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Abstract. A connection between the oscillation theory and the Weyl–Titchmarsh theory
for the second order Sturm–Liouville equation on time scales is established by using
the principal solution. In particular, it is shown that the Weyl solution coincides with
the principal solution in the limit point case, and consequently the square integrability
of the Weyl solution is obtained. Moreover, both limit point and oscillatory criteria are
derived in the case of real-valued coefficients, while a generalization of the invariance
of the limit circle case is proven for complex-valued coefficients. Several of these results
are new even in the discrete time case. Finally, some illustrative examples are provided.
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1 Introduction

In this paper we continue in the development of the Weyl–Titchmarsh theory for the second
order Sturm–Liouville dynamic equation

−[p(t) y∆(t, λ)]∆ + q(t) yσ(t, λ) = λ w(t) yσ(t, λ), t ∈ [a, ∞)T. (Eλ)

Here λ ∈ C and [a, ∞)T := [a, ∞)∩T, where T denotes a time scale (i.e., any nonempty closed
subset of R), which is bounded from below with a := min T and unbounded from above.
The coefficients p(·), q(·), and w(·) are (if not specified otherwise) real-valued piecewise rd-
continuous functions on [a, ∞)T (i.e., they belong to Cprd) and satisfy

(i) inf
t∈[a,b]T

|p(t)| > 0 for all b ∈ (a, ∞)T, (ii) w(t) > 0 for all t ∈ [a, ∞)T. (1.1)
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Observe that there is no restriction on the sign of p(·). Let us emphasize that the first condition
in (1.1) cannot be replaced by the weaker assumption p(t) 6= 0 on [a, ∞)T, see [11, Remark 2.2].
We also note that (Eλ) includes several equations of particular interest, especially the second
order Sturm–Liouville differential and difference equations.

The history of the Weyl–Titchmarsh theory goes back to the celebrated paper [23] de-
voted to the second order Sturm–Liouville differential equation. Its extension to equation (Eλ)
was given by several authors e.g. in [14, 17, 22, 26, 28], see also the references therein. One
of the crucial questions of this theory concerns the number of linearly independent solu-
tions of (Eλ), which are square integrable with respect to the weight w(·), i.e., such that∫ ∞

a w(t) |yσ(t, λ)|2∆t < ∞. It can be shown that there exists at least one square integrable
solution for every λ ∈ CKR. Moreover, the situation when all solutions of (Eλ) are square
integrable (i.e., the limit circle case) is invariant with respect to λ ∈ C. These facts give rise
to the dichotomous classification of equation (Eλ) as being in the limit point case (i.e., at least
one solution is not square integrable) or in the limit circle case for all λ ∈ C, see Section 2 for
more details. In the first result of this paper we derive a generalization of the latter invariance
in the case of complex-valued coefficients (see Theorem 2.5).

The existence of a square integrable solution remains open only when equation (Eλ) is in
the limit point case and λ ∈ R. But for λ ∈ R equation (Eλ) can be also classified as oscillatory
or nonoscillatory and this behavior is partially invariant with respect to λ as a consequence
of the Sturmian theory, see e.g. [10]. Moreover, the nonoscillatory case is equivalent with
the existence of a solution, which is eventually smaller than any other linearly independent
solution. This solution is said to be principal and we show that it plays a significant role in the
present problem. In particular, we utilize the principal solution of (Eλ) for a development of
a limit point criterion (see Theorem 3.1) and we discuss its connection with the Weyl solution
and its square integrability in the limit point case (see Theorem 3.5). These results are new in
the case T = Z, while in the case T = R they can be found in [5, Section 2].

The paper is organized as follows. In the next section we derive a generalization of the
invariance of the limit circle case, recall several results from the Weyl–Titchmarsh theory equa-
tion (Eλ), and present basic properties of the principal solution. The main results are estab-
lished in Section 3.

2 Preliminaries

For the foundations of the time scale calculus we refer to [3]. For brevity, we write only
yσ2(t, λ) instead of [yσ(t, λ)]2 = [y(σ(t), λ)]2. By a solution of equation (Eλ) we mean a function
y(·, λ) defined on [a, ∞)T such that the functions y(·, λ) and p(·) y∆(·, λ) are piecewise rd-
continuously delta-differentiable on [a, ∞)T and equation (Eλ) is satisfied for all t ∈ [a, ∞)T,
see also [18, pg. 4].

In the first part of this section we consider equation (Eλ) with complex-valued coefficients.
For simplicity we summarize the assumptions put on the coefficients of equation (Eλ).

Hypothesis 2.1. The functions p(·), q(·), w(·) ∈ Cprd are complex-valued and such that in-
equality (1.1)(i) is satisfied.

The following lemma guarantees the existence and uniqueness of the solution of any initial
value problem associated with equation (Eλ), see [3, Theorem 5.8]. Moreover, it shows an inti-
mate connection between equation (Eλ) with real-valued coefficients and the scalar symplectic



Principal solution in Weyl–Titchmarsh theory 3

dynamic system, i.e., the system of the form

z∆(t, λ) = S(t, λ) z(t, λ), S(t, λ) := S(t) + λV(t), (Sλ)

where S(·, λ) : [a, ∞)T → C2×2 is a piecewise rd-continuous function satisfying for all λ ∈ C

and all t ∈ [a, ∞)T the symplectic-type identity

S∗(t, λ)J + J S(t, λ̄) + µ(t) S∗(t, λ)J S(t, λ̄) = 0, J :=
(

0 1
−1 0

)
, (2.1)

see also [18, Theorem 3.4]. Here S∗(t, λ) = [S(t, λ)]∗ = [S(t, λ)]>, i.e., ∗ stands for the conju-
gate transpose. The later fact was used e.g. in [17], where some results of the Weyl–Titchmarsh
theory for equation (Eλ) were obtained as a special case of general results for system (Sλ) es-
tablished in [18], see also [19, 20]. Finally, we note that system (Sλ) is closely related to the
linear Hamiltonian dynamic system, which leads to system (Sλ) with polynomial dependence
on λ, see [21]. In addition, system (Sλ) reduces to the linear Hamiltonian differential system
if T = R.

Lemma 2.2. Let Hypothesis 2.1 be satisfied. Equation (Eλ) is equivalent with the the first order system
system of the form as in (Sλ), where

z(t, λ) =

(
y(t, λ)

p(t) y∆(t, λ)

)
, S(t) =

(
0 1/p(t)

q(t) µ(t) q(t)/p(t)

)
,

V(t) = −
(

0 0
w(t) µ(t)w(t)/p(t)

)
.

The matrix-valued function S(·, λ) is regressive on [a, ∞)T for all λ ∈ C. In addition, S(·, λ) satisfies
identity (2.1) for all λ ∈ C and all t ∈ [a, ∞)T if and only if the coefficients p(·), q(·), w(·) are
real-valued functions.

Proof. The proof follows by straightforward calculations. The regressivity is a consequence of
the equality det[I + µ(t) S(t, λ)] ≡ 1 on [a, ∞)T ×C.

We denote by Φ(t, λ) the fundamental matrix of systems of the form as in (Sλ) determined
by the initial value condition Φ(a, λ) = I, i.e.,

Φ(t, λ) =

(
φ1(t, λ) φ2(t, λ)

p(t) φ∆
1 (t, λ) p(t)φ∆

2 (t, λ)

)
,

where φ1(t, λ) and φ2(t, λ) are linearly independent solutions of equation (Eλ) such that

φ1(a, λ) = 1, φ∆
1 (a, λ) = 0 and φ2(a, λ) = 0, φ∆

2 (a, λ) =
1

p(a)
.

The following lemma extends [25, Theorem 7.2.1] to any time scale. This result is new even
in the case T = Z. Observe that its proof does not rely on the symplectic-type identity (2.1),
which may be violated under Hypothesis 2.1, compare with the proof of [19, Theorem 6.1].

Lemma 2.3. Let Hypothesis 2.1 be satisfied and λ, ν ∈ C be arbitrary. Then the matrix-valued function
Υ(t, λ, ν) := Φ−1(t, ν)Φ(t, λ) solves the first order dynamic system

Υ∆(t, λ, ν) = (ν− λ)Ω(t, ν)Υ(t, λ, ν), (2.2)
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where

Ω(t, ν) :=
(
−w(t) φσ

1 (t, ν) φσ
2 (t, ν) −w(t) φσ2

2 (t, ν)

w(t) φσ2
1 (t, ν) w(t) φσ

1 (t, ν) φσ
2 (t, ν)

)
(2.3)

and Ω(·, ν) is regressive on [a, ∞)T. In addition, if there exists λ0 ∈ C such that all solutions of (Eλ0)
satisfy ∫ ∞

a
|w(t)| |yσ(t, λ0)|2 ∆t < ∞, (2.4)

then
∫ ∞

a |Ω(t, λ0)|∆t < ∞.

Proof. From the definition of Υ(t, λ, ν), rules for the time scale differentiation, see [3, Theo-
rems 1.20 and 5.3], and the form of system (Sλ) we obtain

Υ∆(t, λ, ν) = [Φσ(t, ν)]−1 [−Φ∆(t, ν)Φ−1(t, ν) + S(t) + λV(t)
]

Φ(t, ν)Υ(t, λ, ν)

= [Φσ(t, ν)]−1 [− S(t)− νV(t) + S(t) + λV(t)
]

Φ(t, ν)Υ(t, λ, ν)

= (λ− ν) [Φσ(t, ν)]−1 V(t)Φ(t, ν)Υ(t, λ, ν).

Simultaneously the Liouville formula, see [3, Theorem 5.28], yields

det Φ(t, ν) = er(·)(t, a) det Φ(a, ν) = er(·)(t, a),

where r(t) := tr S(t, ν) + µ(t)det S(t, ν). But r(t) ≡ 0 on the interval [a, ∞)T, which im-
plies det Φ(t, ν) = e0(t, a) ≡ 1 for all t ∈ [a, ∞)T, see [3, Theorem 2.36]. Hence Ω(t, ν) de-
fined in (2.3) corresponds to −[Φσ(t, ν)]−1 V(t)Φ(t, ν), which proves (2.2). The regressivity
of Ω(·, ν) is a simple consequence of the relation det[I + µ(t)Ω(t, ν)] ≡ 1 on [a, ∞)T, which
is obtained by a straightforward calculation. Finally, the inequality

∫ ∞
a |Ω(t, λ0)|∆t < ∞

follows directly from assumption (2.4) and from the Cauchy–Schwarz inequality, see [3, The-
orem 6.15],∫ ∞

a
|w(t)| |φσ

1 (t, λ0) φσ
2 (t, λ0)|∆t =

∫ ∞

a

√
|w(t)| |φσ

1 (t, λ0)|
√
|w(t)| |φσ

2 (t, λ0)|∆t

≤
( ∫ ∞

a
|w(t)| |φσ

1 (t, λ0)|2 ∆t
)1/2

×
( ∫ ∞

a
|w(t)| |φσ

2 (t, λ0)|2 ∆t
)1/2

< ∞, (2.5)

which completes the proof.

Remark 2.4. Let us denote by ‖·‖1 the Hölder (or `1) matrix norm on C2×2, i.e., ‖A‖1 :=
∑2

i,j=1 |aij| for any A ∈ C2×2. Then the additional assumption in (2.4) and the conclusion of
Lemma 2.3 imply ∫ ∞

a
‖Ω(t)‖1 ∆t < ∞, (2.6)

where Ω(t) := Ω(t, λ0). Since (λ0 − λ)Ω(·) is regressive by Lemma 2.3 and the norm ‖·‖1 is
submultiplicative, i.e., ‖AB‖1 ≤ ‖A‖1‖B‖1, see [2, Proposition 9.3.5], it follows from inequal-
ity (2.6) and [19, Lemma 3.1] that there exists K > 0 such that

‖Υ(t, λ)‖1 = ‖e(λ0−λ)Ω(·)(t, a)‖1 ≤ K < ∞, for all t ∈ [a, ∞)T, (2.7)

i.e., Υ(t, λ) := Υ(t, λ, λ0) is bounded in the norm ‖·‖1. In addition, if {tk}∞
k=1 ⊆ T is a strictly

increasing sequence such that tk → ∞ for k→ ∞, then we obtain from the submultiplicativity
of ‖·‖1 and (2.7) that

‖Υ(ti, λ)− Υ(tj, λ)‖1 ≤ |λ0 − λ|
∫ tj

ti

‖Ω(t)Υ(t, λ)‖1 ∆t ≤ K|λ0 − λ|
∫ tj

ti

‖Ω(t)‖1 ∆t
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for any i, j ∈ N, i < j. Since the improper integral
∫ ∞

a ‖Ω(t)‖1 ∆t is convergent by (2.6), it
follows from [4, Theorem 5.49] that for any ε > 0 there exists k ∈N such that

‖Υ(ti, λ)− Υ(tj, λ)‖1 < ε

for any i, j ∈ N, k < i < j. This means that {Υ(tk, λ)}∞
k=1 is a Cauchy sequence. Therefore the

limit limt→∞ Υ(t, λ) exists and, by (2.7), is finite.

The following theorem generalizes [25, Theorem 7.2.2] to any time scale, see also [19,
Theorem 6.1 and Remark 6.2(ii)], [26, Theorem 3.2], and more generally [20]. In its proof we
utilize the Euclidean (or `2) vector norm on C2, i.e., ‖ξ‖2 =

(
∑2

i=1 |ξi|2
)1/2 for ξ ∈ C2, and also

the spectral matrix norm on C2×2, i.e., for A ∈ C2×2 we put

‖A‖s := max
{√

ν, ν is an eigenvalue of A∗A
}

.

It is well known that
|ξ∗ζ| ≤ ‖ξ‖2‖ζ‖2 (2.8)

for any ξ, ζ ∈ C2, see [2, Fact 9.7.4(xii)]. In addition, the norms ‖·‖2 and ‖·‖s are compatible,
i.e., ‖Aξ‖2 ≤ ‖A‖s ‖ξ‖2, while the norms ‖·‖1 and ‖·‖s satisfy the inequality

‖A‖s ≤ ‖A‖1 (2.9)

for any matrix A ∈ C2×2, see [2, Fact 9.8.12(v)]. For brevity, we also employ the condensed
notation Mσ∗(t) := [Mσ(t)]∗ = [M∗(t)]σ for any matrix-valued function M(·).

Theorem 2.5. Let Hypothesis 2.1 be satisfied and assume that there exists λ0 ∈ C such that all
solutions of (Eλ0) satisfy (2.4). Then equation (Eλ) possesses the same property for any λ ∈ C.

Proof. Let λ ∈ CK{λ0} be arbitrary and put Ψ(t) :=
(

w(t) 0
0 0

)
. Then by the assumptions and

inequality (2.5) we get∫ ∞

a
‖Φσ∗(t, λ0)Ψ(t)Φσ(t, λ0)‖1 ∆t

=
∫ ∞

a

[
|w(t)| |φσ

1 (t, λ0)|2 + |w(t)| |φσ
2 (t, λ0)|2

+ 2|w(t)| |φσ
1 (t, λ0) φσ

2 (t, λ0)|
]

∆t ≤ L < ∞, (2.10)

for some L > 0. Therefore with Υ(·, λ) := Υ(t, λ, λ0) as in Lemma 2.3 it follows∫ ∞

a
‖Φσ∗(t, λ)Ψ(t)Φσ(t, λ)‖1 ∆t

=
∫ ∞

a
‖Υσ∗(t, λ)Φσ∗(t, λ0)Ψ(t)Φσ(t, λ0)Υσ(t, λ)‖1 ∆t

≤
∫ ∞

a
‖Υσ(t, λ)‖2

1 ‖Φσ∗(t, λ0)Ψ(t)Φσ(t, λ0)‖1 ∆t ≤ K2L < ∞, (2.11)

where we used (2.10), (2.7), and the submultiplicativity and self-adjointness of the norm ‖·‖1,
i.e., ‖A‖1 = ‖A∗‖1. Since any nontrivial solution y(t, λ) of (Eλ) can be obtained as

y(t, λ) = (1, 0)Φ(t, λ) ξ, t ∈ [a, ∞)T,
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for some ξ ∈ C2K{0}, we have∫ ∞

a
|w(t)| |yσ(t, λ)|2 ∆t =

∫ ∞

a
|ξ∗Φσ∗(t, λ)Ψ(t)Φσ(t, λ) ξ|∆t

≤
∫ ∞

a
‖ξ‖2 ‖Φσ∗(t, λ)Ψ(t)Φσ(t, λ) ξ‖2 ∆t ≤

∫ ∞

a
‖ξ‖2

2 ‖Φσ∗(t, λ)Ψ(t)Φσ(t, λ)‖s ∆t

≤
∫ ∞

a
‖ξ‖2

2 ‖Φσ∗(t, λ)Ψ(t)Φσ(t, λ)‖1 ∆t ≤ ‖ξ‖2
2 K2L < ∞,

where we used (2.8), (2.9), (2.11), and the compatibility of ‖·‖2 and ‖·‖s. This shows that any
solution of (Eλ) satisfies

∫ ∞
a |w(t)| |yσ(t, λ)|2 ∆t < ∞ and the proof is complete.

Remark 2.6. If we replace Ψ(t) by Ψ̃(t) :=
(

0 0
0 w(t)

)
in the proof of Theorem 2.5, we obtain

the following statement: if there exists λ0 ∈ C such that every quasi-derivative y[1](t, λ0) :=
p(t) y∆(t, λ0) of any nontrivial solution y(t, λ0) of equation (Eλ0) satisfies∫ ∞

a
|w(t)|

∣∣[y[1](t, λ0)]
σ
∣∣2 ∆t < ∞,

then equation (Eλ) possesses this property for any λ ∈ C.

Moreover, Theorem 2.5 and Remark 2.6 immediately yield the following sufficient condi-
tion for the invariance concerning solutions of (Eλ) and their quasi-derivatives.

Corollary 2.7. Let Hypothesis 2.1 be satisfied and assume that∫ ∞

a

(
|1/p(t)|+ |q(t)|+ µ(t) |q(t)/p(t)|

)
∆t < ∞,

∫ ∞

a
|w(t)|∆t < ∞. (2.12)

Then all solutions of (Eλ) and their quasi-derivatives satisfy∫ ∞

a
|w(t)| |yσ(t, λ)|2 ∆t < ∞ and

∫ ∞

a
|w(t)|

∣∣[y[1](t, λ)]σ
∣∣2 ∆t < ∞, (2.13)

respectively, for any λ ∈ C.

Proof. According to Theorem 2.5 and Remark 2.6 it suffices to show that all solutions of equa-
tion (E0) and their quasi-derivatives satisfy (2.13) with λ = 0. From the first condition in (2.12)
we get

∫ ∞
a ‖S(t)‖1 ∆t < ∞. Therefore [19, Lemma 3.1] implies that ‖Φ(t, 0)‖1 ≤ α < ∞ on

[a, ∞)T for some α > 0. Upon using similar arguments as in the proof of Theorem 2.5 with
Ψ(t) and Ψ̃(t), respectively, we obtain the conclusion.

Henceforward we restrict our attention only to equation (Eλ) with the coefficients satisfy-
ing the following hypothesis, although we will not repeat it explicitly.

Hypothesis 2.8. The functions p(·), q(·), w(·) ∈ Cprd are real-valued and satisfy (1.1).

Now we recall several results from the Weyl–Titchmarsh theory for equation (Eλ). The
results can be easily obtained as in [17], i.e., as a consequence of Lemma 2.2, Hypothesis 2.8,
and general statements for symplectic dynamic systems established in [18, 19]. On the other
hand, some of these results were derived also directly in [14, 22, 26, 28].
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We denote by L2
w and N (λ) the linear spaces consisting of all square integrable functions

with respect to the weight w(·) and of all square integrable solutions of (Eλ), respectively, i.e.,

L2
w :=

{
y : [a, ∞)T → C,

∫ ∞

a
w(t) |yσ(t)|2 ∆t < ∞

}
,

N (λ) :=
{

y(·, λ) ∈ L2
w, y(·, λ) solves (Eλ)

}
.

Moreover, for brevity, by n(λ) we mean the number of (nontrivial) linearly independent square
integrable solutions of equation (Eλ), i.e.,

n(λ) := dimN (λ).

Then obviously n(λ) = n(λ̄), because Hypothesis 2.8 implies that y(·, λ̄) = y(·, λ), i.e., the
function y(·, λ) solves (Eλ) if and only if y(·, λ) solves (Eλ̄). In addition, from Theorem 2.5 we
obtain immediately the following statement, see also [19, Section 6] and [26, Theorem 3.2].

Theorem 2.9. If there exists λ0 ∈ C such such that n(λ0) = 2, then n(λ) = 2 for all λ ∈ C.

More precisely, the number n(λ) satisfies 1 ≤ n(λ) ≤ 2 for any λ ∈ CKR by [17, Theo-
rem 3.10], which upon combining with Theorem 2.9 yields the famous dichotomy for equa-
tion (Eλ) as stated in Theorem 2.10 below. The latter estimate is obtained by using the so-called
Weyl circles, which are nested and converge to a circle (n(λ) = 2) or a point (n(λ) = 1), see
e.g. [19, Sections 3 and 4]. This geometrical background naturally motivates the limit circle
and limit point terminology. Finally, we note that Theorem 2.9 is known as the invariance of the
limit circle case and Theorem 2.10 below as the Weyl alternative.

Theorem 2.10. Only one of the following statements is true.

(i) For any λ ∈ C equation (Eλ) is in the limit circle case, i.e., n(λ) ≡ 2.

(ii) For any λ ∈ C equation (Eλ) is in the limit point case, i.e., n(λ) ≤ 1. In this case, n(λ) = 1 for
all λ ∈ CKR and n(λ) ∈ {0, 1} for λ ∈ R.

If equation (Eλ) is in the limit point case and λ ∈ CKR, then the unique square integrable
solution (up to a constant multiple) corresponds to the so-called Weyl solution X (·, λ), which
is of the form

X (t, λ) = ϕ(t, λ) + m+(λ)ψ(t, λ), t ∈ [a, ∞)T, (2.14)

where ϕ(·, λ) and ψ(·, λ) are linearly independent solutions of (Eλ) determined by the initial
conditions

ϕ(a, λ) = sin α,

[p(t) ϕ∆(t, λ)]t=a = cos α,

ψ(a, λ) = − cos α,

[p(t)ψ∆(t, λ)]t=a = sin α,

}
(2.15)

for α ∈ [0, π) and m+(λ) can be defined as the limit

m+(λ) = − lim
t→∞

ϕ(t, λ)

ψ(t, λ)
. (2.16)

The functions ϕ(·, λ) and ψ(·, λ) are analytic with respect to λ, see [12, Section 4], and
ψ(t, λ) 6= 0 for all t ∈ (a, ∞)T. The latter fact follows from the Lagrange identity, see e.g.
[19, Theorem 2.3],

W[x(t, λ), y(t, ν)] = W[x(a, λ), y(a, ν)] + (λ− ν)
∫ t

a
w(τ) xσ(τ, λ) yσ(τ, λ)∆τ,
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where x(·, λ) and y(·, ν) are solutions of (Eλ) and (Eν) with λ, ν ∈ C, respectively, and

W[x(t, λ), y(t, ν)] := p(t)[x(t, λ) y∆(t, ν)− y(t, ν) x∆(t, λ)]

represents the Wronskian of x(·, λ) and y(·, ν). Moreover, m+(λ) is an analytic function in the
half-planes C+ and C− as a limit of a family of locally (uniformly) bounded analytic functions.

If y(·, λ) is a solution of (Eλ) such that y(t, λ) 6= 0 for all t ≥ t0 with t0 ∈ [a, ∞)T, then the
function z(·, λ) given by

z(t, λ) = y(t, λ)
(

c1 + c2

∫ t

t0

1
p(τ) yσ(τ, λ) y(τ, λ)

∆τ
)

, t ≥ t0, (2.17)

satisfies equation (Eλ) for all t ≥ t0 and any c1, c2 ∈ C, see [7, Remark 6]. Moreover, we have
W[y(t, λ), z(t, λ)] ≡ c2 and c1 = z(t0, λ)/y(t0, λ).

If λ ∈ CKR and α 6= 0, then ϕ(t, λ) 6= 0 for all t ∈ [a, ∞)T and (2.17) yields

ψ(t, λ) = ϕ(t, λ)
(
− cotan α +

∫ t

a

1
p(τ) ϕσ(τ, λ) ϕ(τ, λ)

∆τ
)

. (2.18)

Similarly for α 6= π/2 we get

ϕ(t, λ) = ψ(t, λ)
(
− tan α−

∫ t

a

1
p(τ)ψσ(τ, λ)ψ(τ, λ)

∆τ
)

. (2.19)

Upon combing identities (2.16), (2.18), and (2.19) we obtain for λ ∈ CKR that

m+(λ) =


tan α +

∫ ∞

a

1
p(t)ψσ(t, λ)ψ(t, λ)

∆t, α ∈ [0, π)K{π/2},

(
cotan α−

∫ ∞

a

1
p(t) ϕσ(t, λ) ϕ(t, λ)

∆t
)−1

, α ∈ (0, π),

(2.20)

compare with [5, Formula (2.53)] and see also identity (3.7). The latter formula is illustrated
in the following example.

Example 2.11. Let [a, ∞)T = [0, ∞) and consider the second order Sturm–Liouville differential
equation

−y′′(t, λ) = λy(t, λ).

If λ ∈ CKR and α = π/2, then the two linearly independent solutions determined by the
initial conditions (2.15) are

ϕ(t, λ) =
(

e
√
−λ t + e−

√
−λ t )/2 and ψ(t, λ) =

(
e
√
−λ t + e−

√
−λ t )/(2√−λ).

Therefore we obtain from (2.16) that m+(λ) = −
√
−λ. The same follows from the calculation

m+(λ) =
(

cotan π/2−
∫ ∞

0

1
p(t) ϕ2(t, λ)

dt
)−1

= −
( ∫ ∞

0

1
cosh2√−λ t

dt
)−1

= −
√
−λ.

Similarly, in the case α = 0 we have

ϕ(t, λ) =
(

e
√
−λ t + e−

√
−λ t )/(2√−λ) and ψ(t, λ) = −

(
e
√
−λ t + e−

√
−λ t )/2,
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which yields

m+(λ) = tan 0 +
∫ ∞

0

1
p(t)ψ2(t, λ)

dt =
∫ ∞

0

1
cosh2√−λ t

dt =
1√
−λ

.

Moreover, according to (2.14), we get the Weyl solution X (t, λ) = e−
√
−λ t if α = π/2, and

X (t, λ) = − e−
√
−λ t /

√
−λ if α = 0. Nevertheless one easily observes that these two expres-

sions differ only by a constant multiple and they both satisfy X (·, λ) ∈ L2
w. Finally, we point

out that the Weyl solution and m+(λ) are well defined even for any λ ∈ CK(0, ∞) and the
property X (·, λ) ∈ L2

w remains valid on λ ∈ CK [0, ∞), see Theorem 3.5 for more details.

In the last part of this section we focus on the principal solution of equation (ER
λ ), i.e.,

equation (Eλ) with λ ∈ R. In addition, without loss of generality, we consider only real-
valued solutions of (ER

λ ). A solution y(·, λ) of (ER
λ ) has a generalized zero at t ∈ [a, ∞)T if

p(t) yσ(t, λ) y(t, λ) ≤ 0. Then equation (ER
λ ) is said to be disconjugate on an interval [b, c]T ⊂

[a, ∞)T if every nontrivial solution of (ER
λ ) has at most one generalized zero in [b, c]T, and

it is said to be disconjugate on [b, ∞)T if it is disconjugate on [b, c]T for every c ∈ (b, ∞)T.
Equation (ER

λ ) is called oscillatory on [a, ∞)T if some nontrivial solution has infinitely many
generalized zeros on [a, ∞)T. As a consequence of the Sturmian theory, see e.g. [10], it follows
that in the latter case every solution does as well. In the opposite case equation (ER

λ ) is said
to be nonoscillatory, i.e., if there exists a solution such that p(t) yσ(t, λ) y(t, λ) > 0 for all
t ∈ [a, ∞)T large enough. In other words, (ER

λ ) is nonoscillatory if it is eventually disconjugate.

Remark 2.12. As a consequence of the Sturmian theory it also follows that if (Eλ0) is nonoscil-
latory for some λ0 ∈ R, then (Eλ) is nonoscillatory for all λ ≤ λ0. The simple equation
−y∆∆(t, λ) = λ y(t, λ) illustrates that equation (Eλ) can be oscillatory for some values of
λ ∈ R and nonoscillatory for another values λ ∈ R. On the other hand, it is well known in
the special case T = R that the oscillatory/nonoscillatory behavior is invariant in the limit
circle case, i.e., equation (Eλ) being in the limit circle case is either oscillatory or nonoscilla-
tory for all λ ∈ R. An elegant proof based on the existence of the finite limit of Υ(t, λ, ν)

discussed in Remark 2.4 can be found in [25, Theorem 7.3.1]. A similar statement on a general
time scale remains open and its solution is closely connected with the problem discussed in
Remark 3.6(ii), see also Corollary 3.3.

Following [6], a nontrivial solution y(·, λ) of (ER
λ ) is called principal if there exists t0 ∈

[a, ∞)T such that p(t) yσ(t, λ) y(t, λ) > 0 for all t ∈ [t0, ∞)T, and it satisfies

lim
t→∞

y(t, λ)

ỹ(t, λ)
= 0

for any solution ỹ(·, λ) of (ER
λ ) which is linearly independent of y(·, λ). Any solution linearly

independent of the principal solution is said to be nonprincipal, see also [1]. The existence of the
principal solution of (ER

λ ) is equivalent with its nonoscillatory behavior, see [6, Theorem 3.1].
Moreover, the principal solution is determined uniquely up to a nonzero constant multiple
and satisfies ∫ ∞

t0

1
p(τ) yσ(τ, λ) y(τ, λ)

∆τ = ∞, (2.21)

while for any nonprincipal solution ỹ(·, λ) we have∫ ∞

t1

1
p(τ) ỹσ(τ, λ) ỹ(τ, λ)

∆τ < ∞, (2.22)
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where t0, t1 ∈ [a, ∞)T are such that the denominators are positive on the intervals of integra-
tion. The following statement will be useful in the proof of Theorem 3.1 and it can be verified
by direct calculations.

Theorem 2.13. Let λ ∈ R and assume that equation (Eλ) is nonoscillatory. If y(·, λ) is a nontrivial
solution of (Eλ), then

ỹ(t, λ) := y(t, λ)
∫ t

t0

1
p(τ) yσ(τ, λ) y(τ, λ)

∆τ, t ∈ [t0, ∞)T,

is a nonprincipal solution, where t0 ∈ [a, ∞)T is such that the denominator is positive on [t0, ∞)T. On
the other hand, if ỹ(·, λ) is a nonprincipal solution of (Eλ), then

ŷ(t, λ) := ỹ(t, λ)
∫ ∞

t

1
p(τ) ỹσ(τ, λ) ỹ(τ, λ)

∆τ, t ∈ [t1, ∞)T,

is the principal solution of (Eλ), where t1 ∈ [a, ∞)T is such that the denominator is positive on [t1, ∞)T.

3 Main results

As a simple consequence of the existence of the principal solution we obtain the following limit
point criterion. If T = R it reduces to [16, Theorem 4.1], see also [9] and [8, Theorem 11.6],
while in the case T = Z and w(t) ≡ 1 it can be found in [15, Theorem 5].

Theorem 3.1. Let us assume that there exists ν ∈ R such that equation (Eν) is nonoscillatory and
the corresponding principal solution ŷ(·, ν) satisfies

∫ ∞
t0

wρ(t) ŷ2(t, ν)∆t < ∞ for some t0 ∈ (a, ∞)T

whenever ŷ(·, ν) ∈ L2
w. If there exists t1 ∈ (a, ∞)T such that

∫ ∞

t1

[w(t)wρ(t)]1/4

|p(t)|1/2 ∆t = ∞, (3.1)

then equation (Eλ) is in the limit point case for all λ ∈ C.

Proof. Let (3.1) hold and ν ∈ R be such that the assumptions are satisfied. With respect
to Theorem 2.10 it suffices to show that there exists a solution y(·, ν) 6∈ L2

w. Since (Eν) is
nonoscillatory, it possesses the principal solution ŷ(·, ν) and we define

ỹ(t, ν) := ŷ(t, ν)
∫ t

t2

1
p(τ) ŷσ(τ, ν) ŷ(τ, ν)

∆τ, t ∈ [t2, ∞)T,

where t2 ∈ [a, ∞)T is such that the denominator is positive on [t2, ∞)T. Then for any t3 ∈
(t2, ∞)T we have ∫ ∞

t3

1
p(τ) ỹσ(τ, ν) ỹ(τ, ν)

∆τ < ∞,

because ỹ(·, ν) is a nonprincipal solution of (Eν) by Theorem 2.13. Suppose that the lin-
early independent solutions ŷ(·, ν) and ỹ(·, ν) belong to L2

w. Then by the assumptions also
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∫ ∞
t0

wρ(t) ŷ2(t, ν)∆t < ∞ for some t0 ∈ (a, ∞)T and for t4 ≥ maxi=0,1,2,3{ti} we have

∫ ∞

t4

[w(t)wρ(t)]1/4

|p(t)|1/2 ∆t =
∫ ∞

t4

[w(t) ŷσ2(t, ν)]1/4 [wρ(t) ŷ2(t, ν)]1/4[
p(t) ŷσ(t, ν) ŷ(t, ν)

]1/2 ∆t

≤
( ∫ ∞

t4

1
p(t) ŷσ(t, ν) ŷ(t, ν)

∆t

)1/2( ∫ ∞

t4

[
w(t) ŷσ2(t, ν)

]1/2 [wρ(t) ŷ2(t, ν)
]1/2 ∆t

)1/2

≤
( ∫ ∞

t4

1
p(t) ŷσ(t, ν) ŷ(t, ν)

∆t

)1/2( ∫ ∞

t4

w(t) ŷσ2(t, ν)∆t

)1/4( ∫ ∞

t4

wρ(t) ŷ2(t, ν)∆t

)1/4

< ∞,

where we used the Cauchy–Schwarz inequality in the last two steps, see [3, Theorem 6.15]. But
this yields a contradiction with the assumption (3.1). Hence there exists a nontrivial solution
of (Eν), which is not in L2

w, i.e., equation (Eν) is in the limit point case. Therefore (Eλ) is in the
limit point case for all λ ∈ C by Theorem 2.10.

Remark 3.2. The additional assumption concerning the convergence of
∫ ∞

t0
wρ(t) ŷ2(t, ν)∆t is

trivially satisfied if T = R or if T consists only of isolated points, especially when T = hZ or
T = qN. On the other hand, it does not mean y(·, ν) ∈ L2

w, because σ(ρ(t)) 6= t for t ∈ [a, ∞)T,
which are left-dense and right scattered simultaneously. In particular, it can be shown that
one of the integrals

∫ ∞
a f (t)∆t and

∫ ∞
a f σ(t)∆t can be convergent, while the other is divergent,

compare with [22, 26, 27]. For example, let us consider the simple time scale

T = [0, 1] ∪ [2, 3] ∪ · · · =
⋃

k∈N∪{0}
[2k, 2k + 1].

Then the integral over T can be written as

∫
T

f (t)∆t =
∫ 1

0
f (t)∆t +

∫ 2

1
f (t)∆t +

∫ 3

2
f (t)∆t + . . .

=
∞

∑
k=0

∫ 2k+1

2k
f (t)∆t +

∞

∑
k=0

∫ σ(2k+1)

2k+1
f (t)∆t

=
∞

∑
k=0

∫ 2k+1

2k
f (t)dt +

∞

∑
k=0

µ(2k + 1) f (2k + 1)

and similarly we obtain

∫
T

f σ(t)∆t =
∞

∑
k=0

∫ 2k+1

2k
f (t)dt +

∞

∑
k=0

µ(2k + 1) f σ(2k + 1).

If we define the function f : T→ R as

f (t) =
3k

(k + 1)2 t2 − 2k(6k + 1)
(k + 1)2 t +

12k3 + 4k2 + 1
(k + 1)2 for t ∈ [2k, 2k + 1],

then f (2k) = 1
(k+1)2 , f (2k + 1) = 1

k+1 , and
∫ 2k+1

2k f (t)dt = 1
(k+1)2 . Therefore

∫
T

f σ(t)∆t =
∞

∑
k=0

1
(k + 1)2 +

∞

∑
k=0

1
(k + 2)2 =

π2

3
− 1 < ∞,
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while ∫
T

f (t)∆t =
∞

∑
k=0

1
(k + 1)2 +

∞

∑
k=0

1
k + 1

= ∞,

i.e., the integrals
∫ ∞

a f (t)∆t and
∫ ∞

a f σ(t)∆t do not converge/diverge at the same time.

The contrapositive of Theorem 3.1 yields the following oscillation criterion for (Eλ).

Corollary 3.3. Let condition (3.1) hold and assume that for every y(·) ∈ L2
w there exists t0 ∈ (a, ∞)T

such that
∫ ∞

t0
wρ(t) y2(t)∆t < ∞. If equation (Eλ) is in the limit circle case for some λ ∈ C, then

equation (Eλ) is oscillatory for all λ ∈ R.

Several limit point criteria for equation (Eλ) or its delta-nabla counterpart were established
in [22, Section 4], [26, Section 4], and [24, Section 3]. In the following example we compare
Theorem 3.1, [22, Theorem 4.1], and [26, Theorem 4.2] in the case T = Z. We note that the
assumptions of [26, Theorem 4.2] are never satisfied if T = R.

Example 3.4. Let [a, ∞)T = [0, ∞)Z. Then equation (Eλ) corresponds to the second order
Sturm–Liouville difference equation

− ∆[pk ∆yk(λ)] + qk yk+1(λ) = λ wk yk+1(λ), k ∈ [0, ∞)Z, (∆Eλ)

and Theorem 3.1 implies that (∆Eλ) is in the limit point case if it is nonoscillatory for some
λ ∈ R and

∞

∑
k=1

(wkwk−1)
1/4

|pk|1/2 =
∞

∑
k=0

(wk+1wk)
1/4

|pk+1|1/2 = ∞, (3.2)

see also [15, Theorem 5].

(i) According to [22, Theorem 4.1], equation (∆Eλ) is in the limit point case if it is nonoscil-
latory for some λ ∈ R, pk < 0, qk > 0, wk ≡ 1 on [0, ∞)Z, and

∞

∑
k=0

1
|pk|

= ∞. (3.3)

If limk→∞
1
|pk |
6= 0, then conditions (3.2) and (3.3) hold simultaneously. On the other

hand, if limk→∞
1
|pk |

= 0, then 1
|pk |

< 1 for all k large enough, in which case 1
|pk |
≤ 1
|pk |1/2 .

Hence condition (3.2) can be satisfied, while (3.3) fails, e.g. for pk = −(k + 1)2. This
shows that Theorem 3.1 yields a stronger criterion.

(ii) By the criterion in [26, Theorem 4.2], see also [13, Theorem 10], equation (∆Eλ) is in the
limit point case if

∞

∑
k=0

(wk+1wk)
1/2

|pk+1|
= ∞. (3.4)

Observe that this criterion does not include any oscillatory/nonoscillatory behavior
of (∆Eλ) and does not depend on the value of qk, i.e., if (3.4) is satisfied, then equa-
tion (∆Eλ) is in the limit point case for any choice of qk. Since conditions (3.3) and (3.4)
coincide in the case wk ≡ 1, it follows that [26, Theorem 4.2] yields a stronger criterion
than [22, Theorem 4.1].

Similarly as in the previous part, if limk→∞
(wk+1wk)

1/2

|pk+1|
6= 0, then conditions (3.4) and (3.2)

hold simultaneously, i.e., (∆Eλ) is in the limit point case whether it is oscillatory or not.
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The situation when limk→∞
(wk+1wk)

1/2

|pk+1|
= 0 is more interesting. If condition (3.4) holds,

then we obtain the same conclusion as before (again the limit point classification does
not depend on qk). But it is also possible that the sum in (3.4) is convergent, while (3.2)
is satisfied. For example, let pk ≡ 1, qk ≡ 0, and wk =

1
k2+1 , i.e.,

− ∆2yk(λ) =
λ

k2 + 1
yk+1(λ). (3.5)

Then direct calculations show that the sum in (3.4) is convergent, i.e., the assumptions
of [26, Theorem 4.2] are not fulfilled, while the sum in (3.2) is divergent. Equation (3.5)
with λ = 0 has two linearly independent solutions y[1]k (0) ≡ 1 and y[2]k (0) = k, which are
obviously nonoscillatory. Therefore the assumptions of Theorem 3.1 are satisfied, which
implies that the equation is in the limit point case. This fact can be verified directly,
because the solution y[2](0) is not square summable with respect to wk.

(iii) Although the criterion of Theorem 3.1 does not include explicitly qk, these coefficients
play a significant role in contrast to [26, Theorem 4.2]. Let us slightly modify equa-
tion (3.5) to the form

− ∆2yk(λ)− 2yk+1(λ) =
λ

k2 + 1
yk+1(λ), (3.6)

i.e., with qk ≡ −2. Observe that the coefficients of (3.5) and (3.6) satisfy (3.2), but
equation (3.5) is in the limit point case, while (3.6) is in the limit circle case. Indeed,
equation (3.6) has for λ = 0 two linearly independent solutions y[1]k (0) = sin(kπ/2)

and y[2]k (0) = cos(kπ/2), which are square summable with respect to wk, i.e., it is in
the limit circle case for all λ ∈ C by Theorem 2.9. Note that this conclusion does not
contradict the result of Theorem 3.1, because equation (3.6) is oscillatory for λ = 0. In
fact, Corollary 3.3 implies that equation (3.6) is oscillatory for all λ ∈ R. Similarly we
can show that, e.g., the equation

−∆[(−1)k∆yk(λ)] =
λ

k2 + 1
yk+1(λ)

is oscillatory for all λ ∈ R, compare with [3, Theorem 4.51].

As already mentioned, whenever the principal solution ỹ(·, λ) of equation (ER
λ ) exists, it

is unique up to a nonzero constant multiple. The same is true also for a square integrable
solution (being the Weyl solution) of equation (Eλ), which is in the limit point case. In the
final part of this paper we establish an intimate connection between these two solutions.

Let α ∈ [0, π) be fixed and ν ∈ R be such that equation (Eν) is nonoscillatory. Then there
exists t0 ∈ [a, ∞)T such that the quotient ϕ(t, ν)/ψ(t, ν) is well defined for all t ∈ [t0, ∞)T.
Moreover, from the fact W[ψ(t, ν), ϕ(t, ν)] ≡ 1 and the quotient rule on time scales, see
[3, Theorem 1.20], we get(

ϕ(t, ν)

ψ(t, ν)

)∆

=
W[ψ(t, ν), ϕ(t, ν)]

p(t)ψσ(t, λ)ψ(t, λ)
= − 1

p(t)ψσ(t, λ)ψ(t, λ)
,

which upon integrating both sides from t0 to t ∈ [t0, ∞)T yields

− ϕ(t, ν)

ψ(t, ν)
= − ϕ(t0, ν)

ψ(t0, ν)
+
∫ t

t0

1
p(τ)ψσ(τ, λ)ψ(τ, λ)

∆τ. (3.7)
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From the positivity of the denominator in the integral on the right-hand side of (3.7) it fol-
lows that the limit of the left-hand side exists (finite or infinite) as t → ∞, see also (2.16)
and (2.20). In the following theorem we show that if this limit is finite, then the Weyl solu-
tion is well defined and it is the principal solution. Moreover, these solutions belong to L2

w,
whenever equation (Eν) possesses any square integrable solution. This statement reduces to
[5, Theorem 2.13] in the case T = R, otherwise it is new.

Theorem 3.5. Let us assume that equation (Eλ) is in the limit point case, ν ∈ R is such that equation
(Eν) is nonoscillatory, and α ∈ [0, π) is such that ψ(·, ν) is a nonprincipal solution. Then the definition
of the Weyl solution X (·, ν) given in (2.14) can be extended to (CKR) ∪ {ν} and X (·, ν) is the
principal solution of (Eν). Moreover, if equation (Eν) possesses a square integrable solution, i.e., it holds
n(ν) = 1, then it is the Weyl solution, i.e., X (t, ν) ∈ L2

w.

Proof. Since ψ(·, ν) is a nonprincipal solution, the integral on the right-hand side of (3.7) is
convergent on [t0, ∞)T by (2.22). Hence one easily conclude from (2.16) and (3.7) that the
function m+(λ) is well defined for all λ ∈ (CKR) ∪ {ν} and the Weyl solution X (·, λ) does as
well. If m+(ν) = 0, then ϕ(·, ν) is the principal solution of (Eν) and at the same time we get
from (2.14) that X (t, ν) = ϕ(t, ν) for all t ∈ [a, ∞)T, i.e., X (t, ν) is also the principal solution
of (Eν). If m+(ν) = L 6= 0 and y(·, ν) is any solution of (Eν), which is linearly independent
with X (·, λ), i.e., y(t, ν) = c1 ϕ(t, ν) + c2 ψ(t, ν) on [a, ∞)T for some c1, c2 ∈ R with c2/c1 6= L,
then limt→∞ X (t, ν)/y(t, ν) = 0, i.e., X (t, ν) is (again) the principal solution of (Eν). Finally,
let us assume that n(ν) = 1 and that X (·, ν) 6∈ L2

w. Then it follows from the previous part that
the square integrable solution ỹ(·, ν) has to be a nonprincipal solution, i.e.,

lim
t→∞

X (t, ν)

ỹ(t, ν)
= 0.

It means that |X (t, ν)/ỹ(t, ν)| ≤ M, i.e., |X (t, ν)| ≤ M|ỹ(t, ν)| for some M > 0 and all
t ∈ [t1, ∞)T, where t1 ∈ [a, ∞)T is such that ỹ(t, ν) 6= 0 on [t1, ∞)T. The existence of such t1 is
guaranteed by the nonoscillatory behavior of (Eν). But the latter inequality together with the
the square integrability of ỹ(·, ν) yields∫ ∞

t1

w(t)X σ2(t, ν)∆t ≤ M2
∫ ∞

t1

w(t) ỹσ2(t, ν)∆t < ∞,

i.e., we have also X (·, ν) ∈ L2
w, which contradicts the limit point hypothesis.

Remark 3.6.

(i) Let us point out that the assumption of Theorem 3.5 concerning the choice α is not
truly restrictive. If α ∈ [0, π) is such that ψ(·, ν) is the principal solution, then the
integral on the right-side of (3.7) is divergent over [t0, ∞)T by (2.21), i.e., the limit on
the right-hide side of (2.16) is infinite. But in that case it suffices to switch the roles of
ϕ(·, ν) and ψ(·, ν), i.e., to replace α by α̃ := α± π/2 ∈ [0, π), which yields the pair of
the fundamental solutions ϕ̃(t, ν) := ∓ψ(t, ν) and ψ̃(t, ν) := ±ϕ(t, ν). Then ψ̃(t, ν) is
a nonprincipal solution, i.e., the particular assumption of Theorem 3.5 is satisfied for α̃,
in which case we get m+(ν) = 0.

(ii) The first part of Theorem 3.5 is even true for any λ ≤ ν such that ϕ(·, λ) is a nonprincipal
solution, because equation (Eλ) remains nonoscillatory by the Sturmian theory. More-
over, from [5, Theorem 2.13] one can infer that in the case T = R there exists ν̃ ∈ R such
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that also the square integrability of the Weyl (or principal) solution holds for all λ < ν̃.
The existence of such number ν̃ follows from the characterization of the spectrum of an
operator associated with equation (Eλ). We conjecture that the same conclusion can be
established also for equation (Eλ) on any time scale T, compare Examples 2.11 and 3.7.
The solution of this problem is currently under development.

Finally, the following example illustrates Theorem 3.5 in the case T = Z.

Example 3.7. Let [a, ∞)T = [0, ∞)Z and consider the particular case of (∆Eλ) given as

− ∆2yk(λ)− 2yk+1(λ) = λyk+1(λ), i.e., yk+2(λ) + λyk+1(λ) + yk(λ) = 0. (3.8)

From the characteristic equation ν2 + λν + 1 = 0 we conclude that two linearly independent
solutions y[1]k (λ) and y[2]k (λ) of equation (3.8) can be expressed for λ ∈ R as follows

λ = −2 : y[1]k (λ) ≡ 1, y[2]k (λ) = k,

λ = 2 : y[1]k (λ) = (−1)k, y[2]k (λ) = k(−1)k,

λ ∈ (−2, 2) : y[1]k (λ) = cos(kω), y[2]k (λ) = sin(kω),

λ ∈ RK [−2, 2] : y[1]k (λ) = γk
+, y[2]k (λ) = γk

−,

where ω := arg
(
−λ+i

√
4−λ2

2

)
and γ± := −λ±

√
λ2−4

2 . Thus one observes that equation (3.8) is

nonoscillatory only for λ ≤ −2, while n(λ) = 1 for λ ∈ RK [−2, 2] and n(λ) = 0 for λ ∈ [−2, 2].
Moreover, the principal solution corresponds to y[1](−2) and to y[2](λ) for λ < −2. Now let
λ ∈ CKR. Then the solutions of the characteristic equation can be written as

γ± =
−λ±

√
λ2 − 4

2
= −λ

2
± 1

2

(√
c
2
+

√
2ab
c

)
,

where a := Re λ, b := Im λ, and c := a2− b2− 4 +
√
(a2 − b2 − 4)2 + 4a2b2. Note that we have

γ+γ− = 1 and γ+ 6= γ−, because b 6= 0. In addition, |γ+| < |γ−| if a > 0 or a = 0 and b > 0,
while |γ+| > |γ−| if a < 0 or a = 0 and b < 0. If α = π/2, the two linearly independent
solutions ϕ(λ) and ψ(λ) determined by the initial conditions in (2.15) are

ϕk(λ) =
[
γk
+(γ− − 1) + γk

−(1− γ+)
]
/(γ− − γ+) and ψk(λ) = (γk

− − γk
+)/(γ− − γ+).

Hence, by (2.16), we get the function m+(λ) : CKR→ C as

m+(λ) =


1− γ−

γ−
if a > 0 or a = 0 and b > 0,

1− γ+

γ+
if a < 0 or a = 0 and b < 0,

which is true even for λ ∈ CK(−2, 2), because the square root is well defined on CK(−∞, 0).
Consequently, the Weyl solution is for any λ ∈ CK(−2, 2) given by

X (t, λ) =

γk
+ if a > 0 or a = 0 and b > 0,

γk
− if a < 0 or a = 0 and b < 0.
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This shows that Xk(−2) = y[1]k (−2) and Xk(λ) = y[2]k (λ) for λ < −2, i.e., the Weyl solution
coincides with the principal solution for all λ ∈ (−∞,−2] and it is square summable for
λ ∈ (−∞,−2) as stated in Theorem 3.5, see also Remark 3.6(ii).

Let us point out yet another interesting fact. Although limk→∞ y[1]k (λ)/y[2]k (λ) = 0 also in

the case λ > 2, the solution y[1]k (λ) is not principal, because equation (3.8) is oscillatory for

all λ > −2. However the previous calculations (again) yield X (t, λ) = y[1]k (λ) ∈ L2
w for any

λ ∈ (2, ∞).
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