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Abstract. In this paper we construct an O(2)-equivariant Hopf bifurcation normal form
for a model of a nonlinear optical system with delay and diffraction in the feedback
loop whose dynamics is governed by a system of coupled quasilinear diffusion equa-
tion and linear Schrodinger equation. The coefficients of the normal form are expressed
explicitly in terms of the parameters of the model. This makes it possible to construc-
tively analyze the phase portrait of the normal form and, based on the analysis, study
the stability properties of the bifurcating rotating and standing waves.
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1 Introduction

Nonlinear optical systems with nonlocal feedback often possess certain symmetries that — if
carefully studied — can help one understand the typical pattern formation scenarios. For
instance, Hopf bifurcation in the presence of SO(2) symmetry gives rise to rotating waves:
one-dimensional waves on a circle [9] or two-dimensional waves on a disc [11].

In its simplest form, Hopf bifurcation appears when two simple complex-conjugate eigen-
values of the linearized operator cross the imaginary axis with nonzero speed as a certain
parameter is varied [12]. However, when the system is O(2)-symmetric, Hopf bifurcation
becomes degenerate as the eigenvalues are double, each with a two-dimensional eigenspace.
For nondelayed equations this situation was studied with the use of normal forms [4,7] and
branching equations [8]. Before applying these ideas to a partial differential equation, one
usually conducts a center manifold reduction and then proceeds to construct a normal form
on the center manifold. Even for nondelayed equations the procedure is rather tedious (see
[13] for a reaction-diffusion equation).

Teresa Faria extended this methodology to quasilinear functional differential equations
(FDE) in Banach spaces [6]: she proposed a way to construct a normal form on a center
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manifold bypassing the explicit construction of the manifold and illustrated the approach
on model problems. The method was successfully applied to a delayed diffusion FDE with
SO(2) symmetry to study the stability properties of one-dimensional rotating waves [9]. We
note that, in the cited paper, the model lacks reflectional symmetry due to a transformation of
the spatial argument in the feedback loop.

In [1], a model of a nonlinear optical system with diffraction and delay was studied that,
unlike [9], includes just local spatial interactions and hence enjoys O(2) symmetry. An O(2)-
equivariant Hopf bifurcation permits not only rotating waves (both clockwise and counter-
clockwise) but also standing waves. The present paper is devoted to the construction of an
O(2)-equivariant Hopf bifurcation for a nonlinear optical system with diffraction and delay
that makes it possible to analytically study the stability of the bifurcating rotating and stand-
ing waves [2].

2 Notation

By H?(C) we denote the standard Sobolev space of complex-valued functions on the interval
(0,277) that are Lebesgue square-integrable with their second derivative. By H3, (C) we denote
the closed subspace of H?(C) of 27-periodic functions. It itself becomes a Hilbert space once
endowed with the suitable inner product and norm [10].

Given a unitary space X, we write (-,-)x and || - ||x to denote its inner product and the cor-
responding norm. An inner product (-, -) with no subscript stands for the standard L?(0,27)
inner product

(u,v) = /Oznu(x)v(x)dx.

Given a Banach space X with the norm || - ||x, by C¥([a, b]; X) we denote the Banach space
of k times continuously differentiable X-valued functions with the norm

k .
[t4ll cé (fa,p13) = Y, sup [ (8)] x-
j=0t€(a,b]

Finally, given a function space X(C) of complex-valued functions, we denote its real-
valued counterpart by X. For example, H?(C) and H?.

3 Main equation and auxiliary statements

We consider a one-dimensional model of a nonlinear optical system with a delayed feedback
loop and diffraction therein (see [3] for the physical aspects of the problem)

w4 u = Duy, + K|Be*T 2, x e (0,27), t>0, 51)

u|x:0 = u’x=2m ux|x:O = ux|x:27r-
To describe the effects of diffraction in the paraxial approximation we employ a linear operator

B : H3,(C) = H3,(C), Ao(x) = A(x,2; Ao) 2=z,
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that treats its input as the initial condition of a periodic initial-boundary value problem for
the linear Schrodinger equation

A;+iAxw =0, x€(0,2m), z>0,
A|x:0 = A|x:2m Ax|x:0 = Ax|x:2m (3-2)
Alz=0 = Ao(x)

and propagates it along a distance z = zy.

The sought real-valued function u(x, t) represents the phase modulation of the light wave
in the nonlinear Kerr slice. The parameters involved in the problem statement are: D > 0 is
the effective diffusion coefficient (actually, D = D/r?, where 7 is the circle radius); K > 0 is
the nonlinearity coefficient (it is positive as it corresponds to Kerr-induced self-focusing of the
light field); T > 0 is the temporal delay in the feedback loop; zg > 0 is the distance traversed
by the light wave in the feedback loop (here, zg = Zy/7?).

Lemma 3.1 ([1,2]). The operator B has a complete orthogonal system of eigenfunctions exp(inx),
n € Z,in H2_(C). The corresponding eigenvalues are A, (B) = exp(in’zp).

Boundary value problem (3.1) admits spatially homogeneous equilibria u(x, t) = K. Fixing
a value K for the nonlinearity parameter and considering its perturbations K(x) = K + p, we
get a branch of constant solutions u(x,t) = K(u).

We set u(x,t) = K(u) + v(x,t) to bring (3.1) to its local form in the vicinity of K(u)

vt + v = Dvuyy + K(p) (\Beiv(t’n\z — 1) ,
0lx=0 = Olx=2rr, Ux|x=0 = Ux|x=2r.
Taking out the linear part, we rewrite (3.3) as
0+ v = Doyy + L(p)o(t = T) + F(o(t — T),u), o(t) € HZ,,
L(p)w= —2K(u)ImBw, F(w,u) = K(p) {|B(eiw —1)]>+2Re B(e™ — 1 — iw)} .
Clearly, L(p) can be expanded as follows:
L(y) = Lo+ puly, Lo= —2KImB, L;=—-2ImB.

Lemma 3.2 ([1,2]). The operator F(w, ) : H3, x R — H3_ is analytic in the neighborhood of the
origin. The operator F and its Fréchet derivatives Fyn,m vanish at the origin when n <2 orm > 1.

Below are the (nonzero) quadratic and cubic Fréchet derivatives of F at the origin:

Fuw(0,0)w? = 2K {|Bw|* — Re Bw?},
Faw(0,0)w® = 2K {3Im [BwBTuZ} +Im Bw3}, Fanape(0,0)w?pt = 23 {|Bw|? — Re Bw?} .

4 From FDE to ODE in Banach space

To rewrite boundary value problem (3.3) in the common FDE terms [6], we use a function
space C = C([-T,0]; X), X = H3_, and a function v; € C that acts according to v;(7) = v(t+ 1)
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where v € X; we also extend L(u) onto C by L(i)¢ = L(1)@(—T) so that L(p) is linear and
bounded in C. We are ready to write (3.3) in its abstract form

jtv(t) = Av(t) + Lovs + F(v, ), © € D(A). (4.1)

Here Aw = D&,w —w, D(A) = {w e X: Aw € X},

F(ot, 4) = F(oi(=T), ) + pLyor = i

where F, are the n-th order terms in the expansion of F.
Consider the linearization of (4.1) atv =0 and y = 0:

;tv(t) = Av(t) + Lovs. (4.2)

The corresponding characteristic equation is
Ay+exp(—AT)Loy —Ay =0, A e€C, ye D(A). (4.3)

We restrict our attention to y € {1,sin(nx),cos(nx)} C D(A) as this is an orthogonal basis
of eigenfunctions of both A and Ly in X. Characteristic equation (4.3) is thus reduced to a
countable family of equations

An(A) = —1— Dn? = 2Rsin(n?z))e T —A =0, Ae€C, ncZ,. (4.4)
For a Hopf bifurcation to occur we demand the following from the solutions A € C of (4.4):

1. For all solutions A their real parts ReA < 0. (Hopf)
0
2. They are Re A = 0 if and only if A = Liv,, n = n,. P

Remark 4.1. The first part of (Hopf) is unnecessary for the bifurcation itself but it makes
the center manifold asymptotically stable. We do not mention the transversality condition
explicitly for it is met automatically since

212 2 2
ReA:lAT(1+Dn*) + Tvi +1+ Dng

0.
R (T+TDi2 +12+T22

Consider the generator A : C — C of the flow of equation (4.2):

Aop =@, D(Ag) = {q) €C': 9(0) € D(A), ¢(0) = Ag(0) + ioq)}«

According to [6], the roots A of characteristic equation (4.3) are the eigenvalues of Ag. As long
as equation (3.3) is O(2)-equivariant, a four-dimensional eigenspace P C C is associated with
A = +iv, and is spanned by

D = (91 = exp(inx + i, T), ¢r = exp(inx —ivyT), @3 =2, ¢ = ¢1) C C(C).

Note that p
ECD =dJ, J = diag(ivs, —ivs, vy, —ivy).



Normal form of O(2) Hopf bifurcation in a model with delay 5

Remark 4.2. On introducing a real vector space
E* = {(z1,22,23,24)" € C*: 24 = 71, 22 = 73},

we can represent P as {®z : z € E*}. This will allow us to facilitate computations as we will
be working in X(C) while technically staying in the context of real-valued functions X.

To decompose C into a direct sum of Ap-invariant subspaces, we introduce a space C* =
C([0,T]; X) and a bilinear form < -,- >: C* xC - R

<L P, 9 >= (¢( +/ T),Lop(T+T)) dT.

It readily extends to a form < -, - >: C(C)* x C(C) — C that is antilinear in the first argument
and linear in the second one:

< P, 9 >= (9(0), +/ 7),LoRe (T4 T) +iloIm (7 + T)) () dT.
A formal adjoint with respect to < -,- > operator Aj is defined as

Ay =—y, D(AY) = {p e p(0) € D(A), —§(0) = Ap(0) + Lop(T)}

and has the same imaginary eigenvalues. In the corresponding eigenspace we choose a basis
Y that is biorthogonal to ®. To this end we introduce

o = (451 = exp(inx + ivsT), P = exp(in.x —ivyT), 3 = §2, Pa = (p1)T c C(C)*

and evaluate the following:
< §j o >= (9r(0), §j(0)) g o) |1 — 2K sin(n?zg)e(~1/™T /_OT D =) i g
We note that
* (@x(0), §j(0))y ) = 0 for (j, k) and (k, ) in {(1,3),(1,4),(2,3),(2,4)}

o (¢(0), §;(0))y X(@©) = = 27t(1 + n}) for (j, k) and (k,j) in {(1,2),(3,4)} and j =k
e for j—k odd,
e(_l)jiV*T /0 e[(_l)k+1_(_1)j+1]iv*’rd,[ _ Sin(V*T)/V*
~T

and, according to (Hopf),

1 — 2K sin(n?zp) sin(v,T) /v =0

e for j —k even,
e(l)/iv*T/O (- = (=) iver g0 _ (-1 T
-T

and, according to (Hopf),

1-2K sin(nﬁzo)Te(_l)jiV*T =1+ T(14 Dn2 — (-1)iv,).
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Thus
< ®,® >=diag(x Lx Lx,xY), x'=21(1+n})[1+T(1+ Dn?+iv.)],

and
Y = (?(P],K@z,f@gﬂk(ﬁz})T

is biorthogonal to ®, i.e. < ¥,® >=1. Asaresult, Q = {qo eC: <Y,¢>=(0,0, O,O)T}
is invariant under the action of Agand C = P & Q.

To relax the constraints D(A() we present an enlarged phase space BC [6] that is composed
of functions of the form ¢ = ¢+ Xon, ¢ € C, « € X, with a norm ||¢||gc = |l¢llc + [l«]/x,
where Xo(7) =0, =T < 7 < 0, Xo(0) = I. In other words, BC comprises functions [—T,0] —
X that are uniformly continuous on [—T,0). The extension Ag : BC — BC of the operator Ay
onto BC is defined as follows:

Ao = -+ XolAp(0) + Loy~ $(0)],  D(Ao) = {p €C":y(0) € D(4)} = ¢},

Finally, we can formulate equation (4.1) as an ordinary differential equation in BC:

d - .
Pk Agv+ Xo[E(v,1)], o(t) =0 € C. (4.5)

It is shown in [6] that 7t(¢ 4+ Xoa) = (<K ¥, ¢ > +(a, ¥(0))x) is a continuous projection
onto P, which commutes with Ay on C(% ; hence BC is decomposed into a topological direct
sum BC = P @ N(7t). Going back to (4.5), we express v(t) € C} as a sum v(t) = ®z(t) + y(t),
where

2(t) =< ¥, 0(t) >€ B4, y(t) = (I— m)o(t) e N(7) NCE = QN CE = QL.

This leads to an equivalent system of differential equations in E* x N(7), which we write
down in a way that is suitable for the computation of the normal form:

d 1
az = jZ+ ZTf}(Z/y/,u)/
iz

p . zeE, yeQlcN(n), (4.6)
il = A+ L 5 fi @),
j=2

where A; : N(7t) — N(7), D(A1) = Q}, is the restriction of A and

ey p) = F(@z+y,p1),¥0)x, fF(zyn) = —n)XoF(Pz+y,p). (4.7)

5 Normal form construction in the presence of O(2) symmetry

To construct a normal form, one has to simplify the power series expansion of the vector field
term by term: on the j-th step, the j-th order non-resonant terms are canceled out via a change
of variables. For a fixed j € IN and a Banach space Y consider a space Vjp(Y) of homogeneous
polynomials of degree j in p variables with coefficients from Y:

Vjp(Y){Zcqwq:qEZﬁ,chY}.

lq1=j
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We seek changes of the form (z,) = (,7) + %(u].l (Z,1), Ur(Z,1)), where 2,2 € E*, y,7 € Qp,
ul € V3(E*), and U? € V(Q)).

Suppose we have already conducted the procedure for 1 < I < k — 1. Denote by f] -
(f}, f?) the j-th order(in (z,y, j)) terms we have obtained after the (k —1)-th step; denote by

gi=( g]l, g]z) the j-th order terms after the k-th step. Then equations (4.6) take the form

i 1,
FZ2=T2+ ) 48 Egmn),
=21

i 1,
T =M7+ ) jjg?(zfy,ﬂ).
j22

where the operators M} and M? are defined as

(Mgh)(z, 1) = Vahi(z, 1) Tz = T [z, 1)), M V2 (EY) = V2 (EY),
(Miha)(z, 1) = Vaha(z, 1) Tz — Alha(z, 1)), Mg = V2(Qp) € VE(N(m)) — VP (N(7)).

The terms we can cancel out are precisely the ones that lie in the images of M} and M2.

In [14] a center manifold that satisfies = 0 is proved to exist. The flow on this center
manifold is given by an ordinary differential equation in E*

d _ . 1 4,
i= JzZ+ Z,—'g}(z,o,y).
=2/

To proceed we need to prescribe complementary subspaces to the images R(M}).
Lemma 5.1.

1. Let M} (C*) be the extension of M} onto the complex space V;(C*). Then it acts on monomials
according to

M{(CH [ ej] = ivi(q1 — g2 + g3 — qa + (—=1))ze;,

where l+q1+qo+q3+qu =k 1€ Z,,q¢€ Zi, and {e¢; : j=1,2,3,4} is the standard
basis in C*.

2. The operator M} : V2(IE*) — V2 (IE*) is well-defined.

3. The kernel N(M3) has the following form

1 . . . .
N(MZ) = spang {zlyel + z4pey, 1z1Ue) — 1z4jley, ZzUer + Zopey, 1Z3|Uer — 1zpjey,
Zoler + zapes, izapley — izzples, zapes + zipes, izapey — izipes} .
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4. The kernel N(M3) has the following form

N (M%) = spang {z%zzel + 237564, 1232001 — 1232564, 232401 + 212564, 1232401 — 1212564,
222:%61 + Z§Z3e4, iz;z%el — iz%23e4, 23242161 + zlz§e4, i23zie1 — izlz%e4,
zlyzq + 24;1264, izlyzel — iZ4yze4, 23;4261 + zzy2e4, i23yze1 — izzyze4,
2323162 + 2%2263, i23zﬁez — iz%zzeg, zlzﬁez + 2%2463, izlzﬁez — iz%z4eg,
Z%Z3€2 + zzzgeg,, iz%23ez — izzz‘%eg, zlz%ez + z§z4e3, izlz%ez — iz§z4eg,
Zz‘u2€2 + Z3]12€3, i22y262 — 1'2314233, 24]1262 + 217,1263, iz4y262 — iz1y263,
21222361 + 22232464, 121222361 — 12223744, 212324€1 + 21222464,
121232461 — 1212024€4, 21222462 + 21232463, 121ZpZ4€0 — 121232463,

20Z324€) + 21222363, 12223Z4€p — 121222363} .

5. Every V2 (IE*) can be decomposed as a direct sum V2 (E*) = R(M}) & N(M}).

Proof. The first 4 statements are straightforward to verify. The last assertion follows from the
fact that the adjoint — with respect to a suitable inner product in V2 (IE*) — operator (M})*
has the same form as M,% but is associated with the matrix J* [5]. Since J* = —J then
(M})* = =M} and N(M}) = R(M})*. O

6 Computation of the normal form coefficients

We will construct the normal form up to the cubic terms. According to Lemma 5.1, we need
to compute the following expressions:

§2(2,0,1) = Pyom 2 (2.0,1),  83(2,0,1) = Py f5 (2,0, 1),

where Py is the projection onto V and f, = f,. For the sake of brevity we will abuse some
notation:
ae, + bes + c.c. = aeq + bep + bes + des € B, a,beC

Using (4.7) we can evaluate f}(z,0, 1) = fi(z,0, u):

f2(2,0, 1) = —4psin(n?z0)27t(1 + n?) [x(z1 exp(—ivi T) + z2 exp(iviT))e; +
+x(zzexp(—ivsT) + zaexp(iviT))es + c.c.]. (6.1)

Thus
1
Eg%(z, 0,) = Azipe; + Arzapes +cc, Ap = —2sin(n2z9)2m(1 + nt)xexp(—iv.T).

We will assume that Re A; # 0. This, actually, follows directly from (Hopf) if we impose a
constraint n2zy < 7 that is well-aligned with the applicability of the paraxial approximation
of light propagation.

After we have dealt with the quadratic terms, f} becomes

Pz, 0,10) = f(2,0,0) + 5 Vo3 (2,0, 1) U3 (2, 1)

3 3
+5Vuf2 (2,0, U3 (2, 1) = 5 Vel (2, 1)82(2, 0, ).
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Hence it remains to project f1(z,0, 1), Ui (z, 1), U3(z, 1), and ga(z, 0, u) onto the kernel N(M3).
Since Re A; # 0, we only need to compute the terms that are at most linear in y as higher
order terms do not affect the qualitative behavior of the trajectories. So we set p = 0 to
calculate the cubic terms.
We note immediately that g%(z, 0,0) = (0,0,0,0)T. Recalling (4.7), we obtain

PN(M%)fg (z,0,0) = Bz(z%z4 + 2z12p23)e1 + Bz(zzz;% + 2z12324)e3 + C.C.

where By = 6Kx27t(1 + n#)(3sin(n?zp) — sin(3n2zp)) exp(—ivsT).
From formula (6.1) we can derive that U3 (z,0) = (M%)*lPR(M%)le (z,0,0) = (0,0,0,0)T. To
find the polynomial U3(z,0) we must solve

(M3U3)(2,0) = f3(z,0). (62)
Set h(z) = U3(z,0). We use (4.7) and the definition of M3 to decipher equation (6.2):

d

[Vah(2)] (1) Tz = - [h(z)] (7) = =@(7)f2(2,0,0), ~T<7<0,
(

- 6.3)
[V2h(2)] (0)Tz — A[1(2)(0)] — Lo [1(2)] = Fa(Pz,0) — ©(0) 3 (2,0,0).

Since @ is continuous and h € V;(Qé), we can pass to a limit in the first equation of (6.3) as
T — —0 and subtract the result from the second equation. Note that fJ(z,0,0) vanishes; then
(6.3) transforms into

L @) (1) = [Vah()] (VT2 ~T<T<0,
dT (6.4)
L (z)] (0) = A=) 0] — La(z)] = Bx(@,0).

The right hand side of the second equation of (6.4) evaluates as
B(®z,0) = 2K [1 — cos(4n?z0)] [(211)* + (2292)® + (2z3¢3)* + (zaha)?
+ 221z exp(2in.x) + 2z3z4 exp(—2in,x)].
We now solve equations (6.4). To this end we express h € V25(Q(1)) as a linear combination of
monomials
h(z) = 200023 + 020025 + hoo2025 + hooo2zg + 2h11002122 + 2h10102123
+ 2h10012124 + 2ho1102223 + 2ho1012224 + 2hoon1z3za, i € Qp(C).

Then (V:h)(z)Jz = 2iv. [haoo0z3 — ho2ooz3 + hoo2025 — hooooz5 + 2h10102123 — 201012224, and
we deduce that 200 = Fooo2, ho2o0 = hoo20, M1010 = hoto1, h1100 = hoor1, and Fagor, fot0 € Q}.
On grouping the monomials, we obtain the following list of differential problems:

d
—h(T) = 1 (t), —-T<T<O,

i k € {2000,0200,1010,1100,1001,0110},
Ehk(o) — A[h(0)] — LG [Ie] = Gy,

where
Gaooo = 2K [1 — cos(4niz)] 97(—=T), Goozo = 2K [1 — cos(4nzo)] @3(—T),
G = 2K [1— COS(4niZO)] exp(2in.x), Gioio = Gioo1 = Goiio =0,

Y2000 = Y0020 = Y1010 = 2iVx, Y1100 = Y1001 = Yo110 = 0.
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Each problem has a unique solution:

2000 = Ca00093,  Caooo = —2K[1 — cos(4n2zo)] (A, (2iv.)) L exp(—2iv.T),
hoo2o = Coo2093,  Coozo = Ca000,
]’l1100 = C1100 exp(Zin*x), C1100 = —2[2[1 — COS(41’I§ZO)](A2H* (O))fl,

h1010 = h1oo1 = ho110 = 0.
Having found U3(z,0) = h(z), we can calculate the remaining term of ¢1(z,0,0):

PN(Mbele (2,0,0)[1(2)] = (Cazizy + 2Daz12023)ey + (Cazpz3 + 2Dyz12324)e3 + c.c.,
Co = 4K][cos(3n2zg) — cos(n2z)]xCappo27t(1 4 n) exp(—iviT),
D, = 4K[cos(3n2zq) — cos(n?zg)]xCr10027t(1 + %) exp(—iv. T).

Accumulating all the cubic terms, we find
1
ggé(z, 0,0) = (Aél)Z%Zzl + A§2)212223)€1 + (Aél)ZQZé + A§2)212324)63 +cc,

where AV = (B, + C,)/6 and AP = (B, + D,)/3.
This concludes our computation as we have obtained all the quadratic and cubic terms
(that are at most linear in y) of the sought normal form

d 1 1
57 = T2+ 5:82(2,0,1) + 5;83(2,0,0) + O(|z[p* + [ (2, ) ). (6.5)

Passing to polar coordinates z; = p; exp(iw1) and z3 = pzexp(iws) in (6.5), we get our final
statement.

Theorem 6.1. Let (Hopf) and n?zy < 7 hold. Then the flow of (3.3) on a center manifold is governed
by the following normal form

d
o1 = oK+ K0d + KV0R) + Olpu + [ (o, 03, 0)1Y),

d
1= Vs +O([(p1, 03, 1)),
(1)

d
i = s (K + K3+ Kyoh) + Olpan® + [ (v, 03, 1)),

d
25403 = Vs +O([(p1, 03, 1)),

where Ky = Re Ay # 0, K = Re AV, and K{¥) = Re A},

7 Conclusion

In this paper we constructed an O(2)-equivariant Hopf bifurcation normal form for a model
of a nonlinear optical system with delay and diffraction in the feedback loop. The coefficients
were expressed explicitly in terms of the parameters of the model. This makes it possible to
constructively analyze the phase portrait of the normal form and, based on the analysis, study
the stability properties of the bifurcating rotating and standing waves (see [2]).
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