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Abstract. In this paper, we study the controllability of a system governed by second
order delay differential equations. We introduce a delay Gramian matrix involving the
delayed matrix sine, which is used to establish sufficient and necessary conditions of
controllability for the linear problem. In addition, we also construct a specific control
function for controllability. For the nonlinear problem, we construct a control function
and transfer the controllability problem to a fixed point problem for a suitable operator.
We give a sufficient condition to guarantee the nonlinear delay system is controllable.
Two examples are given to illustrate our theoretical results by calculating a specific
control function and inverse of a delay Gramian matrix.
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1 Introduction

It is well-known that delay differential equations arise naturally in economics, physics and
control problems. It is not an easy task to construct a fundamental matrix for linear differen-
tial delay systems, even for a simple first order delay system x(t) = Ax(t) + Bx(t —7),t > 0
with initial condition x(t) = ¢(t),t € [—7,0],7 > 0, where A, B are suitable constant matri-
ces. Khusainov and Shuklin in [14] introduced the delayed matrix exponential €2 : R — R”
[14, Definition 0.3] and derived an explicit formula for solutions to such linear differential
delay systems if we have AB = BA. Diblik and Khusainov [7] adopted the idea to construct
the discrete matrix delayed exponential, and it was used to derive an explicit formula for so-
lutions to a discrete delay system. There are a few recent results in the literature on existence,
stability and control theory for delay differential, discrete and impulsive equations; see for
example, [2-6,8-11,13,15,17-28,30,32]. We also remark that there exists possible connection
between delay effect and memory property for fractional derivatives, which involved in frac-
tional differential equations. For more recent development on stability and BVP for fractional
differential equations, see for example, [1,12,29,31].
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Khusainov et al. [13] studied the following Cauchy problem for a second order linear
differential equation with pure delay:

{x(t) +O%x(t—7) = f(t), t=0,7>0, (1.1)

x(t) = g(t), () =g(t), —T<t<0,

where f : [0,00) — R", Q) is a n X n nonsingular matrix, T is the time delay and ¢ is an
arbitrary twice continuously differentiable vector function. A solution of (1.1) has an explicit
representation of the form [13, Theorem 2]:

x(t) = (cos; Qt)p(—1) + Q (sin Q) ¢(—71) + Q7! ’ sing Q(t — 7 —s)$(s)ds

=T

+07! /[: sing Q(t — 7 —s)f(s)ds, (1.2)

where cos; Q) : R — IR"*" [13, Definition 1] and sin; Q) : R — IR"*" [13, Definition 2] denote
the delayed matrix cosine of polynomial degree 2k on the intervals (k — 1) < t < kt and
the delayed matrix sine of polynomial degree 2k + 1 on the intervals (k — 1)t < t < k7,
respectively. More precisely,

O, —oo <t < -1,
I, —17<t<0,
- 2L, 0<t<T,
cos; Ot = : . (1.3)

1= 024 + O o (—1RO N (k- 1)r <t <kt k>0,

and
Q, —oo <t < -1,
Q(t+ 1), —T<t<0,
Q(t+1) - 3L, 0<t<r,
Si].’lT Ot = : : (14)

Qt+1)— Q3L 4+ + (—1)k02k+1%, (k—1)T <t<kt, k>0,

where © and I are the zero and identity matrices, respectively.
Diblik et al. [8] studied a control problem for a system governed by the following delay
oscillating equations:

(1.5)

{x(t) + O2x(t—1) =bu(t), te[0,t], T>0,t >0,
x(t) =o(t), *(t)=¢(t), te[-7,0],

where b € R" and u : [0,00) — R and they give sufficient and necessary conditions of relative
controllability [8, Theorem 3.8] for (1.5) from the point of view of the rank criteria

rank (b, 0%, 0%, ..., 0*"Vp) =1 (1.6)
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provided by #; > (n —1)7. In addition, an explicit dependence of the control function related
to sin; (2 and cos; ) for (1.6) was given in [8, Theorem 3.9]

u*(t) = b (Q tsin, Q(t; — T — ))TCY + b (cos: Q(t; — T —1))TCY,

where C? = (&,...,c%)Tand CY = () ;,...,c3,)T are the solutions of the algebraic equation

in [8, (3.45)].
In this paper, we use a different approach to that in [8] to study controllability of a system
governed by the following Cauchy problem:

{X(t) + O2x(t—1) = f(t,x(t)) +Bu(t), T>0,te[0,t], a7

x(t) = o(), () = ¢(t), —r<t<0,

where f: ] x R" — R", Bis a n X m matrix and an input u : [0, ;] — R™.
From (1.2), a solution of system (1.7) can be formulated as

x(t) = (cos; Qt)p(—1) + Q1 (sin Qt)¢(—71) + Q! ’ sing Q(t — 7 —s)¢(s)ds

+07! /Ot sing Q(t — 7 —5) f(s,x(s))ds + Q" /(: sine Q(t — 7 —s)Bu(s)ds.  (1.8)

We give sufficient and necessary conditions of controllability for the linear second-order
delay differential system (1.7) with f(-,x) = 0 from the point of view of the delay Gramian
matrix. In addition, we construct a specific control function for the controllability problem of
transferring an initial function to a prescribed point in the phase space. Then, we construct a
specific control function involving a nonlinear term and apply a fixed point result to establish
a sufficient condition of controllability for the nonlinear system (1.7) by using properties of
the delayed matrix sine and the delayed matrix cosine.

2 Preliminary

Let R" be the n-dimensional Euclid space with the vector norm || - ||. Set ] = [0,t1], 1 > 0.
Denote by C(J,IR") the Banach space of vector-valued continuous functions from | — R”"
endowed with the norm ||x[[c(j) = max;e; [[x(¢)|| for anorm || - || on R". We also introduce the
Banach space C?(J,R") = {x € C(J,R") : ¥ € C(J,R")} endowed with the norm [xllc2py =
maxej{||x(2)], || %(t)], || %(£)]|}. Let X, Y be two Banach spaces and L;(X,Y) be the space of
bounded linear operators from X to Y. Now, L?(],Y) denotes the Banach space of functions
f ] — Y which are Bochner integrable normed by || f||;(;y) for some 1 < p < oo. For A :
R" — R", we consider its matrix norm [|A|| = max|y -1 [|Ax|| generated by | - ||. In this paper

we let [|@]lc = maxse[—r0) [|9(s) ], [¢llc = maxse(—rg) [|¢(s)[| and || §[|c = maxse g [|G(s)]]-
Definition 2.1. System (1.7) is controllable if there exists a control function u* : [0,#] — R"
such that

£(t) + O%x(t — 1) = f(t,x(t)) + Bu*(t)

has a solution x = x* : [—7, #1] — R" satisfying
() =gt),  FH=¢t), —T<t=0,
X*(tl) = X1, X'*(tl) = Xi,

where x1,x] € R” are any finite terminal conditions and # is an arbitrary given terminal
point.
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For our investigation, we recall the following results.

Lemma 2.2 ([13, Lemmas 1 and 2]). The following rules of differentiation are true for the matrix
functions (1.3) and (1.4):

% cosr Ot = —Qsing Q(t — 1), % siny Ot = Q) cos; O, t e R.

Lemma 2.3 ([19, Lemmas 2.5 and 2.6]). For any t € [(k—1)t,kt), k = 0,1,..., the following
norm estimates hold:

|| cos: Q|| < cosh(||QY|¢), || siny Q|| < sinh[||Q||(t 4+ 7)].

Lemma 2.4 ([16, Krasnoselskii’s fixed point theorem]). Let B be a bounded closed and convex
subset of a Banach space X and let Fy, F, be maps from B into X such that Fix + Fy € B for every
pair x, y € B. If Fi is a contraction and F, : B — X is continuous and compact, then the equation
Fix + Ex = x has a solution on B.

3 Controllability of linear delay system

In this section, we study controllability of a system governed by a second order linear delay
differential equation:

(3.1)
x(t) = o(t), x(t)=¢(t), te[-7,0].

We introduce a delay Gramian matrix (an extension of the classical Gramian matrix for
linear differential systems) as follows:

{x(t) +O%x(t—7) = Bu(t), tel0,t], >0,

t
W0, 4] = Q! / "sine Q(# — 7 — s)BB  sin; QT ( — 7 — 5)ds. (3.2)
0

We give a new sulfficient and necessary condition to guarantee (3.1) is controllable.
Theorem 3.1. System (3.1) is controllable if and only if W< [0, t1] defined in (3.2) is non-singular.

Proof. First we establish sufficiency. Since W-:[0,t;] is non-singular, its inverse W, 1[0,#] is
well-defined. Thus, for any finite terminal conditions x1,x]; € RR", one can construct the
corresponding control input u(t) as

u(t) = Bsin, QT (t; — T — )W 1[0, 1]B, (3.3)
where

B = x1 — (cos; Q1) p(—7) — Q L(sing Qt)¢(—71) — Q7! ’ sing Q(t; — T —s)¢(s)ds. (3.4)

From (1.8), the solution x(t1) of system (3.1) can be formulated as:

x(t) = (cose Q1) @(—7) + QO (sing Qt;) g(—7) + Q7 ' sing Q(t; — T —s)$(s)ds

—T

ot
+07! / 1 sing Q(f; — T — s)Bu(s)ds. (3.5)
0
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Put (3.3) into (3.5), and we obtain

x(t) = (cos: Q) @(—7) + Q7 (sin, Oty ) p(—1) + Q7? ' sing Q(t; — T —s)$(s)ds

T

t
+al / "sing Q(t — 7 — s)BB  sine QT (t — 7 — s)dsW- 1[0, t1]. (3.6)
0
Now (3.2), (3.4) and (3.6) give

x(t1) = (cost Qt)p(—7) + O~ (sin, Ot)e(—1) + 0! ’ sing Q(ty — T —s)p(s)ds+ B

—T

= X1,

and now use Lemma 2.2 to obtain
. d 1 - 1 f°
x(t) = 7 (cost Q1) p(—71) + Q™ ' (sing Qfy)p(—7) + Q

= x].

sinc (11— 7= 5)i(s)ds + |

—T

Next, we check the initial conditions x(f) = ¢(t), %(t) = ¢(t) holds when —7t < t < 0.
From (1.3) and (1.4), the following relations hold:

cos: Ot =1, sing Ot = Q(t+ 1), —1<t<0,

O, t<s <0,
Qt—s), —1<s<t

sinfQ(t —1—5s) = {
Linking (1.8) and the above relations, the solution of (3.1) can be expressed by

x(t) = o(—7) + (t+1T)p(—1) + Q7! t sing Q(t — T —s)$(s)ds. (3.7)

-7
Integrating by parts and using Lemma 2.2 yields

t

/tT sing Q(t — T —s)¢(s)ds = / sing Q(t — T —s)d¢(s)

—-T

- sinTQ(t—T—s)(p(s)]t_T—/t (s)dsine Q(f — T —s)

=—(t+1)Q¢(—7) + Qop(t) — Qo(—1). (3.8)
Put (3.8) into (3.7), and we get

x(t) = ¢(—=1) + (t+ T)p(=1) + Q7' [-Q(t+ 7)9(—T) + Qo(t) — Q9(—7)]
= ¢(t).

Now x(t) = ¢(t) holds. Thus, (3.1) is controllable according to Definition 2.1.

Next we establish necessity. Assume the delay Gramian matrix W¢[0, t1] is singular, and
then W-[0,#;][Q~1]" is singular too. Thus, there exists at least one nonzero state ¥ € R" such
that

TW. [0, H][Q7 T = 0.
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It follows from (3.2) that
0 =xTW.[0,1][Q "%

t
_ / T T sing Ot — 7 — s)BB  sine QT (4 — 7 — s)[Q 1| Txds
0

t T
= / 1 [XTQ_l sing Q(H — T — S)B] [JZTQ_l sing Q(H — T — s)B} ds
0

t
J

This implies that

2
T tsin . Ot — 7 — s)BH ds.

21O tsin, Q(t —1—5)B=(0,...,0), Vsc]. (3.9)
N——

m

Since (3.1) is controllable, it can be driven from any continuously differentiable initial
vector functions ¢, ¢ : [—7,0] — R" to an arbitrary state x(#;) € R”. Hence there exists a
control uy(t) that drives the initial state to zero. This means that

0
x(t) = cos: Qt1p(—1) + Q1 sing Qt1p(—7) + Q7 | sing Q(t; — T —5)¢(s)ds

—T
t
+07! / 1 siny Q(fy — T — s)Bug(s)ds
0
—0, (3.10)

where 0 denotes the n dimensional zero vector.
Moreover, there exists a control 7(t) that drives the initial state to the state %, so

0
x(t) = cos: Qt1p(—1) + Q 'sing Qt1p(—7) + Q71 | sin  Q(t — T —5)¢(s)ds

-7
+07! /Ot1 sing Q(t; — T — s)Bii(s)ds
_ % (3.11)
Combining (3.10) and (3.11) gives
f=0" /Otl sing Q(t — T — 8)BJi(s) — uo(s)]ds.
Multiplying both the sides of the equality by x', we get

t
iz = / 1O sing Ot — 7 — 8)Bli(s) — uo(s)]ds.
0

Note that (3.9), we obtain #'% = 0. That is, ¥ = 0, which conflicts with being nonzero. Thus,
the delay Gramian matrix W[0, ;] is non-singular. O

4 Controllability of nonlinear problem

In this section, we apply a fixed point method to establish a sufficient condition of controlla-
bility for (1.7).
We assume the following.
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(Hy) f:]xR" = R" is continuous (here | = [0, t1]), and there exist Ly € L7(J,R") and g > 1
such that

1t x1) = £t x2) | < Lp() |22 — 32l
let My = sup,, [[£(£,0)].

(H,) Consider the operator W : L?(],R™) — R" given by
wW=0"1! /Otl sing Q(t; — T — s)Bu(s)ds.
Suppose that W~! exists, and there exists a constant M; > 0 such that
W, (re 227 Rm) / kerwy < M

Next, consider a control function u, of the form:
uy(t)y =w-1 [xl — (cost Qty)p(—1) — O~ !(sin, Ot)e(—T1)

0
-0t sing Q(t — T —s)$(s)ds

o /Ot1 sing Q(t; — T — s)f(s,x(s))ds] (1), tel]. 4.1)
We define an operator T : C([—7,#],R") — C([—71,t1],R") as follows:
(Tx)(t) = (cosr Q) p(—7) + Q~(sing Qt)g(—7) + Q7! ' sing Q(t — T —s)¢(s)ds

—T

t t
+ 0! / sing Q(t — T —s) f(s,x(s))ds + Q71 / sing Q(t — T — s)Buy(s)ds. (4.2)
0 0
For each positive number ¢, let

Oe = {x € C([_T/ tl]/Rn) : HxHC[*T,tl] = supte[*’f,t]] Hx(t)” S 6}.

Now O is a bounded, closed and convex set of C([—T, t;], R").

Now we use Krasnoselskii’s fixed point theorem to prove our result. We first prove that
the operator T has a fixed point x, which is a solution of (1.7). Then we check (Tx)(t) =
@(t), L(Tx)(t) = ¢(t) when —t < t < 0and (Tx)(t) = x1, %(Tx)(t) = x} via the control
uy defined in (4.1), and this means system (1.7) is controllable.

Theorem 4.1. Suppose (Hy) and (Hy) are satisfied. Then (1.7) is controllable if

cosh(||Q||t1) —

1
Q7 |[B|M; | <1, 4.3)
1

My |1+

1
where My = ||Q7| [m(e“m‘ptl —1)]7 L ¢l La¢r+y and % + % =1, pq>1.

Proof. We divide our proof into three steps to verify the conditions required in Lemma 2.4.

Step 1. We show T(O.) C O, for some positive number €.
Consider any positive number € and let x° € O,.
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Let t € [0, t1]. From (H;) and Holder inequality, we obtain

/Ot sinh [HQH(t - 5)] Lg(s)ds < </Ot (sinh[HQH(f — S)]>Pds>; </ot L?(s)ds);
(et ,
- (/0 2Pds> ILfllLa(rrH)

1
1 [
= [ZPHQHp(e”QPt - 1)} HLfHL‘?(],]RJr)/ (4.4)

where we use the fact that sinh t = ¢ ’234 < %, for V t € R. Next,

"sinh [ ( - 9) £ (s,0)|lds < M; “sinh []|Q2)| (£ — 5)] ds
0 0
< mfn[cosh(naut) —1]. (4.5)

From (4.1), (H1), (H), (4.4), (4.5) and Lemma 2.3, we obtain (here ||¢[|c =max;c[_- /[l ¢(s)]],
[@llc = max,e_rq |9(s)]| and [[§llc = max,e_q [[$(s)]]),

s < W e ey sy 1321+ 1 cose Ol (=) + 27 sine el (=)
HO [ sine 0t = 7= ) 9(5) s
107 [ 1sine (e = 7= 915, x(5) s )
< M|+ My cosh([2]1) gl + M}~ siah [0 ¢+ )| g1
+ 0ol [ sinn 2] —5)] o
| [ sinh 102 (= 9| Ly (6)(s) s
ot [[sinh 102 - 9)| 150 s

< Mylxl + My cosh(|Q) lgllc + M Q" sinh [Hnn(tm} 19llc

MOl ¢llc

_|_
1€2]]

<COSh[HQH(t +1)] — Cosh(||QHt)>

1
_ 1 i
+ Ml | g @7 = 1)) L g Pelon

M
+ Mooy [coshuront) - 1}

<My||x1|| + M16(t) + M1 Mze
< Ma|x1 | + Mi8(t1) + M1 Mae, (4.6)
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where

. . M
%OzC%MMWMWM+MO*MmhHﬂmﬂﬂﬂﬂwc+wlWmﬁ[mwwﬂwr4}

o~ ¢llc

Mo (wwmw+m—mmmm)

(note we used the fact that %0(t) > 0, V t € J).
Now

I(Tx) (B
< [[cost Ot (=)l + [~ ][] sine Q[ ¢(—T) |

0
+ IIQ‘lll/4||SinrQ(t—T—S)llllqb(S)lldS
t
Jrlllel\/0 Isine Q(t =7 —s)|[| f(s,x(s)) [l ds
-1 f .
+Q II/O Isine Q(t — 7 —s)||[| B|[|ux(s) | ds

scmmmwmwm+wo*wmhMQMHwﬂuwc

@) 1
41 HA'”"””C <cosh[|\QH(t+T)] - Cosh(HQHt)>
o 1||/ smh[|Q|| (t—s) ]Lf s)||ds + |~ 1||/ s1nh[|Q||(t—s)]Hf(s 0)||ds
+mwdamMMrﬁMm@mmuMum+mmﬁ%
cosh (|||t 1
< (1) + Moe + O =T 01 Bl
h(||Q) -1 h(|Q -1
1 s =1y 1)y + UL =1y 1)y vy e
] o]
cosh(||Q|t;) =1, _ cosh(||Q)|t1) =1, _
< o(ty) |1+ UM =1y 1y g, | 4 UL =161y g,y
1] []]
cosh(||Qf|t1) =1, ~_
+M2[1+ (HHQHHl) 10 1H||BHM1]6.

Thus for some € sufficiently large, and with this € (which we take for the rest of the proof),
from (4.3) we have T(x¢) € O, so as a result T(O,) C Ok.
Now we write the operator T defined in (4.2) as Ty + T> where:

(T1x)(t) = (cos: Q) p(—7) + Q L(sing Q) p(—7) + Q! ' sing Q(t — 7 —s)§(s)ds

—T

t
+0! /0 sing Q(t — T — s)Buy(s)ds, 4.7)

(Tox)(t) = Q7! /Ot sing Q(t — T —s)f (s, x(s))ds. (4.8)
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Step 2. We show T; : O, — C([—7, t1],IR") is a contraction.
Let t € [0,t1]. From (4.1), (4.4), (H1) and (Hy), for ¥V x,y € O, we have

e (£) = uy ()] < M| Q7| /Ot [sine Ot — 7 =) [|L¢(s)[|x(s) —y(s)ds

t
< MO = vl ooy [ s [0 9)| L)
< MiMo|[x =yl ez p)-

Then from (4.7), we have
(100 — () O < 107 [ sine 0 =7 = 5) 1B lua(s) — () s
< 10 IBIMMalx =yl | sinh 102 =) as
< Mlx = yllcf=xt)r

where A := %HQAH || B|| M1 My. From (4.3), note A < 1, which implies Tj is a con-

traction.

Step 3. We show that T, : O — C([—T, #1],R") is a continuous compact operator.
Let x, € O with x, — x in O.. For convenience, let F,(-) = f(-,x4(:)) and F(:) =
f(-,x(+)), and note

sinh [||Q||( - s)]Fn(s) — sinh [HQH( - S)} F(s), aese]=][0,t].
From (H;), we get
st | 0(- =) 1Fu(s) = F(s) | < 2esinh [ [0 =) L4(6) € L1, ")
Then using (4.8) and Lebesgue’s dominated convergence theorem, we obtain
(o) () = (Tzx)(O < 197 [ sinh [0t =5)|1F.(5) = Fls)lds =0, asn — oo
Thus T, : O — C([—71, 1], R") is continuous.

Next we show T(O,) C C([t,t1],R") is equicontinuous. For x € Ocand 0 < t < t+h < 4,
from (4.8), we have

(Tox)(t+h) — (Tx)(t) = Q7! /Ot+h sing Q(t +h — 1t —s)F(s)ds
-0t /0 sing Q(t — T —s)F(s)ds

= K1+ Ky, 4.9)

where "
Ky = Q_l/ sing Q(t+h — T —s)F(s)ds,
t

and ,
Ky = Qfl/ [sinTQ(t—i—h —T—s5)—sin; Q(t — 7 —s) | F(s)ds.
0
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Thus
[(Tax) (¢ + 1) = (Tox) (1) || < [[Ka [ + [[K2]l- (4.10)
Now, we check ||K;|| — 0ash — 0, i = 1,2. For K; (similar to (4.4)) we obtain

t+h'h Ql[(t+h L¢(s)ds < 1 12lpsh _ q g L 411
/t sinh |[|Q|(t+h —s) | Lg(s)ds < W(E U Ll re),  (411)

where ﬁ + qlT =1, p1,q1 > 1. Then using (H;), (4.11) and Lemma 2.3, we get

t+h [
1Kl < IIQ_lll/t sinh | [|Q|(t +h —s)| [[F(s)[|ds

<o) [ sinb [0+ 1) G5, 29) — 5,001+ 1£(5,0) e

Ls(s)l|x(s)llds

t+h r
< ||Q—1||/ sinh || Q| (£ -+ —s)
t L

t+h
+Mf||Q’l||/t sinh [HQH(t—i—h—s)]ds

1

1 2
< -1 Qlpih _
<ellQ™ [ZPIIIQIIM (e DI gl g rey
h(]|Q|k) — 1
Mgy shUQIR =1 oy o

12

For K, from Holder’s inequality, we have

t
/O |sing Ot +h — T —s) — sing Q(t — T — 5)|[ Ly (s)ds
1

t 23
< </0 | sine Q(t+h—1—35) —sinTQ(t—T—s)szds) ZHLfHqu(],]Rﬂ,

1 1 _
where s + n = 1, p2,92 > 1. Then we get

t
Kzl < ||Q_1||/0 [ sine Q(t +h — T —s) —sinc Q(t — T —s)|[|[F(s)]|ds
t
< eHQ*lH/ |sing Q(t+ 5 — T — ) — sin; Ot — T — 5)|[ Ly(s)ds
0

t
+ M7 / Ising Q(t + b — 7 —s) — sing Q(t — 7 —s)||ds
0

1
h 3
<ellQ™ </0 ||sine Q(t+h—71—s5) —sing Q(t — 7 — s)||P2ds> L fll o (g m)
t
+ Ml / sing Q(t + 7 — 7 —s) — sing Q(t — T — )|/ ds.
0
From (1.4), we know that the delayed matrix function sin; )t is uniformly continuous for
V t € J, and thus, we get || sin; Q(t +h — T —5) —sin; Q(t — 7 —s)|| — 0 as h — 0. Finally,
we get ||Kz|| — 0. Now ||K1|| = 0 and ||Kz|| — 0 with (4.10) yield

(Tox)(t+h) — (Tox)(t)|| = 0 ash — 0,
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for all x € O,. The other cases are treated similarly. From the Arzela—Ascoli theorem we have
that T, : O — C([7, t1],R") is compact.

From Krasnoselskii’s fixed point theorem, T has a fixed point x on O. From the definition
of operator T, x is also the solution of system (1.7). Note x(t;) = x; via the control function
uy(t). Also x%(t1) = x|. Finally, we get the initial conditions x(t) = ¢(t), *(t) = ¢(t) when
—1 <t <0 using the same procedure in the proof of (3.1) in Theorem 3.1. Thus, system (1.7)
is controllable. O

5 Examples

In this section, two examples are presented to illustrate the results.

Example 5.1. Consider the controllability of the following linear delay differential controlled
system:

{f(t) +Qx(t - 0.6) = Bu(t), t€0,1.2], G

x(t) = o(t), i(t)=¢(t), te[-060]

a3 o-() w-(@) w0-()

Note that B is a n x m matrix and an input u : [0,#;] — R”, we cansee n =2, m = 1,
T = 0.6, t; = 1.2. Constructing the corresponding delay Gramian matrix of system (5.1) via
(3.2), we obtain

where

1.2
Wos[0,12] = Q' / sings (0.6 — 5)BB" sing QT (0.6 — s)ds =: E; + Ey,
0
where

0.6
E; =071 / singg (0.6 — s)BBT sings Q7(0.6 —s)ds, (0.6 —s) € (0,0.6),
0

1.2

E, =071 singg (0.6 — s)BBT sings Q7 (0.6 —s)ds, (0.6 —s) € (—0.6,0),
0.6
and

O, t € (—o0,—0.6) O, t € (—oco0,—0.6)
I, t € [-0.6,0), Q(t+0.6), t € [-0.6,0),

o 1 Q2L t € [0,0.6), — Q(t+0.6) — 3L, + € [0,06), i

OO T o2 p 000 TR T N 014 0.6) — 3L 4+ 5002 (52)

t €10.6,1.2), t €[0.6,1.2),

Next, we can calculate that

21681 102717 27 9
E, — [ 19625 218750 E (15 15
1= | 207259 269307 |~ 2=V 2w 9 |-

156250 546875 125 125
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Then, we get

25056 118467 428725000 —411343750
15625 218750 -1 364257 364257
Wo‘ﬁ[o, 12] =E+E = , W0.6 [O, 12] = .

261009 308682 —422931250 406000000
156250 546875 121419 121419

Thus, system (5.1) is controllable by Theorem 3.1. In addition, for any finite terminal
conditions x(t1) = x1 = (x11,x12)T, %(t) = x| = (x}, x1,)T, it follows (3.3) that one can
construct the corresponding control input u(t) € R as

u(t) = BT sing Q7 (0.6 — )Wy ¢ [0,1.2]8, (5.3)
where
) Y11 = JO5es7AA17E6400000
B = x1 — (cosps (1.2)p(—0.6) — Q" (sing6 N1.2)¢(—0.6) = 9439319638987191039 | *
X12 ~ 3518437208883200000

From (1.8) and (5.3), the solution of system (5.1) has the form:
x(t) = (cosge Qt)@(—0.6) + Q' (sing s Q) p(—0.6)

t
+ 07! / sing Q(t — 0.6 — s) BB sing Q7 (0.6 — s)ds W,[0,1.2]8. (5.4)
A .

Now we consider the integral term fot sings Q(t — 0.6 — s)BBT sing 4 QT (0.6 — s)ds in (5.4).
For 0 <t < 0.6, we can obtain —0.6 <t—-06—-s<t—-06<0and0<06—-t<06—-5s<
0.6, so the solution (5.4) can be expressed to the following form via (5.2):

x(t) = [1 — 025] @(—0.6) + Q7! [Q(t +0.6) — Q3tg] @(—0.6)

5(0.6 —s)?
6

For 06 <t <12, weget0 <t—-06—-s <t—-06 <06 when0 <s <t—-0.6and
—06 <t—06—s < 0Owhent—0.6 <s < t. We can also obtain 0 < 0.6 —s < 0.6 when
0<s<06and —0.6 <0.6—t < 0.6 -5 <0when 0.6 <s < t. Finally, (5.4) can be expressed
to the following formula via (5.2):

2 _ 4
x(t) = [1 — 02% + 04“22‘6)} @(—0.6)

+0! /Ot [Q(t —s)] BBT [QT(LZ —s5)—(Qh ] ds W, 2[0,1.2]8.

B t3 (t—0.6)°] .
1 3 5
+Q [Q(t+0.6)—06+0120 ]q)( 0.6)

(t—0.6—s)3 0.6 —s)3

+07! /Ot% {Q(t —5)—OF A ] BBT [QT(l.Z —5) — (QT)3( c ds
x Wy 2[0,1.2]8

1 [0 T | AT T 3(0-6—5)3 -1
+07! [ [0(t—5)] BB [Q (12—5) — (QF) 6} ds Wy 1[0,1.2]p

t
+Q7 [ [t —s)] BBT [QT(Lz - s)} ds Wy [0,1.2]p.
0.6 '

Figure 5.1 shows the state x(t) of system (5.1) when we set the terminal state x; =
(x11,x12)T = (0,0)T and Figure 5.2 shows the state x(t) of system (5.1) when we set x; =
(x11,x12)T = (20,10)™. Clearly, we can see the terminal states of system (5.1) is consistent with
the achieved states.
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X, (0,1

X, (X,()

_SD | 1 1 | | 1 1
48 04 02 1] 0.2 0.4 0B 0.8 1 1.2

Figure 5.2: The state x(t) of system (5.1) when we set x; =
(20,10)T.

= (xll,xlz)T
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Example 5.2. In this example, we consider the following nonlinear delay differential controlled
system:

(5.5)

{x(t) + O2x(t —0.4) = f(t,x(t)) + Bu(t), te]0,0.8],
x(t) = @(t), x(t) = ¢(t), t € [-04,0],

where we set

0= (9N, monasn- (%5, w0-(3),

~ (0.3(t —0.4) sin[x1 (t)]
ft,x(8) = (0.3(t —04) sin[xl(t)]) :

Now, we set u(t) = X, where X = 2%21@, en)en, e, is orthonormal basis of R?. From the
definition of W in (H>), we get

0.8
W= / sing.s (0.4 — s)Bds ¥
0

04 0.8
— ! / sing4 (0.4 — s)ds ¥+ Q! / sing4 (0.4 —s)ds X
0 0.4
452 2
452 ) _ < 0> -
_ [ 1875 25
( 0 1875 0 3

602 0
— [ 1875 X
0 602 .
1875

Define the inverse W~! : R? — L?(]J;,R?) by

g B0\~
W0 = (T )T
602
where J; = [0,0.8].
Then, we get

||x]| = 3.1146||x]|,

602

and thus, we obtain ||[W~1|| < 3.1146 =: M;. Hence, W satisfies the assumption (Ha).
Next, note that |sina —sinb| < |a —b|, V a,b € R, we have

1£(t,x) = f(£,y) || = [0.3(¢ — 0-4)\\/(Sin[x1(f)] — sin[y1()])% + (sinfxz ()] — sin[y2(t)])?

<103t~ 04) |/ [x1(8) = ya (D)2 + [xa(t) — ya ()2
= 10.3(t—04)|||x —yl, Yt e J,x(t),y(t) € R%

o)< (519 )]

We can set Ly = [0.3(t — 0.4)| € L7(J;,R") in (H;). When we choose p = g = 2, we get

1
0.8 2
ILfllz2 v = < /0 [0.3(5—0.4)]2ds> = 0.0620.
Then, we obtain

1
20

1
2
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Finally, we calculate that

cosh(0.8||Q2]]) — 1

M> |1
2|t al

1Q7||IB|| M| =0.0894 < 1,

which implies that the condition (4.3) holds.

Now all the conditions required in Theorem 4.1 are satisfied, thus, system (5.5) is control-
lable.

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and valuable
comments. We also thank the editor. This work was partially supported by National Natural
Science Foundation of China (11661016), Training Object of High Level and Innovative Talents
of Guizhou Province ((2016)4006), Unite Foundation of Guizhou Province ([2015]7640), and
Graduate Course of Guizhou University (ZDKC[2015]003).

References

[1] Z. Ba1, X. Dong, C. YIN, Existence results for impulsive nonlinear fractional differen-
tial equation with mixed boundary conditions, Bound. Value Probl. 2016, 2016:63, 11 pp.
MR3481183; url

[2] A. Boicnuk, ]. DiBLiK, D. KHUsainov, M. RUzICkovA, Fredholm’s boundary-value prob-
lems for differential systems with a single delay, Nonlinear Anal. 72(2010), No. 5, 2251-
2258. MIR2577792; url

[3] J. DiBLiK, M. FECKAN, M. PospisiL, Representation of a solution of the Cauchy problem

for an oscillating system with two delays and permutable matrices, Ukrainian Math. ].
65(2013), No. 1, 64-76. MR3104884; url

[4] ]J. DiBLix, M. FECKAN, M. PospisiL, On the new control functions for linear discrete delay
systems, SIAM ]. Control Optim. 52(2014), No. 3, 1745-1760. MR3206982; url

[5] J. DiBLiK, D. YA. KHUsAINOV, Representation of solutions of linear discrete systems with
constant coefficients and pure delay, Adv. Difference Equ. 2006, Art. ID 080825, 13 pp.
MR2238982; url

[6] J. DiBLix, D. Ya. Knusainov, Representation of solutions of discrete delayed system
x(k+1) = Ax(k) 4+ Bx(k —m) + f(k) with commutative matrices, . Math. Anal. Appl.
318(2006), No. 1, 63-76. MRR2210872; url

[7] J. DiBLiK, D. YA. KHuUsaINOV, J. BASTINEC, A. S. SIRENKO, Exponential stability of linear
discrete systems with constant coefficients and single delay, Appl. Math. Lett. 51(2016),
68-73. MR3396349; url

[8] J. DiBLiK, D. Ya. KHUSAINOV, ]. LukACOVA, M. RUZiCkovA, Control of oscillating systems
with a single delay, Adv. Difference Equ. 2010, Art. ID 108218, 15 pp. MR2595647; url


http://www.ams.org/mathscinet-getitem?mr=3481183
https://doi.org/10.1186/s13661-016-0573-z
http://www.ams.org/mathscinet-getitem?mr=2577792
https://doi.org/10.1016/j.na.2009.10.025
http://www.ams.org/mathscinet-getitem?mr=3104884
https://doi.org/10.1007/s11253-013-0765-y
http://www.ams.org/mathscinet-getitem?mr=3206982
https://doi.org/10.1137/140953654
http://www.ams.org/mathscinet-getitem?mr=2238982
https://doi.org/10.1155/ADE/2006/80825
http://www.ams.org/mathscinet-getitem?mr=2210872
https://doi.org/10.1016/j.jmaa.2005.05.021
http://www.ams.org/mathscinet-getitem?mr=3396349
https://doi.org/10.1016/j.aml.2015.07.008
http://www.ams.org/mathscinet-getitem?mr=2595647
https://doi.org/10.1155/2010/108218

Controllability of nonlinear delay oscillating systems 17

[9] J. DiBLik, D. YA. KHUsAINOV, M. RUZ1CkovA, Controllability of linear discrete systems
with constant coefficients and pure delay, SIAM |. Control Optim. 47(2008), No. 3, 1140-
1149. MR2407011; url

[10] J. DiBLix, B. MORAVKOVA, Discrete matrix delayed exponential for two delays and its
property, Adv. Difference Equ. 2013, 2013:139, 18 pp. MR3068650; url

[11] J. DiBLiK, B. MORAVKOVA, Representation of the solutions of linear discrete systems with
constant coefficients and two delays, Abstr. Appl. Anal. 2014, Art. ID 320476, 19 pp.
MR3198178; url

[12] X. DoNg, Z. Ba1, S. ZHANG, Positive solutions to boundary value problems of p-Laplacian
with fractional derivative, Bound. Value Probl. 2017, 2017:5, 15 pp. MR3591515; url

[13] D. Ya. KHusamNov, J. DiBLik, M. RUZICKOVA, ]. LUKACOVA, Representation of a solution
of the Cauchy problem for an oscillating system with pure delay, Nonlinear Oscil. (N. Y.)
11(2008), No. 2, 276-285. MR2510692; url

[14] D. Ya. Knusainov, G. V. SHUKLIN, Linear autonomous time-delay system with permuta-
tion matrices solving, Stud. Univ. Zilina Math. Ser. 17(2003), No. 1, 101-108. MR2064983

[15] D. YA. Knusainov, G. V. SHUKLIN, Relative controllability in systems with pure delay, Int.
J. Appl. Math. 41(2005), No. 2, 210-221. MR2190935; url

[16] M. KrasNos€eLsK1l, Topological methods in the theory of nonlinear integral equations, Perga-
mon Press, New York, 1964. MR0159197

[17] M. L1, ]. WANG, Finite time stability of fractional delay differential equations, Appl. Math.
Lett. 64(2017), 170-176. MR3564757; url

[18] C. LiaNG, ]J. WANG, Analysis of iterative learning control for an oscillating control system
with two delays, Trans. Inst. Meas. Contr., published online. url

[19] C. Liang, W. WEI, ]J. WANG, Stability of delay differential equations via delayed matrix
sine and cosine of polynomial degrees, Adv. Difference Equ., 2017:131, 17 pp. MR3647203;
url

[20] Z. Luo, M. FECkAN, J. WANG, A new method to study ILC problem for time-delay linear
systems, Adv. Difference Equ. 2017, 2017:35, 14 pp. MR3604126; url

[21] Z. Luo, ]J. WANG, Finite time stability analysis of systems based on delayed exponential
matrix, J. Appl. Math. Comput., published online. url

[22] M. MepveD’, M. PosprisiL, Sufficient conditions for the asymptotic stability of nonlin-
ear multidelay differential equations with linear parts defined by pairwise permutable
matrices, Nonlinear Anal. 75(2012), No. 7, 3348-3363. MR2891173; url

[23] M. MEDVED’, M. PospisiL, L. SKRIPKOVA, Stability and the nonexistence of blowing-up
solutions of nonlinear delay systems with linear parts defined by permutable matrices,
Nonlinear Anal. 74(2011), No. 12, 3903-3911. MR2802976; url

[24] M. PospisiL, Representation and stability of solutions of systems of functional differential
equations with multiple delays, Electron. ]. Qual. Theory Differ. Equ. 2012, No. 54, 1-30.
MR2959044; url


http://www.ams.org/mathscinet-getitem?mr=2407011
https://doi.org/10.1137/070689085
http://www.ams.org/mathscinet-getitem?mr=3068650
https://doi.org/10.1186/1687-1847-2013-139
http://www.ams.org/mathscinet-getitem?mr=3198178
https://doi.org/10.1155/2014/320476
http://www.ams.org/mathscinet-getitem?mr=3591515
https://doi.org/10.1186/s13661-016-0735-z
http://www.ams.org/mathscinet-getitem?mr=2510692
https://doi.org/10.1007/s11072-008-0030-8
http://www.ams.org/mathscinet-getitem?mr=2064983
http://www.ams.org/mathscinet-getitem?mr=2190935
https://doi.org/10.1007/s10778-005-0079-3
http://www.ams.org/mathscinet-getitem?mr=0159197
http://www.ams.org/mathscinet-getitem?mr=3564757
https://doi.org/10.1016/j.aml.2016.09.004
https://doi.org/10.1177/0142331217690581
http://www.ams.org/mathscinet-getitem?mr=3647203
https://doi.org/10.1186/s13662-017-1188-0
http://www.ams.org/mathscinet-getitem?mr=3604126
https://doi.org/10.1186/s13662-017-1080-y
https://doi.org/10.1007/s12190-016-1039-2
http://www.ams.org/mathscinet-getitem?mr=2891173
https://doi.org/10.1016/j.na.2011.12.031
http://www.ams.org/mathscinet-getitem?mr=2802976
https://doi.org/10.1016/j.na.2011.02.026
http://www.ams.org/mathscinet-getitem?mr=2959044
https://doi.org/10.14232/ejqtde.2012.1.54

18 C. Liang, J. R. Wang and D. O’Regan

[25] M. Posrisit, J. DiBLik, M. FECKAN, On relative controllability of delayed difference equa-
tions with multiple control functions, in: Proceed. Int. Conf. Numer. Anal. Appl. Math., AIP
Publishing LLC, Vol. 1648, 2015, pp. 130001-1-130001-4. url

[26] M. PospisiL, Representation of solutions of delayed difference equations with linear parts
given by pairwise permutable matrices via Z-transform, Appl. Math. Comput. 294(2017),
180-194. MR3558270; url

[27] Z. You, ]. WANG, Stability of impulsive delay differential equations, J. App. Math. Comput.,
published online. url

[28] Z. You, ]. WANG, On the exponential stability of nonlinear delay systems with impulses,
IMA ]J. Math. Control Inform. 2017, in press, 31 pp. url

[29] J. WaNG, M. FECKAN, Y. ZHOU, Center stable manifold for planar fractional damped equa-
tions, Appl. Math. Comput. 296(2017), 257-269. MR3572793; url

[30] J. WaNG, M. FECKAN, Y. T1AN, Stability analysis for a general class of non-instantaneous
impulsive differential equations, Mediterr. J. Math. 14(2017), No. 2, Art. 46, 21 pp.
MR3619407; url

[31] J. WaNg, X. L1, A uniform method to Ulam-Hyers stability for some linear fractional
equations, Mediter. |. Math. 13(2016), 625-635. MR3483852; url

[32] B. Znu, L. L1u, Y. Wu, Local and global existence of mild solutions for a class of nonlin-
ear fractional reaction—diffusion equations with delay, Appl. Math. Lett. 61(2016), 73-79.
MR3518451; url


https://doi.org/10.1063/1.4912420
http://www.ams.org/mathscinet-getitem?mr=3558270
https://doi.org/10.1016/j.amc.2016.09.019
https://doi.org/10.1007/s12190-016-1072-1
https://doi.org/10.1093/imamci/dnw077
http://www.ams.org/mathscinet-getitem?mr=3572793
https://doi.org/10.1016/j.amc.2016.10.014
http://www.ams.org/mathscinet-getitem?mr=3619407
https://doi.org/10.1007/s00009-017-0867-0
http://www.ams.org/mathscinet-getitem?mr=3483852
https://doi.org/10.1007/s00009-015-0523-5
http://www.ams.org/mathscinet-getitem?mr=3518451
https://doi.org/10.1016/j.aml.2016.05.010

