≥ 0 in Gj
1 and f (x) ≤ 0 in

Gj
2. Letting uk = sin 2x1 sin x2, k = 1, 2, we get uk = 0 on ∂Gj

k (k = 1, 2) and after some
computations we obtain

MGj
k [uk ]

=
∫

Gj
k

[ [(
∂uk

∂x1
− uk

)2

+

(
∂uk

∂x2

)2
]2

+

[(
∂uk

∂x1
− uk

)2

+

(
2

∂uk

∂x2

)2
]2

+
β

3

(
β− 3

3

) 3−β
β

(K(sin x1 sin x2))
3
β | cos x1 sin x2|

β−3
β u4

k

]
dx

=
673
128

π2 − 128
15

K
3
β

β

3

(
β− 3

3

) 3−β
β

B
(

5
2
+

3
2β

, 3− 3
2β

)
,

where B(s, t) is the beta function. If we take

K ≥

10095
16384

π2

β

3

(
β− 3

3

) 3−β
β

B
(

5
2
+

3
2β

, 3− 3
2β

)−1


β
3

then MGj
k
[uk] ≤ 0 for k = 1, 2 and for any j ∈ N. Therefore, Theorem 4.5 implies that every

solution v considered forced elliptic equation is oscillatory in Ω for all sufficiently large K > 0.
For example if we take β = 4 and K = 330, then the above inequality is valid.
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20 A. Tiryaki, S. Şahiner and E. Misirli

[37] N. Yoshida, Oscillation theory of partial differential equations, World Scientific Publishing
Co. Pte. Ltd., 2008. MR2485076

[38] N. Yoshida, A Picone identity for half-linear elliptic equations and its applications to
oscillation theory, Nonlinear Anal. 71(2009), 4935–4951. MR2548725

[39] N. Yoshida, Forced oscillations of half-linear elliptic equations via Picone-type inequality,
Int. J. Differ. Equ. 2010, Art. ID 520486, 9 pp. MR2581141

[40] N. Yoshida, Sturmian comparison and oscillation theorems for quasilinear elliptic equa-
tions with mixed nonlinearities via Picone-type inequality, Toyama Math. J. 33(2010),
21–41. MR2893644

[41] N. Yoshida, Forced oscillation criteria for superlinear–sublinear elliptic equations via
Picone-type inequality, J. Math. Anal. Appl. 363(2010), 711–717. MR2564890

http://www.ams.org/mathscinet-getitem?mr=2485076
http://www.ams.org/mathscinet-getitem?mr=2548725
http://www.ams.org/mathscinet-getitem?mr=2581141
http://www.ams.org/mathscinet-getitem?mr=2893644
http://www.ams.org/mathscinet-getitem?mr=2564890

