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Abstract. We study analytical properties of a singular nonlinear ordinary differential
equation with a φ-Laplacian. In particular we investigate solutions of the initial value
problem

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, u(0) = u0 ∈ [L0, L], u′(0) = 0

on the half-line [0, ∞). Here, f is a continuous function with three zeros φ(L0) <
0 < φ(L), function p is positive on (0, ∞) and the problem is singular in the sense
that p(0) = 0 and 1/p(t) may not be integrable on [0, 1]. The main goal of the pa-
per is to prove the existence of damped solutions defined as solutions u satisfying
sup{u(t), t ∈ [0, ∞)} < L. Moreover, we study the uniqueness of damped solutions.
Since the standard approach based on the Lipschitz property is not applicable here in
general, the problem is more challenging. We also discuss the uniqueness of other types
of solutions.

Keywords: second order ODE, time singularity, existence and uniqueness, φ-Laplacian,
damped solution, half-line.
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1 Introduction

We study the equation

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, t ∈ (0, ∞) (1.1)

with the initial conditions

u(0) = u0, u′(0) = 0, u0 ∈ [L0, L], (1.2)
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where
φ ∈ C1(R), φ′(x) > 0 for x ∈ (R \ {0}), (1.3)

φ(R) = R, φ(0) = 0, (1.4)

L0 < 0 < L, f (φ(L0)) = f (0) = f (φ(L)) = 0, (1.5)

f ∈ C[φ(L0), φ(L)], x f (x) > 0 for x ∈ ((φ(L0), φ(L)) \ {0}), (1.6)

p ∈ C[0, ∞) ∩ C1(0, ∞), p′(t) > 0 for t ∈ (0, ∞), p(0) = 0. (1.7)

A model example of (1.1), (1.2) is a problem with the α-Laplacian described below.

Example 1.1. Consider φ(x) = |x|α sgn x, x ∈ R, where α ≥ 1. Then φ′(x) = α|x|α−1 and
conditions (1.3) and (1.4) are fulfilled. If we take p(t) = tβ, t ∈ [0, ∞ ), where β > 0, then
p fulfils (1.7). As an example of f satisfying conditions (1.5) and (1.6) we can take f (x) =

x (x− φ(L0)) (φ(L)− x), x ∈ R.

A special case of equation (1.1), which has the form(
tn−1u′(t)

)′
+ tn−1 f (u(t)) = 0, t ∈ (0, ∞),

arises in many areas. For example in the study of phase transition of Van der Waals fluids [10],
in population genetics, where it serves as a model for the spatial distribution of the genetic
composition of a population [9], in the homogeneous nucleation theory [1], in the relativistic
cosmology for description of particles which can be treated as domains in the universe [16], or
in the nonlinear field theory, in particular, when describing bubbles generated by scalar fields
of the Higgs type in the Minkowski spaces [7]. The equation(

p(t)u′(t)
)′
+ q(t) f (u(t)) = 0, t ∈ (0, ∞)

without φ-Laplacian, was investigated for p ≡ q in [19–24] and for p 6≡ q in [5,6,25,26]. Other
problems without φ-Laplacian close to (1.1), (1.2) can be found in [2–4, 12–14] and those with
φ-Laplacian in [8, 11, 15, 17, 18].

Definition 1.2. A function u ∈ C1[0, ∞) with φ(u′) ∈ C1 (0, ∞) which satisfies equation (1.1)
for every t ∈ (0, ∞) is called a solution of equation (1.1). If moreover u satisfies the initial
conditions (1.2), then u is called a solution of problem (1.1), (1.2).

Definition 1.3. Consider a solution u of problem (1.1), (1.2) with u0 ∈ (L0, L) and denote

usup = sup{u(t) : t ∈ [0, ∞)}.

If usup < L, then u is called a damped solution of problem (1.1), (1.2).
If usup = L, then u is called a homoclinic solution of problem (1.1), (1.2).
The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t ∈ [0, ∞ ) and
a singular homoclinic solution, if there exists t0 > 0 such that u(t0) = L.
If usup > L, then u is called an escape solution of problem (1.1), (1.2).

Remark 1.4. Equation (1.1) has the constant solutions u(t) ≡ L, u(t) ≡ 0 and u(t) ≡ L0.

Our goal in this paper is to prove new existence and uniqueness results for equation (1.1) with
φ-Laplacian. The presence of φ-Laplacian in equation (1.1) brings difficulties in the study of
the uniqueness. For example if φ(x) = |x|α sgn x and α > 1, then φ fulfils the Lipschitz
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condition on R. On the other hand, φ−1 = |x| 1α sgn x and
(
φ−1)′ (x) = 1

α |x|
1
α−1. Thus we

get limx→0
(
φ−1)′ (x) = ∞ and the function φ−1 does not fulfil the Lipschitz condition in the

neighbourhood of zero. Since both φ and φ−1 must be present in the operator form of problem
(1.1), (1.2), (compare with (4.2)), we cannot use the standard approach with a Lipschitz con-
stant to prove the uniqueness near zero. Therefore we develop a different approach near zero
and show conditions which guarantee the uniqueness of damped and regular homoclinic so-
lutions of problem (1.1), (1.2) (Theorem 5.4) and the uniqueness of escape solutions (Theorem
6.5) of the auxiliary problem (2.1), (1.2) introduced in Section 2.

We also present conditions sufficient for the existence of solutions of problem (1.1), (1.2).
The existence of damped solutions of problem (1.1), (1.2) is proved here (Theorem 5.1). The
more complicated questions about the existence of escape and homoclinic solutions and about
nonexistence of singular homoclinic solutions remain open and they will be studied in our
next paper.

2 Properties of solutions of auxiliary equation (2.1)

In this section we introduce an auxiliary equation with a bounded nonlinearity and we de-
scribe properties of its solutions. By means of these results we proceed to a priori estimates of
solutions, existence and continuous dependence of solutions on initial values in next sections.
The auxiliary equation has the form

(p(t)φ(u′(t)))′ + p(t) f̃ (φ(u(t))) = 0, t ∈ (0, ∞), (2.1)

where

f̃ (x) =

{
f (x) for x ∈ [φ(L0), φ(L)],

0 for x < φ(L0), x > φ(L).
(2.2)

Properties of solutions of (2.1) are derived in the next lemmas.

Lemma 2.1. Let (1.3)–(1.7) hold and let u be a solution of equation (2.1).

a) Assume that there exists a ≥ 0 such that u(a) ∈ (0, L) and u′(a) = 0. Then u′(t) < 0 for
t ∈ (a, θ], where θ is the first zero of u on (a, ∞). If such θ does not exist, then u′(t) < 0 for
t ∈ (a, ∞).

b) Assume that there exists b ≥ 0 such that u(b) ∈ (L0, 0) and u′(b) = 0. Then u′(t) > 0 for
t ∈ (b, θ], where θ is the first zero of u on (b, ∞). If such θ does not exist, then u′(t) > 0 for
t ∈ (b, ∞).

Proof.

a) Let a ≥ 0 be such that u(a) ∈ (0, L) and u′(a) = 0. First, we assume that there exists
θ > a satisfying u(t) > 0 on (a, θ) and u(θ) = 0. Assume that there exists τ ∈ (a, θ) such
that u′(τ) ≥ 0, u(t) ∈ [u(a), L) for t ∈ (a, τ]. Integrate (2.1) from a to τ and obtain

p(τ)φ(u′(τ)) = −
∫ τ

a
p(s) f̃ (φ(u(s)))ds < 0.

Hence, by (1.3) and (1.7), u′(τ) < 0, a contradiction. Therefore u′ < 0 on (a, θ). Further-
more, integrating (2.1) over (a, θ), we get

p(θ)φ(u′(θ)) = −
∫ θ

a
p(s) f̃ (φ(u(s)))ds < 0.
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Thus, by (1.3) and (1.7), u′(θ) < 0 and we have u′ < 0 on (a, θ]. If u is positive on [a, ∞),
we obtain as before u′ < 0 on (a, ∞).

b) We argue similarly as in a).

Lemma 2.2. Let (1.3)–(1.7) hold and let u be a solution of equation (2.1). Assume that there exists
a ≥ 0 such that u(a) = L and u′(a) = 0.

a) Let θ > a be the first zero of u on (a, ∞). Then there exists a1 ∈ [ a, θ ) such that

u(a1) = L, u′(a1) = 0, 0 ≤ u(t) < L, u′(t) < 0, t ∈ (a1, θ].

b) Let u > 0 on [a, ∞) and u 6≡ L on [a, ∞). Then there exists a1 ∈ [a, ∞) such that

u(a1) = L, u′(a1) = 0, 0 < u(t) < L, u′(t) < 0, t ∈ (a1, ∞).

In the both cases u(t) = L for t ∈ [a, a1].

Proof.

a) Assume that there exists t? > a such that u(t?) > L. Then we can find τ ∈ [a, t?)
satisfying

u(t) > L, t ∈ (τ, t?], u(τ) = L. (2.3)

Hence u′(τ) ≥ 0. Integrating (2.1) over [τ, t?], we get, by (2.2),

p(t?)φ(u′(t?)) = p(τ)φ(u′(τ)) ≥ 0,

which yields u′(t?) ≥ 0. Therefore u > L on [t?, ∞) and u cannot have the zero θ, a con-
tradiction. We have proved 0 < u ≤ L on [a, θ) and deduce from (2.1) (p(t)φ(u′(t)))′ ≤ 0
for t ∈ [a, θ]. Consequently u′(t) ≤ 0 and u is nonincreasing on [a, θ]. Hence there exists
a1 = [a, θ) such that

u(a1) = L, u′(a1) = 0, 0 < u(t) < L, t ∈ (a1, θ).

Since u is monotonous on [a, a1] then u ≡ L on [a, a1]. Now, we can argue as in the proof
of Lemma 2.1 a) with a1 instead of a.

b) Assume as in a) that there exists t? > a such that u(t?) > L. Then we can find τ ∈ [a, t?)
satisfying (2.3). Hence u′(τ) ≥ 0. Integrate (2.1) over [τ, t], where t ∈ (τ, t?]. We get, by
(2.2),

p(t)φ(u′(t)) = p(τ)φ(u′(τ)), t ∈ (τ, t?].

If u′(τ) = 0, then u′(t) = 0 for t ∈ (τ, t?], which contradicts u(τ) = L, u(t?) > L.
Therefore u′(τ) > 0. Let ξ ∈ [0, τ) be the minimal number fulfilling 0 < u(t) < L,
u′(t) > 0, t ∈ (ξ, τ). Since u(ξ) < L, u′(ξ) ≥ 0, we obtain ξ > a. Integrating (2.1) over
[a, ξ], we derive u′(ξ) < 0, a contradiction. We have proved that 0 < u ≤ L on [a, ∞),
and that u is nonincreasing on (a, ∞). If u 6≡ L on [a, ∞), we can find a1 ≥ a such that
the assertion b) holds using the arguments from the proof of Lemma 2.1 a). Moreover,
u ≡ L on [a, a1].
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In order to derive further important properties of solutions of (2.1) we need to assume

∃B̄ ∈ (L0, 0) : F̃ (B̄) = F̃(L), where F̃(x) =
∫ x

0
f̃ (φ(s))ds, x ∈ R (2.4)

and

lim sup
t→∞

p′(t)
p(t)

< ∞. (2.5)

Remark 2.3. According to (2.4), we have F̃ ∈ C1(R), F̃(0) = 0, F̃ is positive and increasing on
[0, L] and positive and decreasing on [L0, 0].

Example 2.4. If p, φ and f are from Example 1.1 and in addition L < |L0|, then conditions
(2.4) and (2.5) are satisfied.

Remark 2.5. From (1.3) and (1.4), we get

xφ(x) > 0 for x ∈ (R \ {0}), (2.6)

and there exists an inverse function φ−1, which is continuous and increasing on R. By (1.7),
the function p is positive and increasing on (0, ∞).

Lemma 2.6. Assume that (1.3)–(1.7), (2.4) and (2.5) hold. Let u be a solution of equation (2.1) and let
there exist b ≥ 0 and θ > b such that

u(b) ∈ [ B̄, 0 ) , u′(b) = 0, u(θ) = 0, u(t) < 0, t ∈ [b, θ ) . (2.7)

Then there exists a ∈ (θ, ∞) such that

u′(a) = 0, u′(t) > 0, t ∈ (b, a), u(a) ∈ (0, L).

Proof. Let u be a solution of equation (2.1) satisfying (2.7). Then

φ′(u′(t))u′′(t) +
p′(t)
p(t)

φ(u′(t)) + f̃ (φ(u(t))) = 0, t ∈ (0, ∞). (2.8)

By Lemma 2.1 b) and by (2.7), we have u′(t) > 0 for t ∈ (b, θ ].

Step 1. We assume that a > θ satisfying u′(a) = 0 does not exist. Then we get

u′(t) > 0, t ∈ (b, ∞), (2.9)

and hence u is increasing on (b, ∞). Since u(θ) = 0, the inequality

u(t) > 0, t ∈ (θ, ∞) (2.10)

holds. Let (θ, A) ⊂ (θ, ∞) be a maximal interval with the property

u(t) < L, t ∈ (θ, A). (2.11)

Using (1.3), (1.5), (1.6) and (2.6) we obtain f̃ (φ(u(t))) > 0 for t ∈ (θ, A). Consequently,
equation (2.8) yields

u′′(t) < 0, t ∈ (θ, A), (2.12)

and thus u′ is decreasing on (θ, A).
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(i) Let A < ∞. Then (2.11) implies u(A) = L. Multiplying (2.8) by u′ and integrating from
b to A we get∫ A

b
φ′
(
u′(s)

)
u′(s)u′′(s)ds +

∫ A

b

p′(s)
p(s)

φ
(
u′(s)

)
u′(s)ds +

∫ A

b
f̃ (φ(u(s)))u′(s)ds = 0.

After substitutions we derive∫ u′(A)

u′(b)
xφ′(x)dx +

∫ A

b

p′(s)
p(s)

φ(u′(s))u′(s)ds +
∫ u(A)

u(b)
f̃ (φ(y))dy = 0. (2.13)

Due to (2.7) and (2.9) u′(b) = 0 and u′(A) > 0. Therefore conditions (1.7) and (2.6) imply∫ u′(A)

u′(b)
xφ′(x)dx > 0,

∫ A

b

p′(s)
p(s)

φ(u′(s))u′(s)ds > 0.

Using this we derive from (2.13)∫ u(A)

u(b)
f̃ (φ(y))dy =

∫ L

u(b)
f̃ (φ(y))dy < 0,

and hence F̃(L)− F̃(u(b)) < 0. By (2.4), (2.7) and Remark 2.3, we obtain

F̃(L) < F̃(u(b)) ≤ F̃ (B̄) = F̃(L),

which is a contradiction.

(ii) Now we assume that A = ∞. Inequalities (2.10) and (2.11) give

0 < u(t) < L, t ∈ (θ, ∞) .

By (2.9) u is increasing on (θ, ∞) and

lim
t→∞

u(t) = `,

where ` ∈ (0, L ]. By (2.9) and (2.12) u′ is decreasing and positive on (θ, ∞) and
limt→∞ u′(t) ≥ 0. Since ` is finite, we have

lim
t→∞

u′(t) = 0. (2.14)

Let ` = L. Similarly as before we derive∫ u′(t)

u′(b)
xφ′(x)dx +

∫ t

b

p′(s)
p(s)

φ(u′(s))u′(s)ds +
∫ u(t)

u(b)
f̃ (φ(y))dy = 0, t ∈ (b, ∞) .

Since the first integral is positive, we have∫ u(t)

u(b)
f̃ (φ(y))dy < −

∫ t

b

p′(s)
p(s)

φ(u′(s))u′(s)ds, t ∈ (b, ∞) .

This yields

lim
t→∞

(
F̃(u(t))− F̃(u(b))

)
≤ −

∫ ∞

b

p′(s)
p(s)

φ(u′(s))u′(s)ds < 0.
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Using Remark 2.3 and conditions (2.4) and (2.7) we deduce

F̃(L) < F̃(u(b)) ≤ F̃ (B̄) = F̃(L),

which is a contradiction.

Let ` ∈ (0, L). For t→ ∞ in (2.8) we get, by (1.4) and (2.5),

φ′(0) lim
t→∞

u′′(t) = − f̃ (φ(`)). (2.15)

Since − f̃ (φ(`)) ∈ (−∞, 0), the inequality limt→∞ u′′(t) < 0 holds, contrary to (2.14).

We have proved that there exists a > θ such that u′(a) = 0.

Step 2. Let u′ > 0 on [ θ, a ). Then u(a) > 0. It remains to prove that u(a) < L. Multiplying
(2.8) by u′ and integrating from b to a we get similarly as before

∫ u(a)

u(b)
f̃ (φ(y))dy < 0, t ∈ (b, a) ,

and
F̃(u(a)) < F̃(u(b)) ≤ F̃ (B̄) = F̃(L).

By Remark 2.3, the inequality u(a) < L holds.

Lemma 2.7. Assume that (1.3)–(1.7), (2.4) and (2.5) hold. Let u be a solution of equation (2.1) and let
there exist a ≥ 0 and θ > a such that

u(a) ∈ (0, L ] , u′(a) = 0, u(θ) = 0, u(t) > 0, t ∈ [ a, θ ) . (2.16)

Then there exists b ∈ (θ, ∞) such that

u′(b) = 0, u′(t) < 0, t ∈ (a, b), u(b) ∈ (B̄, 0) .

Proof. We argue similarly as in the proof of Lemma 2.6. Let u be a solution of equation (2.1)
satisfying (2.16). By Lemmas 2.1 a) and 2.2 a) and (2.16), we have u′(t) < 0, for t ∈ ( a, θ ].

Step 1. We assume that b > θ satisfying u′(b) = 0 does not exist. Then we get

u(t) < 0, t ∈ (θ, ∞), u′(t) < 0, t ∈ (a, ∞), (2.17)

and hence u is decreasing on (a, ∞). Let (θ, A) ⊂ (θ, ∞) be the maximal interval with the
property

u(t) > B̄, t ∈ (θ, A). (2.18)

Then
u′′(t) > 0, t ∈ (θ, A) (2.19)

and thus u′ is increasing on (θ, A).

(i) Let A < ∞. Then (2.18) implies u(A) = B̄. Similarly as in the proof of Lemma 2.6 Step 1
part (i) we get the contradiction

F̃ (B̄) < F̃(u(a)) ≤ F̃(L) = F̃ (B̄) .
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(ii) Now we assume that A = ∞. By (2.17) and (2.18), u is decreasing on (θ, ∞) and
limt→∞ u(t) = ` ∈ [ B̄, 0 ). Due to (2.17) and (2.19) u′ is increasing and negative on
(θ, ∞) and limt→∞ u′(t) ≤ 0. Since ` is finite, we have limt→∞ u′(t) = 0.

Similarly as in the proof of Lemma 2.6 Step 1 part (ii) we obtain a contradiction both for
` = B̄ and for ` ∈ (B̄, 0).

We have shown that there exists b > θ such that u′(b) = 0.

Step 2. Let u′ < 0 on [ θ, b ). Then u(b) < 0 and we proceed similarly as in the proof of
Lemma 2.6 Step 2 and get F̃(u(b)) < F̃ (B̄). By Remark 2.3, the inequality B̄ < u(b) holds.

Lemma 2.8. Assume that (1.3)–(1.7) and (2.5) hold. Let u be a solution of equation (2.1) and let there
exists b ≥ 0 such that

u(b) ∈ (L0, 0), u′(b) = 0, u(t) < 0, t ∈ [b, ∞).

Then
lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0.

Proof. By Lemma 2.1 b), u′(t) > 0 for t ∈ (b, ∞). Hence u is increasing on (b, ∞),

L0 < u(t) < 0, t ∈ (b, ∞) (2.20)

and
lim
t→∞

u(t) =: ` ∈ (u(b), 0].

Multiplying equation (2.8) by u′ and integrating it from b to t, we obtain

ψ1(t) + ψ2(t) + ψ3(t) = 0, t ∈ (b, ∞), (2.21)

where

ψ1(t) =
∫ u′(t)

u′(b)
xφ′(x)dx, ψ2(t) =

∫ t

b

p′(s)
p(s)

φ(u′(s))u′(s)ds, ψ3(t) =
∫ u(t)

u(b)
f̃ (φ(x))dx.

We have ψ3(t) = F̃(u(t))− F̃(u(b)), where F̃ is defined by (2.4). Since F̃(x) is decreasing for
x ∈ (L0, 0) and u is increasing on (b, ∞), F̃(u(t)) is decreasing for t ∈ (b, ∞) due to (2.20) and
limt→∞ F̃(u(t)) = F̃(`). Therefore

lim
t→∞

ψ3(t) =: Q3 ∈
(
−F̃(L0), 0

)
.

The positivity of ψ1 on (b, ∞) yields the inequality ψ2(t) < −ψ3(t) for t ∈ (b, ∞). Since ψ2 is
continuous, increasing and positive on (b, ∞),

lim
t→∞

ψ2(t) =: Q2 ∈ (0,−Q3 ] .

Consequently (2.21) gives
lim
t→∞

ψ1(t) =: Q1 ∈
[

0, F̃(L0)
)

.

Therefore
lim
t→∞

Φ(u′(t)) = Q1, where Φ(z) :=
∫ z

0
xφ′(x)dx, z > 0.
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Φ is positive, continuous and increasing on (0, ∞) and so its inverse Φ−1 is positive, continu-
ous and increasing, as well. Thus

lim
t→∞

Φ−1(Φ(u′(t))) = lim
t→∞

u′(t) = Φ−1(Q1) ≥ 0.

According to (2.20),
lim
t→∞

u′(t) = 0.

Finally, assume that ` ∈ (u(b), 0). Letting t → ∞ in (2.8), we get, by (1.4), (2.5), that (2.15)
holds. Since − f̃ (φ(`)) ∈ (0, ∞), we get limt→∞ u′′(t) > 0, contrary to limt→∞ u′(t) = 0.
Therefore ` = 0.

Lemma 2.9. Assume that (1.3)–(1.7) and (2.5) hold. Let u be a solution of equation (2.1) and let there
exists a ≥ 0 such that

u(a) ∈ (0, L], u′(a) = 0, u(t) > 0, t ∈ [a, ∞).

Then either
u(t) = L, t ∈ [a, ∞) (2.22)

or
lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0.

Proof. Step 1. Let u(a) ∈ (0, L). We continue analogously as in proof of Lemma 2.8. By
Lemma 2.1 a), u′(t) < 0 for t ∈ (a, ∞). Hence

0 < u(t) < L, t ∈ (a, ∞) (2.23)

and
lim
t→∞

u(t) =: ` ∈ [0, u(a)).

Multiplying equation (2.8) by u′ and integrating it from a to t, we obtain (2.21) with b replaced
by a. By Remark 2.3, F̃(x) is increasing for x ∈ (0, L) and since u is decreasing on (a, ∞), we
get F̃(u(t)) is decreasing for t ∈ (a, ∞) due to (2.23). Consequently limt→∞ F̃(u(t)) = F̃(`).
Let ψ1, ψ2 and ψ3 be defined as in the proof of Lemma 2.8, where b is replaced by a. Then

lim
t→∞

ψ3(t) = lim
t→∞

F̃(u(t))− F̃(u(a)) =: Q3 ∈
(
−F̃(L), 0

)
.

The positivity of ψ1 on (a, ∞) yields the inequality ψ2(t) < −ψ3(t) for t ∈ (a, ∞). Since ψ2 is
continuous, increasing and positive on (a, ∞), we get

lim
t→∞

ψ2(t) =: Q2 ∈ (0,−Q3 ] and lim
t→∞

ψ1(t) =: Q1 ∈
[

0, F̃(L)
)

.

Therefore
lim
t→∞

Φ(u′(t)) = Q1, where Φ(z) :=
∫ z

0
xφ′(x)dx, z < 0.

Φ is positive, continuous and decreasing on (−∞, 0) and so its inverse Φ−1 is positive, contin-
uous and decreasing, as well. Thus

lim
t→∞

Φ−1(Φ(u′(t))) = lim
t→∞

u′(t) = Φ−1(Q1) ≥ 0.

According to (2.23), we have limt→∞ u′(t) = 0. Similarly as in the proof of Lemma 2.8 we
derive a contradiction for ` ∈ (0, u(a)) and get ` = 0.

Step 2. Let u(a) = L. Assume that u does not fulfil (2.22). By Lemma 2.2 b) there exists a1 ≥ a
such that 0 < u(t) < L, u′(t) < 0, t ∈ (a1, ∞), and we can use the arguments from Step 1 to
prove the last assertion.
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3 A priori estimates

In order to prove the existence and uniqueness of solutions of the auxiliary problem (2.1), (1.2)
and of the original problem (1.1), (1.2), a priori estimates derived in this section are needed.

Lemma 3.1. Assume that (1.3)–(1.7), (2.4) and (2.5) hold. Let u be a solution of problem (2.1), (1.2)
with u0 ∈ (L0, B̄). Let there exist θ > 0, a > θ such that

u(θ) = 0, u(t) < 0, t ∈ [0, θ), u′(a) = 0, u′(t) > 0, t ∈ (θ, a). (3.1)

Then
u(a) ∈ (0, L], u′(t) > 0, t ∈ (0, a). (3.2)

Proof. From Lemma 2.1 b) and (3.1), we have u′ > 0 on (0, a). Therefore, u(a) > 0. Now,
assume that u(a) > L. Hence, there exists a0 ∈ (θ, a) such that u(t) > L on (a0, a]. Integrating
equation (2.1) over (a0, a) and using (2.2), we get

p(a0)φ(u′(a0))− p(a)φ(u′(a)) =
∫ a

a0

p(s) f̃ (φ(u(s)))ds = 0,

and so p(a0)φ(u′(a0)) = 0. Thus u′(a0) = 0, contrary to u′ > 0 on (0, a). We have proved
u(a) ≤ L.

Lemma 3.2. Let assumptions (1.3)–(1.7), (2.4) and (2.5) hold. Let u be a solution of problem (2.1),
(1.2) with u0 ∈ (L0, 0) ∪ (0, L). Then

u0 ∈ [B̄, 0) ∪ (0, L) ⇒ B̄ < u(t) < L, t ∈ (0, ∞) , (3.3)

u0 ∈ (L0, B̄) ⇒ u0 < u(t), t ∈ (0, ∞) . (3.4)

Proof. Let u(0) = u0 ∈ (0, L). If u > 0 on (0, ∞), then, by Lemma 2.1 a), u′ < 0 on (0, ∞)

and (3.3) holds. Assume that there exists θ1 > 0 such that u(θ1) = 0, u(t) > 0 for t ∈ [0, θ1).
According to Lemma 2.7,

∃b ∈ (θ1, ∞) : u′(b) = 0, u′(t) < 0, t ∈ (0, b), u(b) = (B̄, 0) .

If u < 0 on (b, ∞), then, by Lemma 2.1 b), u is increasing on (b, ∞) and (3.3) is valid. Assume
that there exists θ2 > b such that u(θ2) = 0, u(t) < 0 for t ∈ [b, θ2). Due to Lemma 2.6,

∃a ∈ (θ2, ∞) : u′(a) = 0, u′(t) > 0, t ∈ (b, a), u(a) = (0, L).

Now we use the previous arguments replacing 0 by a.
Let u(0) = u0 ∈ [B̄, 0). We have the same situation as before, where b is replaced by 0. So

we argue similarly.
Let u(0) = u0 ∈ (L0, B̄). If u < 0 on (0, ∞), then, by Lemma 2.1 b), u′ > 0 on (0, ∞) and

(3.4) is valid. Assume that there exists θ1 > 0 such that u(θ1) = 0, u(t) < 0 for t ∈ [0, θ1). By
Lemma 2.1 b), u′ > 0 on (0, θ1]. If u′ > 0 on (θ1, ∞), then (3.4) holds. Assume that there exists
a > θ1 such that u′(a) = 0, u′(t) > 0 for t ∈ (θ1, a). According to Lemma 3.1, (3.2) holds. If
u > 0 on [a, ∞), (3.4) is valid. Let there exists θ2 > a such that u(θ2) = 0, u > 0 on [a, θ2). We
can apply Lemma 2.7 and argue as before.

Remark 3.3. According to (2.2), (3.3), (3.4) and Definition 1.3, u is a damped or a homoclinic
solution of the auxiliary problem (2.1), (1.2) if and only if u is a damped or a homoclinic
solution of the original problem (1.1), (1.2).
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Note that the auxiliary nonlinearity is bounded due to (2.2). Therefore there exists M̃ > 0
such that ∣∣ f̃ (x)

∣∣ ≤ M̃, x ∈ R. (3.5)

Lemma 3.4. Assume (1.3)–(1.7). Let u be a solution of problem (2.1), (1.2) with u0 ∈ [L0, L]. The
inequality ∫ β

0

p′(t)
p(t)
|φ(u′(t))|dt ≤ M̃(β− ϕ(β)) (3.6)

is valid for every β > 0. If moreover (2.4) and (2.5) hold, then there exists c̃ > 0 such that

|u′(t)| ≤ c̃, t ∈ [0, ∞), (3.7)

for every solution u of (2.1), (1.2) with u0 ∈ (L0, 0) ∪ (0, L).

Proof. Step 1. Let u be solution of (2.1), (1.2) with u0 ∈ [L0, L]. Integrating equation (2.1) over
(0, t), t > 0, and using (3.5), we have∣∣φ(u′(t))∣∣ = ∣∣∣∣− 1

p(t)

∫ t

0
p(τ) f̃ (φ(u(τ)))dτ

∣∣∣∣ ≤ M̃
p(t)

∫ t

0
p(τ)dτ

and
p′(t)
p(t)

∣∣φ(u′(t))∣∣ ≤ M̃
p′(t)
p2(t)

∫ t

0
p(τ)dτ.

Choose a β > 0. Integrating this inequality by parts from 0 to β, we get (3.6).

Step 2. Assume moreover that (2.4) and (2.5) hold. Denote

Ψ1(z) :=
∫ z

0
xφ′(x)dx; Ψ2(z) :=

∫ z

0
xφ′(−x)dx; z ∈ [0, ∞ ) .

Clearly, Ψ1, Ψ2 are positive, continuous and increasing on (0, ∞). Put

c̃ = max
{

Ψ−1
1

(
F̃(L0)

)
, Ψ−1

2
(

F̃(L)
)}

, (3.8)

where F̃ is defined in (2.4).
Let u(0) = u0 ∈ (L0, 0), u′(0) = 0 and let u be a solution of equation (2.1). Then (2.8)

holds.

(i) Assume that u < 0 on [0, ∞ ). By Lemma 2.1 b) u′ > 0 on (0, ∞), and by Lemma 2.8
limt→∞ u′(t) = 0. Therefore there exists ξ ∈ (0, ∞) such that

max
t∈[ 0,∞ )

∣∣u′(t)∣∣ = u′(ξ) > 0, u(ξ) ∈ (u0, 0) . (3.9)

Multiplying (2.8) by u′ and integrating over [0, ξ] we get∫ u′(ξ)

u′(0)
xφ′(x)dx +

∫ ξ

0

p′(t)
p(t)

φ
(
u′(t)

)
u′(t)dt +

∫ u(ξ)

u(0)
f̃ (φ(x)) dx = 0. (3.10)

Since the second integral in (3.10) is positive, (3.9) and (3.10) yield

Ψ1
(
u′(ξ)

)
< F̃(u0)− F̃ (u(ξ)) < F̃(u0) < F̃(L0).

Therefore
0 < u′(ξ) < Ψ−1

1

(
F̃(L0)

)
. (3.11)

Due to (3.8) and (3.9) estimate (3.7) is proved.
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(ii) Assume that θ ∈ (0, ∞) is such that u < 0 on [0, θ ), u(θ) = 0. Then by Lemma 2.1 b),
u′ > 0 on (0, θ ]. Let a > θ be such that u′ > 0 on (θ, a), u′(a) = 0. On interval (θ, a)
we have u > 0, u′ > 0 and by (1.3), (1.6), (1.7), (2.6) and (2.8) we get u′′ < 0 on [ θ, a ).
Therefore u′ is decreasing on [ θ, a ) and there exists ξ ∈ (0, θ) such that

max
t∈[ 0,a )

∣∣u′(t)∣∣ = u′(ξ) > 0, u(ξ) ∈ (u0, 0) . (3.12)

Analogously as in part (i) we get (3.11) and if a = ∞ then estimate (3.7) is proved.

(iii) Assume that a < ∞ in (3.12). We have u′(a) = 0 and by Lemma 2.6 and Lemma 3.1 we
deduce that u(a) ∈ (0, L ]. Let u > 0 on [ a, ∞ ). Then Lemma 2.9 gives limt→∞ u′(t) = 0
and hence there exists η ∈ (a, ∞) such that

max
t∈[ a,∞ )

∣∣u′(t)∣∣ = −u′(η) > 0, u(η) ∈ (0, u(a)) . (3.13)

Multiplying (2.8) by u′ and integrating over [a, η] we get∫ |u′(η)|
u′(a)

xφ′(−x)dx +
∫ η

a

p′(t)
p(t)

φ
(
u′(t)

)
u′(t)dt +

∫ u(η)

u(a)
f̃ (φ(x)) dx = 0.

Since the second integral in (3.10) is positive, (3.9) and (3.10) yield

Ψ2
(∣∣u′(η)∣∣) < F̃(u(a))− F̃ (u(η)) < F̃(L).

Then
0 <

∣∣u′(η)∣∣ < Ψ−1
2
(

F̃(L)
)

. (3.14)

Using (3.11), (3.12), (3.13) and (3.14) we obtain (3.7) due to (3.8).

(iv) Assume, that there exists χ ∈ (a, ∞) which is the next zero of u. Summarized, we have
u(a) ∈ (0, L ], u′(a) = 0, u(χ) = 0, u > 0 on [ a, χ ). By Lemma 2.7 there exists b ∈ (χ, ∞)
such that u′(b) = 0, u′ < 0 on (a, b), u(b) ∈ (B̄, 0) and by (2.8) we have u′′ > 0 on [χ, b ).
Consequently there exists η ∈ (a, χ) such that

max
t∈[a,b]

∣∣u′(t)∣∣ = −u′(η) > 0, u(η) ∈ (0, u(a)) .

Similarly as in part (iii) we get (3.14) and (3.7).

(v) Since u(b) < 0 we continue repeating the argument of parts (i)–(iii) with b on place of 0
and the arguments of part (iv) writing b̃ instead of b. After finite or infinite number of
steps we obtain (3.7).

If u0 ∈ (0, L), we can argue similarly.

4 Existence and continuous dependence of solutions on initial
values

This section is devoted to the existence of solutions of the auxiliary problem (2.1), (1.2) which is
proved in Theorem 4.1 by means of the Schauder fixed point theorem. Moreover, the question
about continuous dependence of solutions on initial values is discussed in Theorems 4.3, 4.6,
4.8. Theorem 4.3 provides also a uniqueness result for special kinds of φ-Laplacians.
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For the following investigation, we introduce a function ϕ

ϕ(t) :=
1

p(t)

∫ t

0
p(s)ds, t ∈ (0, ∞), ϕ(0) = 0.

This function is continuous on [0, ∞) and satisfies

0 < ϕ(t) ≤ t, t ∈ (0, ∞), lim
t→0+

ϕ(t) = 0. (4.1)

Theorem 4.1 (Existence of solutions of problem (2.1), (1.2)). Assume (1.3)–(1.7). Then, for each
u0 ∈ [L0, L], there exists a solution u of problem (2.1), (1.2).

Proof. Clearly, for u0 = L0, u0 = 0 and u0 = L there exists a solution by Remark 1.4. Assume
that u0 ∈ (L0, 0) ∪ (0, L). Integrating equation (2.1), we get the equivalent form of problem
(2.1), (1.2)

u(t) = u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

)
ds, t ∈ [0, ∞ ) . (4.2)

Choose a β > 0, consider the Banach space C [0, β] with the maximum norm and define
an operator F : C [0, β]→ C [0, β],

(Fu)(t) = u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

)
ds.

Put Λ = max{|L0|, L} and consider the ball B (0, R) =
{

u ∈ C [0, β] : ‖u‖C[0,β] ≤ R
}

, where
R = Λ + βφ−1 (M̃β

)
and M̃ is from (3.5). Since φ is increasing on R, φ−1 is also increasing

on R and, by (4.1), φ−1 (M̃ϕ(t)
)
≤ φ−1 (M̃β

)
, t ∈ [0, β]. The norm of Fu can be estimated as

follows

‖Fu‖C[0,β] = max
t∈[0,β]

∣∣∣∣u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

)
ds
∣∣∣∣

≤ Λ +
∫ t

0

∣∣∣φ−1 (M̃ϕ(s)
)∣∣∣ ds ≤ Λ +

∫ t

0
φ−1 (M̃β

)
ds ≤ Λ + βφ−1 (M̃β

)
= R,

which yields that F maps B (0, R) on itself.
Let us prove that F is compact on B (0, R). Choose a sequence {un} ⊂ C [0, β] such that

limn→∞ ‖un − u‖C[0,β] = 0. We have

(Fun)(t)− (Fu)(t) =
∫ t

0

(
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(un(τ)))dτ

)
−φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

))
ds.

Since f̃ (φ) is continuous on [0, β], we get

lim
n→∞

∥∥ f̃ (φ(un))− f̃ (φ(u))
∥∥

C[0,β] = 0.

Put

An(t) = −
1

p(t)

∫ t

0
p(τ) f̃ (φ(un(τ)))dτ,

A(t) = − 1
p(t)

∫ t

0
p(τ) f̃ (φ(u(τ)))dτ, t ∈ (0, β], An(0) = A(0) = 0, n ∈N.
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Then, for a fixed n ∈N,

|An(t)− A(t)| =
∣∣∣∣ 1

p(t)

∫ t

0
p(τ)

(
f̃ (φ(u(τ)))− f̃ (φ(un(τ)))dτ

)∣∣∣∣ , t ∈ (0, β]

and, by (4.1) and (3.5), limt→0+ |An(t)− A(t)| = 0. Therefore An − A ∈ C[0, β] and

‖An − A‖C[0,β] ≤
∥∥ f̃ (φ(un))− f̃ (φ(u))

∥∥
C[0,β] β, n ∈N.

This implies that limn→∞ ‖An − A‖C[0,β] = 0. Using the continuity of φ−1 on R, we have

lim
n→∞

∥∥∥φ−1(An)− φ−1(A)
∥∥∥

C[0,β]
= 0.

Therefore

lim
n→∞
‖Fun −Fu‖C[0,β] = lim

n→∞

∥∥∥∥∫ t

0

(
φ−1(An(s))− φ−1(A(s))

)
ds
∥∥∥∥

C[0,β]

≤ β lim
n→∞

∥∥∥φ−1(An)− φ−1(A)
∥∥∥

C[0,β]
= 0,

that is the operator F is continuous.
Choose an arbitrary ε > 0 and put δ = ε

φ−1(M̃β)
. Then, for t1, t2 ∈ [0, β] and u ∈ B (0, R),

|t1 − t2| < δ⇒ |(Fu) (t1)− (Fu) (t2)| =
∣∣∣∣∫ t1

t2

φ−1
(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u(τ)))dτ

)
ds
∣∣∣∣

≤
∣∣∣∣∫ t1

t2

φ−1 (M̃ϕ(s)
)

ds
∣∣∣∣ ≤ ∣∣∣∣∫ t1

t2

φ−1 (M̃β
)

ds
∣∣∣∣ = φ−1 (M̃β

)
|t1 − t2| < φ−1 (M̃β

)
δ = ε.

Hence, functions in F (B (0, R)) are equicontinuous, and, by the Arzelà–Ascoli theorem, the
set F (B (0, R)) is relatively compact. Consequently, the operator F is compact on B (0, R).

The Schauder fixed point theorem yields a fixed point u? of F in B (0, R). Therefore,

u?(t) = u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f̃ (φ(u?(τ)))dτ

)
ds.

Hence, u?(0) = u0, (
p(t)φ((u?)′(t))

)′
= −p(t) f̃ (φ(u?(t))) , t ∈ [0, β] .

Further,

∣∣(u?)′(t)
∣∣ = ∣∣∣∣φ−1

(
− 1

p(t)

∫ t

0
p(s) f̃ (φ(u?(s)))ds

)∣∣∣∣ ≤ φ−1 (M̃ϕ(t)
)

, t ∈ [0, β] .

Thus, by (4.1), limt→0+ φ−1 (M̃ϕ(t)
)
= φ−1(0) = 0 and therefore limt→0+(u?)′(t) = 0 =

(u?)′(0). According to (2.2), f̃ (φ(u?(t))) is bounded on [0, ∞ ) and hence u? can be extended
to interval [0, ∞ ) as a solution of equation (2.1). This classical extension result follows from
more general Theorem 11.5 in [13].
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Example 4.2. Consider φ : R→ R given by one of the next formulas

φ(x) = |x|α sgn x, α > 1, (4.3)

φ(x) =
(

x4 + 2x2
)

sgn x, (4.4)

φ(x) = sinh x =
ex − e−x

2
, (4.5)

φ(x) = arg sinh x = ln
(

x +
√

x2 + 1
)

, (4.6)

φ(x) = ln(|x|+ 1) sgn x, (4.7)

φ(x) = ((|x|+ 1)α − 1) sgn x, α ∈ (0, 1). (4.8)

Assume that φ(L) < −φ(L0) and put

p(t) = tβ, t ∈ [0, ∞ ) , β > 0,

f (x) = k|x|γ sgn x(x− φ(L0))(φ(L)− x), x ∈ [φ(L0), φ(L)], γ > 0, k > 0.

Then the functions p, φ and f fulfil all assumptions of Theorem 4.1. In particular φ ∈ Liploc(R)

for each φ given by (4.3)–(4.8). Therefore the auxiliary problem (2.1), (1.2) has a solution for
every u0 ∈ [L0, L].

Further we examine the uniqueness of solutions of the auxiliary problem (2.1), (1.2). Our
arguments are based on a continuous dependence on initial values expressed in Theorem 4.3,
Theorem 4.6 and Theorem 4.8. Assumption (1.3) implies that φ ∈ Liploc(R). This need not be
true for φ−1 as we have shown in Introduction for φ(x) = |x|α sgn x, α > 1. The special case
when both φ and φ−1 are locally Lipschitz continuous is discussed in the next theorem.

Theorem 4.3 (Uniqueness and continuous dependence on initial values I). Assume (1.3)–(1.7)
and

f ∈ Lip [φ(L0), φ(L)] , (4.9)

φ−1 ∈ Liploc(R). (4.10)

Let ui be a solution of problem (2.1), (1.2) with u0 = Bi ∈ [L0, L], i = 1, 2. Then, for each β > 0, there
exists K > 0 such that

‖u1 − u2‖C1[0,β] ≤ K|B1 − B2|. (4.11)

Furthermore, any solution of problem (2.1), (1.2) with u0 ∈ [L0, L] is unique on [0, ∞).

Proof. Let i ∈ 1, 2 and let ui be a solution of problem (2.1), (1.2) with u0 = Bi. By integrating
(2.1) over [0, t], we obtain

φ(u′i(t)) = Ai(t), ui(t) = Bi +
∫ t

0
φ−1 (Ai(s)) ds, t ∈ [0, ∞), (4.12)

where

Ai(s) = −
1

p(s)

∫ s

0
p(τ) f̃ (φ(ui(τ))) dτ, s ∈ [0, ∞).

Choose β > 0. Since ui, φ(u′i) ∈ C [0, β], there exist m, M ∈ R such that

m ≤ ui(t) ≤ M, m ≤ φ(u′i(t)) ≤ M, t ∈ [0, β], i = 1, 2.
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According to (1.3), (4.9) and (4.10) there exist positive constants Λ f , Λφ, Λφ−1 satisfying

| f (x1)− f (x2)| ≤ Λ f |x1 − x2|, x1, x2 ∈ [φ(L0), φ(L)] ,

|φ(x1)− φ(x2)| ≤ Λφ|x1 − x2|, x1, x2 ∈ [m, M],∣∣∣φ−1(x1)− φ−1(x2)
∣∣∣ ≤ Λφ−1 |x1 − x2|, x1, x2 ∈ [m, M].

Denote ρ(t) := max{|u1(s)− u2(s)| : s ∈ [0, t]}, t ∈ [0, β] . Then, by (4.1),

|A1(s)− A2(s)| ≤
1

p(s)

∫ s

0
p(τ)

∣∣ f̃ (φ(u1(τ)))− f̃ (φ(u2(τ)))
∣∣ dτ

≤ Λ f Λφ
1

p(s)

∫ s

0
p(τ)|u1(τ)− u2(τ)|dτ ≤ Λ f Λφρ(s)β,

and by virtue of (4.12)

ρ(t) ≤ |B1 − B2|+
∫ t

0

∣∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣∣ ds ≤ |B1 − B2|+ Λφ−1

∫ t

0
|A1(s)− A2(s)|ds

≤ |B1 − B2|+ Λ f ΛφΛφ−1 β
∫ t

0
ρ(s)ds, t ∈ [0, β] .

The Gronwall lemma yields

ρ(t) ≤ |B1 − B2|eLβ2
, t ∈ [0, β] , (4.13)

where L := Λ f ΛφΛφ−1 . Similarly, from (4.12) it follows

|u′1(t)− u′2(t)| ≤
∣∣∣φ−1(A1(t))− φ−1(A2(t))

∣∣∣ ≤ Λφ−1 |A1(t)− A2(t)| ≤ Lρ(t)β, t ∈ [0, β] .

Applying (4.13), we get

max
{
|u′1(t)− u′2(t)| : t ∈ [0, β]

}
≤ |B1 − B2|LβeLβ2

.

Consequently,
‖u1 − u2‖C1[0,β] ≤ |B1 − B2|(1 + Lβ)eLβ2

,

that is (4.11) holds for
K := (1 + Lβ)eLβ2

.

Clearly, if B1 = B2, we have u1 = u2 on each [0, β] ⊂ R and the uniqueness for problem
(2.1), (1.2) on [0, ∞) follows.

Remark 4.4. If also (2.4) and (2.5) are fulfilled, we can use (3.7) and get universal estimates
for φ(u′i) and ui. This is the case that K in (4.11) does not depend on a choice of u1, u2.

Example 4.5. In order to apply Theorem 4.3 we need both φ and φ−1 from Liploc(R). Let us
check the functions φ in Example 4.2 from this point of view:

φ(x) = |x|α sgn x, α > 1 ⇒ φ−1(x) = |x| 1α sgn x /∈ Liploc(R),

φ(x) =
(

x4 + 2x2
)

sgn x, ⇒ φ−1(x) =

√√
|x|+ 1− 1 /∈ Liploc(R),

φ(x) = sinh x =
ex − e−x

2
, ⇒ φ−1(x) = arg sinh x ∈ Liploc(R),

φ(x) = arg sinh x = ln
(

x +
√

x2 + 1
)

⇒ φ−1(x) = sinh x ∈ Liploc(R),

φ(x) = ln(|x|+ 1) sgn x ⇒ φ−1(x) =
(

e|x|−1
)

sgn x ∈ Liploc(R),

φ(x) = ((|x|+ 1)α − 1) sgn x, α ∈ (0, 1) ⇒ φ−1(x) =
(
(|x|+ 1)

1
α − 1

)
sgn x ∈ Liploc(R).
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Consider p, f from Example 4.2 with γ ≥ 1 and φ given by one of the formulas (4.5)–(4.8).
Then all assumptions of Theorem 4.3 are fulfilled and problem (2.1), (1.2) has a unique solution
for u0 ∈ [L0, L]. Note that if γ ∈ (0, 1), then f is not Lipschitz continuous on a neighbourhood
of zero, that is (4.9) is not valid. Similarly, in the case that φ is given by (4.3) or (4.4), then φ−1

is not Lipschitz continuous on a neighbourhood of zero and hence (4.10) falls.

In the next two theorems we show assumptions under which solutions of problem (2.1),
(1.2) continuously depend on their initial values in the case that φ−1 is not locally Lipschitz
continuous.

Theorem 4.6 (Continuous dependence on initial values II). Assume (1.3)–(1.7), (2.4), (2.5), (4.9)
and

lim sup
x→0−

(
−x
(

φ−1
)′

(x)
)
< ∞, φ′ is nonincreasing on (−∞, 0). (4.14)

Let B1, B2 satisfy
B1 ∈ (2ε, L− 2ε), |B1 − B2| < ε

for some ε > 0. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then for each β > 0
where

u′i < 0 on (0, β], i = 1, 2,

there exists K ∈ (0, ∞) such that

‖u1 − u2‖C1[0,β] ≤ K|B1 − B2|.

Proof. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then by integrating
(2.1) over [0, t], we obtain

φ(u′i(t)) = −
1

p(t)

∫ t

0
p(s) f̃ (φ(ui(s)))ds =: Ai(t), t ∈ [0, ∞) (4.15)

ui(t) = Bi +
∫ t

0
φ−1(Ai(s))ds, t ∈ [0, ∞), i = 1, 2.

Therefore

|u1(t)− u2(t)| ≤ |B1 − B2|+
∫ t

0

∣∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣∣ ds, t ∈ [0, ∞). (4.16)

In order to reach the required estimate, we restrict our consideration on a small interval [0, δ]

for a suitably chosen δ > 0 in Step 1. Then we prolongate the result on [0, β] in Step 2.

Step 1. Assumptions (1.3)–(1.6), (4.9), (4.14) yield the existence of positive constants Λ f , Λφ,
K1, K2 such that

| f (y1)− f (y2)| ≤ Λ f |y1 − y2|, y1, y2 ∈ [φ(L0), φ(L)],

|φ(x1)− φ(x2)| ≤ Λφ|x1 − x2|, x1, x2 ∈ [L0, L],

K1 = min { f (φ(x)) : x ∈ [B1 − 2ε, B1 + 2ε]} , (4.17)

0 < −x
(

φ−1
)′

(x) ≤ K2, x ∈ [−1, 0). (4.18)

By Lemma 3.4, there exists c̃ > 0 such that |u′i| ≤ c̃ on [0, ∞), i = 1, 2. Let us choose δ such
that

0 < δ ≤ min
{

ε

c̃
,

1
K1

,
K1

2K2Λ f Λφ

}
. (4.19)
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Then we get
|B1 − u1(t)| = |u1(0)− u1(t)| ≤ c̃δ ≤ ε,

which yields u1(t) ∈ [B1 − ε, B1 + ε] for t ∈ [0, δ]. Moreover,

|B1 − u2(t)| ≤ |B1 − B2|+ |u2(0)− u2(t)| ≤ ε + δc̃ ≤ 2ε,

thus u2(t) ∈ [B1 − 2ε, B1 + 2ε] holds for t ∈ [0, δ]. Consequently, f̃ (φ(ui)(t)) ≥ K1, for t ∈
[0, δ], i = 1, 2. Therefore

Ai(s) = −
∫ s

0

p(τ)
p(s)

f̃ (φ(ui(τ)))dτ ≤ −K1

∫ s

0

p(τ)
p(s)

dτ, s ∈ [0, δ],

|A1(s)− A2(s)| ≤
∫ s

0

p(τ)
p(s)
| f̃ (φ(u1(τ)))− f̃ (φ(u2(τ)))|dτ ≤ Λ f Λφ‖u1 − u2‖C[0,δ]

∫ s

0

p(τ)
p(s)

dτ.

Let s ∈ (0, δ] be fixed. By the mean value theorem there exists A?(s) between A1(s) and A2(s)
such that ∣∣∣φ−1(A1(s))− φ−1(A2(s))

∣∣∣ ≤ (φ−1
)′

(A?(s)) |A1(s)− A2(s)|.

Since (φ−1)′ is a nondecreasing function on (−∞, 0), we get∣∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣∣ ≤ (φ−1

)′ (
−K1

∫ s

0

p(τ)
p(s)

dτ

)
|A1(s)− A2(s)|

≤
(

φ−1
)′ (
−K1

∫ s

0

p(τ)
p(s)

dτ

) Λ f Λφ‖u1 − u2‖C[0,δ]

K1
K1

∫ s

0

p(τ)
p(s)

dτ.

Using the monotonicity of p and (4.19), we have

0 < K1

∫ s

0

p(τ)
p(s)

dτ ≤ K1δ ≤ 1,

and hence, by (4.18), we get∣∣∣φ−1(A1(s))− φ−1(A2(s))
∣∣∣ ≤ K2

K1
Λ f Λφ‖u1 − u2‖C[0,δ].

Consequently, by (4.19), we derive from (4.16) for t ∈ [0, δ]

|u1(t)− u2(t)| ≤ |B1 − B2|+
∫ t

0

K2

K1
Λ f Λφ‖u1 − u2‖C[0,δ] ds

≤ |B1 − B2|+ δ
K2

K1
Λ f Λφ‖u1 − u2‖C[0,δ] ≤ |B1 − B2|+

1
2
‖u1 − u2‖C[0,δ].

This yields
‖u1 − u2‖C[0,δ] ≤ 2|B1 − B2|. (4.20)

Furthermore, by (4.15),

|u′1(t)− u′2(t)| =
∣∣∣φ−1(A1(t))− φ−1(A2(t))

∣∣∣ ≤ K2

K1
Λ f Λφ‖u1 − u2‖C[0,δ], t ∈ [0, δ].

Hence ∥∥u′1 − u′2
∥∥

C[0,δ] ≤ K3|B1 − B2|, (4.21)
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where K3 := 2 K2
K1

Λ f Λφ. Finally,

‖u1 − u2‖C1[0,δ] ≤ KS1|B1 − B2|, where KS1 := K3 + 2.

Step 2. In this step, we extend the continuous dependence on initial values from [0, δ] to [0, β],
where u′i(t) < 0 for t ∈ (0, β], i = 1, 2. To this aim, choose i ∈ {1, 2} and denote

νi = max{u′i(t) : t ∈ [δ, β]} < 0, m1 = max{ν1, ν2}, m = min{−c̃, L0}.

Moreover, (1.3) yields the existence of positive Lipschitz constants Λm, Λφ−1 such that

|φ(x1)− φ(x2)| ≤ Λm|x1 − x2|, x1, x2 ∈ [m, L],∣∣∣φ−1(y1)− φ−1(y2)
∣∣∣ ≤ Λφ−1 |y1 − y2|, y1, y2 ∈ [φ(−c̃), φ(m1)].

By integrating (2.1) over [δ, t], t ∈ [δ, β], we get

φ(u′i(t)) =
p(δ)
p(t)

φ(u′i(δ))−
1

p(t)

∫ t

δ
p(s) f̃ (φ(ui(s)))ds.

Let us denote

Ãi(t) := −
∫ t

δ

p(s)
p(t)

f̃ (φ(ui(s)))ds,

xi(t) :=
p(δ)
p(t)

φ(u′i(δ)) + Ãi(t) = φ(u′i(t)), t ∈ [δ, β].

Then
u′i(t) = φ−1(xi(t)), t ∈ [δ, β]. (4.22)

Since −c̃ ≤ u′i(t) ≤ m1, then xi(t) ∈ [φ(−c̃), φ(m1)], for t ∈ [δ, β]. Integrating (4.22) from δ to
t, t ∈ [δ, β], we get

ui(t) = ui(δ) +
∫ t

δ
φ−1(xi(s))ds.

By (4.20) we obtain for t ∈ [δ, β]

|u1(t)− u2(t)| ≤ |u1(δ)− u2(δ)|+
∫ t

δ

∣∣∣φ−1(x1(s))− φ−1(x2(s))
∣∣∣ ds

≤ 2|B1 − B2|+ Λφ−1

∫ t

δ
|x1(s)− x2(s)|ds.

Further by (1.7), (4.21) we obtain for s ∈ [δ, β]

|x1(s)− x2(s)| ≤
p(δ)
p(s)
|φ(u′1(δ))− φ(u′2(δ))|+

∣∣Ã1(s)− Ã2(s)
∣∣

≤ Λm|u′1(δ)− u′2(δ)|+
∫ s

δ

∣∣ f̃ (φ(u1(τ)))− f̃ (φ(u2(τ)))
∣∣ dτ

≤ ΛmK3|B1 − B2|+ Λ f Λm

∫ s

δ
|u1(τ)− u2(τ)|dτ.

Therefore,

|u1(t)− u2(t)| ≤ 2|B1 − B2|+ Λφ−1 ΛmK3β|B1 − B2|+ Λφ−1 Λ f Λm

∫ t

δ

∫ s

δ
|u1(τ)− u2(τ)|dτ ds

≤ K4|B1 − B2|+ K5

∫ t

δ
|u1(τ)− u2(τ)|dτ, t ∈ [δ, β],
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where K4 = 2 + Λφ−1 ΛmK3β, K5 = Λφ−1 Λ f Λmβ. Next we set for t ∈ (δ, β]

ρ(t) = max{|u1(s)− u2(s)| : s ∈ [δ, t]}.

Then
ρ(t) ≤ K4|B1 − B2|+ K5

∫ t

δ
ρ(τ)dτ.

The Gronwall lemma yields that

ρ(t) ≤ K4|B1 − B2|eK5β, t ∈ [δ, β]

‖u2 − u2‖C[δ,β] ≤ K6|B1 − B2|, where K6 = K4eK5β.

By (4.22),

|u′1(t)− u′2(t)| ≤
∣∣∣φ−1(x1(t))− φ−1(x2(t))

∣∣∣ ≤ Λφ−1 |x1(t)− x2(t)|

≤ Λφ−1 ΛmK3|B1 − B2|+ Λφ−1 Λ f Λmβ‖u1 − u2‖C[δ,β] ≤ K7|B1 − B2|,

where K7 = Λφ−1 ΛmK3 + Λφ−1 Λ f ΛmβK6. Hence

‖u′1 − u′2‖C[δ,β] ≤ K7|B1 − B2|,
‖u1 − u2‖C1[δ,β] ≤ KS2|B1 − B2|

with KS2 = K6 + K7. Finally, there exists K = KS1 + KS2 such that

‖u1 − u2‖C1[0,β] ≤ K|B1 − B2|.

This completes the proof.

Remark 4.7. The approach developed in the proof of Theorem 4.6 cannot be used for B1 = L
because then the positive constant K1 in (4.17) which is crucial in the proof does not exists.

Theorem 4.8 (Continuous dependence on initial values III). Assume (1.3)–(1.7), (2.4), (2.5), (4.9)
and

lim sup
x→0+

(
x
(

φ−1
)′

(x)
)
< ∞, φ′ is nondecreasing on (0, ∞). (4.23)

Let B1, B2 satisfy
B1 ∈ (L0 + 2ε,−2ε) , |B1 − B2| < ε

for some ε > 0. Let ui be a solution of problem (2.1), (1.2) with u0 = Bi, i = 1, 2. Then for each β > 0
where

u′i > 0 on (0, β], i = 1, 2,

there exists K ∈ (0, ∞) such that

‖u1 − u2‖C1[0,β] ≤ K|B1 − B2|.

Proof. We proceed similarly as in the proof of Theorem 4.6. In Step 1 we replace f (φ(x)) by
| f (φ(x))| in (4.17) and the interval [−1, 0 ) by (0, 1 ] in (4.18). Then we derive the inequalities

− f̃ (φ(ui)(t)) =
∣∣ f̃ (φ(ui)(t))

∣∣ ≥ K1, t ∈ [0, δ], i = 1, 2,

Ai(s) = −
∫ s

0

p(τ)
p(s)

f̃ (φ(ui(τ)))dτ ≥ K1

∫ s

0

p(τ)
p(s)

dτ, s ∈ [0, δ].
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Since
(
φ−1)′ is nonincreasing on (0, ∞), we get∣∣∣φ−1(A1(s))− φ−1(A2(s))

∣∣∣ ≤ (φ−1
)′ (

K1

∫ s

0

p(τ)
p(s)

dτ

)
|A1(s)− A2(s)|

≤
(

φ−1
)′ (

K1

∫ s

0

p(τ)
p(s)

dτ

) Λ f Λφ‖u1 − u2‖C[0,δ]

K1
K1

∫ s

0

p(τ)
p(s)

dτ,

and follow Step 1 in the proof of Theorem 4.6. In Step 2 having u′i(t) > 0 for t ∈ (0, β ], i = 1, 2,
we denote

νi = min{u′i(t) : t ∈ [δ, β]} > 0, m0 = min{ν1, ν2}, M = max{c̃, L}.

By (1.3) there exists positive Lipschitz constants Λm, Λφ−1 such that

|φ(x1)− φ(x2)| ≤ Λm|x1 − x2|, x1, x2 ∈ [L0, M],∣∣∣φ−1(y1)− φ−1(y2)
∣∣∣ ≤ Λφ−1 |y1 − y2|, y1, y2 ∈ [φ(m0), φ(c̃)] .

We derive (4.22) and since m0 ≤ u′i(t) ≤ c̃, we get xi(t) ∈ [φ(m0), φ(c̃)], for t ∈ [δ, β] , i = 1, 2.
Further we argue as in the proof of Theorem 4.6.

5 Existence and uniqueness of damped solutions of problem
(1.1), (1.2)

Main results of the present paper are formulated in this section. The existence of damped
solutions is proved in Theorem 5.1 and the uniqueness is derived in Theorem 5.4. Both results
hold not only for the auxiliary problem (2.1), (1.2), but above all for the original problem
(1.1), (1.2). Due to Remark 3.3, immediately from Theorem 4.1 and Lemma 3.2, we obtain the
existence result.

Theorem 5.1 (Existence of damped solutions of problem (1.1), (1.2)). Assume (1.3)–(1.7), (2.5)
and

∃B̄ ∈ (L0, 0) :
∫ B̄

0
f (φ(z))dz =

∫ L

0
f (φ(z))dz.

Then, for each u0 ∈ [B̄, L), problem (1.1), (1.2) has a solution. Every solution of problem (1.1), (1.2)
with u0 ∈ [B̄, L) is damped.

Example 5.2. Problem (1.1), (1.2) with p, f and φ from Example 4.2 has for each u0 ∈ [B̄, L)
a damped solution.

Remark 5.3. By Theorem 5.1, we can get homoclinic or escape solutions only if u0 ∈ (L0, B̄).

If φ−1 /∈ Liploc(R), we derive results about the uniqueness by means of Theorems 4.6 and
4.8. Since the next uniqueness result concerns damped solutions, it can be formulated directly
for the original problem (1.1), (1.2) due to Remark 3.3.

Theorem 5.4 (Uniqueness of damped solutions). Assume (1.3)–(1.7), (2.4), (2.5), (4.9), (4.14) and
(4.23). Let u be a damped solution of problem (1.1), (1.2) with u0 ∈ (L0, 0)∪ (0, L). Then u is a unique
solution of this problem.
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Proof. Assume that u is a damped solution of the auxiliary problem (2.1), (1.2) and that there
exists another solution v of problem (2.1), (1.2). Definition 1.3 yields

u(t) < L, t ∈ [0, ∞). (5.1)

By Lemma 3.2, we have
L0 < u(t), L0 < v(t), t ∈ (0, ∞ ] . (5.2)

Step 1. Let u0 ∈ (L0, 0).

(i) According to Lemma 2.1 b), there exists β > 0 such that u′(t) > 0, v′(t) > 0 for t ∈ (0, β].
Put

a = sup{β > 0 : u′(t) > 0, v′(t) > 0, t ∈ (0, β]},
ρ(t) = u(t)− v(t), t ∈ [0, ∞).

Since u′ > 0, v′ > 0 on (0, a) and B1 := u0 = v(0) =: B2, Theorem 4.8 yields

ρ(t) = 0, t ∈ [0, a). (5.3)

If a = ∞, then
u(t) = v(t), t ∈ [0, ∞). (5.4)

Consequently, by (5.1) and (5.2), u is a unique solution of problem (1.1), (1.2).
Let a < ∞. Since u, v ∈ C1[0, ∞), we get, by (5.3),

lim
t→a−

ρ(t) = ρ(a) = u(a)− v(a) = 0, lim
t→a−

ρ′(t) = ρ′(a) = u′(a)− v′(a) = 0. (5.5)

Therefore u′(a) = v′(a).

(ii) According to the definition of number a, we have u′(a) = v′(a) = 0. By (5.1) and
Lemma 2.6 or Lemma 3.1, u(a) = v(a) ∈ (0, L). Due to Lemma 2.1 a), there exists γ > a
such that u′(t) < 0, v′(t) < 0, for t ∈ (a, γ]. Put

b = sup{γ > a : u′(t) < 0, v′(t) < 0, t ∈ (a, γ]}.

Since u′ < 0, v′ < 0 on (a, b) and u(a) = v(a) ∈ (0, L), by Theorem 4.6 (working with a,
γ, u(a) and v(a) instead of 0, β, B1 and B2 respectively), we get

ρ(t) = 0, t ∈ [a, b). (5.6)

If b=∞, then (5.4) holds and, by (5.1), (5.2), u is a unique solution of problem (1.1), (1.2).
Let b < ∞. Since u, v ∈ C1[0, ∞), (5.6) yields

lim
t→b−

ρ(t) = ρ(b) = u(b)− v(b) = 0, lim
t→b−

ρ′(t) = ρ′(b) = u′(b)− v′(b) = 0.

Hence u′(b) = v′(b) and, due to the definition of b, u′(b) = v′(b) = 0. Lemma 2.7
implies u(b) = v(b) ∈ (B̄, 0). Repeating the arguments in parts (i) and (ii), we get that u
is a unique solution of problem (1.1), (1.2).

Step 2. Let u0 ∈ (0, L). We have the same situation as in part (ii) of Step 1, where a is replaced
by 0, and so we argue similarly.
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6 Uniqueness of regular homoclinic and escape solutions

In this section we discuss homoclinic and escape solutions and hence, by Remark 5.3, we
take u0 ∈ (L0, B̄). Results concerning homoclinic solutions can be formulated directly for the
original problem (1.1), (1.2) due to Remark 3.3.

Theorem 6.1 (Nonexistence of singular homoclinic solutions). Assume (1.3)–(1.7), (4.9) and
(4.10). Then each homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, B̄) is regular.

Proof. Let u be a singular homoclinic solution of problem (2.1), (1.2) with u0 ∈ (L0, B̄) . Then,
by Definition 1.3, there exists t0 > 0 such that

u(t0) = L, u′(t0) = 0, (6.1)

and
u(t) < L, t ∈ [0, t0). (6.2)

Using the substitution s = t0 − t, q(s) = p(t), v(s) = u(t) for t ∈
[ t0

2 , t0
]

, we transform the
terminal value problem (2.1), (6.1) on

[ t0
2 , t0

]
to the initial value problem

−(q(s)φ(−v′(s)))′ + q(s) f̃ (φ(v(s))) = 0, s ∈
[

0,
t0

2

]
, v(0) = L, v′(0) = 0.

By Theorem 4.3, the only possible function satisfying this problem is the constant function
v(s) = L for s ∈

[
0, t0

2

]
. Therefore u(t) = L for t ∈

[ t0
2 , t0

]
, which contradicts (6.2).

Theorem 6.1 discusses the case where φ−1 ∈ Liploc(R). Now we will study the case where
condition (4.10) falls, that is φ−1 /∈ Liploc(R). Then both regular and singular homoclinic
solutions may exist and, according to Remark 4.7, we are able to prove the uniqueness just for
regular ones.

Lemma 6.2 (Regular homoclinic solution is increasing). Assume (1.3)–(1.7), (2.4), (2.5). Let u be
a regular homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, B̄). Then

lim
t→∞

u(t) = L, u′(t) > 0, t ∈ (0, ∞). (6.3)

Moreover,
lim
t→∞

u′(t) = 0. (6.4)

Proof. Let u be a regular homoclinic solution of problem (2.1), (1.2) with u0 ∈ (L0, B̄). Thus,
by Definition 1.3, usup = L.

Step 1. By Lemma 2.1 b) there exists θ0 > 0 such that u(θ0) = 0, u(t) < 0 for t ∈ (0, θ0) and
u′(t) > 0 for t ∈ (0, θ0]. Assume on contrary with (6.3), that a1 > θ0 is the first zero of u′.
Since u is a regular homoclinic solution, u(a1) belongs to (0, L). If u > 0 on [a1, ∞), then by
Lemma 2.1 a), u is decreasing which contradicts usup = L. Therefore, there exists θ1 > a1 such
that u(θ1) = 0, u′(t) < 0 for t ∈ (a1, θ1]. Hence we have

u(a1) ∈ (0, L), u′(a1) = 0, u′(t) > 0, t ∈ (0, a1). (6.5)

By Lemma 2.7 there exists b1 > θ1 such that

u(b1) ∈ (B̄, 0), u′(b1) = 0, u′(t) < 0, t ∈ [θ1, b1).
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Since, usup = L, there exists θ2 > b1, such that u(θ2) = 0, u′(t) > 0 for t ∈ (b1, θ2]. By
Lemma 2.6 there exists a2 > θ2 such that

u(a2) ∈ (0, L), u′(a2) = 0, u′(t) > 0, t ∈ (b1, a2).

Repeating this procedure, we obtain a sequence of zeros {θn}∞
n=0 of u and a sequence of

local maxima {u(an)}∞
n=1 of u. Now, we prove that the sequence {u(an)}∞

n=1 is nonincreasing.
Choose n ∈N. Multiplying equation (1.1) by u′/p, then integrating from an to an+1 we obtain∫ an+1

an

φ′(u′(t))u′′(t)u′(t)dt +
∫ an+1

an

p′(t)
p(t)

φ(u′(t))u′(t)dt +
∫ an+1

an

f̃ (φ(u(t)))u′(t)dt = 0.

The first integral is equal zero since u′(an) = u′(an+1) = 0. The second integral is nonnegative
due to (1.7) and (2.6). Therefore,

0 ≥
∫ an+1

an

f̃ (φ(u(t)))u′(t)dt =
∫ u(an+1)

u(an)
f̃ (φ(y))dy = F̃(u(an+1))− F̃(u(an)).

Since F̃ is increasing function, we get u(an) ≥ u(an+1). The sequence {u(an)}∞
n=1 is nonin-

creasing, because n is chosen arbitrarily. Thus usup < L, which cannot be fulfilled because u
is a homoclinic solution. This contradiction yields that

u′(t) > 0, t ∈ (0, ∞).

Since usup = L, then limt→∞ u(t) = L.

Step 2. Since, u > 0 on (θ0, ∞), we have f (φ(u)) > 0 on (θ0, ∞). From (1.1) we obtain that

0 >
(

p(t)φ(u′(t))
)′
= p′(t)φ(u′(t)) + p(t)

(
φ(u′(t))

)′ , t ∈ (θ0, ∞).

Since p, p′, u′ and φ(u′) are positive on (0, ∞), we get that φ(u′) is decreasing on (θ0, ∞). On
the other hand φ is an increasing function. Therefore u′ is a decreasing function on (θ0, ∞).
Since u′ > 0 on (0, ∞), there exists a nonnegative limit

lim
t→∞

u′(t) =: K ≥ 0.

If K > 0, then

K(t− θ0) ≤
∫ t

θ0

u′(s)ds = u(t)− u(θ0) = u(t).

As t tends to infinity the limit yields,

L = lim
t→∞

u(t) ≥ lim
t→∞

K(t− θ0) = ∞,

a contradiction. Therefore (6.4) holds.

Since assumptions (1.6) are imposed to f on the interval [φ(L0), φ(L)] and we have no
information about a behaviour of f out of this interval, we formulate results concerning escape
solutions for the auxiliary problem (2.1), (1.2).

Lemma 6.3 (Escape solution is increasing). Assume that (1.3)–(1.7), (2.4) and (2.5) hold. Let u be
an escape solution of problem (2.1), (1.2) with u0 ∈ (L0, B̄). Then

u′(t) > 0, t ∈ (0, ∞) .
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Proof. Let u be an escape solution of problem (2.1), (1.2) with u0 ∈ (L0, B̄). Thus, by Defini-
tion 1.3, usup > L. Then there exists a point c ∈ (0, ∞) such that u(c) = L, u′(c) ≥ 0 and
u(t) < L for t ∈ [0, c). First we exclude the case u′(c) = 0. Lemma 2.2 yields that if u′(c) = 0
then either u has a zero point u(θ) = 0, u(t) ≤ L, t ∈ [c, θ] or u is positive and nonincreasing
on [c, ∞). The later case is in contradiction with u being an escape solution. Therefore, such
zero point θ > c must exist. Applying Lemma 2.1 a), b) and Lemma 2.7 and repeating the
arguments as in Step 1 in the proof of Lemma 6.2, we get that u has a nonincreasing sequence
{u(an)}∞

n=1 of its local maxima. Thus u(t) ≤ L for t ≥ 0 on contrary that u is an escape
solution. Therefore u′(c) > 0.

Let c1 > c be such that u′(c1) = 0 and u(t) > L, u′(t) > 0 for t ∈ (c, c1). Integrating (2.1)
over [c, c1] we get, due to (1.3), (1.4), (1.7) and (2.2),

φ(u′(c1)) =
p(c)φ(u′(c))

p(c1)
> 0,

contrary to u′(c1) = 0. We have proved u′(t) > 0 for t > c.
Further, we prove that u′(t) > 0 for t ∈ (0, θ0]. Since u0 ∈ (L0, 0), Lemma 2.1 b) yields that

there exists θ0 > 0 such that u(θ0) = 0, u(t) < 0 for t ∈ (0, θ0), u′(t) > 0 for t ∈ (0, θ0].
It remains to prove that u′(t) > 0 for t ∈ (θ0, c). Assume on the contrary that there

exists a1 ∈ (θ0, c) such that (6.5) holds. We derive a contradiction as in Step 1 in the proof of
Lemma 6.2. To summarize, u′(t) > 0 for t > 0.

We are ready to prove uniqueness results for regular homoclinic and escape solutions.

Theorem 6.4 (Uniqueness of regular homoclinic solutions). Assume (1.3)–(1.7), (2.4), (2.5), (4.9),
(4.14) and (4.23). Let u be a regular homoclinic solution of problem (1.1), (1.2) with u0 ∈ (L0, B̄).
Then u is a unique solution of this problem.

Proof. Let u be a regular homoclinic solution of problem (2.1), (1.2). According to Lemma 6.2,
u′ > 0 on (0, ∞). Consider that v is another solution of problem (2.1), (1.2). Assume that there
exists c ∈ (0, ∞) such that v′(c) = 0. By Lemma 2.1 b), there exists θ > 0 such that v(θ) = 0,
v′(t) > 0 for t ∈ (0, θ]. Therefore c > θ and there exists a ∈ (θ, c] such that v′(a) = 0, v′(t) > 0
for t ∈ (0, a). Put

ρ(t) = u(t)− v(t), t ∈ [0, ∞).

Since u′ > 0, v′ > 0 on (0, a), Theorem 4.8, where u0 = B1 = B2, gives

ρ(t) = 0, ρ′(t) = 0, t ∈ [0, a). (6.6)

Since u, v ∈ C1[0, ∞), we get that (5.5) holds. Thus u′(a) = v′(a). According to the definition
of number a, we have u′(a) = v′(a) = 0, which contradicts the inequality u′ > 0 on (0, ∞).
Therefore a = ∞ and, by (6.6), u is a unique solution of problem (2.1), (1.2).

Theorem 6.5 (Uniqueness of escape solutions). Assume (1.3)–(1.7), (2.4), (2.5), (4.9) and (4.23).
Let u be an escape solution of problem (2.1), (1.2) with u0 ∈ (L0, B̄). Then u is a unique solution of
this problem.

Proof. Let u be an escape solution of problem (2.1), (1.2). By Lemma 6.3, u′ > 0 on (0, ∞) and
we can argue as in the proof of Theorem 6.4.
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Example 6.6. Consider p, f from Example 4.2 with γ ≥ 1 and φ given by (4.3). Then

φ−1(x) = |x| 1α sgn x,
(

φ−1
)′

(x) =
1
α
|x| 1α−1, lim

x→0
x
(

φ−1
)′

(x) =
1
α

lim
x→0

x|x| 1α−1 = 0 ∈ R,

φ′(x) = α|x|α−1, φ′′(x) =
α(α− 1)|x|α−1

x

{
≤ 0 for x < 0,

≥ 0 for x > 0.

Hence φ′ is nonincreasing on (−∞, 0), nondecreasing on (0, ∞) and conditions (4.14) and
(4.23) hold. If φ is given by (4.4), then

φ−1(x) =

√√
|x|+ 1− 1,

(
φ−1

)′
(x) =

sgn x

4
√√
|x|+ 1− 1

√
|x|+ 1

,

lim
x→0

x
(

φ−1
)′

(x) = lim
x→0

|x|

4
√√
|x|+ 1− 1

√
|x|+ 1

= 0 ∈ R,

φ′(x) = 4
(

x3 + x
)

sgn x, φ′′(x) = 4
(
3x2 + 1

)
sgn x

{
< 0 for x < 0,

> 0 for x > 0.

Therefore φ′ is decreasing on (−∞, 0) and increasing on (0, ∞). Function φ satisfies condi-
tions (1.3), (1.4), (4.14) and (4.23). In both cases all assumptions of Theorem 4.1, Theorem 5.4
and Theorem 6.5 are fulfilled. Therefore problem (2.1), (1.2) has for u0 ∈ [L0, L] a solution u.
If u0 ∈ (L0, 0) ∪ (0, L) and u < L on [0, ∞ ), then u is a solution of the original problem (1.1),
(1.2) and it is a unique solution of this problem. If u0 ∈ (L0, B̄) and u is an escape solution of
problem (2.1), (1.2), then u is a unique solution of this problem.

Remark 6.7. Theorem 6.1 does not cover equations having a φ-Laplacian in the form (4.3) or
(4.4) because such φ-Laplacian does not fulfil the condition φ−1 ∈ Liploc(R). Therefore to
find conditions which guarantee that singular homoclinic solutions do not exist while φ−1 /∈
Liploc(R) is an open problem and we plan to solve it in our next paper where we also will
discuss the existence and asymptotic properties of regular homoclinic and escape solutions.
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