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Abstract. We present and prove a new generalisation of the Malgrange–Ehrenpreis
theorem to fractional partial differential equations, which can be used to construct fun-
damental solutions to all partial differential operators of rational order and many of
arbitrary real order. We demonstrate with some examples and mention a few possible
applications.
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1 Introduction

Fractional calculus provides a natural generalisation of ordinary derivatives and integrals to
non-integer orders. This field of study has both a long history – dating back to Leibniz him-
self – and also many applications in mathematics, physics, and engineering [4, 5], including
in random walks [28], chaos theory [29], viscoelasticity [14], fluid drainage [17], polymer sci-
ence [11], biophysics [10], thermodynamics [27], and transport in media [6]. Unfortunately,
there are several conflicting formulae for fractional derivatives and integrals, so it is always
necessary to make clear which definition is being used. One of the most common is the
Riemann–Liouville formula, given by Definition 1.1 (see [18, Chapters III–IV]); this definition is
the one assumed to be used throughout this paper unless otherwise stated.

Indefinite integration is only well-defined up to an additive constant, and in the fractional
context such a constant must also be introduced for differentiation. Note that when the order
of differentiation and integration becomes a continuum, the difference between the two is
often not clear-cut, and the term differintegration is used to cover both. When distinction is
necessary, the difference between derivatives and integrals is now defined in terms of the real
part of the order of differintegration.
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Definition 1.1 (Riemann–Liouville fractional differintegral). Let x and ν be complex variables,
and c be a constant in the extended complex plane (usually taken to be either 0 or −∞).
The νth derivative, or (−ν)th integral, of a function f (x) with respect to x, with constant of
differintegration c, is:

cDν
x f (x) := 1

Γ(−ν)

∫ x

c
(x− y)−ν−1 f (y)dy for Re(ν) < 0 (1.1)

cDν
x f (x) :=

dn

dxn

(
cDν−n

x f (x)
)

, n := bRe(ν)c+ 1, for Re(ν) > 0 (1.2)

provided these expressions are well-defined.

Since x, ν, and c are defined in the complex plane, it is necessary to consider the issue
of which path to integrate along from c to x and which branch to use for defining the func-
tion (x − y)−ν−1 for y on this path. Usually the straight line-segment contour [c, x] is used,
meaning that arg(x− y) is always equal to arg(x− c) independent of y. The choice of range
for arg(x− c) usually depends on context, and the essential properties of Riemann–Liouville
differintegrals remain unchanged whether we assume arg(x − c) ∈ [0, 2π) or arg(x − c) ∈
(−π, π) or any other range. These issues are covered in [26, §22]. When all variables are real,
as is often the case, most of these problems do not have to arise.

The constant of differintegration c tends to be fixed at either 0 or −∞; other possibilities
for c can usually be covered by the same arguments that work for these two cases. Note in
particular that when c = −∞, we can always take arg(x− c) to be 0, eliminating the problems
of the previous paragraph.

The Riemann–Liouville fractional integral (1.1) is a natural generalisation of Cauchy’s for-
mula for repeated integration; see [18, Chapter II]. For analytic functions f , the Riemann–
Liouville fractional derivative (1.2) is exactly the extension of (1.1) by analytic continuation in
ν; this follows from the fact that (1.1) gives d

dx

(
cDν

x f (x)
)
= cDν+1

x f (x) for Re(ν) < −1 already,
so (1.2) will preserve analyticity as an extension of (1.1).

The Riemann–Liouville definition of fractional differintegrals is particularly useful because
it meshes together well with Fourier and Laplace transforms, as established by the following
lemmas, both proved in [26, §7].

Lemma 1.2 (Fourier transforms). If f (x) is a function with well-defined Fourier transform f̂ (λ) and
ν ∈ C is such that −∞Dν

x f (x) is well-defined, then the Fourier transform of −∞Dν
x f (x) is (−iλ)ν f̂ (λ).

Lemma 1.3 (Laplace transforms). If f (x) is a function with well-defined Laplace transform f̃ (λ)
and ν ∈ C is such that Re(ν) < 0 and 0Dν

x f (x) is well-defined, then the Laplace transform of 0Dν
x f (x)

is (−iλ)ν f̃ (λ).

Some of the standard properties of integer-order differintegrals extend readily to the frac-
tional case. For instance, it is clear (see also [19, Chapter 5]) that in all the above definitions,
for any fixed ν and c, cDν

x is still a linear operator acting on functions f (x).
Other standard properties cannot be extended. For instance, composition of differential

operators no longer works in the same way: the fractional derivative of a fractional derivative
is not necessarily a fractional derivative, although the fractional integral of a fractional integral
is still a fractional integral. A summary of results on the composition of differintegrals is
presented in the following two lemmas, both proved in [18, Chapters III–IV].

Lemma 1.4 (Composition of fractional integrals). For any x, µ, ν ∈ C with Re(µ) < 0, the identity
cDν

x
(

cDµ
x f (x)

)
= cDµ+ν

x f (x) holds provided these differintegrals exist.
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Lemma 1.5. If n ∈ N and f is a Cn function such that one of the three expressions cDn
x
(

cDµ
x f (x)

)
,

cDn+µ
x f (x), cDµ

x
(

cDn
x f (x)

)
exists, then all three exist and

cDn
x
(

cDµ
x f (x)

)
= cDn+µ

x f (x) = cDµ
x
(

cDn
x f (x)

)
+

n

∑
k=1

(x− c)−µ−k

Γ(−µ− k + 1)
f (n−k)(c).

As a consequence of Lemma 1.5, if the constant of differintegration is c = −∞ and f has
sufficient decay conditions at infinity (say, if f is a Schwartz function), then composition of
differintegral operators does work as in the classical scenario. In this case, the Riemann–
Liouville and Caputo definitions of fractional derivatives are equivalent, although in general
they are not.

Still other standard properties can be extended from integer-order calculus to fractional
calculus, but with more difficulty than simple ones such as linearity, and sometimes yield-
ing less elegant or less general final results. For instance, the product rule [21], the chain
rule [22], and Taylor’s theorem [25] all have fractional versions, but most of these are either
much messier than the original or require more restrictions on the functions concerned. The
following basic generalisation of the product rule is also due to Osler [23].

Lemma 1.6 (The fractional product rule). Let u and v be complex functions such that u(x), v(x),
and u(x)v(x) are all functions of the form xλη(x) with Re(λ) > −1 and η analytic on a domain
R ⊂ C. Then for any distinct x, c ∈ R and any ν ∈ C, we have

cDν
x
(
u(x)v(x)

)
=

∞

∑
n=0

(ν
n)cDν−n

x u(x)cDn
x v(x),

where all differintegrals are defined using the Cauchy formula.

In [24], Osler proved that the series can also be replaced by an integral to get the following
formula:

cDν
x
(
u(x)v(x)

)
=
∫ ∞

−∞
( ν

ω)cDν−ω
x u(x)cDω

x v(x)dω.

These lemmas and discussion will be used in the proof of our main result below.

2 The fractional Malgrange–Ehrenpreis theorem

An important result in the theory of PDEs is the Malgrange–Ehrenpreis theorem, which guar-
antees the existence of a fundamental solution for any linear partial differential operator with
constant coefficients. This is significant because the solution to a given PDE with arbitrary
forcing can be generated from the solution with delta-function forcing, i.e. from the funda-
mental solution, by using convolution of functions. So by proving the existence of fundamen-
tal solutions, the Malgrange–Ehrenpreis theorem guarantees the existence of solutions to any
linear PDE with constant coefficients on the derivative terms and arbitrary forcing.

Here we seek to extend this theorem in order to find fundamental solutions for fractional
partial differential operators defined using the Riemann–Liouville formula.

Theorem 2.1 (Malgrange–Ehrenpreis theorem). Every non-zero linear constant-coefficient partial
differential operator, i.e. every operator P(D) where P is a complex n-variable Nth-order polynomial
and D := −i ∂

∂x for the n-dimensional variable x ∈ Rn, has a fundamental solution, i.e. a distribution
E ∈ D′(Rn) such that P(D)E = δ0.
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The original proofs of this result by Malgrange [16] and Ehrenpreis [9], who proved it inde-
pendently, were non-constructive and used the Hahn–Banach theorem. But several construc-
tive proofs have since been devised, and some of these can be extended to certain subcases of
the fractional context in order to prove generalisations of the theorem.

2.1 Proof using Hörmander staircases

One semi-constructive proof due to Hörmander [12] involves building a solution by using
complex integration over a Hörmander staircase.

This proof, like many others, relies on the fact that P is a polynomial: we need to use
the Fundamental Theorem of Algebra to factorise P(λ) into linear terms of the form λn −
f j(λ1, . . . , λn−1) and then analyse these linear factors. If P(λ) is a general function of the form
∑α cαλα where the exponents α may be real or complex, then the Fundamental Theorem of
Algebra no longer applies.

However, if all the α are rational, the proof can be modified so that it still works. Instead
of considering the differential operator P(D) as a polynomial in D, we can consider it as a
polynomial in D1/K for some sufficiently large natural number K, factorise this polynomial
using the Fundamental Theorem of Algebra, and proceed more or less as before. In fact, since
Hörmander’s proof never uses the fact that P(D) is a polynomial in D1, D2, . . . , Dn−1, it will
suffice to assume only that (for example) all the final components αn are rational, as in the
following theorem.

Theorem 2.2 (Malgrange–Ehrenpreis theorem: rational-order derivatives). Let P(λ) be a func-
tion of the complex n-dimensional parameter λ of the form ∑α cαλα where the sum is finite, the multi-
indices α are in (R+)n, and there exists j such that all the jth coordinates αj of the multi-indices are in
Q. If x ∈ Rn is an n-dimensional variable and powers of D := −i ∂

∂x are defined using the Riemann–
Liouville formula with c = −∞, then the partial differential operator P(D) has a fundamental solution,
i.e. a distribution E ∈ D′(Rn) such that P(D)E = δ0.

Proof. Without loss of generality, say j = n. Let λ′ ∈ Rn−1 denote the vector (λ1, λ2, . . . , λn−1),
and note that P(λ) = P(λ′, λn) can be written as a polynomial in λ1/K

n with coefficients
depending on λ′, where K is a fixed natural number (the LCM of the denominators of the
exponents αn). More explicitly, write

P(λ′, λn) = A(λ′)

(
λM/K

n +
M−1

∑
j=0

aj(λ
′)λ

j/K
n

)

where M is a natural number and the A, aj are continuous functions of λ′ ∈ Rn−1. In particu-
lar, A(λ′) is a product of power functions λαi

i , so A(λ′) = 0 only if λ′ = 0. By the Fundamental
Theorem of Algebra, P(λ) can then be written as

P(λ′, λn) = A(λ′)
M

∏
j=1

(
λ1/K

n − τj(λ
′)
)

where the τj are continuous functions on Rn−1. (If λ′ were allowed to be complex, there
would be complications with branch cuts, but as it is real, the A, aj, τj can be defined to be
continuous.)

Fix µ ∈ RN−1\{0}; we wish to bound P(µ, λn) below, in order to get an upper bound
on its reciprocal. Now let R = R(µ) := maxj |τj(µ)| + |A(µ)|−1/M + 1 (this is in R+ since
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µ 6= 0 ⇒ A(µ) 6= 0). By continuity of the A, τj, there exists an open neighbourhood N(µ) ⊂
Rn−1\{0} of µ such that for all λ′ ∈ N(µ), maxj |τj(λ

′)|+ |A(λ′)|−1/M < R. Now whenever∣∣λ1/K
n
∣∣ ≥ R(µ) and λ′ ∈ N(µ), we have

∣∣λ1/K
n − τj(λ

′)
∣∣ > ∣∣A(λ′)

∣∣−1/M

for each j, and therefore

∣∣P(λ′, λn)
∣∣ = ∣∣A(λ′)

∣∣ M

∏
j=1

∣∣∣λ1/K
n − τj(λ

′)
∣∣∣ > ∣∣A(λ′)

∣∣ M

∏
j=1

∣∣A(λ′)
∣∣−1/M

= 1.

In particular, define γ = γ(µ) for µ ∈ Rn−1 to be the black contour shown in Figure 2.1, i.e.

γ = {reiπ : ∞ > r > RK} ∪ {RKeiθ : −π < θ < π} ∪ {r : RK < r < ∞}.

Since λ1/K
n is on the red contour shown in Figure 2.1 when λn is on the black one, we have∣∣λ1/K

n
∣∣ ≥ R for all λn ∈ γ and therefore∣∣P(λ′, λn)

∣∣ > 1 for λ′ ∈ N(µ), λ ∈ γ(µ). (2.1)

Re

Im

R
K0 R

γ

γ
1/K

Figure 2.1: The contours for γ and γ1/K

The sets N(µ) form an open cover of Rn−1\{0}. But Rn−1\{0} is an open subset of Rn−1

and therefore locally compact, and it is also σ-compact, so it must be a Lindelöf space, i.e.
every open cover has a countable subcover. So there is a countable sequence µ1, µ2, µ3, . . .
such that the open sets N(µk) cover Rn−1\{0}. Let ∆k := N(µk)

∖⋃k−1
j=1 N(µj) for all k; these

sets are open and disjoint and
⋃∞

k=1 ∆k = Rn−1.
Define E ∈ D′(Rn) by

〈E, φ〉 = (2π)−n
∞

∑
k=1

∫
∆k

∫
γ(µk)

φ̂(−λ′,−λn)

P(λ′, λn)
dλn dλ′ ; (2.2)

this is well-defined as a distribution, since (2.1) tells us that |P| > 1 on all regions integrated
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over. Now for any φ ∈ D(Rn), (2.2) implies

〈P(D)E, φ〉 = 〈E, P(D)φ〉 = (2π)−n
∞

∑
k=1

∫
∆k

∫
γ(µk)

P̂(D)φ(−λ′,−λn)

P(λ′, λn)
dλn dλ′

= (2π)−n
∞

∑
k=1

∫
∆k

∫
γ(µk)

φ̂(−λ′,−λn) dλn dλ′

= (2π)−n
∞

∑
k=1

∫
∆k

∫
R

φ̂(−λ′,−λn) dλn dλ′

= (2π)−n
∫

Rn−1

∫
R

φ̂(−λ′,−λn) dλn dλ′ = φ(0),

so P(D)E = δ0 as required. (To get from the second line to the third above, we used Cauchy’s
theorem and the fact that the Fourier transform φ̂(λ) of a test function φ ∈ D(Rn) is analytic
in each coordinate of λ.)

In this way we have proved the Malgrange–Ehrenpreis theorem for all non-zero linear
constant-coefficient fractional partial differential operators which are literally “fractional", i.e.
contain only rational-order differintegrals.

2.2 Proof using Wagner construction

A recent proof of the Malgrange–Ehrenpreis theorem due to Ortner and Wagner [20] involves
constructing explicit fundamental solutions using inverse Fourier transforms.

In this proof, the fact that P is a polynomial is relevant because the binomial theorem
is used to turn an expression of the form P(∂ + λη) into a finite sum, and also because the
residue theorem is used to cancel out most terms in this finite sum. The binomial theorem,
in a more complicated form involving infinite series, can still be applied when P is not a
polynomial; the residue theorem is harder to apply in this case, and so we again require an
extra assumption.

Theorem 2.3 (Malgrange–Ehrenpreis theorem: real-order derivatives with integer differences).
Let P(λ) be a function of the complex n-dimensional parameter λ of the form ∑α cαλα where the sum is
finite, the multi-indices α are in (R+)n, and there exists A ∈ R such that all the magnitudes |α| = Σjαj
of the multi-indices are of the form A − m for some integer m ≥ 0. If x ∈ Rn is an n-dimensional
variable and powers of D := −i ∂

∂x are defined using the Riemann–Liouville formula with c = −∞,
then the partial differential operator P(D) has a fundamental solution, i.e. a distribution E ∈ D′(Rn)

such that P(D)E = δ0.

Proof. We define the fundamental solution E by

E(x) :=
1

2πiPA(−iη)

∫
S1

λA−1eληxψλ(x)dλ

where η ∈ Rn is a fixed real vector, PA(λ) := ∑|α|=A cαλα is the ‘maximum order’ part of P,
and the Schwartz distribution ψλ is defined by its Fourier transform being

ψ̂λ(ξ) =
P(ξ − iλη)

P(ξ − iλη)
.

Now there are two things we need to prove: firstly that E is a well-defined distribution, and
secondly that P(D)E = δ0.
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Firstly, note that the zero set of P in Rn has Lebesgue measure zero, so P(ξ−iλη)
P(ξ−iλη)

is an L∞

function of ξ ∈ Rn, and therefore a Schwartz distribution, for any fixed λ ∈ C, η ∈ R. So
ψλ ∈ S ′(Rn) is well-defined. Also the map

S1 → S ′(Rn)

λ 7→ P(ξ−iλη)
P(ξ−iλη)

is continuous, so E is the integral over a compact set of a continuous function taking values
in D′(Rn) and therefore well-defined as an element of D′(Rn).

Let us use F to denote the Fourier transform from variable x ∈ Rn to variable ξ ∈ Rn, so
that

ψλ(x) = F−1
(

P(ξ−iλη)
P(ξ−iλη)

)
.

Now consider how the fractional partial differential operator P(D) works on a function of the
form eληxF−1S for some Schwartz distribution S. By Osler’s product rule, Theorem 1.6, we
have

Dα
(
eληxF−1S

)
= (−i)α

−∞Dα
x
(
eληxF−1S

)
= (−i)α ∑

k
(α

k)−∞Dα−k
x
(
eληx)

−∞Dk
x
(
F−1S

)
= eληx ∑

k
(α

k)
(
− iλη

)α−kDk(F−1S
)

= eληx ∑
k
(α

k)
(
− iλη

)α−kF−1(ξkS
)

= eληxF−1
(

∑
k
(α

k)
(
− iλη

)α−k
ξkS
)

= eληxF−1
(

ξα ∑
k
(α

k)
(
−iλη

ξ

)α−k
S
)

= eληxF−1
(

ξα
(

1 + −iλη
ξ

)α
S
)
= eληxF−1

((
ξ − iλη

)αS
)

for any multi-index α ∈ (R+
0 )

n, where the sums are taken over all multi-indices k ∈ (Z+
0 )

n,
and where we use Lemma 1.2 between the third and fourth lines. So by finite summation, it
follows that

P(D)
(
eληxF−1S

)
= eληxF−1(P(ξ − iλη)S

)
.

In particular, setting S(ξ) = ψ̂λ(ξ) =
P(ξ−iλη)
P(ξ−iλη)

gives

P(D)
(
eληxψλ(x)

)
= eληxF−1(P(ξ − iλη)

)
= eληxF−1(P(ξ + iλη)

)
= eληxF−1

(
∑
α

cα(ξ + iλη)α
)

= eληxF−1
(

∑
α

cα ∑
k
(α

k)
(
iλη
)α−k

ξk
)

= eληx ∑
α

cα ∑
k
(α

k)
(
iλη
)α−kDk(F−1(1)

)
= eληx ∑

α

cα ∑
k
(α

k)
(
iλη
)α−k

δ
(k)
0 (x).
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Putting this together with the formula for E, and using the fact that λ is a scalar of modulus
1, we get

P(D)E =
1

2πiPA(−iη)

∫
S1

λA−1P(D)
(
eληxψλ(x)

)
dλ

=
1

2πiPA(−iη)

∫
S1

λA−1eληx ∑
α

cα ∑
k

(
iλ
)|α|−|k|

(α
k)η

α−kδ
(k)
0 (x)dλ

=
1

2πiPA(−iη)
∑
α

cα ∑
k
(α

k)(iη)
α−k
( ∫

S1
λA−1−|α|+|k|eληx dλ

)
δ
(k)
0 (x).

Now we use the hypothesis that all |α| are of the form A − m for non-negative m ∈ Z. So
the residue theorem enables us to eliminate all terms except those where |α| is maximal and
k = 0, resulting in:

P(D)E =
1

2πiPA(−iη)
∑

α:|α|=A
cα(iη)α

( ∫
S1

λA−1−A+0eληx dλ

)
δ0(x)

=
1

PA(−iη)
∑

α:|α|=A
cα(iη)αδ0(x) =

1

PA(−iη)
∑

α:|α|=A
cα(−iη)αδ0(x)

= δ0(x), .

as required.

In this way we have proved the Malgrange–Ehrenpreis theorem for all non-zero linear
constant-coefficient fractional partial differential operators all of whose terms are of order
differing by an integer from a fixed number. Perhaps the most useful sub-case of this is where
all the terms have the same order, i.e. P = PA.

3 Further discussion

3.1 Remarks on the proofs

In the proof of Theorem 2.2, the argument is roughly based on that of Hörmander [12], with
the important difference that we need to consider the function λ1/K

n as well as just λn. This
makes things more complicated at a few points in the proof.

For one thing, since we can no longer make a linear change of coordinates in the vector
variable λ, we now need to account for the function A(λ) in our estimates, whereas in the
non-fractional proof this function could be assumed without loss of generality to be constant.
For another, we need to be more careful about the bounds we set on the variables variables λn

and λ1/K
n , and we end up looking at both of the two curves shown in Figure 2.1 rather than

just a single type of curve as in the non-fractional proof.
In the proof of Theorem 2.3, the argument is roughly based on that of Ortner and Wagner

[20], with the important difference that the series throughout the proof which were finite in
the non-fractional proof have now become infinite. This is partly because of the fact that
when fractional powers are involved, we need to use the more general form of the binomial
theorem rather than the simple finite-series form that works for natural-number exponents. It
also relates to the fact that we must now use Osler’s infinite-series version of the product rule
rather than the standard Leibniz rule.
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3.2 Examples and applications

As a basic example, let us consider the operator P(D) = ∂α

∂xα , i.e. the operator given by the
power function P(λ) = (iλ)α, where α is fixed and rational. We shall assume α > 1, i.e.
all components of α are greater than 1, for reasons which will become clear later. Now P is
analytic on the whole complex plane except for the negative real axis, so the contour γ(µ) can
be deformed, regardless of µ, to the same contour with R = 1. Call this contour γ1, i.e.

γ1 = {reiπ : ∞ > r > 1} ∪ {eiθ : −π < θ < π} ∪ {r : 1 < r < ∞}.

So we can write

〈E, φ〉 = (2π)−n
∞

∑
k=1

∫
∆k

∫
γ1

(iλ)−αφ̂(−λ) dλn dλ′

= (2π)−n
∫

Rn−1

∫
γ1

(iλ)−αφ̂(−λ) dλn dλ′

as a possibility for the fundamental solution E. By symmetry (or indeed by induction on n),
we can therefore define E as follows:

〈E, φ〉 = (2π)−n
∫

γ1

· · ·
∫

γ1

(iλ)−αφ̂(−λ) dλ1 · · ·dλn

= (2π)−n
∫

γ1

· · ·
∫

γ1

(iλ)−α
( ∫

Rn
eiλ·xφ(x) dx

)
dλ1 · · ·dλn

= (2π)−n
∫

Rn
φ(x)

( ∫
γ1

· · ·
∫

γ1

(iλ)−αeiλ·x dλ1 · · ·dλn

)
dx,

where Fubini’s theorem was used to get from the second line to the third, this being valid
because φ is a test function, |λ| ≥ 1 for all λ ∈ γ1, and λ1−α decays at infinity (here we use the
assumption that α > 1).

So the distribution E can be identified with the function

E(x) = (2π)−n
∫

γ1

· · ·
∫

γ1

(iλ)−αeiλ·x dλ1 · · ·dλn

= (2π)−n
n

∏
k=1

( ∫
R
(iλ)−αk eiλxk dλ

)
= (2π)−n

n

∏
k=1

(
2π

Γ(αk)
H(xk)xαk−1

k

)
=

H(x)xα−1

Γ(α)

where H is the Heaviside step function defined by H(x) = 1 if x > 0, H(x) = 0 if x < 0, and
the functions H, Γ applied to the vector variable x are defined by taking the product over the
individual coordinates of x.

3.3 Possible extensions

Since any real-order differintegral operator can be approximated arbitrarily closely by rational-
order ones, Theorem 2.2 is sufficient to get accurate numerical approximations to fundamental
solutions of any non-zero linear constant-coefficient fractional partial differential operator
which contains only real-order differintegrals. So from the point of view of applications, we
have got as far as necessary with this theorem.

It may also be possible to use a continuity argument to extend to the R case properly.
More explicitly, if (Pi) is a sequence of rational-order finite series of power functions which
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converges to an irrational-order one P, then there exists a fundamental solution Ei for each
Pi(D), and these Ei should converge to a distribution E which is a fundamental solution for
P(D). But we have not yet managed to construct a completely rigorous argument to prove
this.

Another useful way of extending our result would be to consider differintegration methods
different from the Riemann–Liouville one. Note that the only property of Riemann–Liouville
fractional derivatives used in the proof of Theorem 2.2 is that they work well with Fourier
transforms, i.e. the result of Lemma 1.2. So Theorem 2.2 at least should be easy to extend,
although the proof of Theorem 2.3 also uses the Osler product rule (Lemma 1.6).

Extending to the well-known Caputo formula for fractional derivatives should be straight-
forward, since the Riemann–Liouville and Caputo definitions are equivalent when c = −∞
and f is a Schwartz function, as discussed in the paragraph following Lemma 1.5.

Using the more recent Caputo–Fabrizio definition (introduced in [7] and further developed
in [15], with applications demonstrated in e.g. [2] and [8]), we should be able to construct
fundamental solutions to PDEs involving fractional Laplacians, since the Fourier transforms
of these using the Caputo–Fabrizio formula are known, but the resulting formulae for the
fundamental solutions will of course be much more complicated.

For the definition introduced in [1], defining fractional derivatives using an integral with
non-singular Mittag-Leffler kernel, the formula for Fourier transforms is even more compli-
cated and was established in [3]. But even in this case, the Fourier transform of the fractional
derivative of a function f can be written as the Fourier transform of f multiplied by some
function independent of f . So despite its complexity, we should be able to establish an ana-
logue at least of Theorem 2.2 for PDEs defined using these derivatives.

Work on all of the above-described potential extensions of the results contained herein is
ongoing and may appear in future publications.
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