
Volume 23 Number 1

ACTA
CYBERNETICA

Editor-in-Chief: János Csirik (Hungary)

Assistant to the Managing Editor: Attila Tanács (Hungary)

Associate Editors:

Luca Aceto (Iceland) Zoltan Kato (Hungary)
Hans L. Bodlaender (The Netherlands) Alice Kelemenová (Czech Republic)
Tibor Csendes (Hungary) László Lovász (Hungary)
János Demetrovics (Hungary) Gheorghe Păun (Romania)
Bálint Dömölki (Hungary) Arto Salomaa (Finland)
Zoltán Fülöp (Hungary) László Varga (Hungary)
Jozef Gruska (Slovakia) Heiko Vogler (Germany)
Tibor Gyimóthy (Hungary) Gerhard J. Woeginger (The Netherlands)
Helmut Jürgensen (Canada)

Szeged, 2017

ACTA CYBERNETICA

Information for authors. Acta Cybernetica publishes only original papers in the field
of Computer Science. Manuscripts must be written in good English. Contributions are
accepted for review with the understanding that the same work has not been published
elsewhere. Papers previously published in conference proceedings, digests, preprints are
eligible for consideration provided that the author informs the Editor at the time of
submission and that the papers have undergone substantial revision. If authors have used
their own previously published material as a basis for a new submission, they are required
to cite the previous work(s) and very clearly indicate how the new submission offers
substantively novel or different contributions beyond those of the previously published
work(s). Each submission is peer-reviewed by at least two referees. The length of the
review process depends on many factors such as the availability of an Editor and the time
it takes to locate qualified reviewers. Usually, a review process takes 6 months to be
completed. There are no page charges. An electronic version of the puplished paper is
provided for the authors in PDF format.

Manuscript Formatting Requirements. All submissions must include a title page
with the following elements:

• title of the paper

• author name(s) and affiliation

• name, address and email of the corresponding author

• An abstract clearly stating the nature and significance of the paper. Abstracts must
not include mathematical expressions or bibliographic references.

References should appear in a separate bibliography at the end of the paper, with
items in alphabetical order referred to by numerals in square brackets. Please prepare your
submission as one single PostScript or PDF file including all elements of the manuscript
(title page, main text, illustrations, bibliography, etc.). Manuscripts must be submitted by
email as a single attachment to either the most competent Editor, the Managing Editor,
or the Editor-in-Chief. In addition, your email has to contain the information appearing
on the title page as plain ASCII text. When your paper is accepted for publication, you
will be asked to send the complete electronic version of your manuscript to the Managing
Editor. For technical reasons we can only accept files in LATEX format.

Subscription Information. Acta Cybernetica is published by the Institute of Infor-
matics, University of Szeged, Hungary. Each volume consists of four issues, two issues
are published in a calendar year. Subscription rates for one issue are as follows: 5000 Ft
within Hungary, e40 outside Hungary. Special rates for distributors and bulk orders are
available upon request from the publisher. Printed issues are delivered by surface mail
in Europe, and by air mail to overseas countries. Claims for missing issues are accepted
within six months from the publication date. Please address all requests to:

Acta Cybernetica, Institute of Informatics, University of Szeged
P.O. Box 652, H-6701 Szeged, Hungary
Tel: +36 62 546 396, Fax: +36 62 546 397, Email: acta@inf.u-szeged.hu

Web access. The above information along with the contents of past issues are avail-
able at the Acta Cybernetica homepage https://www.inf.u-szeged.hu/en/kutatas/

acta-cybernetica .

https://www.inf.u-szeged.hu/en/kutatas/acta-cybernetica
https://www.inf.u-szeged.hu/en/kutatas/acta-cybernetica

EDITORIAL BOARD

Editor-in-Chief:

János Csirik
Department of Computer Algorithms
and Artificial Intelligence
University of Szeged, Szeged, Hungary
csirik@inf.u-szeged.hu

Assistant to the Managing Editor:

Attila Tanács
Department of Image Processing
and Computer Graphics
University of Szeged, Szeged, Hungary
tanacs@inf.u-szeged.hu

Associate Editors:

Luca Aceto
School of Computer Science
Reykjavík University
Reykjavík, Iceland
luca@ru.is

Hans L. Bodlaender
Institute of Information and
Computing Sciences
Utrecht University
Utrect, The Netherlands
hansb@cs.uu.nl

Tibor Csendes
Department of Applied Informatics
University of Szeged
Szeged, Hungary
csendes@inf.u-szeged.hu

János Demetrovics
MTA SZTAKI
Budapest, Hungary
demetrovics@sztaki.hu

Bálint Dömölki
John von Neumann Computer Society
Budapest, Hungary

Zoltán Fülöp
Department of Foundations of
Computer Science
University of Szeged
Szeged, Hungary
fulop@inf.u-szeged.hu

Jozef Gruska
Institute of Informatics/Mathematics
Slovak Academy of Science
Bratislava, Slovakia
gruska@savba.sk

Tibor Gyimóthy
Department of Software Engineering
University of Szeged
Szeged, Hungary
gyimothy@inf.u-szeged.hu

Helmut Jürgensen
Department of Computer Science
Middlesex College
The University of Western Ontario
London, Canada
hjj@csd.uwo.ca

Zoltan Kato
Department of Image Processing
and Computer Graphics
Szeged, Hungary
kato@inf.u-szeged.hu

Alice Kelemenová
Institute of Computer Science
Silesian University at Opava
Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

László Lovász
Department of Computer Science
Eötvös Loránd University
Budapest, Hungary
lovasz@cs.elte.hu

Gheorghe Păun
Institute of Mathematics of the
Romanian Academy
Bucharest, Romania
George.Paun@imar.ro

Arto Salomaa
Department of Mathematics
University of Turku
Turku, Finland
asalomaa@utu.fi

László Varga
Department of Software Technology
and Methodology
Eötvös Loránd University
Budapest, Hungary
varga@ludens.elte.hu

Heiko Vogler
Department of Computer Science
Dresden University of Technology
Dresden, Germany
Heiko.Vogler@tu-dresden.de

Gerhard J. Woeginger
Department of Mathematics and
Computer Science
Eindhoven University of Technology
Eindhoven, The Netherlands
gwoegi@win.tue.nl

Preface

The present volume is a collection of papers dedicated to the memory of Profes-
sor Zoltán Ésik who passed away unexpectedly in 2016. These papers were written
by his friends, colleagues, and former students. Zoltán is coauthor of some of the
papers which were unpublished and some cases unfinished at the time of his sudden
death. It is likely that we are publishing his very last paper which he was able to
finish completely. Zoltán’s scientific vita and the list of his publications are also
included. I wish to express my most sincere gratitude to everyone who accepted
the invitation to contribute to this volume. Without their work it would have been
impossible to publish this collection of papers.

March, 2017 Zoltán Fülöp
Editor

1

Professor Zoltán Ésik
(1951–2016)

In Memoriam Zoltán Ésik

We got the news via e-mail that our colleague Zoltán Ésik, professor at the
University of Szeged, passed away in a hotel in Reykjavik on 25th May 2016. He
had plans for future research, teaching, and advising students, therefore the news
was so unexpected and inconceivable that at first we did not believe it, and we did
not dare to say it out loud. Just few days before we had talked to him, and few
hours before we had exchanged emails about work and plans to be accomplished.
But the news sadly proved to be true.

Zoltán’s special talent for mathematics emerged as early as his school years.
As a student of the specialised mathematics programme of the High School of
the University of Szeged he achieved notable results at the competition of the
Mathematical Journal for High Schools. This competition is more than 120 years
old in Hungary and it serves as a platform for high school students to show their
skills and talents. Several famous Hungarian mathematicians took their first steps
in this competition toward research. It came naturally for Zoltán to continue his
studies in mathematics at the University of Szeged, where he earned his degree
in 1974. After graduation he got a position at the university and he remained a
distinguished and highly respected member of our institute. As a young faculty
member, he had long hair, wore blue jeans, and it looked like he was still a student.
He was happy to stop for a chat with students. Many of them realized only that
he was a teacher when he appeared in front of them in the class room and started
his lectures. Even at such a young age, he introduced students to many subjects
that became fundamental later on. Those who knew him well, praised his talent,
his hard work and zest for science.

His professional career followed an unbroken path. He earned the title doctor of
university in 1979, and became the candidate of science (CSc, an academic degree
that used to be awarded in former Eastern Bloc countries, in Hungary by the
Hungarian Academy of Sciences) in 1985. Then he earned the title of doctor of
science (DSc) in 1996, which is also awarded by the Academy and is still the most
prestigious academic rank in Hungary today. He was appointed as full professor
in 1997, and in 2003 he became the head of the Department of Foundations of
Computer Science of the University of Szeged.

Only some highlights of his work can be mentioned within the scope of this arti-
cle. I only list a few of his numerous results and might even miss the most significant
ones. I know that he would not mind the short summary of his achievements, since
he never liked praise.

As a university teacher he made special efforts to introduce modern subjects
taught at western universities into the curriculum, to bring the newest results and
research topics to the University of Szeged. This was crucial in the era of the

5

iron curtain and before the internet age. He travelled a lot to learn about new
ideas, to broaden his own knowledge, which he later transferred to his students.
He liked visiting foreign institutes, and it is a cruel twist of fate, that he had died
during such a trip. In Szeged he was the first to teach category theory, theory of
computability and complexity, logic in computer science, connections of automata
and logics, fixed point theory and its applications to students of computer science.
He devised the educational profile and the subjects taught at the Department of
Foundations of Computer Science. He wrote four university textbooks, supervised
winning papers at Conferences of Association of Students in Science (a Hungarian
specialty), and successfully defended doctoral theses. He was instrumental to start
the professional career of several colleagues, the author of this article being one of
them. I wrote my university thesis under his supervision in 1979, although he was
only four years older than me. A number of his former students are now leading
experts or teachers at universities, not only in Hungary but also abroad.

He obtained his first results in the field of structural properties of finite au-
tomata, and later in the theory of tree automata and tree transducers. He was
the first to prove the often cited result, in his thesis for doctor of university, that
the equivalence problem of deterministic tree transducers is decidable. In the mid
1980’s, probably due to the influence of Stephen Bloom, he turned his attention
towards iteration theories. His field of research later became even more complex,
and extended towards algebraic methods in computer science, category theory, the-
ory of fixed points, modern logic in computer science, order theory, and semiring
theory. He achieved thoughtful and essential results in all these fields. In the
second half of his career he worked together and obtained important results with
Werner Kuich in the theory of semirings and weighted automata. He had a special
talent to recognize that in the seemingly different fields of computer science the
same principles are in effect and used. One of his most important observations was
that most fixed point models commonly used in computer science share the same
equational properties.

His unparalleled talent, diligence, and his love for work resulted in countless
publications. He worked together with more than 40 co-authors. The number of
his scientific articles is above 230, and he edited nearly 30 collections of scientific
papers. He is the author of the monographs Iteration Theories (with Stephen
Bloom) and Modern Automata Theory (with Werner Kuich) which are regarded
as fundamental handbooks all over the world. The latter was also translated into
Russian. He gave talks at more than 50 universities, and was invited speaker at
more than 30 conferences and workshops. His most significant conference activity
was probably his talk at the conference of Mathematical Foundations of Computer
Science in Milan in 2015. This was the 40th MFCS Conference, and Zoltán was the
‘anniversary invited speaker’ of the event. These numbers already alone are very
impressive, but they are even more compelling when we recall the precision, the
high standard, and the elegance that characterised each of his articles and talks.

6

Organising and participating in conferences were particularly important for him.
He was a member of the steering committee of the conferences FCT, CAI, AFL,
and FICS, and of the program committee of nearly 60 international conferences. It
was specifically due to his scientific reputation and prestige that many renowned
international conferences, like FCT, CSL, and MFCS could be organised in Hun-
gary, most of them in Szeged. He played an essential role in moving the quality
of the traditional Hungarian conference series Automata and Formal Languages
gradually closer to European standards.

He was a member of the editorial board of a number of prestigious computer
science journals, being the only Hungarian member of the editorial board of The-
oretical Computer Science, a leading journal in the field. For three terms he was
a member of the Council of the European Association for Theoretical Computer
Science and for one term of the European Association for Computer Science Logic.
He represented the Hungarian computer science community in Section TC1 of the
International Federation for Information Processing. As an acknowledgement of his
work, he was an elected member of The Academy of Europe in 2010 and earned
the title Fellow of the EATCS in 2016, given only for the greatest scientists.

He received numerous Hungarian awards as well, such as the Kató Rényi Re-
search Award and the Gyula Farkas Research Award of the János Bolyai Mathe-
matical Society for outstanding mathematicians, the Award for Excellence, and in
2005 the title of Master Teacher. He also earned Humboldt and Fulbright research
scholarships, and the Széchenyi Professorial Award in Hungary.

Zoltán Ésik was, without doubt, one of the most prominent figures in theoret-
ical computer science. His results contributed significantly to the development of
the foundations of this discipline. His achievements and efforts were crucial to the
establishment of the Institute of Informatics of the University of Szeged an inter-
nationally acknowledged research institute, and putting it on the map of science.
His death is a serious loss to the Institute, to the University of Szeged, and to the
community of theoretical computer science.

Dear Professor Ésik, dear Zoli, your memory will stay with us forever. Farewell
to you and may you rest in peace!

Zoltán Fülöp

Szeged, December 2016

7

Acta Cybernetica 23 (2017) 9–41.

Complexity of Right-Ideal, Prefix-Closed, and

Prefix-Free Regular Languages∗

Janusz A. Brzozowskia and Corwin Sinnamona

Abstract

A language L over an alphabet Σ is prefix-convex if, for any words x, y, z ∈

Σ∗, whenever x and xyz are in L, then so is xy. Prefix-convex languages
include right-ideal, prefix-closed, and prefix-free languages as special cases.
We examine complexity properties of these special prefix-convex languages.
In particular, we study the quotient/state complexity of boolean operations,
product (concatenation), star, and reversal, the size of the syntactic semi-
group, and the quotient complexity of atoms. For binary operations we use
arguments with different alphabets when appropriate; this leads to higher
tight upper bounds than those obtained with equal alphabets. We exhibit
right-ideal, prefix-closed, and prefix-free languages that meet the complexity
bounds for all the measures listed above.

Keywords: atoms, complexity of operations, prefix-closed, prefix-convex,
prefix-free, quotient complexity, regular languages, right ideals, state com-
plexity, syntactic semigroup, unrestricted alphabets

I have known Zoltán Ésik for about 30 years. We met at many scientific conferences,

seven of them in Hungary. In 2000 I invited Zoltán to spend a month in Waterloo so that

we could work on a problem in algebra with which I was struggling. I thought that the

problem was purely of theoretical interest, but it turned out that the algebra we discovered

was applicable to the detection of hazards in logic circuits. Zoltán also helped me with two

other algebraic problems; he was always ready to give advice, and was modest about taking

credit for his contributions. As the years went by we became good friends. In June 2015

my wife and I had the honour of celebrating his 64th birthday at our house. His passing

was a great shock to me and I greatly miss his friendship.

Janusz Brzozowski

∗This work was supported by the Natural Sciences and Engineering Research Council of Canada
grant No. OGP0000871.

aDavid R. Cheriton School of Computer Science, University of Waterloo,Waterloo, ON, Canada
N2L 3G1, E-mail: brzozo@uwaterloo.ca sinncore@gmail.com

DOI: 10.14232/actacyb.23.1.2017.3

10 Janusz A. Brzozowski and Corwin Sinnamon

1 Motivation

For words w, x, y over an alphabet Σ, if w = xy, then x is a prefix of w. A language
L ⊆ Σ∗ is prefix-convex [1, 28] if, whenever x and xyz are in L, then xy is also
in L. The class of prefix-convex languages includes three well-known subclasses:
right-ideal, prefix-closed, and prefix-free languages; we study complexity properties
of these languages.

A language L is a right ideal if it is non-empty and satisfies the equation L =
LΣ∗. Right ideals play a role in pattern matching: If one is searching for all words
beginning with words in some language L in a given text (a word over Σ∗), then
one is looking for words in LΣ∗. Right ideals also constitute a basic concept in
semigroup theory.

A language L is prefix-closed if, whenever w is in L and x is a prefix of w, then
x is also in L. The complement of every right ideal is a prefix-closed language. The
set of allowed input sequences to any digital system is a prefix-closed language.

A language L is prefix-free if no word in L is a prefix of another word in L.
Prefix-free languages (other than {ε}, where ε is the empty word) are prefix codes.
They play an important role in coding theory, and have many applications [3].

The alphabet of a regular language L is Σ (or L is a language over Σ) if L ⊆ Σ∗

and every letter of Σ appears in a word of L. The (left) quotient of L by a word
w ∈ Σ∗ is w−1L = {x | wx ∈ L}. A language is regular if and only if it has a finite
number of distinct quotients. So the number of quotients of L is a natural measure
of complexity for L; it is called the quotient complexity [4] of L and is denoted
it by κ(L). An equivalent concept is the state complexity [29] of L, which is the
number of states in a complete minimal deterministic finite automaton (DFA) with
alphabet Σ recognizing L.

If Ln is a regular language of quotient complexity n, and ◦ is a unary operation,
then the quotient/state complexity of ◦ is the maximal value of κ(L◦

n), expressed as
a function of n, as Ln ranges over all regular languages of complexity n. If L′

m and
Ln are regular languages of quotient complexities m and n respectively, and ◦ is a
binary operation, then the quotient/state complexity of ◦ is the maximal value of
κ(L′

m◦Ln), expressed as a function of m and n, as L′
m and Ln range over all regular

languages of complexities m and n, respectively. The quotient/state complexity of
an operation gives a worst-case lower bound on the time and space complexities of
the operation, and has been studied extensively [4, 5, 29]; we refer to quotient/state
complexity simply as complexity.

In all the past literature on binary operations it has always been assumed that
the alphabets of the two operands are restricted to be the same. However, it has
been shown recently [6, 14] that this is an unnecessary restriction: larger complexity
bounds can be reached in some cases if the alphabets differ. In the present paper
we examine both restricted complexity of binary operations, where the alphabets
must be the same, and unrestricted complexity, where they may differ.

To find the complexity of a unary operation one first finds an upper bound
on this complexity, and then exhibits languages that meet this bound. Since we
require a language Ln for each n ≥ k, we need a sequence (Lk, Lk+1, . . .); here k is

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 11

usually a small integer because the bound may not hold for a few small values of n.
We call such a sequence a stream of languages. Usually the languages in a stream
have the same basic structure and differ only in the parameter n. For example,
((an)∗ | n ≥ 2) is a stream. For a binary operation we require two streams.

While the complexity of languages is a useful measure, it is not entirely satis-
factory. Two languages may have the same complexity n but the syntactic semi-
group [26] of one may have n − 1 elements, while that of the other has nn ele-
ments [18]. For this reason, the size of the syntactic semigroup of a language –
which is the same as the size of the transition semigroup of a minimal DFA accept-
ing the language [26] – has been added as another complexity measure. Secondly,
star-free languages meet the complexity bounds of regular languages for all opera-
tions except reversal, which only reaches the bound 2n−1 instead of 2n [13]. While
regular languages are the smallest class containing the finite languages and closed
under boolean operations, product and star, star-free languages are the smallest
class containing the finite languages and closed only under boolean operations and
product. In view of the results in [13], quotient/state complexity does not distin-
guish between these two classes.

The complexities of the atoms of a regular language have been proposed as an
additional measure [5]. Atoms are defined by the following left congruence: two
words x and y are equivalent if ux ∈ L if and only if uy ∈ L for all u ∈ Σ∗. Thus
x and y are equivalent if x ∈ u−1L if and only if y ∈ u−1L. An equivalence class
of this relation is an atom of L [17, 21]. Thus an atom is a non-empty intersection
of complemented and uncomplemented quotients of L. If K0, . . . ,Kn−1 are the
quotients of L, and S ⊆ Qn = {0, . . . , n − 1}, then atom AS is the intersection
of quotients with subscripts in S and complemented quotients with subscripts in
Qn \ S. For more information about atoms see [16, 17, 21].

There exists a stream (L3, L4, . . .) of regular languages Ln(a, b, c) that meets the
restricted complexity bounds for all boolean operations, product (concatenation),
star, and reversal, and also has the largest syntactic semigroup and most complex
atoms [5]. This stream modified by the addition of an input d that performs the
identity transformation also meets the unrestricted bounds for product and boolean
operations [6, 14]; such a stream is called most complex. Most complex streams
are useful when one designs a system dealing with regular languages and finite
automata. If one would like to know the maximal sizes of automata the system can
handle, one can use the one most complex stream to test all the operations.

2 Contributions

We first present a most complex regular language stream similar to that of [5],
but one that is better suited for prefix-convex languages. We then exhibit most
complex language streams for right-ideal, prefix-closed, and prefix-free languages.
More specifically, our contributions are as follows:

1. We generalize the concept of permutational dialect defined in [5, 9] by allowing
letters of an alphabet to be mapped to letters from a different alphabet.

12 Janusz A. Brzozowski and Corwin Sinnamon

2. For regular languages we prove that there exists a most complex language
stream (Ln(a, b, c) | n ≥ 3). The following results are new:

• L′
m(a, b)Ln(a,−, b) and L′

m(a, b)Ln(a, c, b) meet the known bounds (m−
1)2n + 2n−1 and m2n + 2n−1 for restricted and unrestricted products,
respectively.

• For the unrestricted case the following hold:

– L′
m(a, b, c)◦Ln(b, a, d) meets the known bound (m+ 1)(n+ 1) when

◦ ∈ {∪,⊕}, where ⊕ is symmetric difference.

– L′
m(a, b, c) \ Ln(b, a) meets the known bound mn + m.

3. For right-ideal languages we prove that there exists a most complex language
stream (Ln(a, b, c, d) | n ≥ 4). The following results are new:

• L′
m(a,−, c, d)Ln(a,−, c, d) meets the known bound m + 2n−2 for re-

stricted product, and L′
m(a,−, c, d)Ln(b,−, c, d) meets the bound m +

2n−1 + 2n−2 + 1 for unrestricted product.

• For the restricted case the known bounds mn if ◦ ∈ {∩,⊕}, mn−(m−1)
if ◦ = \, and mn− (m + n− 2) if ◦ = ∪ are all met by L′

m(a,−,−, d) ◦
Ln(−,−, d, a).

• For the unrestricted case the bounds are the same as for regular lan-
guages and they are met by L′

m(a,−, c, d) ◦ Ln(b,−, d, a) if ◦ ∈ {∪,⊕},
L′
m(a,−, c, d) \ Ln(−,−, d, a), and L′

m(a,−,−, d) ∩ Ln(−,−, d, a).

4. For prefix-closed languages we prove that there exists a most complex lan-
guage stream (Ln(a, b, c, d) | n ≥ 4). Here restricted and unrestricted cases
coincide. The following results are new:

• L′
m(a, b, c, d)Ln(a, d, b, c) meets the known bound (m + 1)2n−2.

• The known bounds mn if ◦ ∈ {∪,⊕}, mn − (m − 1) if ◦ = \, and
mn− (m + n− 2) if ◦ = ∪ are met by L′

m(a, b,−, d) ◦ Ln(b, a,−, d).

5. For prefix-free languages we prove that there exists a most complex language
stream (Ln(a, b, c, d, e0, . . . , en−3) | n ≥ 4); restricted and unrestricted cases
coincide. The following results are new:

• At least n+2 inputs are required for a most complex prefix-free witness.

• At least n + 1 inputs are necessary to reach the known bound nn−2 for
the size of the syntactic semigroup.

• We derive upper bounds for the complexity of atoms of prefix-free lan-
guages, and prove that the atoms of the language Ln(a, b, c,−, e0) meet
these bounds.

• L′
m(a, b, c, d)Ln(a, d, b, c) meets the known bound (m + 1)2n−2.

• The known bounds mn − 2 if ◦ ∈ {∪,⊕}, mn − (m + 2n− 4) if ◦ = \,
and mn − 2(m + n − 3) if ◦ = ∩ are met by L′

m(a, b,−,−, e0, em−3) ◦
Ln(b, a,−,−, e0, em−3).

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 13

3 Finite Automata, Transformations, Semigroups

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F), where
Q is a finite non-empty set of states, Σ is a finite non-empty alphabet, δ : Q×Σ → Q
is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. We extend δ to a function δ : Q × Σ∗ → Q as usual. A DFA D accepts a
word w ∈ Σ∗ if δ(q0, w) ∈ F . The language accepted by D is denoted by L(D). If
q is a state of D, then the language Lq of q is the language accepted by the DFA
(Q,Σ, δ, q, F). A state is empty or dead or a sink if its language is empty. Two
states p and q of D are equivalent if Lp = Lq; otherwise they are distinguishable.
A state q is reachable if there exists w ∈ Σ∗ such that δ(q0, w) = q. A DFA is
minimal if all of its states are reachable and no two states are equivalent. Usually
DFAs are used to establish upper bounds on the complexity of operations and also
as witnesses that meet these bounds.

A nondeterministic finite automaton (NFA) is a quintuple D = (Q,Σ, δ, I, F),
where Q, Σ and F are as in a DFA, δ : Q× Σ → 2Q, and I ⊆ Q is the set of initial
states. An ε-NFA is an NFA in which transitions under the empty word ε are also
permitted.

Without loss of generality we use Qn = {0, . . . , n − 1} as the set of states of
every DFA with n states. A transformation of Qn is a mapping t : Qn → Qn. The
image of q ∈ Qn under t is denoted by qt. In any DFA, each letter a ∈ Σ induces a
transformation δa of the set Qn defined by qδa = δ(q, a); we denote this by a : δa.
By a slight abuse of notation we use the letter a to denote the transformation it
induces; thus we write qa instead of qδa. We extend the notation to sets of states:
if P ⊆ Qn, then Pa = {pa | p ∈ P}. We also write P

a
−→ Pa to mean that the

image of P under a is Pa. Let TQn
be the set of all nn transformations of Qn; then

TQn
is a monoid under composition.

For k ≥ 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Qn

is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. This k-cycle is
denoted by the transformation (q0, q1, . . . , qk−1) of Qn, which acts as the identity
on the states outside the cycle. A 2-cycle (q0, q1) is called a transposition. A
transformation that sends all the states of P to q and acts as the identity on the
remaining states is denoted by (P → q). If P = {p} we write (p → q) for ({p} → q).
The identity transformation is denoted by 1. The notation (ji q → q + 1) denotes
a transformation that sends q to q + 1 for i ≤ q ≤ j and is the identity for the
remaining states, and (ji q → q − 1) is defined similarly.

Let D = (Qn,Σ, δ, q0, F) be a DFA. For each word w ∈ Σ∗, the transition
function induces a transformation δw of Qn by w: for all q ∈ Qn, qδw = δ(q, w).
The set TD of all such transformations by non-empty words forms a semigroup
of transformations called the transition semigroup of D [26]. We can use a set
{δa | a ∈ Σ} of transformations to define δ, and so the DFA D.

The Myhill congruence [25] ≈L of a language L ⊆ Σ∗ is defined on Σ+ as follows:

For x, y ∈ Σ+, x≈Ly if and only if wxz ∈ L ⇔ wyz ∈ L for all w, z ∈ Σ∗.

This congruence is also known as the syntactic congruence of L. The quotient set

14 Janusz A. Brzozowski and Corwin Sinnamon

Σ+/≈L of equivalence classes of the relation ≈L is a semigroup called the syntactic
semigroup of L. If D is a minimal DFA of L, then TD is isomorphic to the syntactic
semigroup TL of L [26], and we represent elements of TL by transformations in TD.
The size of the syntactic semigroup has been used as a measure of complexity for
regular languages [5, 18, 20, 24].

Recall that binary operations require two language streams to determine the
complexity of the operation. Sometimes the same stream can be used for both
operands, and it has been shown in [5, 6] that for all common binary operations
on regular languages the second stream can be a “dialect” of the first, that is,
it can “differ only slightly” from the first and all the bounds can still be met.
Let Σ = {a1, . . . , ak} be an alphabet ordered as shown; if L ⊆ Σ∗, we denote
it by L(a1, . . . , ak) to stress its dependence on Σ. A dialect of L is a related
language obtained by replacing or deleting letters of Σ in the words of L. More
precisely, for an alphabet Σ′ and a partial map π : Σ 7→ Σ′, we obtain a dialect
of L by replacing each letter a ∈ Σ by π(a) in every word of L, or deleting the
word entirely if π(a) is undefined. We write L(π(a1), . . . , π(ak)) to denote the
dialect of L(a1, . . . , ak) given by π, and we denote undefined values of π by “−”.
For example, if L(a, b, c) = {a, ab, ac} then its dialect L(b,−, d) is the language
{b, bd}. Undefined values for letters at the end of the alphabet are omitted; thus,
for example, if Σ = {a, b, c, d, e}, π(a) = b, π(b) = a, π(c) = c and π(d) = π(e) = −,
we write L(b, a, c) for L(b, a, c,−,−).

The language stream that meets all the complexity bounds is referred to as the
master language stream. Every master language stream we present here uses the
smallest possible alphabet sufficient to meet all the bounds. Individual bounds are
frequently met by dialects on reduced alphabets, and we prefer to use the smallest
alphabet possible for each bound. For binary operations, we try to minimize the
size of the combined alphabet of the two dialects.

As each letter induces a transformation on the states of a DFA (or equivalently,
the quotients of a language) we count the number of distinct transformations in-
duced by letters of the alphabet. In any language this number is at most the size of
the alphabet, but there may be multiple letters which induce the same transforma-
tion; this does not occur in this paper as no language has a repeated transformation.
For binary operations on two dialects of the same master language, we count the
number of distinct transformations of the master language present in either dialect.
For example, suppose L(a, b, c,−) and L(a,−, b, c) are two dialects of a language
L(a, b, c, d), which we assume has four distinct transformations. Each dialect has
three letters and three distinct transformations, and between them they have three
letters and four distinct transformations.

Although a given complexity bound may be met by many dialects of the master
language, we favour dialects, or pairs of dialects, that use small alphabets and few
distinct transformations. In many cases the dialects we present are minimal in
these respects, though we do not always prove this.

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 15

4 A Most Complex Regular Stream

We now define a DFA stream that we use as a basic component. It is similar to
the stream defined in [5] for the case of equal alphabets, except that there the
transformation induced by c is (n − 1 → 0). It is also similar to the DFA of [6],
except that there the transformation induced by c is (n− 1 → 0) and an additional
input d inducing the identity transformation is used.

Definition 1. For n ≥ 3, let Dn = Dn(a, b, c) = (Qn,Σ, δn, 0, {n − 1}), where
Σ = {a, b, c}, and δn is defined by the transformations a : (0, . . . , n − 1), b : (0, 1),
and c : (1 → 0). Let Ln = Ln(a, b, c) be the language accepted by Dn. The structure
of Dn(a, b, c) is shown in Figure 1.

0 1 2 . . . n − 2 n − 1

c

a, b

b, c
a

b, c

a a

b, c

a

a

b, c

Figure 1: Minimal DFA of a most complex regular language.

Theorem 1 (Most Complex Regular Languages). For each n ≥ 3, the DFA of
Definition 1 is minimal and its language Ln(a, b, c) has complexity n. The stream
(Lm(a, b, c) | m ≥ 3) with some dialect streams is most complex in the class of
regular languages. In particular, it meets all the complexity bounds below. At
least three letters are required in any witness meeting all these bounds and a total
of four distinct letters is required for any two witnesses for unrestricted union and
symmetric difference. In several cases the bounds can be met with a smaller alphabet
as shown below.

1. The syntactic semigroup of Ln(a, b, c) has cardinality nn.

2. Each quotient of Ln(a) has complexity n.

3. The reverse of Ln(a, b, c) has complexity 2n, and Ln(a, b, c) has 2n atoms.

4. Each atom AS of Ln(a, b, c) has maximal complexity:

κ(AS) =

{

2n − 1, if S ∈ {∅, Qn};

1 +
∑|S|

x=1

∑n−|S|
y=1

(

n
x

)(

n−x
y

)

, if ∅ (S (Qn.

5. The star of Ln(a, b) has complexity 2n−1 + 2n−2.

6. a) Restricted Complexity:
The product L′

m(a, b)Ln(a,−, b) has complexity m2n − 2n−1.

16 Janusz A. Brzozowski and Corwin Sinnamon

b) Unrestricted Complexity:
The product L′

m(a, b)Ln(a, c, b) has complexity m2n + 2n−1.

7. a) Restricted Complexity:
The complexity of L′

m(a, b) ◦ Ln(b, a) is mn for ◦ ∈ {∪,⊕, \,∩}.

b) Unrestricted Complexity:
The complexity of union and symmetric difference is mn + m + n + 1
and this bound is met by L′

m(a, b, c) and Ln(b, a, d), that of difference is
mn+m and this bound is met by L′

m(a, b, c) and Ln(b, a), and that of in-
tersection is mn and this bound is met by L′

m(a, b) and Ln(b, a). A total
of four letters is required to meet the bounds for union and symmetric
difference.

Proof. Clearly Ln(a) has complexity n as the DFA of Definition 1 is minimal.

1. Syntactic Semigroup The transformations a : (0, . . . , n− 1), b : (0, 1), and
c : (n − 1 → 0) were used in [5]. It is well known that these transformations
as well as a, b, and c : (1 → 0) generate the semigroup of all transformations
of Qn.

2. Quotients Obvious.

3. Reversal This follows from a theorem in [27] which states that if the transi-
tion semigroup has nn elements, then the complexity of reversal is 2n. Also,
it was shown in [17] that the number of atoms is the same as the complexity
of the reverse.

4. Atoms Proved in [7, Theorem 3].

5. Star Proved in [5].

6. Product Let D′ = (Q′
m,Σ′, δ′, 0′, F ′) and D = (Qn,Σ, δ, 0, F) be minimal

DFAs of languages L′ and L, respectively. We use the standard construction
of the ε-NFA N for the product L′L: the final states of D′ becomes non-final,
and an ε-transition is added from each state of F ′ to the initial state 0 of D.

The subset construction on this NFA yields sets {p′} ∪ S where p′ ∈ Q′
m \ F ′

and S ⊆ Qn and sets {p′, 0}∪S where p′ ∈ F ′ and S ⊆ Qn\{0}, as well as sets
S ⊆ Qn which can only be reached by letters in Σ \ Σ′. Hence the restricted
complexity of L′L is bounded by (m−|F ′|)2n+|F ′|2n−1 ≤ m2n−2n−1, and the
unrestricted complexity of L′L is bounded by (m− |F ′|)2n + |F ′|2n−1 + 2n ≤
m2n + 2n−1.

Restricted Complexity: Consider L′
m(a, b) and Ln(a,−, b) of Definition 1; we

show that their product meets the upper bound for restricted complexity. As
before, we construct an NFA recognizing L′

m(a, b)Ln(a,−, b) and then apply
the subset construction to obtain a DFA. Figure 2 shows the NFA for the

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 17

0′ 1′ 2′ . . . (m− 1)′
a, b
b

a a a

a

b b

0 1 2 . . . n− 1

b b, c b, c

a, c
b, c

a a a

a

ε

Figure 2: An NFA for the product of L′
m(a, b) and Ln(a, c, b). The NFA for the

product of L′
m(a, b) and Ln(a,−, b) is the same except c is omitted.

unrestricted product L′
m(a, b)Ln(a, c, b); the product L′

m(a, b)Ln(a,−, b) is
the same except c is omitted.

The initial state is {0′} and each state {p′} for 0 ≤ p ≤ m − 2 is reached
by ap. Consider {0′} ∪ S, where S = {q1, q2, . . . , qk} with 0 ≤ q1 < q2 <

· · · < qk ≤ n − 1. If q1 ≥ 1 then {(m − 2)′, q2 − q1 − 1, . . . , qk − q1 − 1}
a2

−→

{0′, 1, q2− q1 + 1, . . . , qk − q1 + 1}
(ab)q1−1

−−−−−→ {0′}∪S. If q1 = 0 and k ≥ 2, then

{(m− 2)′, n− 2, q3 − q2 − 1, . . . , qk − q2 − 1}
a2

−→ {0′, 0, 1, q3 − q2 + 1, . . . , qk −

q2 + 1}
(ab)q2−1

−−−−−→ {0′} ∪ S. State {0′, 0} is reached by amb2. Hence for any
non-empty S ⊆ Qn, state {0′} ∪ S is reachable from {(m− 2)′} ∪ T for some
T ⊆ Qn of size |S| − 1. We reach {p′} ∪ S from {0′} ∪ (S − p) by ap, where
S − p denotes {q − p | q ∈ S} taken mod n. By induction, {p′} ∪ S is always
reachable and thus all m2n − 2n−1 states are reachable.

We check that all states are pairwise distinguishable.

a) Any two sets which differ by q ∈ Qn are distinguished by an−1−q.

b) States {p′1} and {p′2} with p1 < p2 are distinguished by am−1−p2an−1.

c) States {0′, 0} and {p′, 0} are distinguished by (ab)m−2−paan−1 if p′ 6=
(m− 1)′; otherwise apply ab to simplify to this case.

d) States {p′1, 0} and {p′2, 0}, p1 < p2, reduce to Case (c) by (ab2)m−p2 .

e) States {p′1} ∪ S and {p′2} ∪ S, where S 6= ∅ and p1 < p2, reduce to Case

(d) by (ab)n since S
(ab)n

−−−→ {0} and (ab)n permutes Q′
m.

We can distinguish any pair of states; so the complexity of L′
m(a, b)Ln(a,−, b)

is m2n − 2n−1 for all m,n ≥ 3.

Unrestricted Complexity: The NFA for the product of L′
m(a, b)Ln(a, c, b) is

illustrated in Figure 2. The NFA is the same as the restricted case except

18 Janusz A. Brzozowski and Corwin Sinnamon

it has the additional transformation c : (0, 1)(Q′
m → ∅). Hence the subset

construction yields the m2n − 2n−1 sets of the restricted case, as well as all
sets S ⊆ Qn since S is reachable from {0′} ∪ S by c2. We check that these
sets are distinguishable from all previously reached sets.

a) Any two sets which differ by q ∈ Qn are distinguished by an−1−q.

b) State {p′} is distinguishable from ∅ by am−1−pan−1.

c) States {0′, 0} and {0} are distinguished by am−1an−1 if m − 1 is not a
multiple of n, and by bam−2an−1 otherwise.

d) States {p′, 0} and {0} reduce to Case (c) by (ab2)m−p.

e) States {p′} ∪ S and S, where S 6= ∅, reduce to Case (d) by (ab)n since

S
(ab)n

−−−→ {0} and (ab)n permutes Q′
m.

Hence L′
m(a, b)Ln(a, c, b) has complexity m2n + 2n−1.

7. Boolean Operations

Restricted Complexity: All operations have complexity at most mn [4]. Ap-
plying the standard construction for boolean operations we consider the direct
product of D′

m(a, b) and Dn(b, a) which has states Q′
m ×Qn; the final states

vary depending on the operation. By [2, Theorem 1] and computation for
the cases (m,n) ∈ {(3, 4), (4, 3), (4, 4)}, the states of Q′

m ×Qn are reachable
and pairwise distinguishable for each operation ◦ ∈ {∪,⊕, \,∩}; hence each
operation has complexity mn.

Note that two letters are required to meet these bounds: To a contradiction
suppose a single letter ℓ is sufficient to reach Q′

m × Qn in the direct prod-
uct, where m,n ≥ 2 are not coprime. Letter ℓ must induce an m-element
permutation on Q′

m; otherwise there is an unreachable state in Q′
m or the

sequence 0′, 0′ℓ, 0′ℓ2, . . . , 0′ℓk, . . . never returns to 0′. Similarly ℓ must induce
an n-cycle in Qn. Hence ℓ has order lcm(mn) in the direct product; however,
it must have order mn if the bound is to be reached, and this occurs only
when m and n are coprime.

Unrestricted Complexity: The upper bounds on the unrestricted complexity
of boolean operations are derived in [6]. To compute L′

m(a, b, c) ◦ Ln(b, a, d),
where ◦ is a boolean operation, add an empty state ∅′ to D′

m(a, b, c), and
send all the transitions from any state of Q′

m under d to ∅′. Similarly, add an
empty state ∅ to Dn(b, a, d) together with appropriate transitions; now the
alphabets of the resulting DFAs are the same. We consider the direct product
of D′

m,∅′ and Dn,∅ which has states {(p′, q) | p′ ∈ Q′
m ∪ {∅′}, q ∈ Qn ∪ {∅}}.

A DFA recognizing L′
m(a, b, c) ∪ Ln(b, a, d) is shown in Figure 3 for m = 3

and n = 4.

As in the restricted case all the states of Q′
m × Qn are reachable by words

in {a, b}∗. The remaining states in C = {(p′, ∅) | p′ ∈ Q′
m ∪ {∅′}} and

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 19

0′, 0

1′, 0

2′, 0

∅′, 0

0′, 1

1′, 1

2′, 1

∅′, 1

0′, 2

1′, 2

2′, 2

∅′, 2

0′, 3

1′, 3

2′, 3

∅′, 3

0′, ∅

1′, ∅

2′, ∅

∅′, ∅

a

a

a

d
d

d d d

b b b

b

c

c

c

c

Figure 3: Direct product for union of D′
3(a, b, c) and D4(b, a, d) shown partially.

R = {(∅′, q) | q ∈ Qn ∪ {∅}} are reachable using c and d in addition to a and
b as shown in Figure 3. Hence all (m + 1)(n + 1) states are reachable.

For union and symmetric difference, the states of C are pairwise distinguish-
able by words in a∗ and they are distinguished from all other states by words
in b∗d. Similarly the states of R are distinguishable from each other and all
other states; hence all mn + m + n + 1 states are distinguishable.

For difference, the final states are ((m− 1)′, q) for q 6= n− 1. The states of R
are all empty, and they are only reachable by d. As the words of L′

m(a, b, c) \
Ln(b, a, d) do not contain d, the alphabet is {a, b, c}; hence we can omit d and
delete the states of R, and be left with a DFA recognizing the same language.
We check that the remaining mn+m states are pairwise distinguishable. Any
states (p′1, ∅) and (p′2, q) where p′1 6= p′2 and q ∈ Qn ∪ {∅} are distinguished
by words in a∗. State (p′, ∅) is distinguished from (p′, q) by some w ∈ {a, b}∗

that maps (p′, q) to ((m − 1)′, n − 1), since w must send (p′, ∅) to the final
state ((m − 1)′, ∅); such a word exists because a and b induce permutations
on the direct product, and so every state in Q′

m ×Qn is reachable from every
other.

For intersection the only final state is ((m − 1)′, n − 1). The alphabet of
L′
m(a, b, c) ∩ Ln(b, a, d) is {a, b}; hence we can omit c and d and delete the

states of R ∪C, and be left with a DFA recognizing the same language. The
remaining mn states are pairwise distinguishable as in the restricted case.

Note that a total of four letters between the alphabets Σ′ of D′
m and Σ of

Dn is required for union and symmetric difference. As in the restricted case,

20 Janusz A. Brzozowski and Corwin Sinnamon

two letters in Σ′ ∩ Σ are required to reach the states of Q′
m ×Qn for general

values of m and n. Letters in both alphabets cannot be used to reach states
(p′, ∅) and (∅′, q) as the empty states in each coordinate are only reached by
letters outside the corresponding alphabet. Thus two additional letters are
required, one in Σ′ \ Σ and one in Σ \ Σ′. Hence each alphabet must contain
at least three letters, and Σ′ ∪ Σ must contain at least four. In contrast, the
bound for difference is met by L′

m(a, b, c) and Ln(b, a), and the bound for
intersection is met by L′

m(a, b) and Ln(b, a).

Since all the claims have been verified, the theorem holds.

5 Right Ideals

The results in this section are based on [8, 9, 18]; however, the stream below is
different from that of [18], where c : (n− 2 → 0) and d : (n− 2 → n− 1).

Definition 2. For n ≥ 4, let Dn = Dn(a, b, c, d) = (Qn,Σ, δn, 0, {n − 1}), where
Σ = {a, b, c, d} and δn is defined by the transformations a : (0, . . . , n− 2), b : (0, 1),
c : (1 → 0), and d : (n−2

0 q → q + 1). Let Ln = Ln(a, b, c, d) be the language accepted
by Dn. For the structure of Dn(a, b, c, d) see Figure 4.

0 1 2 . . . n − 2 n − 1

c

a, b, d

b, c
a, d

b, c

a, d a, d

b, c

d

a

a, b, c, d

Figure 4: Minimal DFA of a most complex right ideal.

Theorem 2 (Most Complex Right Ideals). For each n ≥ 4, the DFA of Defini-
tion 2 is minimal and Ln(a, b, c, d) is a right ideal of complexity n. The stream
(Ln(a, b, c, d) | n ≥ 4) with some dialect streams is most complex in the class of
right ideals. In particular, it meets all the bounds below. At least four letters are
required to meet these bounds.

1. The syntactic semigroup of Ln(a, b, c, d) has cardinality nn−1. There is only
one maximal transition semigroup of a minimal DFA accepting a right ideal,
since it consists of all the transformations of Qn that fix n− 1. At least four
letters are needed for this bound.

2. The quotients of Ln(a,−,−, d) have complexity n, except that κ({a, d}∗) = 1.

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 21

3. The reverse of Ln(a,−,−, d) has complexity 2n−1, and Ln(a,−,−, d) has 2n−1

atoms.

4. Each atom AS of Ln(a, b, c, d) has maximal complexity:

κ(AS) =

{

2n−1, if S = Qn;

1 +
∑|S|

x=1

∑n−|S|
y=1

(

n−1
x−1

)(

n−x
y

)

, if ∅ (S (Qn.

5. The star of Ln(a,−,−, d) has complexity n + 1.

6. a) Restricted Complexity:
The product L′

m(a,−, c, d)Ln(a,−, c, d) has complexity m + 2n−2.

b) Unrestricted Complexity:
The product L′

m(a,−, c, d)Ln(b,−, c, d) has complexity m+2n−1+2n−2+
1. At least three letters for each language and four letters in total are
required to meet this bound.

7. a) Restricted Complexity:
The complexity of ◦ is mn if ◦ ∈ {∩,⊕}, mn − (m − 1) if ◦ = \, and
mn− (m+n− 2) if ◦ = ∪, and these bounds are met by L′

m(a,−,−, d) ◦
Ln(−,−, d, a). At least two letters are required to meet these bounds.

b) Unrestricted Complexity:
The complexity of L′

m(a,−, c, d) ◦ Ln(b,−, d, a) is the same as for ar-
bitrary regular languages: mn + m + n + 1 if ◦ ∈ {∪,⊕}, mn + m
if ◦ = \, and mn if ◦ = ∩. At least three letters in each language
and four letters in total are required to meet the bounds for intersec-
tion and symmetric difference. The bound for difference is also met by
L′
m(a,−, c, d) \ Ln(−,−, d, a) and the bound for intersection is met by

L′
m(a,−,−, d) ∩ Ln(−,−, d, a).

Proof. DFA Dn(−,−,−, d) is minimal because the shortest word in d∗ accepted by
state q is dn−1−q, and Ln(a, b, c, d) is a right ideal because it has only one final
state and that state accepts Σ∗.

1. Semigroup The transformations induced by a, b, and c generate all trans-
formations of Qn−1. Also, since the transformation induced by dan−2 is
(n − 2 → n − 1), the transition semigroup of Dn(a, b, c, d) contains the one
in [18], which is maximal for right ideals. Hence the syntactic semigroup of
Ln(a, b, c, d) has size nn−1 as well. The fact that at least four letters are
needed was proved in [15].

2. Quotients If the initial state of Dn(a,−,−, d) is changed to q with 0 ≤ q ≤
n− 2, the new DFA accepts a quotient of Ln and is still minimal; hence the
complexity of that quotient is n.

3. Reversal It was proved in [10] that the reverse has complexity 2n−1, and
in [17] that the number of atoms is the same as the complexity of the reverse.

22 Janusz A. Brzozowski and Corwin Sinnamon

4. Atoms The proof in [8] applies since the DFA has all the transformations
that fix n− 1.

5. Star If Ln is a right ideal, then L∗
n = Ln ∪ {ε}. If we add a new initial state

0′ to the DFA of Definition 2 with the same transitions as those from 0 and
make 0′ final, the new DFA accepts L∗

n and is minimal for 0′ does not accept
a, and so is not equivalent to n− 1.

6. Product Let D′ = (Q′
m,Σ′, δ′, 0′, {(m− 1)′}) and D = (Qn,Σ, δ, 0, {n− 1})

be minimal DFAs of L′ and L, respectively, where L′ and L are right ideals.
We use the standard construction of the NFA for the product L′L: the final
state (m−1)′ of D′ becomes non-final, and an ε-transition is added from that
state to the initial state 0 of D. We bound the complexity of the product
by counting the reachable states in the subset construction on this NFA. The
m − 1 non-final states {p′} of D′ may be reachable, as well as {(m− 1)′, 0}.
From {(m − 1)′, 0} we may reach all 2n−2 subsets of Qn which contain 0
but not n− 1, and 2n−2 states that contain both 0 and n − 1; however, the
latter 2n−2 states all accept Σ∗ and are therefore equivalent. So far, we have
m− 1 + 2n−2 + 1 = m + 2n−2 states; these are the only reachable sets if the
witnesses are restricted to the same alphabet.

For the unrestricted case, suppose that ℓ′ ∈ Σ′ \ Σ and ℓ ∈ Σ \ Σ′. By
applying ℓ to {(m− 1)′, 0} ∪ S, S ⊆ Qn \ {0}, we may reach all 2n − 1 non-
empty subsets of Qn, and then by applying ℓ′ we reach the empty subset.
However, the 2n−1 subsets of Qn that contain n − 1 all accept Σ∗. Hence
there are at most 2n−1 + 1 additional sets, for a total of m+ 2n−2 + 2n−1 + 1
reachable sets.

0′

c

1′ 2′

c

. . . (m− 2)′

c

(m− 1)′ Σ

a, d

c

a, d a, d a, d

a

d

0

c

1 2

c

. . . n− 2

c

n− 1 Σ

a, d

c

a, d a, d a, d

a

d

ε

Figure 5: An NFA for product of right ideals L′
m(a,−, c, d) and Ln(a,−, c, d).

Restricted Complexity: To prove the bound is tight, consider the two dialects
of the DFA of Definition 2 shown in Figure 5, where Σ = {a, c, d}. The

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 23

m − 1 sets {p′} for p′ ∈ Q′
m−1 are reachable in D′

m by words in d∗, and
{(m− 1)′, 0} is reached by dm−1. The 2n−2 sets of the form {(m− 1)′, 0}∪S,
where S ⊆ Qn \ {0}, are reachable using words in {c, d}∗ as follows: To reach
{(m − 1)′, 0} ∪ S, where S = {q1, . . . , qk}, 1 ≤ q1 < q2 < · · · < qk ≤ n − 1,
we have first {(m − 1)′, 0}d = {(m − 1)′, 0, 1}. State 1 will then be moved
to the right by applying either d or dc repeatedly: If qk−1 = qk − 1, use d;
otherwise use dc. Repeating this process qk times we eventually construct
S. For example, to reach {(m− 1)′, 0} ∪ {2, 5, 7, 8} use dd(dc)d(dc)(dc)d(dc).
The 2n−2 sets {(m− 1)′, 0}∪ S that contain n− 1 all accept {a, c, d}∗; hence
they are all equivalent.

The remaining states are pairwise distinguishable: States {p′} and {q′} with
0 ≤ p < q ≤ m−2 are distinguished by dm−1−qdn−1, and {p′} is distinguished
from {(m − 1)′, 0} ∪ S by dn−1. Two non-final states {(m − 1)′, 0} ∪ S and
{(m − 1)′, 0} ∪ T with q ∈ S ⊕ T are distinguished by an−2−qd. Thus the
product has complexity m + 2n−2.

0′

c

1′ 2′

c

. . . (m− 2)′

c

(m− 1)′ Σ′

a, d

c

a, d a, d a, d

a

d

0

c

1 2

c

. . . n− 2

c

n− 1 Σ

b, d

c

b, d b, d b, d

b

d

ε

Figure 6: An NFA for product of right ideals L′
m(a,−, c, d) and Ln(b,−, c, d).

Unrestricted Complexity: Consider two dialects of the DFA of Definition 2
shown in Figure 6. Here Σ′ = {a, c, d} and Σ = {b, c, d}. By the restricted
case, all states {p′} for p′ ∈ Q′

m−1 and {(m− 1)′, 0} ∪ S for S ⊆ Qn \ {0} are
reachable by words in {c, d}∗. Apply b from {0′} to reach the empty subset.
By applying b to {(m−1)′, 0}∪S, S ⊆ Qn\{0}, we reach all 2n−1 non-empty
subsets of Qn; hence all states are reachable. However, the 2n−1 sets S ⊆ Qn

that contain n− 1 all accept {b, c, d}∗ and are sent to the empty state by a;
hence they are all equivalent. Similarly, the 2n−2 sets {(m− 1)′, 0} ∪ S that
contain n − 1 all accept {b, c, d}∗ and are sent to {(m − 1)′, 0} by a; hence
they are also equivalent.

The remaining states are pairwise distinguishable. States {p′} and {q′} with
0 ≤ p < q ≤ m−2 are distinguished by dm−1−qdn−1, and {p′} is distinguished
from {(m − 1)′, 0} ∪ S or from S, where ∅ (S ⊆ Qn, by dn−1. Two states

24 Janusz A. Brzozowski and Corwin Sinnamon

{(m − 1)′, 0} ∪ S and {(m − 1)′, 0} ∪ T with q ∈ S ⊕ T are distinguished by
bn−2−qd, as are two states S and T with q ∈ S⊕T . A state {(m− 1)′, 0}∪S
is distinguishable from T where S, T ⊆ Qn by adn−1. Thus all m + 2n−2 +
2n−1 + 1 states are pairwise distinguishable.

At least three inputs to each DFA are required to achieve the bound in the
unrestricted case: There must be a letter in Σ (like d) with a transition to
n− 1 to reach sets containing n− 1, and this letter must be in Σ′ in order to
reach the sets that contain both (m− 1)′ and n− 1. However no single letter
in Σ′∩Σ is sufficient to reach every set of the form {(m−1)′, 0}∪S, regardless
of its behaviour on Qn. For example, if the letter maps 0 → q1 and q1 → q2
then it is impossible to reach the state {(m−1)′, 0, q2} by repeatedly applying
the letter from {(m− 1)′, 0}, as it can never delete q1. Hence there must be
at least two letters in Σ′ ∩ Σ. Furthermore there must be some ℓ ∈ Σ \ Σ′

to reach the empty state, and there must be some ℓ′ ∈ Σ′ \ Σ to distinguish
{(m− 1)′, 0, n− 1} from {n− 1}. Thus each alphabet must contain at least
three letters to meet the bound.

7. Boolean Operations

Restricted Complexity: The bounds for right ideals were derived in [10]. We
show that the DFAs D′

m(a,−,−, d) and Dn(−,−, d, a) shown in Figure 7 of
the right ideals of Definition 2 meet the bounds.

0’ 1’ 2’ . . . (m− 2)′ (m− 1)′
a, d

a, d a, d a, d

a

d

a, d

0 1 2 . . . n− 2 n− 1

d

a

d
a

d

a a

d

a

a, d

Figure 7: DFAs of L′
m(a,−,−, d) and Ln(−,−.d, a) for boolean operations.

Consider the direct product of L′
m(a,−,−, d) and Ln(−,−, d, a), illustrated

in Figure 8 for m = n = 4. For p′ ∈ Q′
m−1 state (p′, 0) is reached by dp. Since

the first column of Qm−1 ×Qn is reachable and (p′, q)
a
−→ ((p + 1)′, (q + 1)),

where p + 1 is taken mod m − 1, we can reach every state in Qm−1 × Qn.
State ((m − 1)′, q) is reached by dm−1aq; hence the states of Q′

m × Qn are
reachable.

We now check distinguishability, which depends on the final states of the

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 25

0′, 0

1′, 0

2′, 0

3′, 0

0′, 1

1′, 1

2′, 1

3′, 1

0′, 2

1′, 2

2′, 2

3′, 2

0′, 3

1′, 3

2′, 3

3′, 3

d

d

d a, d

d

d

d a, d

aa

d

d

d d

a a a

a

a

a

a

a

a

a

a

d

d

d a, d

Figure 8: Partial illustration of direct product for L′
4(a,−,−, d) ⊕ L4(−,−, d, a).

DFA. The direct product is made to recognize L′
m(a,−,−, d) ◦ Ln(−,−, d, a)

by setting the final states to be ({(m− 1)′} ×Qn) ◦ (Q′
m × {n− 1}).

For intersection and symmetric difference, all states are pairwise distinguish-
able. States that differ in the first coordinate are distinguished by words
in d∗a∗ and states that differ in the second coordinate are distinguished by
words in a∗d∗. Hence the complexity is mn.

For difference, the states {(p′, n− 1) | p′ ∈ Q′
m} are all empty, and therefore

equivalent. The remaining states are non-empty, and they are distinguished
by words in d∗ if they differ in the first coordinate or by words in a∗d∗ if they
differ in the second coordinate. Hence the complexity is mn−m + 1.

For union, the states {(p′, n − 1) | p′ ∈ Q′
m} ∪ {((m − 1)′, q) | q ∈ Qn}

are all final and equivalent as they accept {a, d}∗. The remaining states
are distinguished by words in d∗ if they differ in the first coordinate or by
words in a∗ if they differ in the second coordinate. Hence the complexity is
mn− (m + n− 2).

As in regular languages, one letter in Σ′ ∩ Σ is not sufficient to reach all the
states of Q′

m−1×Qn−1 for all values of m and n; hence two letters are required
to meet any of the bounds.

Unrestricted Complexity: The unrestricted bounds for right ideals are the
same as those for arbitrary regular languages [6]. We show that the DFAs
D′

m(a,−, c, d) and Dn(b,−, d, a) of Definition 2 meet the bounds.

26 Janusz A. Brzozowski and Corwin Sinnamon

0′, 0

1′, 0

2′, 0

3′, 0

∅′, 0

0′, 1

1′, 1

2′, 1

3′, 1

∅′, 1

0′, 2

1′, 2

2′, 2

3′, 2

∅′, 2

0′, 3

1′, 3

2′, 3

3′, 3

∅′, 3

0′, ∅

1′, ∅

2′, ∅

3′, ∅

∅′, ∅

d

d

d d

d

d

d d

a

d

d

d d

d

d

d

b

a a a

a

a

a

a

a

a

a

a

a a a c

c

c

c

c

b bb b

Figure 9: Partial illustration of the direct product for L′
4(a,−, c, d)∪L4(b,−, d, a).

To compute L′
m(a,−, c, d)◦Ln(b,−, d, a), where ◦ is a boolean operation, add

an empty state ∅′ to D′
m(a,−, c, d), and send all the transitions from any state

of Q′
m under b to ∅′. Similarly, add an empty state ∅ to Dn(b,−, d, a) together

with appropriate transitions; now the alphabets of the resulting DFAs are the
same. The direct product of L′

m(a,−, c, d) and Ln(b,−, d, a) is illustrated in
Figure 9 for m = n = 4.

As in the restricted case, the mn states of Q′
m×Qn are reachable by words in

{a, d}∗. The remaining states (p′, ∅) and (∅′, q) are easily seen to be reachable
using b and c, as well as a and d.

We now check distinguishability, which depends on the final states of the
DFA. The direct product is made to recognize L′

m(a,−, c, d) ◦ Ln(b,−, d, a)
by setting the final states to be ({(m−1)′}×Qn∪{∅})◦(Q′

m∪{∅′}×{n−1}).

For union and symmetric difference, all states are pairwise distinguishable:
States that differ in the first coordinate are distinguished by words in d∗c and
states that differ in the second coordinate are distinguished by words in a∗b.

For difference, the final states are ((m − 1)′, q) for q 6= n − 1. The alphabet
of L′

m(a,−, c, d) \ Ln(b,−, a, d) is {a, c, d}; hence we can omit b and delete
all states (∅′, q) and be left with a DFA recognizing the same language. The
remaining states are distinguished by words in d∗c if they differ in the first
coordinate or by words in a∗d∗ if they differ in the second coordinate.

For intersection, the only final state is ((m − 1)′, n − 1). The alphabet of
L′
m(a,−, c, d)∩Ln(b,−, d, a) is {a, b}; hence we can omit b and c and delete all

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 27

states (p′, ∅) and (∅′, q). The remaining mn states are pairwise distinguishable
as in the restricted case.

Note that the bound for difference is met by L′
m(a,−, c, d) \ Ln(−,−, d, a),

and that of intersection is met by L′
m(a,−,−, d) ∩ Ln(−,−, d, a). However

the bounds for union and symmetric difference all require three letters in each
dialect: There must be a letter in Σ′ \ Σ to reach states of the form (p′, ∅),
and there must a letter in Σ \ Σ′ to reach states of the form (∅′, q). As in
regular languages, one letter in Σ′ ∩ Σ is not sufficient to reach all the states
of Q′

m ×Qn for all values of m and n; hence |Σ′ ∩Σ| ≥ 2 and so both Σ′ and
Σ must contain at least three letters.

It has been shown in [10] that at least two letters are needed for each right
ideal that meets the bounds for star or reversal. Hence almost all our witnesses in
Theorem 2 that meet the bounds for the common operations use minimal alphabets.

6 Prefix-Closed Languages

The complexity of operations on prefix-closed languages was studied in [11], but
most complex prefix-closed languages were not considered. As every prefix-closed
language has an empty quotient, the restricted and unrestricted complexities are
the same for binary operations.

Definition 3. For n ≥ 4, let Dn = Dn(a, b, c, d) = (Qn,Σ, δn, 0, Qn \ {n − 1}),
where Σ = {a, b, c, d}, and δn is defined by the transformations a : (0, . . . , n − 2),
b : (0, 1), c : (1 → 0), and d :

(

0
n−2 q → q − 1 (mod n)

)

. Let Ln = Ln(a, b, c, d) be
the language accepted by Dn. The structure of Dn(a, b, c, d) is shown in Figure 10.

0 1 2 . . . n− 2 n− 1

a, b

d

b, c, d

a

d

a

d

a

d

a

c b, c b, c a, b, c, d

Figure 10: DFA of a most complex prefix-closed language.

Theorem 3 (Most Complex Prefix-Closed Languages). For each n ≥ 4, the DFA
of Definition 3 is minimal and Ln(a, b, c, d) is a prefix-closed language of complexity
n. The stream (Lm(a, b, c, d) | m ≥ 4) with some dialect streams is most complex
in the class of prefix-closed languages. At least four letters are required to meet the
bounds below.

28 Janusz A. Brzozowski and Corwin Sinnamon

1. The syntactic semigroup of Ln(a, b, c, d) has cardinality nn−1.

2. The quotients of Ln(a,−,−, d) have complexity n, except for ∅, which has
complexity 1.

3. The reverse of Ln(a,−,−, d) has complexity 2n−1, and Ln(a,−,−, d) has 2n−1

atoms.

4. Each atom AS of Ln(a, b, c, d) has maximal complexity:

κ(AS) =

{

2n−1, if S = ∅;

1 +
∑n−|S|

x=1

∑|S|
y=1

(

n−1
x−1

)(

n−x
y

)

, if ∅ (S (Qn.

5. The star of Ln(a,−, c, d) has complexity 2n−2 + 1.

6. The product L′
m(a, b, c, d)Ln(a, d, b, c) has complexity (m + 1)2n−2.

7. For any proper binary boolean function ◦, the complexity of L′
m(a, b,−, d) ◦

Ln(b, a,−, d) is maximal. In particular, the complexity is mn if ◦ ∈ {∪,⊕},
mn− (n− 1) if ◦ = \, and mn− (m + n− 2) if ◦ = ∩.

Proof. The DFA is minimal since state p rejects dq if and only if p < q. It is
prefix-closed because all non-empty states are final.

1. Semigroup Let d′ induce the transformation (n−2
0 q → q+ 1) (this was called

d in the right-ideal section). Since ada = d′, the transition semigroup of the
DFA of Figure 10 is the same as that of the DFA of the right ideal of Figure 4.

2. Quotients Obvious.

3. Reversal Since reversal commutes with complementation, we consider the
complement of the language accepted by the DFA of Figure 10 restricted to
the alphabet {a, d}. It was proved in [10] that the reverse of a right ideal has
complexity at most 2n−1, and in [17] that the number of atoms is the same
as the complexity of the reverse. It remains to prove that all 2n−1 states of
the DFA DR obtained by the subset construction from the NFA N obtained
by reversal of the DFA of the right ideal D are reachable and distinguishable.
The proof is similar to that of [10]. Subset {n−1} is the initial state of N , and
n−1 appears in every reachable state of DR. Every subset {n−1, q2, q3 . . . , qk}
of size k, where 1 ≤ k ≤ n− 2 and 0 ≤ q2 < q3 < · · · < qk ≤ n− 2, is reached
from the subset {n−1, q3−(q2+1), . . . , qk−(q2+1)} of size k−1 by dan−(q2+1).
Since only state q, 0 ≤ q ≤ n − 2, accepts aq, any two subsets differing by q
are distinguishable by aq.

4. Atoms Let L be a prefix-closed language with quotients K0, . . . ,Kn−1, n ≥ 4.
Recall that L is a right ideal with quotients K0, . . . ,Kn−1. For S ⊆ {0, . . . , n−
1}, the atom of L corresponding to S is AS =

⋂

i∈S Ki ∩
⋂

i∈S Ki. This can

be rewritten as
⋂

i∈S Ki ∩
⋂

i∈S
Ki, which is the atom of L corresponding

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 29

to S; hence the sets of atoms of L and L are the same. The claim follows
from the theorem for right ideals. The proof in [8] applies since the DFA that
accepts the complement of the prefix-closed language of Figure 10 has all the
transformations that fix n− 1.

5. Star It was proved in [11] that 2n−2 + 1 is the maximal complexity of the
star of a prefix-closed language. We now show that Ln(a,−, c, d) meets this
bound. Since Ln(a,−, c, d) accepts ε, no new initial state is needed and it
suffices to delete the empty state and add an ε-transition from each final state
to the initial state to get an NFA N for L∗

n. In this NFA all 2n−2 subsets
of Qn−1 containing 0 are reachable and pairwise distinguishable. Any non-
empty set {0, q2, q3, . . . , qk} of size k with 0 < q2 < q3 < · · · < qk ≤ n − 2 is
reached from {0, q3−q2, . . . , qk−q2} of size k−1 by a(ac)q2−1. Moreover, the
empty set is reached from {0} by d, giving the required bound. Sets {0} ∪ S
and {0} ∪ T with q ∈ S ⊕ T are distinguished by an−2−qdn−2.

6. Product It was shown in [11] that the complexity of the product of prefix-
closed languages is (m+1)2n−2. We now prove that our witness L′

m(a, b, c, d)
with minimal DFA D′

m(a, b, c, d) together with the dialect Ln(a, d, b, c) with
minimal DFA Dn(a, d, b, c) meets this bound. Construct the following NFA N
for the product. Start with D′

m(a, b, c, d), but make all of its states non-final.
Delete the empty state from Dn(a, d, b, c) and all the transitions to the empty
state, add an ε-transition from each state p′ ∈ Q′

m−1 to the initial state 0 of
Dn(a, d, b, c). We will show that (m − 1)2n−2 states of the form {p′, 0} ∪ S,
where S ⊆ Qn−1 \ {0}, and 2n−1 states of the form {(m − 1)′} ∪ S, where
S ⊆ Qn−1 are reachable and pairwise distinguishable.

The initial state of the subset automaton of N is {0′, 0}. State {1′, 0} is
reachable by b and {p′, 0} for 2 ≤ p ≤ m − 2 is reachable from {1′, 0} by
(ab)p−1. State {p′, 0} ∪ S where p′ ∈ Q′

m−1 and S = {q1, . . . , qk} is reachable
from {r′, 0, q2 − q1, . . . , qk − q1} by a(ab)q1−1 for some r′ ∈ Q′

m−1. By induc-
tion, all (m− 1)2n−2 states {p′, 0} ∪ S are reachable. From {0′, 0} ∪ S by d2

we reach {(m− 1)′, 0} ∪ S. Further apply ca to reach {(m− 1)′} ∪ S. Hence
all 2n−1 subsets of the form {(m− 1)′} ∪ S are reachable.

We check that the states are pairwise distinguishable in four cases.

a) {(m− 1)′} ∪ S and {(m− 1)′} ∪ T with r ∈ S ⊕ T are distinguished by
an−2−rcn−2.

b) {p′} ∪ S and {p′} ∪ T with r ∈ S ⊕ T reduces to Case (a) by an−2−rdm.

c) {p′} ∪ S and {(m− 1)′} ∪ T with p′ ∈ Q′
m−1 are distinguished by cn.

d) {p′} ∪ S and {q′} ∪ T with p < q ≤ m− 2 reduces to Case (c) by dp+1.

7. Boolean Operations It is again convenient to consider the ideal languages
defined by the complements of the prefix-closed languages of Figure 10 re-
stricted to the alphabet {a, b, d} and then use De Morgan’s laws. Since ev-
ery prefix-closed language has an empty quotient, it is sufficient to consider

30 Janusz A. Brzozowski and Corwin Sinnamon

boolean operations on languages over the same alphabet. The problems are
the same as those in [9], except that there the transformation induced by d
is d : (n− 2 → n− 1).

Let Dn(a, b, c, d) denote the DFA for the complement of the prefix-closed
language of Definition 3 of complexity n and let Ln be the language accepted
by Dn. We consider boolean operations on right ideals L′

m and Ln.

4′, 4

0′, 4

1′, 4

2′, 4

4′, 0

0′, 0

1′, 0

2′, 0

4′, 1

0′, 1

1′, 1

2′, 1

4′, 2

0′, 2

1′, 2

2′, 2

4′, 3

0′, 3

1′, 3

2′, 3

d d d d

d

d

d

d

ddd

bbb

b

d

d

a

a

a

a

a

a

bbb

b

Figure 11: Partial illustration of the direct product for L′
4(a, b,−, d)⊕L5(b, a,−, d).

The direct product is illustrated in Figure 11. The states in Q′
m−1 × Qn−1

are reachable from the initial state (0′, 0) by [2, Theorem 1] and computation
in the case m = n = 4. Then ((m − 1)′, 0) is reached from (0′, 1) by d and
states of the form ((m − 1)′, q), 0 ≤ q ≤ n − 2, are then reached by words
in b∗. Similarly, (0′, n − 1) is reached from (1′, 0) by d and states of the
form (p′, n − 1), 0 ≤ p ≤ m − 2, are then reached by words in a∗. Finally,
((m − 1)′, n− 1) is reached from ((m − 1)′, 0) by d. Hence all mn states are
reachable.

Let S = Q′
m−1 ×Qn−1, R = {(m− 1)′} ×Qn, and C = Q′

m × {n− 1}. The
final states of the direct product to recognize L′

m(a, b,−, d)◦Ln(b, a,−, d) are
R ◦ C.

Consider the following DFAs: D′
m−1(a, b) = (Q′

m−1, {a, b}, δ, 0
′, {0′}) and

Dn−1(b, a) = (Qn−1, {a, b}, δ, 0, {0}). By [2, Theorem 1], the states of S are
pairwise distinguishable with respect to states ({0′} ×Qn−1) ◦

(

Q′
m−1 × {0}

)

for any ◦ ∈ {∪,⊕, \,∩}. One can verify that if w distinguished two states of
S with respect to ({0′} ×Qn−1) ◦

(

Q′
m−1 × {0}

)

, then wd distinguishes them
with respect to R ◦ C for each ◦ = {∪,⊕, \,∩}. The rest of the argument

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 31

depends on the operation ◦ ∈ {∪,⊕, \,∩}.

∩,⊕: All mn states are pairwise distinguishable. The states of R are distin-
guished by words in d∗. The states of C are similarly distinguishable. The
states of R are distinguished from the states of C by words in {a, d}∗. Every
state of S is sent to a state of R by a word in {a, d}∗, and similarly to a state
of C by a word in {b, d}∗; thus the states of S are distinguishable from the
states of R or C.

\: The states of C are all empty, leaving m(n− 1) + 1 distinguishable states.
The states of R are distinguished by words in d∗.

∪: The states of R and C are equivalent final states accepting all words,
leaving (m− 1)(n− 1) + 1 distinguishable states.

By De Morgan’s laws we have κ(L′
m ∪ Ln) = κ(L′

m ∩ Ln), κ(L′
m ⊕ Ln) =

κ(L′
m⊕Ln), κ(L′

m \Ln) = κ(Ln \L′
m), and κ(L′

m ∩Ln) = κ(L′
m ∪Ln). Thus

the prefix-closed witness meets the bounds for boolean operations.

Since the semigroup of a prefix-closed language is the same as that of its com-
plement, which is a right ideal, at least four letters are required to meet all the
bounds.

7 Prefix-Free Languages

The complexity of operations on prefix-free languages was studied in [19, 22, 23],
but most complex prefix-free languages were not considered. As every prefix-free
language has an empty quotient, the restricted and unrestricted complexities are
the same for binary operations.

Definition 4. For n ≥ 4, let Σn = {a, b, c, d, e0, . . . , en−3} and define the DFA
Dn(Σn) = (Qn,Σn, δn, 0, {n − 2}), where δn is defined by the transformations
a : (n−2 → n−1)(0, . . . , n−3), b : (n−2 → n−1)(0, 1), c : (n−2 → n−1)(1 → 0),
d : (0 → n−2)(Qn\{0} → n−1), eq : (n−2 → n−1)(q → n−2) for q = 0, . . . , n−3.
The transformations induced by a and b coincide when n = 4. Let Ln(Σn) be the
language accepted by Dn(Σn). The structure of Dn(Σn) is shown in Figure 12.

Theorem 4. For n ≥ 4, the DFA of Definition 4 is minimal and Ln(Σ) is a prefix-
free language of complexity n. The stream (Ln(a, b, c, d, e0, . . . , en−3) | n ≥ 4) with
dialect stream (Ln(b, a,−,−, e0, en−3) | n ≥ 4) is most complex in the class of
prefix-free languages. At least n + 2 inputs are required to meet all the bounds
below.

1. The syntactic semigroup of Ln(a, b, c,−, e0, . . . , en−3) has cardinality nn−2.
There is only one maximal transition semigroup of minimal DFAs accepting
prefix-free languages. Moreover, fewer than n+1 inputs do not suffice to meet
this bound.

32 Janusz A. Brzozowski and Corwin Sinnamon

0 1 2 . . . n− 4 n− 3

n− 2 n− 1

a, b
a a a a

a

e0

e1 e2
en−4

en−3

Σn

b, c

Figure 12: DFA of a most complex prefix-free language. Input d not shown; other
missing transitions are self-loops.

2. The quotients of Ln(a,−,−, d) have complexity n, except for ε and ∅, which
have complexity 2 and 1, respectively.

3. The reverse of Ln(a,−, c,−, e0) has complexity 2n−2+1, and Ln(a,−, c,−, e0)
has 2n−2 + 1 atoms.

4. Each atom AS of Ln(a, b, c,−, e0) has maximal complexity:

κ(AS) =

2, if S = {n− 2};

2n−1, if S = ∅;

2n−2 + 1, if S = Qn−2;

2 +
∑|S|

x=1

∑n−2−|S|
y=1

(

n−2
x

)(

n−2−x
y

)

, if ∅ (S (Qn−2.

5. The star of Ln(a,−,−, d) has complexity n.

6. The product L′
m(a,−,−, d)Ln(a,−,−, d) has complexity m + n− 2.

7. For m,n ≥ 4 but (m,n) 6= (4, 4), and for any proper binary boolean function
◦, the complexity of Lm(a, b,−,−, e0, em−3) ◦ Ln(b, a,−,−, e0, en−3) is max-
imal. In particular, these languages meet the bounds mn − 2 for union and
symmetric difference, mn−2(m+n−3) for intersection, and mn−(m+2n−4)
for difference.

Proof. Since only state q accepts an−2−qd for 0 ≤ q ≤ n− 3, DFA Dn(a,−,−, d) is
minimal. Since it has only one final state and that state accepts {ε}, Ln(a,−,−, d)
is prefix-free.

1. Semigroup The proof that the size of the semigroup is nn−2 is very similar
to that in [12]. Inputs a, b, and c generate all transformations of Qn−2.
Moreover, any state q ∈ Qn−2 can be sent to n−2 by eq and to n−1 by eqeq.

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 33

Hence we have all nn−2 transformations of Qn that fix n− 1 and send n− 2
to n− 1. The maximal transition semigroup is unique, since it must contain
all these transformations.

To prove that at least n + 1 inputs are necessary, we see that eq : (n − 2 →
n− 1)(q → n− 2) is in the transition semigroup of Dn. There are two types
of states in q ∈ Qn−2: those of Type 1, for which eq is a generator (that is,
the transformation of eq is induced by a single letter), and those of Type 2,
for which it is not. If eq and ep are generators, then clearly ep 6= eq.

If eq is not a generator, then it must be a composition, eq = uqvq, where uq

is in the semigroup and vq is a generator. No state can be mapped by uq

to n − 2 because then vq would map n − 2 to n − 1. Hence uq must be a
permutation of Qn−2. If q 6= q′ and eq and eq′ are not generators, then there
exist uq, vq and uq′ , vq′ as above, such that eq = uqvq and eq′ = uq′vq′ . Then
we must have quq 6= q′uq′ ; otherwise both q and q′ would be mapped to n−2.
Hence vq 6= vq′ and all the generators of this type are distinct.

Finally, if eq is a generator and vq′ is as above, then eq 6= vq′ , for otherwise uq′

would be the identity and q′ would be of Type 1. Therefore, n− 2 generators
are required in addition to those induced by a, b and c.

2. Quotients This is clear from the definition.

3. Reversal This was proved in [12].

4. Atoms First we establish an upper bound on the complexity of atoms of
prefix-free languages. Let L be a prefix-convex language with n quotients
K0, . . . ,Kn−1, in which Kn−2 is final and Kn−1 = ∅. Consider the intersection
AS =

⋂

i∈S Ki∩
⋂

i∈S Ki, where S ⊆ Qn, and S = Qn \S. Clearly n−1 must

be in S if AS is an atom, for an atom must be non-empty. Since a prefix-free
language has only one final state and that state accepts ε, if n − 2 ∈ S, no
other quotient is in S, for then AS would not be an atom. Hence if S = {n−2}
then AS = {ε}, and κ(AS) = 2.

Now suppose S = ∅; then AS =
⋂

i∈S Ki. Since Kn−1 appears in every
quotient of AS , there are at most 2n−1 subsets of Qn−1 that can be reached
from AS together with n− 1. Hence κ(AS) ≤ 2n−1.

If S = Qn−2, then S = {n − 2, n − 1} and
⋂

i∈S Ki = Σ+. If we reach

Kn−1 = Σ∗, then any intersection which has {n−2, n−1} in the complemented
part is equivalent to one that has only {n− 1}, since no quotient other than
Kn−2 contains ε. Hence we can reach at most 2n−2−1 subsets of Qn−2, along
with the intersection Kn−2 ∩Kn−1 = ε, and the empty quotient, for a total
of 2n−2 + 1 states.

Finally, consider the case where ∅ (S (Qn−2. Then we have from 1 to
|S| uncomplemented quotients Ki with i ∈ Qn−2, and from 1 to n − 2 − |S|
quotients Ki with i ∈ Qn−2 in the complemented part; this leads to the
formula given in the theorem.

34 Janusz A. Brzozowski and Corwin Sinnamon

It remains to be proved that the atoms of Ln(a, b, c,−, e0) meet these bounds.
Atom A{n−2} is equal to {ε} and thus has two quotients as required; as-
sume now that S ⊆ Qn−2. We are interested in the number of distinct
quotients of AS =

⋂

i∈S Ki ∩
⋂

i∈S Ki, where S ⊆ Qn \ {n − 1}. The quo-

tients w−1AS have the form JX,Y =
⋂

i∈X Ki ∩
⋂

i∈Y Ki where X = {i |

Ki = w−1Kj for some j ∈ S} and Y = {i | Ki = w−1Kj for some j ∈ S}.

For brevity, we write S
w
−→ X and S

w
−→ Y ; this notation is in agreement with

the action of w on the states of Dn corresponding to S and S.

Notice JX,Y = JX,Y ∪{n−2} for all X and Y , except for the case X = {n− 2}
in which JX,Y ∈ {{ε}, ∅}. Thus it is sufficient to assume n − 2 6∈ Y from
now on, as {JX,Y | n− 2 6∈ Y, n− 1 ∈ Y } contains every quotient of AS . We
show that whenever |X | ≤ |S|, |Y | ≤ |S|, n − 2 6∈ Y , and n − 1 ∈ Y , there

is a word w ∈ {a, b, c, e0}∗ such that S
w
−→ X and S

w
−→ Y and hence JX,Y

is a quotient of AS . When S = Qn−2 we reach all quotients JX,{n−1} where
∅ (X ⊆ Qn−2 by words in {a, b, c}∗, we reach J{n−2},{n−1} from J{0},{n−1}

by e0, and from there we reach the empty quotient by e0. Similarly, when
∅ ⊆ S (Qn−2, we reach JX,Y for X ⊆ Qn−2 and Y ∩Qn−2 6= ∅ by words in
{a, b, c}∗, and the remaining quotients are easily reached using e0.

It remains to show that non-empty quotients JX,Y and JX′,Y ′ are distinct
whenever X 6= X ′ or Y 6= Y ′. Notice JX,Y = ∅ if either X ∩ Y 6= ∅ or
{n− 2} (X , and JX,Y = {ε} if and only if X = {n− 2}. Apart from these
special cases, every JX,Y is non-empty and does not contain ε.

For any X ⊆ Qn−2, let wX denote a word that maps X → {n − 2} and
Qn \ X → {n − 1}; there is such a word in {a, b, c, e0}∗ because {a, b, c}∗

contains u : (n−2 → n−1)(X → n−3)(Qn−2\X → 0), and then wX = ue0ae0.
Observe that wX ∈ Ki for all i ∈ X and wX 6∈ Kj for all j 6∈ X . Hence, if
X ⊆ Qn−2 and Y ⊆ Qn \X , then wX ∈ JX,Y and wY ∩Qn−2

∈ JX,Y .

Let X ′ and Y ′ be any disjoint subsets of Qn where n−1 ∈ Y ′ and JX′,Y ′ 6= ∅.
If X ′ 6= X then either wX 6∈ JX′,Y ′ or wX′ 6∈ JX,Y . Similarly, if Y ′ 6= Y (and
Y ⊕Y ′ 6= {n− 2}) then either wY ∩Qn−2

6∈ JX′,Y ′ or wY ′∩Qn−2
6∈ JX,Y . Thus,

any two quotients JX,Y and JX′,Y ′ , where (X,Y) 6= (X ′, Y ′), are distinct.

When we established the upper bound on κ(AS), we counted the number of
reachable, potentially distinct quotients JX,Y of each AS . We have now shown
that every reachable JX,Y is a quotient of AS and determined all the cases
when JX,Y = JX′,Y ′ . It follows that every bound is met by Ln(a, b, c,−, e0).

5. Star Proved in [19]. For the purpose of proving that n+2 inputs are required
for a most complex prefix-free witness, an outline of the proof is repeated here.

Suppose that L is a prefix-free language with n quotients whose syntac-
tic semigroup is maximal, and L∗ has maximal complexity. We show that
L requires an alphabet of size n + 2. Towards a contradiction, let D =
(Qn,Σ, δ, 0, {n−2}) be a DFA for L where |Σ| = n+1. Assume 0, 1, . . . , n−3
are non-final, non-empty states, n − 2 is the unique final state, and n− 1 is

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 35

the empty state. By [19], D must have this structure and δ(n− 2, w) = n− 1
for any w ∈ Σ+.

Since the syntactic semigroup of L is maximal, each letter of Σ has a specific
role in D as described in 1 of this theorem. Three letters a′, b′, and c′

are required to induce the transformations on Qn−2; these letters cannot
map any state of Qn−2 to n − 2 or to n − 1. An additional n − 2 letters
v0, v1, . . . , vn−3 are required to generate eq : (n−2 → n−1)(q → n−2) for each
q ∈ Qn−2, where the action of eq is induced by a word in {a′, b′, c′}∗vq. Notice
vq cannot map any state of Qn−2 to n − 1, since eq does not. In summary,
Σ = {a′, b′, c′, v0, . . . , vn−3} and for all ℓ ∈ Σ and q ∈ Qn−2, δ(q, ℓ) 6= n− 1.

An NFA for L∗ is produced by adding to D a new initial state 0′, which is final,
adding an ε-transition from n−2 to 0, and deleting the empty state n−1. The
transitions from 0′ are exactly the same as the transitions from 0. Perform the
subset construction on this NFA. The n− 1 states {0′}, {0}, {1}, . . . , {n− 3}
are all reachable and distinguishable by words in {a′, b′, c′, v0}. The only way
to reach a set containing more than one state is by moving to n− 2 and using
the ε-transition. This leads to the state {0, n − 2}, but applying any word
w ∈ Σ+ deletes n − 2; thus, {0, n− 2} is the only reachable set with two or
more states. However, {0′} and {0, n − 2} are indistinguishable, since both
are final and δ({0′}, w) = δ({0}, w) = δ({0, n− 2}, w) for w ∈ Σ+.

So far, there are only n − 1 reachable, distinguishable states in the subset
construction. The remaining state is ∅, which can only be reached if there is
a letter ℓ that moves from q ∈ Qn−2 to n − 1 in D; a transition from n − 2
to n − 1 is not sufficient to reach the empty state. We showed that in our
witness no ℓ ∈ Σ has δ(q, ℓ) = n−1. Therefore, κ(L∗) ≤ n−1, a contradiction.
To achieve κ(L∗) = n, an additional letter is required. Therefore, any most
complex prefix-free language stream requires n + 2 inputs.

6. Product Proved in [19].

7. Boolean Operations Let S = Q′
m−2 × Qn−2. For 0 ≤ p ≤ m − 1, let

Rp = {(p′, q) | q ∈ Qn}, and for 0 ≤ q ≤ n − 1 let Cq = {(p′, q) | p′ ∈ Q′
m}.

These are the sets of states in the rows and columns of Figure 13. The states
in S are reachable from the initial state (0′, 0) by [2, Theorem 1]. Every other
state in the direct product is reachable from some state in S, as illustrated
in Figure 13.

For ◦ ∈ {∪,⊕, \,∩}, the direct product recognizes L′
m ◦ Ln if the final states

are set to be Rm−2 ◦ Cn−2. Now we must determine which states are distin-
guishable with respect to Rm−2◦Cn−2 for each value of ◦. Consider the DFAs
D′

m = (Q′
m−2, {a, b}, δ, 0

′, {(m− 3)′}) and Dn = (Qn−2, {b, a}, δ, 0, {n− 3}).
By [2, Theorem 1], the states of S are pairwise distinguishable with respect
to (Rm−3 ◦ Cn−3) ∩ S. For any pair of states in S, let w be a word that
distinguishes them in (Rm−3 ◦ Cn−3) ∩ S; one verifies that further apply-

36 Janusz A. Brzozowski and Corwin Sinnamon

0′, 0

1′, 0

2′, 0

3′, 0

4′, 0

0′, 1

1′, 1

2′, 1

3′, 1

4′, 1

0′, 2

1′, 2

2′, 2

3′, 2

4′, 2

0′, 3

1′, 3

2′, 3

3′, 3

4′, 3

0′, 4

1′, 4

2′, 4

3′, 4

4′, 4

e0e0

e2

e2

e2
e2 e2

e2 e2

e2

e2

b b e2

b b e2

b

a

a

e2

a

a

e2

a

Σ

Σ

Σ

Figure 13: Partial illustration of the direct product for L′
5(a, b,−,−, e0, e2) ∪

L5(b, a,−,−, e0, e2).

ing em−3 distinguishes them with respect to Rm−2 ◦ Cn−2. The rest of the
distinguishability argument depends on ◦ ∈ {∪,⊕, \,∩}.

∪: States ((m−1)′, n−2), ((m−2)′, n−1), and ((m−2)′, n−2) are equivalent,
since all three are final and any letter sends them to ((m− 1)′, n− 1).

States of Rm−1 are distinguished by words in b∗em−3. States of Cn−1 are
distinguished by words in a∗em−3. Excluding ((m − 1)′, n − 2) and ((m −
2)′, n− 1), which are equivalent, states of Rm−1 are distinguished from states
of Cn−1 by words in a∗em−3.

States of Rm−2∪Cn−2 are moved to states of Rm−1∪Cn−1 by applying em−3.
Excluding ((m− 1)′, n− 2), ((m− 2)′, n− 1), and ((m− 2)′, n− 2), which are
equivalent, every state is mapped by em−3 to a different state of Rm−1∪Cn−1;
hence they are distinguishable.

Finally, we must show that states of S are distinguishable from the states
of Rm−1 ∪ Cn−1. For any (p′, q) ∈ S, there exists w ∈ {a, b}∗ such that

(p′, q)
w
−→ (0′, n− 3), since both (p′, q) and (0′, n− 3) are reached from (0′, 0)

by words in {a, b}∗, and a and b permute S. Then (0′, n− 3)
em−3

−−−→ (0′, n− 2)
and we have already shown that (0′, n−2) is distinguishable from all states in
Rm−1∪Cn−1. Thus, the mn−2 remaining states are pairwise distinguishable.

⊕: States ((m − 1)′, n − 2) and ((m − 2)′, n − 1) are equivalent, and states

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 37

((m − 2)′, n− 2) and ((m − 1)′, n− 1) are equivalent. The rest of the states
are distinguishable by an argument similar to that of union.

∩: State ((m − 2)′, n − 2) is the only final state. The remaining non-final
states of Rm−2 ∪ Rm−1 ∪ Cn−2 ∪ Cn−1 are all empty. Clearly the states of

S are non-empty, since ((m − 3)′, n − 3)
em−3

−−−→ ((m − 2)′, n − 2). Thus, the
remaining mn− 2(m + n− 3) states are pairwise distinguishable.

\: The states of Rm−1 and ((m− 2)′, n− 2) are all equivalent. States ((m−
1)′, q) and ((m − 2)′, q) are equivalent for 0 ≤ q ≤ m − 3. The final states
(Rm−2 \ {((m− 2)′, n− 2)}) are all equivalent.

The states of Cn−1 are distinguished by words in a∗em−3. It remains to
show that states of S are distinguishable from the states of Cn−1. Notice
((m−3)′, n−3) is distinguished from ((m−3)′, n−1) by em−3, and from every
other state of Cn−1 by bem−3. For any state of S, there exists w ∈ {a, b}∗

that sends that state to ((m − 3)′, n− 3), and notice Cn−1w ⊆ Cn−1. So all
mn− (m + 2n− 4) remaining states are pairwise distinguishable.

Note that stream Lm(a, b, c, d, e0, em−3) with dialect Ln(b, a, c, d, e0, em−3) meets
the bounds for quotients, reversal, atomic complexity, star, product and boolean
operations.

Using some results from [22, 23] we define another prefix-free witness stream that
meets all the bounds except those for syntactic complexity and atom complexity.
Moreover, all the bounds are met by dialects over minimal alphabets.

Definition 5. For n ≥ 4, let Dn(a, c, d, e, f, g) = (Qn,Σ, δn, 0, {n − 2}), where
Σ = {a, c, d, e, f, g}, and δn is defined by the transformations

• a : (n− 2 → n− 1)(0, . . . , n− 3),

• c : (n− 2 → n− 1)(1 → 0).

• d : (0 → n− 2)(Qn \ {0} → n− 1),

• e : (n− 2 → n− 1)(n− 3 → n− 2),

• f : (n− 2 → n− 1)(n−2
0 q → q + 1),

• g : (n− 2 → n− 1).

Note that b is not used, a, c, d, and e induce the same transformations as a, c, d,
and en−3 in Definition 4. DFA Dn(Σ) is shown in Figure 14. Let Ln(Σ) be the
language accepted by Dn(Σ).

Proposition 1. For n ≥ 4, the DFA of Definition 5 is minimal and Ln(Σ) is
a prefix-free language of complexity n. Moreover, all the witnesses for individual
operations have minimal alphabets.

38 Janusz A. Brzozowski and Corwin Sinnamon

0 1 2 . . . n− 4 n− 3

n− 2

n− 1

a, f
a, f a, f a, f a, f

a

d

d
d

d
d

e, f
Σ

c

Figure 14: DFA Dn(Σ) of Definition 5; missing transitions are self-loops.

1. The quotients of Ln(a,−,−,−, f) have complexity n, except for the quotient
ε and the empty quotient, which have complexity 2 and 1 respectively.

2. The reverse of Ln(a, c,−, e) has complexity 2n−2 + 1, and Ln(a,−, c, d) has
2n−2 + 1 atoms.

3. The star of Ln(a,−,−, d) has complexity n.

4. For m,n ≥ 4, κ(Lm(−,−,−,−, f)Ln(−,−,−,−, f)) = m + n− 2.

5. a) κ(Lm(−,−,−,−, f, g)∪Ln(−,−,−,−, g, f)) = κ(Lm(−,−,−,−, f, g)⊕
Ln(−,−,−,−, g, f)) = mn− 2.

b) κ(Lm(a,−,−, e,−,−) \ Ln(−,−,−,−, e, a)) = mn− (m + 2n− 4).

c) κ(Lm(a,−,−, e,−,−)∩ Ln(−,−,−,−, e, a)) = mn− 2(m + n− 3).

Proof. The first claim is obvious. The second and third claims were proved in
Theorem 4. (A ternary witness was also used in [22] for the reverse, but it had
more complicated transitions than our witness.) The fourth claim is from [22]. The
results for union, symmetric difference and intersection were proved in [22], and
that for difference in [23].

8 Conclusions

Our results are summarized in Table 1. The largest bounds are shown in boldface
type, and they are reached in the classes of ideal and closed languages. Recall that
for regular languages we have the following results: semigroup: nn; reverse: 2n;
star: 2n−1 + 2n−2; restricted product: (m − 1)2n + 2n−1; unrestricted product:
m2n + 2n−1; restricted ∪ and ⊕: mn; unrestricted ∪ and ⊕: (m + 1)(n + 1);
restricted \: mn; unrestricted \: mn+m; restricted ∩: mn; unrestricted ∩: mn.

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 39

Table 1: Complexities of special prefix-convex languages

Right-Ideal Prefix-Closed Prefix-Free

Semigroup n
n−1

n
n−1 nn−2

Reverse 2
n−1

2
n−1 2n−2 + 1

Star n+ 1 2
n−2 + 1 n

Product restricted m+ 2n−2 (m+ 1)2n−2 m+ n− 2

Product unrestr. m+ 2n−1 + 2n−2 + 1 (m+ 1)2n−2 m+ n− 2

∪ restricted mn− (m+ n− 2) mn mn− 2

∪ unrestricted (m+ 1)(n + 1) mn mn− 2

⊕ restricted mn mn mn− 2

⊕ unrestricted (m+ 1)(n + 1) mn mn− 2

\ restricted mn− (m− 1) mn− (n − 1) mn− (m + 2n− 4)

\ unrestricted mn+m mn− (n − 1) mn− (m + 2n− 4)

∩ restr. and unrestr. mn mn− (m + n− 2) mn− 2(m + n− 3)

References

[1] Ang, T. and Brzozowski, J. A. Languages convex with respect to binary
relations, and their closure properties. Acta Cybernet., 19(2):445–464, 2009.

[2] Bell, J., Brzozowski, J. A., Moreira, N., and Reis, R. Symmetric groups and
quotient complexity of boolean operations. In Esparza, J. and et al., editors,
ICALP 2014, volume 8573 of LNCS, pages 1–12. Springer Berlin / Heidelberg,
2014.

[3] Berstel, J., Perrin, D., and Reutenauer, C. Codes and Automata (Encyclopedia
of Mathematics and its Applications). Cambridge University Press, 2010.

[4] Brzozowski, J. A. Quotient complexity of regular languages. J. Autom. Lang.
Comb., 15(1/2):71–89, 2010.

[5] Brzozowski, J. A. In search of the most complex regular languages. Int. J.
Found. Comput. Sci,, 24(6):691–708, 2013.

[6] Brzozowski, J. A. Unrestricted state complexity of binary operations on regular
languages. In C. Câmpeanu, F. Manea and Shallit, J., editors, DCFS 2016,
volume 9777 of LNCS, pages 60–72. Springer Berlin / Heidelberg, 2016.

[7] Brzozowski, J. A. and Davies, G. Maximally atomic languages. In Ësik, Z.
and Fülop, Z., editors, Automata and Formal Languages (AFL 2014), pages
151–161. EPTCS, 2014.

[8] Brzozowski, J. A. and Davies, S. Quotient complexities of atoms in regular
ideal languages. Acta Cybernet., 22(2):293–311, 2015.

40 Janusz A. Brzozowski and Corwin Sinnamon

[9] Brzozowski, J. A., Davies, S., and Liu, B. Y. V. Most complex regular ideal
languages. Discrete Math. Theoret. Comput. Sc., 18(3), 2016. Paper #15.

[10] Brzozowski, J. A., Jirásková, G., and Li, B. Quotient complexity of ideal
languages. Theoret. Comput. Sci., 470:36–52, 2013.

[11] Brzozowski, J. A., Jirásková, G., and Zou, C. Quotient complexity of closed
languages. Theory Comput. Syst., 54:277–292, 2014.

[12] Brzozowski, J. A., Li, B., and Ye, Y. Syntactic complexity of prefix-, suffix-,
bifix-, and factor-free regular languages. Theoret. Comput. Sci., 449:37–53,
2012.

[13] Brzozowski, J. A. and Liu, B. Quotient complexity of star-free languages. Int.
J. Found. Comput. Sci., 23(6):1261–1276, 2012.

[14] Brzozowski, J. A. and Sinnamon, C. Unrestricted state complexity of binary
operations on regular and ideal languages. J. Autom. Lang. Comb. To appear.
See also http://arxiv.org/abs/1609.04439.

[15] Brzozowski, J. A., Szyku la, M., and Ye, Y. Syntactic complexity of regular
ideals. http://arxiv.org/abs/1509.06032.

[16] Brzozowski, J. A. and Tamm, H. Quotient complexities of atoms of regular
languages. Int. J. Found. Comput. Sci., 24(7):1009–1027, 2013.

[17] Brzozowski, J. A. and Tamm, H. Theory of átomata. Theoret. Comput. Sci.,
539:13–27, 2014.

[18] Brzozowski, J. A. and Ye, Y. Syntactic complexity of ideal and closed lan-
guages. In Mauri, G. and Leporati, A., editors, DLT 2011, volume 6795 of
LNCS, pages 117–128. Springer Berlin / Heidelberg, 2011.

[19] Han, Y.-S., Salomaa, K., and Wood, D. Operational state complexity of prefix-
free regular languages. In Ésik, Z. and Fülöp, Z, editors, Automata, Formal
Languages, and Related Topics, pages 99–115. Institute of Informatics, Uni-
versity of Szeged, Hungary, 2009.

[20] Holzer, M. and König, B. On deterministic finite automata and syntactic
monoid size. Theoret. Comput. Sci., 327(3):319–347, 2004.

[21] Iván, S. Complexity of atoms, combinatorially. Inform. Process. Lett.,
116(5):356–360, 2016.

[22] Jirásková, G. and Krausová, M. Complexity in prefix-free regular languages.
In McQuillan, I., Pighizzini, G., and Trost, B., editors, Proceedings of the
12th International Workshop on Descriptional Complexity of Formal Systems
(DCFS), pages 236–244. University of Saskatchewan, 2010.

Complexity of Right-Ideal, Prefix-Closed, and Prefix-Free Regular Languages 41

[23] Krausová, M. Prefix-free regular languages: Closure properties, difference, and
left quotient. In Kotásek, Z., Bouda, J., Cerná, I., Sekanina, L., Vojnar, T.,
and Antos, D., editors, MEMICS, volume 7119 of Lecture Notes in Computer
Science, pages 114–122. Springer Berlin / Heidelberg, 2011.

[24] Krawetz, B., Lawrence, J., and Shallit, J. State complexity and the monoid
of transformations of a finite set. In Domaratzki, M., Okhotin, A., Salomaa,
K., and Yu, S., editors, Proceedings of the Implementation and Application of
Automata, (CIAA), volume 3317 of LNCS, pages 213–224. Springer Berlin /
Heidelberg, 2005.

[25] Myhill, J. Finite automata and representation of events. Wright Air Develop-
ment Center Technical Report, 57–624, 1957.

[26] Pin, J.-E. Syntactic semigroups. In Handbook of Formal Languages, vol. 1:
Word, Language, Grammar, pages 679–746. Springer, New York, NY, USA,
1997.

[27] Salomaa, A., Wood, D., and Yu, S. On the state complexity of reversals of
regular languages. Theoret. Comput. Sci., 320:315–329, 2004.

[28] Thierrin, G. Convex languages. In Nivat, M., editor, Automata, Languages
and Programming, pages 481–492. North-Holland, 1973.

[29] Yu, S. State complexity of regular languages. J. Autom. Lang. Comb., 6:221–
234, 2001.

Acta Cybernetica 23 (2017) 43–59.

A Kleene Theorem for Weighted

ω-Pushdown Automata∗

Manfred Drostea and Werner Kuichb

Abstract

Weighted ω-pushdown automata were introduced as generalization of the
classical pushdown automata accepting infinite words by Büchi acceptance.
The main result in the proof of the Kleene Theorem is the construction of a
weighted ω-pushdown automaton for the ω-algebraic closure of subsets of a
continuous star-omega semiring.

1 Introduction

Weighted ω-pushdown automata were introduced by Droste, Kuich [4] as gener-
alization of the classical pushdown automata accepting infinite words by Büchi
acceptance (see Cohen, Gold [2]). To achieve the Kleene Theorem, the following
result is needed.

Let S be a continuous star-omega semiring and let (s, υ), s, υ ∈ S, with υ =∑
1≤k≤m skt

ω
k be a pair, where s, sk, tk, 1 ≤ k ≤ m, are algebraic elements. Then

an ω-pushdown automaton P can be constructed whose behavior ‖P‖ equals (s, υ).
The construction is split into three lemmas for the construction of tωk , skt

ω
k and υ.

This proves a Kleene Theorem that is in some aspects a generalization of The-
orem 4.1.8 of Cohen, Gold [2].

The paper consists of this and three more sections. In Section 2 we refer the
necessary preliminaries from the theories of semirings and semiring-semimodule
pairs. In Section 3, we present some definitions and results from Droste, Kuich
[4] that are needed in Section 4. In the last section, existing results in connection
with the Kleene Theorem are quoted and the already mentioned constructions on
ω-pushdown automata are performed.

∗The second author was partially supported by Austrian Science Fund (FWF): grant no. I1661
- N25

aInstitut für Informatik, Universität Leipzig, Leipzig, Germany, E-mail:
droste@informatik.uni-leipzig.de

bInstitut für Diskrete Mathematik und Geometrie, Technische Universität Wien, Wien, Aus-
tria, E-mail: kuich@tuwien.ac.at

DOI: 10.14232/actacyb.23.1.2017.4

44 Manfred Droste and Werner Kuich

2 Preliminaries

For the convenience of the reader, we quote definitions and results of Ésik, Kuich
[6, 7, 9] from Ésik, Kuich [10]. The reader should be familiar with Sections 5.1-5.6
of Ésik, Kuich [10].

A semiring S is called complete if it is possible to define sums for all families
(ai | i ∈ I) of elements of S, where I is an arbitrary index set, such that the
following conditions are satisfied (see Conway [3], Eilenberg [5], Kuich [11]):

(i)
∑
i∈∅

ai = 0,
∑
i∈{j}

ai = aj ,
∑

i∈{j,k}

ai = aj + ak for j 6= k ,

(ii)
∑
j∈J

(∑
i∈Ij

ai
)

=
∑
i∈I

ai , if
⋃
j∈J

Ij = I and Ij ∩ Ij′ = ∅ for j 6= j′ ,

(iii)
∑
i∈I

(c · ai) = c ·
(∑
i∈I

ai
)
,

∑
i∈I

(ai · c) =
(∑
i∈I

ai
)
· c .

This means that a semiring S is complete if it is possible to define “infinite
sums” (i) that are an extension of the finite sums, (ii) that are associative and
commutative and (iii) that satisfy the distribution laws.

A semiring S equipped with an additional unary star operation ∗ : S → S is
called a starsemiring. In complete semirings for each element a, the star a∗ of a is
defined by

a∗ =
∑
j≥0

aj .

Hence, each complete semiring is a starsemiring, called a complete starsemiring. A
Conway semiring (see Conway [3], Bloom, Ésik [1]) is a starsemiring S satisfying
the sum star identity

(a+ b)∗ = a∗(ba∗)∗

and the product star identity

(ab)∗ = 1 + a(ba)∗b

for all a, b ∈ S. Observe that by Ésik, Kuich [10], Theorem 1.2.24, each complete
starsemiring is a Conway semiring.

Suppose that S is a semiring and V is a commutative monoid written additively.
We call V a (left) S-semimodule if V is equipped with a (left) action

S × V → V

(s, v) 7→ sv

subject to the following rules:

s(s′v) = (ss′)v , (s+ s′)v = sv + s′v , s(v + v′) = sv + sv′ ,

1v = v , 0v = 0 , s0 = 0 ,

A Kleene Theorem for Weighted ω-Pushdown Automata 45

for all s, s′ ∈ S and v, v′ ∈ V . When V is an S-semimodule, we call (S, V) a
semiring-semimodule pair.

Suppose that (S, V) is a semiring-semimodule pair such that S is a starsemiring
and S and V are equipped with an omega operation ω : S → V . Then we call
(S, V) a starsemiring-omegasemimodule pair. Following Bloom, Ésik [1], we call a
starsemiring-omegasemimodule pair (S, V) a Conway semiring-semimodule pair if
S is a Conway semiring and if the omega operation satisfies the sum omega identity
and the product omega identity :

(a+ b)ω = (a∗b)ω + (a∗b)∗aω and (ab)ω = a(ba)ω,

for all a, b ∈ S. It then follows that the omega fixed-point equation holds, i.e.

aaω = aω,

for all a ∈ S.
Ésik, Kuich [8] define a complete semiring-semimodule pair to be a semiring-

semimodule pair (S, V) such that S is a complete semiring and V is a complete
monoid with

s
(∑
i∈I

vi
)

=
∑
i∈I

svi and
(∑
i∈I

si
)
v =

∑
i∈I

siv ,

for all s ∈ S, v ∈ V , and for all families (si)i∈I over S and (vi)i∈I over V ; moreover,
it is required that an infinite product operation

(s1, s2, . . .) 7→
∏
j≥1

sj

is given mapping infinite sequences over S to V subject to the following three
conditions: ∏

i≥1

si =
∏
i≥1

(sni−1+1 · · · · · sni)

s1 ·
∏
i≥1

si+1 =
∏
i≥1

si∏
j≥1

∑
ij∈Ij

sij =
∑

(i1,i2,...)∈I1×I2×...

∏
j≥1

sij ,

where in the first equation 0 = n0 ≤ n1 ≤ n2 ≤ . . . and I1, I2, . . . are arbitrary
index sets. Suppose that (S, V) is complete. Then we define

s∗ =
∑
i≥0

si and sω =
∏
i≥1

s ,

for all s ∈ S. This turns (S, V) into a starsemiring-omegasemimodule pair. By
Ésik, Kuich [8], each complete semiring-semimodule pair is a Conway semiring-
semimodule pair. Observe that, if (S, V) is a complete semiring-semimodule pair,
then 0ω = 0.

46 Manfred Droste and Werner Kuich

A star-omega semiring is a semiring S equipped with unary operations ∗ and
ω : S → S. A star-omega semiring S is called complete if (S, S) is a complete
semiring semimodule pair, i.e., if S is complete and is equipped with an infinite
product operation that satisfies the three conditions stated above.

A commutative monoid (V,+, 0) is continuous (cf. Section 2.2 of [10]) if it is
equipped with a a partial order ≤ such that the supremum of any chain exists and
0 is the least element. Moreover, the sum operation + is continuous:

x+ supY = sup(x+ Y)

for all nonempty chains, where x+ Y = {x+ y : y ∈ Y }. (Actually this also holds
when the set is empty.) It follows that the sum operation is monotonic: if x ≤ y in
V , then x+ z ≤ y + z for all z ∈ V .

Suppose now that S = (S,+, ·, 0, 1) is a semiring. We say that S is a continuous
semiring (cf. Section 2.2 of [10]) if (S,+, 0) is a continuous commutative monoid
equipped with a partial order≤ and the product operation is continuous (hence, also
monotonic), i.e., it preserves the supremum of nonempty chains in either argument:

(supX)y = sup(Xy)

y(supX) = sup(yX) ,

for all nonempty chains X ⊆ S, where Xy = {xy : x ∈ X} and yX is defined in
the same way.

By Corollary 2.2.2 of Ésik, Kuich [10] any continuous semiring is complete.

3 Weighted ω-pushdown automata

Weighted ω-pushdown automata were introduced by Droste, Kuich [4] as gener-
alization of the classical pushdown automata accepting infinite words by Büchi
acceptance (see Cohen, Gold [2]). In this section we refer to definitions and results
of Droste, Kuich [4] that are needed for this paper.

Following Kuich, Salomaa [12] and Kuich [11], we introduce pushdown transi-
tions matrices. Let Γ be an alphabet, called pushdown alphabet and let n ≥ 1. A
matrix M ∈ (Sn×n)Γ∗×Γ∗ is termed a pushdown transition matrix (with pushdown
alphabet Γ and stateset {1, . . . , n}) if

(i) for each p ∈ Γ there exist only finitely many blocks Mp,π, π ∈ Γ∗, that are
unequal to 0;

(ii) for all π1, π2 ∈ Γ∗,

Mπ1,π2 =

{
Mp,π if there exist p ∈ Γ, π, π′ ∈ Γ∗ with π1 = pπ′, π2 = ππ′,

0 otherwise.

A Kleene Theorem for Weighted ω-Pushdown Automata 47

For the remaining of this paper, M ∈ (Sn×n)Γ∗×Γ∗ will denote a pushdown
transition matrix with pushdown alphabet Γ and stateset {1, . . . , n}.

When we say “G is the graph with adjacency matrix M ∈ (Sn×n)Γ∗×Γ∗” then it
means that G is the graph with adjacency matrix M ′ ∈ S(Γ∗×n)×(Γ∗×n), where M ′

corresponds to M with respect to the canonical isomorphism between ((Sn×n)Γ∗×Γ∗

and S(Γ∗×n)(Γ∗×n).
Let now M be a pushdown transition matrix and 0 ≤ k ≤ n. Then Mω,k is

the column vector in (Sn)Γ∗ defined as follows: For π ∈ Γ∗ and 1 ≤ i ≤ n, let
((Mω,k)π)i be the sum of all weights of paths in the graph with adjacency matrix
M that have initial vertex (π, i) and visit vertices (π′, i′), π′ ∈ Γ∗, 1 ≤ i′ ≤ k,
infinitely often. Observe that Mω,0 = 0 and Mω,n = Mω.

Let Pk = {(j1, j2, . . .) ∈ {1, . . . , n}ω | jt ≤ k for infinitely many t ≥ 1}.
Then for π ∈ Γ+, 1 ≤ j ≤ n, we obtain

((Mω,k)π)j =
∑

π1,π2,···∈Γ+

∑
(j1,j2,...)∈Pk

(Mπ,π1
)j,j1(Mπ1,π2

)j1,j2(Mπ2,π3
)j2,j3

For the definition of an S′-algebraic system over a quemiring S × V we refer
the reader to [10], page 136, and for the definition of quemirings to [10], page 110.
Here we note that a quemiring T is isomorphic to a quemiring S × V determined
by the semiring-semimodule pair (S, V), cf. [10], page 110.

Let S′ ⊆ S, with 0, 1 ∈ S′, and let M ∈ (S′
n×n

)Γ∗×Γ∗ be a pushdown matrix.
Consider the S′

n×n
-algebraic system over the complete semiring-semimodule pair

(Sn×n, Sn)

yp =
∑
π∈Γ∗

Mp,πyπ , p ∈ Γ . (1)

(See Section 5.6 of Ésik, Kuich [10].) The variables of this system (1) are yp, p ∈ Γ,
and yπ, π ∈ Γ∗, is defined by ypπ = ypyπ for p ∈ Γ, π ∈ Γ∗ and yε = 1. Hence, for
π = p1 . . . pk, yπ = yp1

. . . ypk . The variables yp are variables for (Sn×n, Sn).
Let x = (xp)p∈Γ, where xp, p ∈ Γ, are variables for Sn×n. Then, for p ∈ Γ,

π = p1p2 . . . pk, (Mp,πyπ)x is defined to be

(Mp,πyπ)x

= (Mp,πyp1
. . . ypk)x

= Mp,πzp1
+Mp,πxp1

zp2
+ · · ·+Mp,πxp1

. . . xpk−1
zpk .

Here zp, p ∈ Γ, are variables for Sn.
We obtain, for p ∈ Γ, π = p1 . . . pk,

(Mp,πyπ)x =
∑
p′∈Γ

∑
π=p1...pk∈Γ+

pj=p′

Mp,πxp1 . . . xpj−1zp′

=
∑

π=p1...pk∈Γ+

Mp,π

∑
1≤j≤k

xp1
. . . xpj−1

zpj .

48 Manfred Droste and Werner Kuich

The system (1) induces the following mixed ω-algebraic system:

xp =
∑
π∈Γ∗

Mpπxπ , p ∈ Γ, (2)

zp =
∑
π∈Γ∗

(Mp,πyπ)(xp)p∈Γ
=
∑
p′∈Γ

∑
π=p1...pk∈Γ+

pj=p′

Mp,πxp1
. . . xpj−1

zp′ . (3)

Here (2) is an S′
n×n

-algebraic system over the semiring Sn×n (see Section 2.3
of Ésik, Kuich [10]) and (3) is an Sn×n-linear system over the semimodule Sn (see
Section 5.5 of Ésik, Kuich [10]).

By Theorem 5.6.1 of Ésik, Kuich [10], (A,U) ∈ ((Sn×n)Γ, (Sn)Γ) is a solution
of (1) iff A is a solution of (2) and (A,U) is a solution of (3).

Theorem 3.1. Let S be a complete star-omega semiring and M ∈ (S′
n×n

)Γ∗×Γ∗

be a pushdown transition matrix. Then, for all 0 ≤ k ≤ n,

(((M∗)p,ε)p∈Γ, ((M
ω,k)p)p∈Γ)

is a solution of (1).

We now introduce pushdown automata and ω-pushdown automata (see Kuich,
Salomaa [12], Kuich [11], Cohen, Gold [2]).

Let S be a complete semiring and S′ ⊆ S with 0, 1 ∈ S′. An S′-pushdown
automaton over S

P = (n,Γ, I,M, P, p0)

is given by

(i) a finite set of states {1, . . . , n}, n ≥ 1,

(ii) an alphabet Γ of pushdown symbols,

(iii) a pushdown transition matrix M ∈ (S′
n×n

)Γ∗×Γ∗ ,

(iv) an initial state vector I ∈ S′1×n,

(v) a final state vector P ∈ S′n×1
,

(vi) an initial pushdown symbol p0 ∈ Γ,

The behavior ‖P‖ of P is an element of S and is defined by ‖P‖ = I(M∗)p0,εP .
For a complete semiring-semimodule pair (S, V), an S′-ω-pushdown automaton

(over (S, V))

P = (n,Γ, I,M, P, p0, k)

is given by an S′-pushdown automaton (n,Γ, I,M, P, p0) and an k ∈ {0, . . . , n}
indicating that the states 1, . . . , k are repeated states.

A Kleene Theorem for Weighted ω-Pushdown Automata 49

The behavior ‖P‖ of the S′-ω-pushdown automaton P is defined by

‖P‖ = I(M∗)p0,εP + I(Mω,k)p0
.

Here I(M∗)p0,εP is the behavior of the S′-ω-pushdown automaton
P1 = (n,Γ, I,M, P, p0, 0) and I(Mω,k)p0 is the behavior of the S′-ω-pushdown
automaton P2 = (n,Γ, I,M, 0, p0, k). Observe that P2 is an automaton with the
Büchi acceptance condition: if G is the graph with adjacency matrix M , then only
paths that visit the repeated states 1, . . . , k infinitely often contribute to ‖P2‖. Fur-
thermore, P1 contains no repeated states and behaves like an ordinary S′-pushdown
automaton.

Theorem 3.2. Let S be a complete star-omega semiring and let
P = (n,Γ, I,M, P, p0, k) be an S′-ω-pushdown automaton over (S, S). Then
(‖P‖, (((M∗)p,ε)p∈Γ, ((M

ω,k)p)p∈Γ)), 0 ≤ k ≤ n, is a solution of the S′
n×n

-
algebraic system

y0 = Iyp0
P, yp =

∑
π∈Γ∗

Mp,πyπ, p ∈ Γ

over the complete semiring-semimodule pair (Sn×n, Sn).

Let now S be a continuous star-omega semiring and consider an S′-algebraic
system y = p(y) over (S, S). Then the least solution of the S′-algebraic system
x = p(x) over S, say σ, exists, and the components of σ are elements of Alg (S′).
Moreover, write the Alg (S′)-linear system z = p0(z) over S in the form z = Mz,
where M is an n×n-matrix. Then, by Theorem 5.6.1 of Ésik, Kuich [10], (σ,Mω,k),
0 ≤ k ≤ n, is a solution of y = p(y). Given a k ∈ {0, 1, . . . , n}, we call this solution
the solution of order k of y = p(y). By ω-Alg (S′) we denote the collection of all
components of solutions of all orders k of S′-algebraic systems over (S, S). (For
details see Section 5.6 of Ésik, Kuich [10].)

4 The Kleene Theorem

The main result of this section is the following Kleene Theorem.

Theorem 4.1. Let S be a continuous star-omega semiring. Then the following
statements are equivalent for (s, v) ∈ S × S:

(i) (s, v) = ‖A‖, where A is a finite Alg (S′)-automaton over the quemiring (S, S),

(ii) (s, v) ∈ ω-Alg (S′),

(iii) s ∈ Alg (S′) and v =
∑

1≤k≤m skt
ω
k , where sk, tk ∈ Alg (S′) , 1 ≤ k ≤ m,

(iv) (s, v) = ‖P‖, where P is an S′-ω-pushdown automaton.

The proof of this Kleene Theorem is performed as follows:

50 Manfred Droste and Werner Kuich

1. The equivalence of (i), (ii) and (iii) is proved in [10], Theorem 5.4.9.

2. The implication (iv)⇒ (ii) is a simple corollary of Theorem 13 of [4].

3. The proof of the implication (iii) ⇒ (iv) is performed by Lemmas 4.1, 4.2
and 4.3 proved in the following pages.

Lemma 4.1. Let S be a complete star-omega semiring and P be an S′-pushdown
automaton. Then there exists an S′-ω-pushdown automaton P ′ such that ‖P ′‖ =
‖P‖ω.

Proof. Let P = (n,Γ,M, I, P, p0). Then we construct P ′ = (2n,Γ′,M ′, I ′, 0, p′0, n),
Γ′ = Γ ∪ {p′0} as follows.

The pushdown transition matrix M ′ ∈
(
S′2n×2n

)Γ′∗×Γ′∗

has, for π ∈ Γ∗,
1 ≤ j ≤ n, the entries

(M ′p′0,p′0)n+i,j = (PI)i,j ,

(M ′p′0,πp′0)i,n+j = (Mp0,π)i,j

(M ′p,π)n+i,n+j = (Mp,π)i,j ;

all other entries of the matrices M ′p,π, p ∈ Γ′, π ∈ Γ′∗, are 0.

The initial state vector I ′ ∈ S′2n×1 has, for 1 ≤ i ≤ n, the entries

I ′i = Ii, I
′
n+i = 0.

We have to prove that

‖P ′‖ = I ′ (M ′ω,n)p′0
= ‖P‖ω =

(
I (M∗)p0,ε

P
)ω

.

The proof of this claim is as follows.

By definition, for 1 ≤ i ≤ 2n,

(
(M ′ω,n)p′0

)
i

=
∑

π1,π2,...∈Γ′∗

∑
i1,i2,...∈Pn

1≤i1,i2,...≤2n

(
M ′p′0,π1

)
i,i1

(
M ′π1,π2

)
i1,i2
· · ·

Inspection shows that a repeated state in the sequence i1, i2, . . . appears only
if in the run p′0, π1, π2, . . . a transition from p′0 to p′0 appears.

A Kleene Theorem for Weighted ω-Pushdown Automata 51

Hence, we obtain, with i10 = i, πt0 = ε for t ≥ 1,(
(M ′ω,n)p′0

)
i

=
∏
t≥1

∑
kt≥1

∑
1≤it0,...,itkt

≤n

∑
πt

1,··· ,πt
kt−1∈Γ∗

(
M ′p′0,πt

1p
′
0

)
it0,n+it1

(
M ′πt

1p
′
0,π

t
2p
′
0

)
n+it1,n+it2

· · ·

(
M ′πt

kt−1p
′
0,p
′
0

)
n+itkt−1,n+itkt

(
M ′p′0,p′0

)
n+itkt

,it+1
0

=
∏
t≥1

∑
kt≥1

∑
1≤it0,...,itkt

≤n

∑
πt

1,...,π
t
kt−1∈Γ∗

(
Mp0,πt

1

)
it0,i

t
1

(
Mπt

1,π
t
2

)
it1,i

t
2

· · ·

(
Mπt

kt−1,ε

)
itkt−1,i

t
kt

(PI)itkt
,it+1

0

=
∏
t≥1

∑
kt≥1

∑
1≤it0≤n

((
Mkt

)
p0,ε

PI
)
it0,i

t+1
0

=
∏
t≥1

∑
1≤it0≤n

(∑
kt≥1

(
Mkt

)
p0,ε

PI
)
it0,i

t+1
0

=
∏
t≥1

∑
1≤it0≤n

(
(M∗)p0,ε

PI
)
it0,i

t+1
0

=
(

(M∗)p0,ε
PI
)ω
i
.

Hence,

‖P ′‖ =
∑

1≤i≤2n

Ii

(
(M ′ω,n)p′0

)
i

=
∑

1≤i≤n

Ii

(
(M ′ω,n)p′0

)
i

= I (M ′ω,n)p′0

= I
(

(M∗)p0,ε
PI
)ω

=
(
I (M∗)p0,ε

P
)ω

= ‖P‖ω.

Lemma 4.2. Let S be a complete star-omega semiring, P1 be an S′-ω-pushdown
automaton and P2 be an S′-pushdown automaton. Then there exists an S′-ω-
pushdown automaton P such that ‖P‖ = ‖P2‖‖P1‖.

Proof. Let P1 = (n1,Γ1, I1,M1, P1, p1, k) and P2 = (n2,Γ2, I2,M2, P2, p2) with
Γ1 ∩ Γ2 = ∅. Then we construct P = (n1 + n2,Γ1 ∪ Γ2, I,M, P, p2, k) as follows.

52 Manfred Droste and Werner Kuich

Let Q1 = {1, . . . , n1} and Q2 = {n1 + 1, . . . , n2}. The pushdown transition
matrix M ∈ (S′(n1+n2)×(n1+n2))(Γ1∪Γ2)∗×(Γ1∪Γ2)∗ has entries

1. transitions from Q2 to Q2

(Mp2,πp1
)i,j =

(
(M2)p2,π

)
i,j
, i, j ∈ Q2, π ∈ Γ+

2 ,

(Mp,π)i,j =
(

(M2)p,π

)
i,j
, i, j ∈ Q2, p ∈ Γ2, π ∈ Γ+

2 ,

(Mp,ε)i,j =
(

(M2)p,ε

)
i,j
, i, j ∈ Q2, p ∈ Γ2;

2. transitions from Q2 to Q1

(Mp2,p1
)i,j =

(
(M2)p2,ε

P2I1

)
i,j
, i ∈ Q2, j ∈ Q1,

(Mp,ε)i,j =
(

(M2)p,ε P2I1

)
i,j
, i ∈ Q2, j ∈ Q1, p ∈ Γ2;

3. transitions from Q1 to Q1

(Mp,π)i,j =
(

(M1)p,π

)
i,j
, i, j ∈ Q1, p ∈ Γ1, π ∈ Γ∗1.

All other entries of the matrices Mp,π, p ∈ Γ1 ∪ Γ2, π ∈ (Γ1 ∪ Γ2)∗, are 0.
The initial state vector I ∈ S′1×(n1+n2) and the final state vector

P ∈ S′(n1+n2)×1 have the entries

Ii = 0, i ∈ Q1, Ii = (I2)i, i ∈ Q2;

Pi = (P1)i, i ∈ Q1, Pi = 0, i ∈ Q2.

We have to prove that

‖P‖ = I (M∗)p2,ε
P + I

(
Mω,k

)
p2

= I2 (M∗2)p2,ε
P2I1 (M∗1)p1,ε

P1 + I2 (M∗2)p2,ε
P2I1

(
Mω,k

1

)
p1

= ‖P2‖‖P1‖.

The proof of this claim is as follows.
By definition,((

Mω,k
)
p2

)
i0

=
∑

π1,π2,...∈(Γ1∪Γ2)∗

∑
i1,i2,...∈Pk

1≤i1,i2,...≤n1+n2(
n

k

)
(Mp2,π1

)i0,i1 (Mπ1,π2
)i1,i2 . . . , i0 ∈ Q2,

((
Mω,k

)
p2

)
i0

= 0, i0 ∈ Q1.

A Kleene Theorem for Weighted ω-Pushdown Automata 53

As long as P remains in a state of Q2, the contents of the pushdown tape is
πp1, π ∈ Γ∗2. The transition from a state of Q2 to a state of Q1 is possible only in
the following three situations:

(a) In the first step, the contents p2 of the pushdown tape is replaced by p1.

(b) The contents of the pushdown tape is pp1, p ∈ Γ2, and p is replaced by the
empty word; so that after this replacement the contents is p1.

(c) The contents of the pushdown tape is pπp1, p ∈ Γ2,π ∈ Γ+
2 , and p is replaced

by the empty word. In this situation, no continuation of the computation of P
is possible.

Since all the repeated states are states in Q1, there must be a transition from a
state of Q2 to a state of Q1.

As long as P remains in a state of Q2 with πp1, π ∈ Γ∗2, on the pushdown tape,
it simulates P2 up to situations (a) or (b). Then p1 is the contents of the pushdown
tape of P, P is in a state of Q1 and simulates P1, since there is no transition from
a state of Q1 to a state of Q2.

Hence, we obtain, for i0 ∈ Q2,((
Mω,k

)
p2

)
i0

=
∑

π1,π2,...∈Γ+
1

∑
j0,j1,...∈Q1

(j0,j1,...)∈Pk

(Mp2,p1
)i0,j0 (Mp1,π1

)j0,j1 (Mπ1,π2
)j1,j2 · · ·+∑

t≥1

∑
ρ1,...,ρt−1∈Γ+

2

∑
ρt∈Γ2

∑
π1,π2,...∈Γ+

1

∑
i1,...,it∈Q2

∑
j0,j1,...∈Q1

(j0,j1,...)∈Pk

(Mp2,ρ1p1
)i0,i1

(
n

k

)
(Mρ1p1,ρ2p2

)i1,i2 . . . (Mρtp1,p1
)it,j0 (Mp1,π1

)j0,j1 (Mπ1,π2
)j1,j2 . . .

=
∑
j0∈Q1

(
(M2)p2,ε

P2I1

)
i0,j0

((
Mω,k

1

)
p1

)
j0

+
∑
t≥1

∑
ρ1,...,ρt−1∈Γ+

2∑
ρt∈Γ2

∑
π1,π2,...∈Γ+

1

∑
i1,...,it∈Q2

∑
j0,j1,...∈Q1

(j0,j1,...)∈Pk

(
(M2)p2,ρ1

)
i0,i1

(
(M2)ρ1,ρ2

)
i1,i2

. . .

((
(M2)ρt,ε

)
P2I1

)
it,j0

(
(M1)p1,π1

)
j0,j1

(
(M1)π1,π2

)
j1,j2

. . .

=
∑
j0∈Q1

∑
t≥0

((
M t+1

2

)
p2,ε

P2I1

)
i0,j0

((
Mω,k

1

)
p1

)
j0

=
(

(M∗2)p2,ε
P2I1

(
Mω,k

1

)
p1

)
i0
.

In the first equality, the first summand on the right side represents situation (a),
while the second summand represents situation (b).

54 Manfred Droste and Werner Kuich

By definition,(
(M∗)p2,ε

)
i0,j

=
∑
t≥1

∑
π1,...,πt∈(Γ1∪Γ2)∗

∑
1≤i1,...,it≤n1+n2

(Mp2,π1)i0,i1(
n

k

)
(Mπ1,π2)i1,i2 . . . (Mπt,ε)it,j , i0 ∈ Q2, j ∈ Q1 ∪Q2,(

(M∗)p2,ε

)
i0,j

= 0, i0 ∈ Q1, j ∈ Q1 ∪Q2.

Observe that π1 = πp1, π ∈ Γ∗2. To obtain the empty tape, P has to replace
eventually p1 by some π′ ∈ Γ∗1. But this is possible only in situations (a) or (b).

Hence, we obtain, for i0 ∈ Q2, j ∈ Q1,(
(M∗)p2,ε

)
i0,j

=
∑
j0∈Q1

(Mp2,p1
)i0,j0

(
(M∗)p1,ε

)
j0,j

+

∑
t≥1

∑
ρ1,...,ρt−1∈Γ+

2

∑
ρt∈Γ2

∑
i1,...,it∈Q2

∑
j0∈Q1

(Mp2,ρ1p1)i0,i1 . . .

(Mρtp1,p1
)it,j0

(
(M∗)p1,ε

)
j0,j

=
∑
j0∈Q1

(
(M2)p2,ε

P2I1

)
i0,j0

(
(M∗1)p1,ε

)
j0,j

+

∑
t≥1

∑
ρ1,...,ρt−1∈Γ+

2

∑
ρl∈Σ2

∑
i1,...,it∈Q2

∑
j0∈Q1

(
(M2)p2,ρ1

)
i0,i1

. . .

(
(M2)ρt−1,ρt

)
it−1,it

(
(M2)ρt,ε P2I1

)
it,j0

(
(M∗1)p1,ε

)
j0,j

=
(

(M2)p2,ε
P2I1 (M∗1)p1,ε

)
j0,j

+∑
j0∈Q1

∑
t≥1

((
M t+1

2

)
p2,ε

P2I1

)
i0,j0

(
(M∗1)p1,ε

)
j0,j

=
∑
t≥0

((
M t+1

2

)
p2,ε

P2I1 (M∗1)p1,ε

)
i0,j

=
(

(M∗2)p2,εP2I1(M∗1)p1,ε

)
i0,j

,

and, for i0 ∈ Q2, j ∈ Q2, (
(M∗)p2,ε

)
i0,j

= 0.

In the first equality, the first summand on the right side represents situation (a),
while the second summand represents situation (b).

A Kleene Theorem for Weighted ω-Pushdown Automata 55

We obtain

I (M∗)p2,ε
P =

∑
i∈Q2

∑
j∈Q1

(I2)i

(
(M∗2)p2,ε

P2I1 (M∗1)p1,ε

)
i,j

(P1)j

= I2 (M∗2)p2,ε
P2I1 (M∗1)p1,ε

P1

and

I
(
Mω,k

)
p2

=
∑
i∈Q2

(I2)i

(
(M∗2)p2,ε

P2I1

(
Mω,k

1

)
p1

)
i

= I2 (M∗2)p2,ε
P2I1

(
Mω,k

1

)
p1
.

Hence,

‖P‖ = I (M∗)p2,ε
P + I

(
Mω,k

)
p2

= I2 (M∗2)p2,ε
P2

(
I1 (M∗1)p1,ε

P1 + I1

(
Mω,k

1

)
p1

)
= ‖P2‖‖P1‖.

Lemma 4.3. Let S be a complete star-omega semiring and P1, P2 S
′-ω-pushdown

automata. Then there exists an S′-ω-pushdown automaton P such that ‖P‖ =
‖P1‖+ ‖P2‖.

Proof. Let Pi = (ni,Γi, Ii,Mi, Pi, pi, ki), i = 1, 2, with Γ1 ∩ Γ2 = ∅. Then we
construct P = (n1 + n2,Γ, I,M, P, p0, k1 + k2), Γ = Γ1 ∪ Γ2 ∪ {p0}.

The matrixM ∈
(
S′(n1+n2)×(n1+n2)

)Γ∗×Γ∗

is defined as follows. Let, for π1, π2 ∈
Γ∗1, (π1, π2) 6= (ε, ε),

(M1)π1,π2
=

(
aπ1,π2 bπ1,π2

cπ1,π2
dπ1,π2

)
,

where the blocks are indexed by {1, . . . , k1}, {k1 + 1, . . . , n1}, and, for π1, π2 ∈ Γ∗2,
(π1, π2) 6= (ε, ε),

(M2)π1,π2
=

(
aπ1,π2

bπ1,π2

cπ1,π2
dπ1,π2

)
,

where the blocks are indexed by {1, . . . , k2}, {k2 + 1, . . . , n2}.
Then, we define, for π ∈ Γ∗1,

Mp0,π =

ap1,π 0 bp1,π 0

0 0 0 0
cp1,π 0 dp1,π 0

0 0 0 0

 ;

56 Manfred Droste and Werner Kuich

for π ∈ Γ∗2,

Mp0,π =

0 0 0 0
0 ap1,π 0 bp1,π

0 0 0 0
0 cp1,π 0 dp1,π

 ;

for p ∈ Γ1, π ∈ Γ∗1,

Mp,π =

ap,π 0 bp,π 0

0 0 0 0
cp,π 0 dp,π 0

0 0 0 0

 ;

and for p ∈ Γ2, π ∈ Γ∗2,

Mp,π =

0 0 0 0
0 ap,π 0 bp,π
0 0 0 0
0 cp,π 0 dp,π

 .

Here the blocks are indexed by {1, . . . , k1}, {k1 + 1, . . . , k1 + k2},{k1 + k2 +
1, . . . , k2 + n1},{k2 + n1 + 1, . . . , n1 + n2}.

The initial state vector I ∈ S′1×(n1+n2) and the final state vector
P ∈ S′(n1+n2)×1 are defined by

I =
(

((I1)i)1≤i≤k1
, ((I2)i)1≤i≤k2

, ((I1)i)k1+1≤i≤n1
, ((I2)i)k2+1≤i≤n2

)
,

and

P =
(

((P1)i)1≤i≤k1
, ((P2)i)1≤i≤k2

, ((P1)i)k1+1≤i≤n1
, ((P2)i)k2+1≤i≤n2

)>
,

with the same block indexing as before.

We have to prove that

‖P‖ = ‖P1‖+ ‖P2‖ = (I1M
∗
1P1 + I2M

∗
2P2) + (I1M

ω,k1

1 + I2M
ω,k2

2).

The proof of this claim is as follows.

We obtain, for 1 ≤ i ≤ n1 + n2,((
Mω,k1+k2

)
p0

)
i

=
∑

π1,π2,...∈Γ+

∑
(i1,i2,...)∈Pk1+k2
1≤i1,i2,...≤n1+n2

(Mp0,π1)i,i1 (Mπ1,π2)i1,i2 . . .

For 1 ≤ i ≤ k1 and k1 + k2 + 1 ≤ i ≤ n1 + k2, and by deleting the 0-block rows

A Kleene Theorem for Weighted ω-Pushdown Automata 57

and the corresponding 0-block columns, we obtain((
Mω,k1+k2

)
p0

)
i

=
∑

π1,π2,...∈Γ+
1

∑
(i1,i2,...)∈Pk1
1≤i1,i2,...≤n1

(
ap1,π1

bp1,π1

cp1,π1 dp1,π1

)
i,i1

(
aπ1,π2

bπ1,π2

cπ1,π2 dπ1,π2

)
i1,i2

. . .

=
∑

π1,π2,...∈Γ+
1

∑
(i1,i2,...)∈Pk1
1≤i1,i2,...≤n1

(
(M1)p1,π1

)
i,i1

(
(M1)π1,π2

)
i1,i2

. . .

=

((
Mω,k1

1

)
p1

)
i′
,

where i′ = i if 1 ≤ i ≤ k1 and i′ = i− k2 if k1 + k2 + 1 ≤ i ≤ n1 + k2.
A similar proof yields, for k1 + 1 ≤ i ≤ k1 + k2 and n1 + k2 + 1 ≤ i ≤ n1 + n2,

and by deleting the 0-block rows and the corresponding 0-block columns,((
Mω,k1+k2

)
p0

)
i

=

((
Mω,k2

2

)
p2

)
i′
,

where i′ = i−k1 if k1 + 1 ≤ i ≤ k1 +k2 and i′ = i−n1 if n1 +k2 + 1 ≤ i ≤ n1 +n2.
By similar arguments, we obtain, for 1 ≤ i, j ≤ k1 and k1+k2+1 ≤ i, j ≤ n1+k2,(

(M∗)p0,ε

)
i,j

=
(

(M1)
∗
p1,ε

)
i′,j′

,

where i′ = i if 1 ≤ i ≤ k1, i′ = i − k2 if k1 + k2 + 1 ≤ i ≤ n1 + k2, j′ = j if
1 ≤ j ≤ k1, and j′ = j − k2 if k1 + k2 + 1 ≤ j ≤ n1 + k2,

and for k1 + 1 ≤ i, j ≤ k1 + k2 and n1 + k2 + 1 ≤ i, j ≤ n1 + n2,(
(M∗)p0,ε

)
i,j

=
(

(M2)
∗
p2,ε

)
i′,j′

,

where i′ = i− k1 if k1 + 1 ≤ i ≤ k1 + k2, i′ = i− n1 if n1 + k2 + 1 ≤ i ≤ n1 + n2,
j′ = j − k1 if k1 + 1 ≤ j ≤ k1 + k2, and j′ = j − n1 if n1 + k2 + 1 ≤ j ≤ n1 + n2.

Hence, we obtain

IM∗P =
∑

1≤i≤k1
k1+k2+1≤i≤k2+n2

∑
1≤j≤k1

k1+k2+1≤j≤k2+n1

IiM
∗
i,jPj+

∑
k1+1≤i≤k1+k2

k2+n1+1≤i≤n1+n2

∑
k1+1≤j≤k1+k2

k2+n1+1≤j≤n1+n2

IiM
∗
i,jPj

=
∑

1≤i≤n1

∑
1≤j≤n1

(I1)i (M∗1)i,j (P1)j +

∑
1≤i≤n2

∑
1≤j≤n2

(I2)i (M∗2)i,j (P2)j

= I1M
∗
1P1 + I2M

∗
2P2,

58 Manfred Droste and Werner Kuich

IMω,k1+k2

=
∑

1≤i≤k1
k1+k2+1≤i≤k2+n1

I1

((
Mω,k1+k2

)
p0

)
i
+

∑
k1+1≤i≤k1+k2

k2+n1+1≤i≤n1+n2

(
I1
(
Mω,k1+k2

)
p0

)
i

=
∑

1≤i≤n1

(I1)i

((
Mω,k1

1

)
p1

)
i

+
∑

1≤i≤n2

(I2)i

((
Mω,k2

2

)
p2

)
i

=I1

(
Mω,k1

1

)
p1

+ I2

(
Mω,k2

2

)
p2

,

and

‖P‖ = IM∗P + IMω,k1+k2

=

(
I1M

∗
1P1 + I1

(
Mω,k1

1

)
p1

)
+

(
I2M

∗
2P2 + I2

(
Mω,k2

2

)
p2

)
= ‖P1‖+ ‖P2‖.

Proof of Theorem 4.1. We have only to prove implication (iii) ⇒ (iv). Since
s, sk, tk, 1 ≤ k ≤ m, are in Alg (S′), there exist, by Theorem 6.8 of Kuich [11], S′-
pushdown automata Ps, Psk , Ptk with behaviors ‖Ps‖ = s, ‖Psk‖ = sk, ‖Ptk‖ = tk.

By Lemma 4.1, we can construct S′-ω-pushdown automata P ′k with behaviors
‖P ′k‖ = tωk , 1 ≤ k ≤ m; by Lemma 4.2 S′-ω-pushdown automata Pk with behaviors
‖Pk‖ = skt

ω
k , and by Lemma 4.3 an S′-ω-pushdown automaton P ′ with behavior

‖P ′‖ =
∑

1≤k≤m skt
ω
k . Again by Lemma 4.3, we can construct an S′-ω-pushdown

automaton P with behavior ‖P‖ =
(
s,
∑

1≤k≤m skt
ω
k

)
.

Algebraic expressions denoting formal power series in Salg〈〈Σ∗〉〉, S a continuous
commutative semiring and Σ an alphabet, are defined in Section 3.5 of Ésik, Kuich
[10]. By help of Theorem 4.1 (iii) ω-algebraic expressions denoting pairs (s, υ) ∈
ω-Alg (S′), S′ = S〈Σ∪{ε}〉, S a continuous star-omega semiring and Σ an alphabet,
can easily be defined.

References

[1] Bloom, S. L., Ésik, Z.: Iteration Theories. EATCS Monographs on Theoretical
Computer Science. Springer, 1993.

[2] Cohen, R. S., Gold, A. Y.: Theory of ω-languages I: Characterizations of
ω-context-free languages. JCSS 15(1977) 169–184.

[3] Conway, J. H.: Regular Algebra and Finite Machines. Chapman & Hall, 1971.

A Kleene Theorem for Weighted ω-Pushdown Automata 59

[4] Droste, M., Kuich, W.: The triple-pair construction for weighted ω-pushdown
automata, to appear

[5] Eilenberg, S.: Automata, Languages and Machines. Vol. A. Academic Press,
1974.

[6] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-context-free
languages, Theory is Forever, LNCS 3113, Springer, 2004, 68–80.

[7] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of ω-regular lan-
guages II. Journal of Automata, Languages and Combinatorics 10 (2005) 243–
264.

[8] Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Fo-
rum 75 (2007), 129–159.

[9] Ésik, Z., Kuich, W.: A semiring-semimodule generalization of transducers
and abstract ω-families of power series. Journal of Automata, Languages and
Combinatorics, 12 (2007), 435–454.

[10] Ésik, Z., Kuich, W.: Modern Automata Theory. http://www.dmg.tuwien.
ac.at/kuich

[11] Kuich, W.: Semirings and formal power series: Their relevance to formal
languages and automata theory. In: Handbook of Formal Languages (Eds.: G.
Rozenberg and A. Salomaa), Springer, 1997, Vol. 1, Chapter 9, 609–677.

[12] Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Mono-
graphs on Theoretical Computer Science, Vol. 5. Springer, 1986.

Acta Cybernetica 23 (2017) 61–79.

Continuous Semiring-Semimodule Pairs and

Mixed Algebraic Systems∗

Zoltán Ésika and Werner Kuichb

Abstract

We associate with every commutative continuous semiring S and alphabet
Σ a category whose objects are all sets and a morphism X → Y is determined
by a function from X into the semiring of formal series S⟪(Y ⊎Σ)∗⟫ of finite
words over Y ⊎Σ, an X × Y -matrix over S⟪(Y ⊎Σ)∗⟫, and a function from
X into the continuous S⟪(Y ⊎Σ)∗⟫-semimodule S⟪(Y ⊎Σ)ω⟫ of series of ω-
words over Y ⊎Σ. When S is also an ω-semiring (equipped with an infinite
product operation), then we define a fixed point operation over our category
and show that it satisfies all identities of iteration categories. We then use this
fixed point operation to give semantics to recursion schemes defining series
of finite and infinite words. In the particular case when the semiring is the
Boolean semiring, we obtain the context-free languages of finite and ω-words.

1 Introduction

Suppose that S is a continuous semiring and Σ and X are sets. Let X∗ and
Xω respectively denote the sets of all finite and ω-words over X. We can form
the continuous semiring S⟪X∗⟫ of series over X∗ with coefficients in S and the
continuous S⟪X∗⟫-semimodule S⟪Xω⟫ of series over Xω with coefficients in S.
If S is equipped with an infinite product operation Sω → S, s1s2⋯ ↦ ∏n≥1 sn,
satisfying certain axioms including a sort of continuity described in the sequel, then
we can also define an infinite product operation (S⟪X∗⟫)ω → S⟪Xω⟫. In our first
result, we show that the construction of the ‘continuous ω-semiring-semimodule
pair’ (S⟪X∗⟫, S⟪Xω⟫) enjoys a universal property, cf. Theorem 5.1.

In the second part of the paper we use the above universality result to give
an algebraic treatment of recursion schemes defining series of finite and infinite
words over Σ. To this end, we will restrict ourselves to commutative continuous

∗The first author received support from NKFI grant no. ANN 110883. The second author was
partially supported by Austrian Science Fund (FWF): grant no. I1661 -N25.

aDept. of Foundations of Computer Science, University of Szeged, Szeged, Hungary
bInst. of Discrete Mathematics and Geometry, Technical University of Vienna, Vienna, Austria

E-mail: kuich@tuwien.ac.at

DOI: 10.14232/actacyb.23.1.2017.5

62 Zoltán Ésik and Werner Kuich

ω-semirings S. Suppose that

xi = pi i ∈ I (R)

is a finite or infinite recursion scheme (or system of fixed point equations), where
each pi is a series in S⟪(X ⊎ Σ)∗⟫. Then we associate with R in a natural way a
function

FR ∶ S⟪Σ∗⟫ × S⟪Sω⟫→ S⟪Σ∗⟫ × S⟪Sω⟫

and define the semantics of R as a ‘canonical’ fixed point of FR.
In order to facilitate the construction of the canonical fixed point, we introduce a

category whose objects are sets (of recursion variables) and a morphism f : X → Y
has three components:

• a function f0 ∶X → S⟪(Y ⊎Σ)∗⟫,

• a matrix fM ∈ (S⟪(Y ⊎Σ)∗⟫)X×Y ,

• a function fω : X → S⟪(Y ⊎Σ)ω⟫.

We define composition and the identity morphisms in a natural way to obtain
a category SerωS,Σ. By taking the first components of morphisms, this category
can be projected onto the category SerS,Σ having sets as objects and functions
X → S⟪(Y ⊎Σ)∗⟫ as morphisms X → Y . It will be clear from the definition that
the coproduct X1 ⊕⋯ ⊕Xn of any finite sequence X1, . . . ,Xn of objects exists in
SerωS,Σ, in fact it will be given by disjoint union. (Actually all coproducts will exist,
but this fact is not important for the paper.)

Next we define a dagger operation mapping a morphism f : X → X ⊕ Y to a
morphism f † : X → Y . We prove that for any f : X → X ⊕ Y , the morphism
f † ∶X → Y is a solution of the fixed point equation

ξ = f ○ ⟨ξ, idY ⟩.

(Here, ⟨−,−⟩ denotes the source pairing operation determined by the coproduct
structure.) Intuitively, f represents a system of fixed point equations (recursion
scheme) in the variables X and parameters Y , and f † is its canonical solution.
In particular, the function FR associated with a system of fixed point equations
(R) can be seen as a morphism f : X → X in SerωS,Σ, and the canonical fixed

point of FR can be derived from f † : X → ∅. Indeed the three components of f †

are a function X → S⟪Σ∗⟫, the empty X × ∅-matrix over S⟪Σ∗⟫, and a function
X → S⟪Σω⟫. The first and third components form the canonical fixed point of FR.
Our approach generalizes the construction of context-free languages of finite and
ω-words [10].

Categories with finite coproducts (or dually, products) equipped with a para-
metric fixed point operation have been studied since the late 1960’s. A class of
structures, called iteration theories, or iteration categories, have been identified. It
has been shown that most (if not all) of the major fixed point structures used in
computer science give rise to iteration categories. As a main technical contribution,

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 63

we prove that for each commutative continuous semiring S and alphabet Σ,SerωS,Σ
is also an iteration category, cf. Theorem 7.1. A few consequences of this fact are
discussed in the conclusion.

2 Continuous semirings

Recall that a commutative monoid (V,+,0) is continuous (cf. Section 2.2 of [6]) if
it is equipped with a a partial order ≤ such that the supremum of any chain (or
equivalently, directed set [12]) exists and 0 is the least element. Moreover, the sum
operation + is continuous:

x + supY = sup(x + Y)

for all nonempty chains or nonempty directed sets Y ⊆ V , where x + Y = {x + y ∶
y ∈ Y }. (Actually this also holds when the set is empty.) It follows that the sum
operation is monotonic: if x ≤ y in V , then x + z ≤ y + z for all z ∈ V .

Suppose that V is a continuous commutative monoid and xi ∈ V for all i ∈ I.
We define ∑i∈I xi as the supremum of all finite sums xi1 + . . .+ xin where i1, . . . , in
are pairwise different elements of I. It is well-known that this summation operation
is completely associative and commutative:

∑
i∈I
xi = ∑

j∈J
∑
i∈Ij

xi,

whenever I is the disjoint union of the sets Ij , j ∈ J and xi ∈ V for all i ∈ I.
Moreover,

∑
i∈I
xi = ∑

i∈I
xπ(i),

whenever π is a permutation I → I and xi ∈ V for all i ∈ I.
Continuous commutative monoids are closed under several constructions includ-

ing direct product. Suppose that Vi is a continuous commutative monoid for all
i ∈ I. Then V =∏i∈I Vi, equipped with the pointwise sum operation and pointwise
ordering, is also a continuous commutative monoid. It follows that the summation
operation in the product V is the pointwise summation. In particular, if V is a
continuous commutative monoid, then so is V I for any set I.

Suppose now that S = (S,+, ⋅,0,1) is a semiring [8, 11]. We say that S is a
continuous semiring (cf. Section 2.2 of [6]) if (S,+,0) is a continuous commutative
monoid equipped with a partial order ≤1 and the product operation is continuous
(hence, also monotonic), i.e., it preserves the supremum of nonempty chains (or
nonempty directed subsets) in either argument:

(supX)y = sup(Xy)
y(supX) = sup(yX) ,

1Unlike at some other places, we do not require that x ≤ y iff there is some z with x + z = y.

64 Zoltán Ésik and Werner Kuich

for all nonempty chains (or directed sets) X ⊆ S, where Xy = {xy ∶ x ∈ X} and
yX is defined in the same way. It follows that product distributes over all sums:

(∑
i∈I
xi)y =∑

i∈I
xiy

y(∑
i∈I
xi) =∑

i∈I
yxi,

whenever xi ∈ S for all i ∈ I.
Suppose that S is a continuous semiring and I is a set. Then the matrix semiring

SI×I , equipped with the pointwise sum operation, the usual matrix product opera-
tion and the pointwise ordering is also a continuous semiring. The matrix product
is meaningful since the sum of any I-indexed family of elements of S exists.

Continuous semirings are also closed under the formation of power series semir-
ings. Suppose that S is a continuous semiring and X is a set. As usual, let S⟪X∗⟫
denote the semiring of all power series s = ∑u∈X∗⟨s, u⟩u over X with coefficients in
S. Each series s may be viewed as a function X∗ → S mapping a word u ∈ X∗ to
⟨s, u⟩. Equipped with the pointwise order relation s ≤ s′ iff ⟨s, u⟩ ≤ ⟨s′, u⟩ for all
u ∈ X∗, S⟪X∗⟫ is a continuous semiring. The sum of any family of series is the
pointwise sum.

Theorem 2.1. Suppose that S is a continuous semiring. Then for each set X, the
continuous semiring S⟪X∗⟫ has the following universal property. Given a contin-
uous semiring S′, a continuous semiring morphism hS ∶ S → S′ and any function
hX ∶ X → S′ such that the elements of hS(S) commute with the elements of S′,
there is a unique continuous semiring morphism h♯ ∶ S⟪X∗⟫ → S′ extending hS and
hX .

Proof. We provide an outline of the proof. For details, see [7].

First we extend hX to a monoid morphism X∗ → S′, denoted just h. Then,
for a series s ∈ S⟪X∗⟫, we define h♯(s) = ∑u∈X∗ hS(⟨s, u⟩)h(u) . It is clear that
h♯ extends hS and hX and preserves the constants 0 and 1. Then we prove that
h♯ is continuous and preserves the binary sum operation. It then follows that h♯

preserves all finite and infinite sums. Last, we prove that h♯ preserves the product
operation. Since the definition of h♯ was forced, it is unique.

3 Continuous semiring-semimodule pairs

Suppose now that S is a semiring and V is a commutative monoid as above. We
call V a (left) S-semimodule [9] if there is an action S ×V → S subject to the usual

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 65

associativity, distributivity and unitary conditions:

(s1s2)v = s1(s2v)
(s1 + s2)v = s1v + s2v

s(v1 + v2) = sv1 + sv2

1v = v
0v = 0

s0 = 0

for all s, s1, s2 ∈ S and v, v1, v2 ∈ V . When V is an S-semimodule, we also say that
(S,V) is a semiring-semimodule pair.

We call a semiring-semimodule pair (S,V) continuous if S is a continuous semir-
ing and V is a continuous commutative monoid such that the action is continuous
in either argument:

(supX)v = sup(Xv)
x(supY) = sup(xY)

for all x ∈ S, y ∈ V and nonempty chains (or nonempty directed sets) X ⊆ S and
Y ⊆ V . Of course, Xv = {sv ∶ s ∈X} and xY = {xw ∶ w ∈ Y }. It follows that action
distributes over summation on either side:

(∑
i∈I
xi)v = ∑

i∈I
xiv

x(∑
i∈I
vi) = ∑

i∈I
xvi

for all x,xi ∈ S, v, vi ∈ V, i ∈ I, where I is any index set.
Moreover, we call a continuous semiring-semimodule pair (S,V) a continuous

ω-semiring-semimodule pair if it is equipped with an infinite product operation

∏n>1 xn mapping an ω-sequence (or ω-word) x1x2⋯ ∈ Sω to ∏n≥1 xn ∈ V . The
infinite product is subject to the following axioms:

Ax1

x∏
n≥1

xn = ∏
n≥1

yn,

where y1 = x and yn+1 = xn for all n ≥ 1.
Ax2

∏
n≥1

xn = ∏
n≥1

xin⋯xin+1−1

where the sequence i1 = 1 ≤ i2 ≤ ⋯ increases without a bound and the product of
an empty family is 1.

Ax3

∏
n≥1

(xn + yn) = ∑
zn=xn or zn=yn

∏
n≥1

zn

66 Zoltán Ésik and Werner Kuich

Ax4

∏
n≥1

supXn = sup
xn∈Xn

∏
n≥1

xn

where for each n,Xn ⊆ S is a nonempty chain (or a nonempty directed set).
It follows that

∏
n≥1
∑
in∈In

xin = ∑
i1∈I1,i2∈I2,...

∏
n≥1

xin (1)

where {xin ∶ in ∈ In} is a family of elements of S for all n ≥ 1. Indeed,

∏
n≥1
∑
in∈In

xin = ∏
n≥1

sup
Fn⊆In

{ ∑
in∈Fn

xin}

= sup
Fn⊆In

∏
n≥1

{ ∑
in∈Fn

xin}

= sup
Fn⊆In

∑
in∈Fn

∏
n≥1

xin

= sup
F⊆I1×I2×...

∑
(i1,i2,...)∈F

∏
n≥1

xin

= ∑
(i1,i2,...)∈I1×I2×...

∏
n≥1

xin .

In particular, note that ∏n≥1 xn = 0 whenever there is some m such that xm is
0. (This also follows from Ax1.) Moreover, infinite product is monotonic: if xn ≤ yn
in S for all n ≥ 1, then ∏n≥1 xn ≤∏n≥1 yn.

Suppose that S is a continuous semiring. Then we define a star operation S → S
as usual: s∗ = ∑n≥0 s

n for all s ∈ S. It is known that s∗ is the least solution of the
fixed point equation x = sx + 1 (and also of x = xs + 1) over S. And if (S,V) is a
continuous ω-semiring-semimodule pair, we define an omega operation Sω → V by
sω = ∏n≥1 s for all s ∈ S. It is known that for each s ∈ S, sω is a solution of the
equation v = sv over V.

Complete equational and quasi-equational axiomatization of the equational prop-
erties of the star operation in continuous semirings has been given in [2]. Among
the identities satisfied by continuous semirings are the sum star and product star
identities [3, 1]:

(x + y)∗ = (x∗y)∗x∗

(xy)∗ = 1 + x(yx)∗y

Also 0∗ = 1 and 1∗ = 1∗∗ hold.
When (S,V) is a continuous ω-semiring-semimodule pair, the omega operation

satisfies the sum omega and product omega identities [1]:

(x + y)ω = (x∗y)ω + (x∗y)∗xω

(xy)ω = x(yx)ω

for all x, y ∈ S. Also 0ω = 0.

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 67

4 Matrices and series

4.1 Matrices

Suppose that (S,V) is a continuous ω-semiring-semimodule pair and I is a set.
Then, as mentioned above, SI×I is a continuous semiring, and V I is a continuous
commutative monoid. There is a natural left action of SI×I on V I defined similarly
to matrix multiplication:

(MN)i = ∑
j∈I
Mi,jNj , i ∈ I,

for all M ∈ SI×I and N ∈ SI . Moreover, we may define an infinite product operation
by

(∏
n≥1

Mn)i = ∑
i=i1,i2,...

∏
n≥1

(Mn)in,in+1 , i ∈ I.

Proposition 4.1. Suppose that (S,V) is a continuous ω-semiring-semimodule pair
and I is a set. Then, equipped with the pointwise orderings, (SI×I , V I) is also a
continuous ω-semiring-semimodule pair.

Proof. The fact that SI×I is a continuous semiring is proved in [7]. It is clear that V I

is a continuous commutative monoid and that equipped with the action, (SI×I , V I)
is a semiring-semimodule pair. The action is continuous in either argument, so that
(SI×I , V I) is also a continuous semiring-semimodule pair. This can be proved by an
argument similar to that used in [7] to establish that product in SI×I is continuous
in either argument.

In order to conclude, we still need to prove that the infinite product over matri-
ces satisfies the axioms Ax1-Ax4. Let Mn ∈ SI×I for all n ≥ 1, and define M ′ =M1

and M ′
n =Mn+1 for all n ≥ 1. Then for every i ∈ I, the ith component of ∏n≥1M

′
n

is

∑
j∈I
(M1)i,j ∑

j=j1,j2,...∈I
(∏
n≥1

(Mn+1)jn,jn+1) = ∑
i=i1,i2,...∈I

∏
n≥1

(Mn)in,in+1

which is the ith component of ∏n≥1Mn. Hence, Ax1 holds.

Suppose now that the sequence 1 = k1 ≤ k2 ≤ ⋯ increases without a bound and
define M ′

n =Min⋯Min+1−1 for all n ≥ 1. Then for each i ∈ I, the jth component of

∏n≥1M
′
n is

∑
j=j1,j2,...∈I

∏
n≥1

(M ′)jn,jn+1

= ∑
j=j1,j2,...∈I

∏
n≥1

∑
jn=`1,`2,...,`in+1−in=jn+1

(Min)`1,`2⋯(Min+1−1)`in+1−in−1,`in+1−in

= ∑
j=j1,j2,...

∏
n≥1

(Mj)jn,jn+1 ,

proving Ax2.

68 Zoltán Ésik and Werner Kuich

In order to prove that Ax3 holds, let Mn,M
′
n ∈ SI×I for all n ≥ 1. Then for

every i ∈ I, the ith component of ∏n≥1(Mn +M ′
n) is

∑
i=i1,i2,...

∏
n≥1

(Mn +M ′
n)in,in+1 = ∑

Pn=Mn or Pn=M ′
n

∑
i=i1,i2,...

∏
n≥1

Pin,in+1

= (∑
Pn=Mn or Pn=M ′

n

∏
n≥1

Pn)i,

i.e., the ith component ∑Pn=Mn or Pn=M ′
n
∏n≥1 Pn. This proves Ax3.

Suppose now that for each n ≥ 1,Mn is a nonempty chain w.r.t. the pointwise
ordering of matrices in SI×I . We want to prove that

∏
n≥1

supMn = sup
Mn∈Mn

∏
n≥1

Mn. (2)

Let i ∈ I be fixed. Then the ith component of ∏n≥1 supMn is

∑
i=i1,i2,...

∏
n≥1

(supM)in,in+1 = ∑
i=i1,i2,...

sup
Mn∈Mn

∏
n≥1

(Mn)in,in+1

= sup
Mn∈Mn

∑
i=i1,i2,...

∏
n≥1

(Mn)in,in+1

= sup
Mn∈Mn

(∏
n≥1

Mn)i.

Here, we used the fact, proved in [7], that summation is continuous. It follows that
(2) holds.

Hence, if (S,V) is a continuous ω-semiring-semimodule pair, then (SI×I , V I)
comes with a star operation and an omega operation.

4.2 Series

We may also construct continuous ω-semiring-semimodule pairs of power series. To
this end, we assume that S is a continuous ω-semiring equipped with an infinite
product Sω → S subject to axioms similar to those defining continuous ω-semiring-
semimodule pairs. This amounts to requiring that, equipped with left multiplication
as the action and the infinite product, (S,S) is a continuous ω-semiring-semimodule
pair.

Let X be any set. We already know that S⟪X∗⟫ is a continuous semiring. In
a similar way, S⟪Xω⟫, equipped with the pointwise sum operation and pointwise
ordering, is a continuous commutative monoid, and the action of S⟪X∗⟫ on S⟪Xω⟫
defined by

sr = ∑
w∈Aω

∑
w=uv
⟨s, u⟩⟨r, v⟩uv

turns S⟪Xω⟫ into an S⟪X∗⟫-semimodule. Moreover, the action is continuous in
either argument and it is easy to check that Ax1-Ax4 hold.

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 69

Let sn ∈ S⟪X∗⟫ for all n ≥ 1. We define r =∏n≥1 sn ∈ S⟪Xω⟫ as follows. Given
v ∈Xω, we define

⟨r, v⟩ = ∑
v=v1v2...

∏
n≥1

⟨sn, vn⟩

Proposition 4.2. Let S be a continuous ω-semiring and X be a set.
Then (S⟪X∗⟫, S⟪Xω⟫) is a continuous ω-semiring-semimodule pair.

Proof. First we establish Ax1. Let s ∈ S⟪X∗⟫ and sn ∈ S⟪X∗⟫ for all n ≥ 1. Then,
for all w ∈Xω,

⟨s∏
n≥1

sn,w⟩ = ∑
w=uv
⟨s, u⟩⟨∏

n≥1

sn, v⟩

= ∑
w=uv
⟨s, u⟩ ∑

v=v1v2...
∏
n≥1

⟨sn, vn⟩

= ∑
w=uv1v2...

⟨s, u⟩∏
n≥1

⟨sn, vn⟩

= ∑
w=v1v2...

⟨s′n, vn⟩

= ⟨∏
n≥1

s′n,w⟩,

where s′1 = s and s′n+1 = sn for all n ≥ 1.

Let again sn ∈ S⟪X∗⟫ for all n ≥ 1. Suppose that the sequence i1 = 1 ≤ i2 ≤ ⋯
increases without a bound. For each n ≥ 1, define s′n = sin⋯sin+1−1. Then for all
w ∈Xω,

⟨∏
n≥1

sn,w⟩ = ∑
w=v1v2...

∏
n≥1

⟨sn, vn⟩

= ∑
w=v1v2...

∏
n≥1

⟨sin , vin⟩⋯⟨sin+1−1, vin+1−1⟩

= ∑
w=u1u2⋯

∏
n≥1

⟨s′n, un⟩

= ⟨∏
n≥1

s′n,w⟩,

proving Ax2.

Next, suppose that sn, s
′
n ∈ S⟪X∗⟫ for all n ≥ 1. Then for all w ∈Xω,

⟨∏
n≥1

(sn + s′n),w⟩ = ∑
w=v1v2...

∏
n≥1

⟨sn + s′n, vn⟩

= ∑
w=v1v2⋯

∑
rn=sn or rn=s′n

∏
n≥1

⟨rn, vn⟩

= ∑
rn=sn or rn=s′n

⟨∏
n≥1

rn,w⟩,

proving Ax3.

70 Zoltán Ésik and Werner Kuich

Finally, suppose that (In,≤) is a nonempty directed partially ordered set for
each n ≥ 1 and si ∈ S⟪X∗⟫ for all i ∈ In, n ≥ 1 such that si ≤ sj whenever i ≤ j in
In. We want to prove that

∏
n≥1

sup
i∈In

si = sup
i1∈I1,i2∈I2,...

∏
n≥1

sin .

Let w ∈Xω. Then

⟨∏
n≥1

sup
i∈In

si,w⟩ = ∑
w=v1v2...

∏
n≥1

⟨sup
i∈In

si, vn⟩

= ∑
w=v1v2...

∏
n≥1

sup
i∈In
⟨si, vn⟩

= ∑
w=v1v2...

sup
i1∈I1,i2∈I2,...

∏
n≥1

⟨sin , vn⟩

= sup
i1∈I1,i2∈I2,...

∑
w=v1v2...

∏
n≥1

⟨sin , vn⟩

= sup
i1∈I1,i2∈I2,...

⟨∏
n≥1

sin ,w⟩

= ⟨ sup
i1∈I1,i2∈I2,...

∏
n≥1

sin ,w⟩,

proving Ax4.

Hence, if S is a continuous semiring, then for any set X, (S⟪X∗⟫, S⟪Xω⟫) has
a star and an omega operation.

5 Freeness

Suppose now that (S,V) and (S′, V ′) are continuous ω-semiring-semimodule pairs.
We say that a pair of functions h = (hS , hV) with hS : S → S′ and hV : V → V ′ is
a continuous ω-semiring-semimodule pair morphism if hS is a continuous semiring
homomorphism, hV is a continuous monoid homomorphism, hS and hV jointly
preserve the action, moreover, infinite product is preserved:

hV (∏
n≥1

xn) = ∏
n≥1

hS(xn)

for all xn ∈ S,n ≥ 1. In this section we prove:

Theorem 5.1. Suppose that S is a continuous ω-semiring. Then for each set
X, the continuous ω-semiring-semimodule pair (S⟪X∗⟫, S⟪Xω⟫) has the following
universal property. Let (S′, V ′) be a continuous ω-semiring-semimodule pair, hS ∶
S → S′ a continuous semiring morphism and hX ∶X → S′ a function. Suppose that
the elements of hS(S) commute with the elements of S′ and the following infinite
commutativity holds:

∏
n≥1

sns
′
n = (∏

n≥1

sn)(∏
n≥1

s′n)

for all sn ∈ hS(S) and s′n ∈ S′. Then there is a unique continuous semiring-
semimodule morphism h♯ = (h♯S , h♯V) extending hS and hX .

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 71

Proof. We have already shown that (S⟪X∗⟫, S⟪Xω⟫) is a continuous semiring-
semimodule pair. Let us first extend h to a function X∗ → S, denoted just h, so that
it becomes a (multiplicative) monoid homomorphism. Then let h♯S : S⟪X∗⟫ → S′

be defined by

h♯S(s) = ∑
u∈X∗

hS(⟨s, u⟩)h(u).

It is known that h♯S is a continuous semiring homomorphism.

Next we extend h to a function Xω → V ′ by defining h(v) =∏i≥1 hX(xi) for each
v = x1x2 . . . in Xω. Finally, when s ∈ S⟪Xω⟫, let h♯V (s) = ∑v∈Xω hS(⟨s, v⟩)h(v).

Suppose that si ∈ S⟪Xω⟫ for all i ∈ I, where I is nonempty directed partially
ordered set, ordered by the relation ≤. Moreover, suppose that si ≤ sj whenever
i ≤ j in I and let s = supi∈I si. Then

h♯V (s) = ∑
v∈Xω

hS(⟨s, v⟩)h(v)

= ∑
v∈Xω

sup
i∈I

hS(⟨si, v⟩)h(v)

= sup
i∈I
∑
v∈Xω

hS(⟨si, v⟩)h(v)

= sup
i∈I

h♯V (si),

proving that h♯V is continuous. To prove that h♯V preserves the sum operation, let
s1, s2 ∈ S⟪Xω⟫. Then

h♯V (s1 + s2) = ∑
v∈Xω

hS(⟨s1 + s2, v⟩)h(v)

= ∑
v∈Xω

hS(⟨s1, v⟩)h(v) + hS(⟨s2, v⟩)h(v)

= ∑
v∈Xω

hS(⟨s1, v⟩)h(v) + ∑
v∈Xω

hS(⟨s2, v⟩)h(v)

= h♯V (s1) + h♯V (s2).

It is clear that h♯V preserves 0. In order to prove that h♯S and h♯V jointly preserve
the action, let s ∈ S⟪X∗⟫ and r ∈ S⟪Xω⟫. Then

h♯V (sr) = ∑
v∈Xω

hS(⟨sr, v⟩)h(v)

= ∑
v∈Xω

∑
v=uw

hS(⟨s, u⟩)hS(⟨s,w⟩)h(u)h(w)

= ∑
v∈Xω

∑
v=uw

hS(⟨s, u⟩)h(u)hS(⟨r,w⟩)h(w)

= ∑
u∈X∗

hS(⟨s, u⟩)h(u) ∑
w∈Xω

hS(⟨r,w⟩)h(w)

= h♯S(s)h♯V (r).

72 Zoltán Ésik and Werner Kuich

Finally, we prove that h♯V preserves the infinite product. To this end, let sn ∈
S⟪X∗⟫ for all n ≥ 1. We want to prove that h♯V (∏n≥1 sn) =∏n≥1 h

♯
S(sn) .

h♯V (∏
n≥1

sn) = ∑
v∈Xω

hS(⟨∏
n≥1

sn, v⟩)h(v)

= ∑
v∈Xω

∑
v=v1v2...

∏
n≥1

hS(⟨sn, vn⟩)h(vn)

= ∑
v∈Xω

∑
v=v1v2...

∏
n≥1

hS(⟨sn, vn⟩)∏
n≥1

h(vn)

=∏
n≥1

(∑
vn∈X∗

hS(⟨sn, vn⟩)h(vn))

= ∏
n≥1

hS(sn).

It is clear that hS extends h. Since the definitions of hS and hV were forced,
they are unique.

6 The category Matr(S,V)

All categories C in the paper will have sets as objects. The composition of mor-
phisms f : X → Y and g ∶ Y → Z will be denoted f ○ g. We usually let idX denote
the identity morphism X →X.

Our categories will have finite coproducts. For a sequence X1, . . . ,Xn of objects,
the coproduct X1⊕⋯⊕Xn will be given by disjoint union X1⊎⋯⊎Xn. In particular,
the empty set ∅ will serve as initial object.

Let X1, . . . ,Xn be objects. For each i = 1, . . . , n, the ith coproduct injection
inXi : Xi → X1 ⊕⋯⊕Xn will always be determined by the embedding of Xi into
X1 ⊎ ⋯ ⊎Xn. We will let !X denote the unique morphism ∅ → X. Moreover, if
fi ∶Xi →X for i = 1, . . . , n, then we will let ⟨f1, . . . , fn⟩ denote the unique morphism
f : X1 ⊕⋯ ⊕Xn → X with inXi ○ f = fi for all i. And when fi ∶ Xi → Yi, where
i ∈ {1, . . . , n}, then we let f1⊕⋯⊕fn denote the unique morphism f ∶X1⊕⋯⊕Xn →
Y1 ⊕⋯⊕ Yn with inXi ○ f = fi ○ inYi for all i.

For any X,Y , the hom-set C(X,Y) of morphisms X → Y will be both a complete
partial order (C,≤) and a commutative monoid (C(X,Y),+,0X,Y) such that the
zero morphism 0X,Y is also least w.r.t. ≤ and the operation + is continuous in both
of its arguments. Also, the operation of composition will be continuous in both
arguments. Moreover, the partial order will be related to the coproduct structure
so that for any f, g : X1 ⊕⋯⊕Xn → Y , f ≤ g iff inXi ○ f ≤ nXi ○ g. It follows that
when fi ∶Xi → Yi, where i ∈ {1, . . . , n}, then f1 ⊕⋯⊕ fn ≤ g1 ⊕⋯⊕ gn iff fi ≤ gi for
all i.

The following identities will hold for all f, g ∶X → Y and h ∶ Y → Z:

(f + g) ○ h = f ○ h + g ○ h
0X,Y ○ h = 0X,Z

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 73

Finally, our categories will be equipped with a dagger operation mapping a
morphism f : X → X ⊕ Y to a morphism f † : X → Y . This operation will always
be a fixed point operation, so that the following fixed point identity will hold:

f † = f ○ ⟨f †, idY ⟩

for all f : X →X ⊕ Y.
Iteration categories are categories with finite coproducts and a dagger operation

satisfying certain identities including the above fixed point identity, the parameter
identity

(f ○ (idX ⊕ g))† = f † ○ g

where f ∶X →X ⊕ Y and g ∶ Y → Z, the double dagger identity

f †† = (f ○ (⟨idX , idX⟩⊕ idY))†,

where f ∶ X → X ⊕X ⊕ Y , to name a few, and some other identities including the
group identities that we will described later. All of our categories will be iteration
categories.

Suppose now that (S,V) is a continuous ω-semiring-semimodule pair. Then
(S,V) determines a category Matr(S,V) whose objects are all sets and a morphism

I → J is an ordered pair (A,u) , where A ∈ SI×J and u ∈ V I . Hence a morphism
I → I is an element of the semiring-semimodule pair (SI×I , V I).

Composition is defined as follows. Suppose that (A,u) ∶ I → J and (B,v) ∶ J →
K. Then we define (A,u) ○ (B,v) = (AB,u + Av) ∶ I → K. It is easy to check
that composition is associative with the morphisms (EI×I , 0I) ∶ I → I serving as
identities, where EI×I is the unit matrix in SI×I and 0I denotes the zero element
of V I . (For finite sets, this category is defined in [1].)

The partial order ≤ on a hom-set of Matr(S,V) is defined pointwise, so that
when (A,u), (B,v) ∶ I → J , then (A,u) ≤ (B,v) iff Ai,j ≤ Bi,j and ui ≤ vi for all
i ∈ I and j ∈ J . Clearly, each hom-set forms a complete partial order, and it is not
difficult to verify that composition is continuous.

We can also impose a commutative monoid structure on the hom-sets by defining
(A,u)+(B,v) pointwise, for all (A,u), (B,v) ∶ I → J . Hence (A,u)+(B,v) = (C,w)
with Ci,j = Ai,j +Bi,j and wi = ui + vi for all i ∈ I and j ∈ J . The zero morphism
I → J is the morphism (0I×J ,0I) consisting of two zero matrices. We denote it by
0I,J , or just 0. We have

((A,u) + (B,v)) ○ (C,w) = (A,u) ○ (C,w) + (B,v) ○ (C,w)
0I,j ○ (C,w) = 0I,K

for all (C,w) : J →K. It is not difficult to prove that composition is continuous.
Coproduct is given by disjoint union on objects. When X1, . . . ,Xn is a sequence

of sets and i ∈ {1, . . . , n}, then ith coproduct embedding ini consists of an Xi×(X1⊎
⋯ ⊎Xn) matrix whose xi ×Xi submatrix is an identity matrix and whose Xi ×Xj

matrices are all zero matrices for j ≠ i, together with the column matrix 0Xi ∈ V Xi .

74 Zoltán Ésik and Werner Kuich

We have already noted that for each set I, (SI×I , V I) is a continuous ω-semiring-
semimodule pair. Hence it comes with a star and an omega operation: For each
A ∈ SI×I ,A∗ = ∑n≥0A

n ∈ SI×I and Aω = ∏n≥1A in V I . These operations satisfy
the identities mentioned above. And in fact,

(A +B)∗ = (A∗B)∗A∗, A,B ∈ SI×I

(AB)∗ = EI +A(BA)∗B, A ∈ SI×J ,B ∈ SJ×I

and

(A +B)ω = (A∗B)∗Aω + (A∗B)ω, A,B ∈ SI×I

(AB)ω = A(BA)ω, A ∈ SI×J ,B ∈ SJ×I

Suppose now that I = J ⊎K and M ∈ SI×I is partitioned as

M = (a b
c d

) .

Then

M∗ = ((a + bd
∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗)

and

Mω = ((a + bd
∗c)ω + (a + bd∗c)∗bdω

(d + ca∗b)ω + (d + ca∗b)∗caω)

The star and omega operations together give rise to a dagger operation over Matr(S,V)
that map a morphism X → X ⊕ Y to a morphism X → Y . To define it, let
(A,u) ∶ X → I ⊕ J , and partition A as (a, b) with a ∈ SI×I and b ∈ SI×J . Then
we define (A,u)† = (a∗b, aω + a∗v) ∶ I → J . Clearly, (A,u)† is a solution of the
equation

(X,x) = (A,u)((X,x)(EJ ,0)
) = (aX + b, ax + u)

where (X,x) ranges over the morphisms I → J . It is known that equipped with
dagger, Matr(S,V) is an iteration category.

7 Categories of Series

7.1 The category SerS,Σ

Suppose that S is a commutative continuous semiring and Σ is a set. We define the
category SerS,Σ whose objects are all sets and a morphism X → Y is a function
f ∶ X → S⟪(Y ⊎Σ)∗⟫, or alternatively, a tuple (fx)x∈X of series fx ∈ S⟪(Y ⊎Σ)∗⟫.
Suppose that f ∶ X → Y and g ∶ Y → Z. Then we define f ○ g as the function
composition of f and g♯, the extension of the function Y ⊎Σ to S⟪(Z ⊎Σ)∗⟫ which

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 75

agrees with g on Y and is the identity function on Σ to a continuous semiring
homomorphism S⟪(Y ⊎Σ)∗⟫ → S⟪(Z ⊎Σ)∗⟫. For each X, the identity morphism
idX is the embedding of X into X ⊎Σ.

Each hom-set of morphisms X → Y of the category SerS,Σ has the structure
of a complete partial order and commutative monoid. For any f, g ∶ X → Y , we
define f ≤ g iff fx ≤ gx for all x, and similarly, (f + g)x = fx + gx for all x. The
neutral element is the series 0X,Y whose components are all 0. This is also the
least morphism X → Y . Composition of morphisms is continuous as is the sum
operation.

Also, SerS has finite coproducts are given by disjoint sum on objects. The
coproduct X1 ⊕⋯⊕Xn of a sequence X1, . . . ,Xn of sets is given by disjoint union,
and for each i ∈ {1, . . . , n}, inXi ∶ Xi → X1 ⊕⋯ ⊕Xn is the embedding of Xi into
S⟪(X1 ⊎⋯ ⊎Xn ⊎Σ)∗⟫.

We define a dagger operation on SerS,Σ which maps a morphism f ∶X →X⊕Y
to f † ∶ X → Y . The morphism f † is given as the least solution of the fixed point
equation

ξ = f ○ ⟨ξ, idY ⟩.

In more detail, f † = supn≥0 f
(n), where f (0) = 0 and f (n+1) = f ○ ⟨f (n), idY ⟩. It is

known that equipped with this dagger operation, SerS,Σ is an iteration category.

7.2 The category SerωS,Σ.

Suppose now that S is a commutative continuous ω-semiring satisfying the infinite
commutativity identity. Then we define another category SerωS,Σ with sets as ob-
jects as above. However, a morphism f ∶ X → Y is now a triplet (f0, fM , fω) with
f0 ∶X → Y in SerS,Σ and (fM , fω) ∶X → Y in Matr(S⟪(Y ⊎Σ)∗⟫,S⟪(Y ⊎Σ)ω⟫) . Hence,

f0 ∶X → S⟪(Y ⊎Σ)∗⟫, fM ∈ S⟪(Y ⊎Σ)∗⟫X×Y and fω ∶X → S⟪(Y ⊎Σ)ω⟫.
Composition is defined as follows. Let f ∶ X → Y and g ∶ Y → Z. Then the

components of h = f ○ g ∶X → Z are given by

• h0 = f0 ○ g0, where the composition is taken from SerS,Σ, and

• (hM , hω) = g♯0((fM , fω)) ○ (gM , gω) = (g♯0(fM), g♯0(fω)) ○ (gM , gω) where the
composition is taken from the category Matr(S⟪(Z⊎Σ)∗⟫,S⟪(Z⊎Σ)ω⟫).

Note that the definition is legitimate, since (S⟪(Z⊎Σ)∗⟫, S⟪(Z⊎Σ)ω⟫) is a con-
tinuous ω-semiring-semimodule pair and g♯0((fM , fω)) = (g♯0(fM), g♯0(fω)) is a mor-
phismX → Y and (gM , gω) is a morphism Y → Z in Matr(S⟪(Z⊎Σ)∗⟫,S⟪(Z⊎Σ)ω⟫). Of
course, g♯0 is the extension of g0 to a continuous ω-semiring-semimodule morphism
and g♯0(fM) and g♯0(fω) are formed component-wise. It is a routine matter to verify
that composition is associative. The identity morphism X → X is determined by
the corresponding identity morphisms in SerS,Σ and Matr(S⟪(X⊎Σ)∗⟫,S⟪(X⊎Σ)ω⟫).

Each hom-set of morphisms X → Y is partially ordered by the component-wise
order inherited from Ser(S,Σ) and Matr(S⟪(Y ⊎Σ)∗⟫,S⟪(Y ⊎Σ)ω⟫). Also, each hom-set

76 Zoltán Ésik and Werner Kuich

has the structure of a commutative monoid. For any morphisms f = (f0, fM , fω)
and g = (g0, gM , gω) ∶X → Y , we define

f + g = (f0 + g0, fM + gM , fω + gω).

The components of the morphism 0X,Y are the respective zero morphisms.
The category SerωS,Σ has finite coproducts. On objects, coproduct is again given

by disjoint sum.
We now define a dagger operation. Let f ∶ X → X ⊕ Y, f = (f0, fM , fω) . Then

we define the components of f † : X → Y as f †
0 : X → Y in SerS,Σ and

((f †)M , (f †)ω) = ⟨f †
0 , idY ⟩♯((fM , fω)

†) = (⟨f0, idY ⟩♯(fM , fω)†) ∶X → Y

in Matr(S⟪(Y ⊎Σ)∗⟫,S⟪(Y ⊎Σ)ω⟫).
We prove that the fixed point identity holds. To this end, let f : X → X ⊕ Y

as above. Then

f ○ ⟨f †, idY ⟩ = (⟨f0 ○ ⟨f †
0 , idY ⟩, ⟨f

†
0 , idY ⟩♯((fM , fω)) ○ ⟨⟨f

†
0 , idY ⟩♯((fM , fω)

†), idY ⟩.

Hence, the first component of f † is f †
0 . The second and third are given by

⟨f †
0 , idY ⟩♯((fM , fω)) ○ ⟨⟨f

†
0 , idY ⟩♯((fM , fω)

†)), idY ⟩

= ⟨f †
0 , idY ⟩♯((fM , fω) ○ ⟨(fM , fω)

†), idY ⟩)

= ⟨f †
0 , idY ⟩♯((fM , fω)

†).

Hence f ○ ⟨f †, idY ⟩ = f †.

Theorem 7.1. Serω(S,Σ) is an iteration category.

Proof. We have already proved that the fixed point identity holds. In order to
complete the proof, we establish the parameter, double dagger and group identities.

First we consider the parameter identity. Let f = (f0, fM , fω) ∶X →X ⊕ Y and
g = (g0, gM , gω) ∶ Y → Z. We want to prove that (f ○ (idX ⊕ g))† = f † ○ g.

It is clear that the first components of (f ○ (idX ⊕ g))† and f † ○ g are (f0 ○
(idX ⊕ g0))† and f †

0 ○ g, respectively. Since the parameter identity holds in SerS,Σ,
we conclude that the first components are equal.

The second and third components of f ○ (idX ⊕ g) are given by

(idX ⊕ g0)♯((fM , fω)) ○ (idX ⊕ (gM , gω)),

hence the corresponding components of (f ○ (idX ⊕ g))† are given by

⟨(f0 ○ (idX ⊕ g0))†, idZ⟩♯(((idX ⊕ g0)♯((fM , fω)) ○ (idX ⊕ (gM , gω)))†)

which is

⟨f †
0 ○ g0, idZ⟩♯(((idX ⊕ g0)♯((fM , fω)))† ○ (gM , gω))

= ((idX ⊕ g0) ○ ⟨f †
0 ○ g0, idZ⟩)♯((fM , fω)†) ○ ⟨f †

0 ○ ⟨g0, idZ⟩♯(gM , gω)

= ((idX ⊕ g0) ○ ⟨f †
0○g0, idZ⟩)♯((fM , fω)†) ○ (gM , gω).

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 77

On the other hand, the second and third components of f † and f †○g are respectively
given by ⟨f †

0 , idY ⟩♯((fM , fω)†) and

g♯0(⟨f
†
0 , idY ⟩♯((fM , fω)

†)) ○ (gM , gω) = (⟨f †
0 , idY ⟩ ○ g0)♯((fM , fω)†) ○ (gM , gω).

But (idX ⊕ g0) ○ ⟨f †
0 ○ g0, idZ⟩ = ⟨f †

0 ○ g0, g0⟩ = ⟨f †
0 , idY ⟩ ○ g0, so that the second and

third components are also equal.
We prove that the double dagger identity holds. To this end, let f = (f0, fM , fω) ∶

X →X ⊕X ⊕ Y and τ = ⟨idX , idX⟩⊕ idY . Then the first component of f †† is f ††
0 ,

and the first component of (f ○ τ)† is (f0 ○ τ)†. These are equal since the double
dagger identity holds in SerS,Σ.

The second and third components of f † and f †† are

⟨f †
0 , idX⊕Y ⟩♯((fM , fω)†)

and

⟨f ††
0 , idY ⟩♯(⟨f

†
0 , idX⊕Y ⟩♯((fM , fω)†))⟩

= (⟨f †
0 , idX⊕Y ⟩ ○ ⟨f ††

0 , idY ⟩)♯((fM , fω)
††)

= (⟨f †
0 ○ ⟨f

††
0 , idY ⟩, f

††
0 , idY)♯((fM , fω)

††)

= ⟨f ††
0 , f

††
0 , idY ⟩♯((fM , fω)

††)
= (τ ○ ⟨f ††, idY ⟩)♯((fM , fω)††),

respectively. Now the second and third components of f○τ are given by τ ♯((fM , fω))○
τ and thus the second and third components of (f ○ τ)† are given by

⟨(f ○ τ)†, idY ⟩♯((τ ♯((fM , fω)) ○ τ)†)
= ⟨f ††, idY ⟩♯((τ ♯((fM , fω)) ○ τ)†)
= (⟨f ††, idY ⟩)♯((τ ♯((fM , fω)))††)
= (⟨f ††, idY ⟩)♯(τ ♯(((fM , fω))††))
= (τ ○ ⟨f ††, idY ⟩)♯((fM , fω)††).

Hence the double dagger identity holds.
Our next task is to prove that the (simplified) composition identity holds:

(f ○ g)† = f ○ (g ○ (f ⊕ idZ))†,

where f ∶X → Y and g ∶ Y →X⊕Z. We will establish this identity only in the case
when Z is the initial object ∅. In this case, the identity takes the following form:

(f ○ g)† = f ○ (g ○ f)†,

where f ∶X → Y and g ∶ Y →X.

78 Zoltán Ésik and Werner Kuich

It is again clear that the first components of the two sides are equal, since the
identity holds in SerS,Σ.

Now the second and third components of (f ○ g)† are

((f0 ○ g0)†)♯((g♯0((fM , fω)) ○ (gM , gω))
†)

= ((g0 ○ (f0 ○ g0)†)♯((fM , fω)) ○ (f0 ○ g0)†)♯((gM , gω)))†

= (((g0 ○ f0)†)♯((fM , fω)) ○ ((f0 ○ g0)†)♯((gM , gω)))†.

The corresponding components of f ○ (g ○ f)† are

((g0 ○ f0)†)♯((fM , fω)) ○ ((g0 ○ f0)†)♯((f ♯0((gM , gω)) ○ (fM , fω))
†)

= ((g0 ○ f0)†)♯((fM , fω)) ○ (((f0 ○ g0)†)♯((gM , gω)) ○ ((g0 ○ f0)†)♯((fM , fω)))†

= (((g0 ○ f0)†)♯((fM , fω)) ○ ((f0 ○ g0)†)♯((gM , gω)))†.

Hence, the second and third components are also equal.

Our last task is to prove that the group identities hold. Suppose that G is
a finite group of order n whose elements are the integers {1, . . . , n}, say. Let g ∶
X → X ⊕⋯ ⊕X ⊕ Y, where there are n occurrences of X in the target. For each
i ∈ {1, . . . , n}, let

ρi = ⟨ini⋅1, . . . , ini⋅n⟩⊕ idY ∶X ⊕⋯⊕X ⊕ Y →X ⊕⋯⊕X ⊕ Y.

Moreover, let

τ = ⟨idX , . . . , idX⟩ ∶X ⊕⋯⊕X →X.

The group identity associated with G is

⟨g ○ ρ1, . . . , g ○ ρn⟩† = τ ○ (g ○ (τ ⊕ idY))†.

We will prove this only in the case when Y = ∅. The first components of the two
sides are again equal. The second and third components of the morphism on the
left hand side are given by

(⟨g0 ○ ρ1, . . . , g0 ○ ρn⟩†)♯(⟨(gM , gω) ○ ρ1, . . . , (gM , gω) ○ ρn⟩†)
= (τ ○ (g0 ○ τ)†)♯(⟨(gM , gω) ○ ρ1, . . . , (gM , gω) ○ ρn⟩†)
= ⟨(τ ○ (g0 ○ τ)†)♯((gM , gω)) ○ ρ1, . . . , (τ ○ (g0 ○ τ)†)♯((gM , gω)) ○ ρn⟩†

= τ ○ ((τ ○ (g0 ○ τ)†)♯((gM , gω)) ○ τ)†.

But this is exactly the morphism determined by the second and third compo-
nents of the morphism on the right hand side of the group identity associated with
G. This completes the proof of the theorem.

Continuous Semiring-Semimodule Pairs and Mixed Algebraic Systems 79

Remark of the second author.

From May 17 to May 20, 2016, Zoltan stayed and worked in my home and almost
finished his presumably final paper as coauthor. He wrote this paper in his typical
style of working: After extensive discussions he typed the tex file directly into the
computer without using a concept or notes. This paper is complete except for the
announced “Conclusion”. His planned content of the “Conclusion” is unknown to
me and I have not tried to reconstruct it. Therefore, this paper appears according
to Zoltan’s conceptions.

References

[1] S.L. Bloom and Z. Ésik: Iteration Theories. Springer, 1993.

[2] S.L. Bloom, Z. Ésik: Axiomatizing rational power series over natural numbers.
Inf. Comput. 207(2009), 793–811.

[3] J.H. Conway: Regular Algebra and Finite Machines, Chapman and Hall, Ltd.,
1971.

[4] Z. Ésik: Group axioms for iteration, Information and Computation, 148(1999),
131– 180.

[5] Z. Ésik: Equational properties of fixed point operations in cartesian categories:
An overview. In: MFCS 2015, Springer, LNCS 9234, 2015, 18–37.

[6] Z. Ésik and W. Kuich, Modern Automata Theory, available from
http://www.dmg.tuwien.ac.at/kuich/

[7] Z. Ésik and W. Kuich: Solving fixed point equations over complete semirings,
to appear in Festschrift for Janusz Brzozowski’s 80th birthday, World Scientific,
2017.

[8] J. Golan: Semirings and their Applications, Springer, 1999.

[9] J. Golan: Semirings and Affine Equations over Them: Theory and Applica-
tions, Springer, 2003.

[10] R.S. Cohen, A.Y. Gold: Theory of omega-Languages. I. Characterizations of
omega-Context-Free Languages. J. Comput. Syst. Sci., 15(1977), 169–184.

[11] W. Kuich and A. Salomaa: Semirings, Automata, Languages, Springer, 1986.

[12] G. Markowsky: Chain complete posets and directed sets with applications,
Algebra Universalis, 6(1976), 53–68.

Acta Cybernetica 23 (2017) 81–90.

Trace Simulation Semantics is not Finitely

Based over BCCSP∗

Luca Acetoa, David de Frutos Escrigb, and Anna Ingólfsdóttira

Abstract

This note shows that the trace simulation preorder does not have a finite
inequational basis over the language BCCSP. Indeed, no collection of sound
inequations of bounded depth is ground-complete with respect to the trace
simulation preorder over BCCSP even over a singleton set of actions.

Keywords: trace simulation preorder, complete axiomatizations, BCCSP

1 Introduction

The study of the equational theory of several algebraic structures has been one
of the main research interests of the late Zoltán Ésik—see, for instance, the refer-
ences [2, 3, 8, 9, 10, 13, 14, 16] for a small sample of his work in this area.

In the setting of process algebras, the study of complete axiomatizations of
behavioural equivalences can be traced back to the early contributions of Hennessy
and Milner [18], and Bergstra and Klop [7]. Since then, the investigation of the
equational theory of various process algebras has been a major topic of research and
Zoltán Ésik has contributed to this field in many ways—see, for instance, [1, 11, 15]

A complete axiomatization of a behavioural congruence yields a purely syntactic
characterization, independent of the actual details of the chosen semantic model for
processes and of the definition of the behavioural equivalence, of the semantics of a
process algebra. This bridge between syntax and semantics plays an important role
in both the practice and the theory of process algebras. From the point of view of
practice, these proof systems can be used to perform system verifications in a purely
syntactic way using general purpose theorem provers or proof checkers, and form
the basis of purpose built axiomatic verification tools. From the theoretical point of
view, complete axiomatizations of behavioural equivalences capture the essence of

∗Luca Aceto and Ingólfsdóttir have been partially supported by the project ‘Nominal Structural
Operational Semantics’ (nr. 141558-041) of the Icelandic Research Fund.

aICE-TCS, School of Computer Science, Reykjavik University, Iceland, E-mail:
{luca,annai}@ru.is

bDepartamento de Sistemas Informáticos y Computación, Universidad Complutense de Madrid,
Spain, E-mail: defrutos@sip.ucm.es

DOI: 10.14232/actacyb.23.1.2017.6

82 Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir

different notions of semantics for processes in terms of a basic collection of identities,
and this often allows one to compare semantics which may have been defined in
very different styles and frameworks. A review of existing complete equational
axiomatizations for many of the behavioural semantics in van Glabbeek’s spectrum
is offered in [26]. The equational axiomatizations offered in that reference are over
the language BCCSP, a common fragment of Milner’s CCS [21, 22] and Hoare’s
CSP [19] suitable for describing finite synchronization trees, and characterize the
differences between behavioural semantics in terms of a few revealing axioms.

In this paper, we contribute to the study of the equational theory of semantic
equivalences over BCCSP by showing that the trace simulation preorder does not
have a finite inequational basis over the language BCCSP (Theorem 1). Indeed, no
collection of sound inequations of bounded depth is ground-complete with respect
to the trace simulation preorder over BCCSP even over a singleton set of actions
(Theorem 2). The proof of our main result is proof theoretic. We are sure that
Zoltán Ésik would have preferred to see a model-theoretic argument, like those he
used with two of the authors of this paper in joint work on the max-plus algebra of
the natural numbers and on the equational theory of tropical semirings [2, 3], but
we hope that he would have found our result and its proof appealing nonetheless.

The paper is organized as follows. Section 2 presents preliminaries on the syntax
and semantics of BCCSP, the behavioural equivalences and preorders we study and
inequational logic. Section 3 introduces our main result, whose proof is given in
Section 3.1.

2 Preliminaries

Syntax of BCCSP We work with BCCSP [26, 19, 22] over the action set A.
This language is a basic process algebra for expressing finite process behaviour. Its
syntax consists of closed (process) terms p, q that are constructed from a constant 0,
a binary operator + called alternative composition, and the unary prefix operators
a with a ∈ A. Open terms t, u can, moreover, contain occurrences of variables from
a countably infinite set V (with typical elements x, y, z).

In what follows, for each n ≥ 0, we use an0 to stand for the term 0 if n = 0,
and for a(an−10) if n > 0.

A (closed) substitution maps variables in V to (closed) terms. For every term
t and substitution σ, the term σ(t) is obtained by replacing every occurrence of a
variable x in t by σ(x). Note that σ(t) is closed if σ is a closed substitution.

Transition rules Closed BCCSP terms denote finite process behaviours, where
0 does not exhibit any behaviour, p+ q is the nondeterministic choice between the
behaviours of p and q, and ap executes action a to transform into p. This intuition
is captured, in the style of Plotkin [25], by the transition rules below, which give
rise to a-labelled transitions, with a ∈ A, between closed terms.

ax
a−→ x

x
a−→ x′

x+ y
a−→ x′

y
a−→ y′

x+ y
a−→ y′

Trace Simulation Semantics is not Finitely Based over BCCSP 83

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour. We write t9 if there are no action a and term t′

such that t
a−→ t′ holds.

For each s ∈ A∗, the transition relation
s−→ is defined thus, where ε denotes

the empty string:

• t ε−→ t′ if, and only if, t = t′;

• t as−→ t′ if, and only if, there is some t′′ such that t
a−→ t′′

s−→ t′.

If t
s−→ t′, then we say that s is a trace of t. Such a trace is complete if t′9 .

For each BCCSP term t, we define

T (t) = {s | t s−→ t′ for some t′}.

The depth of a term t, written depth(t), is the length of a longest trace s ∈ T (t).
The norm of a term t, written norm(t), is the length of a shortest complete trace
s ∈ T (t). (The notion of norm stems from [6].) For example, the closed term a2+a3

has norm two and depth three.

Simulation, bisimulation and trace simulation We define the following three
variations on the notion of simulation over closed BCCSP terms.

Definition 1 (Simulations). A binary relation R over closed BCCSP terms is:

• a simulation [20, 24] if p R q and p
a−→ p′ imply q

a−→ q′ for some q′ with
p′ R q′;

• a bisimulation [22, 24] if it is a simulation whose inverse is also a simulation;

• a trace simulation if it is a simulation that satisfies the following condition:

p R q implies T (q) = T (p).

We write p -TS q if there is a trace simulation R with p R q, and p↔ q if there is
a bisimulation R with p R q. We will refer to -TS as the trace simulation preorder,
and to ↔ as bisimilarity.

Let -∈ {-TS ,↔}. We define t - u if σ(t) - σ(u) for each closed substitution
σ.

It is well known that -TS is a preorder and ↔ is an equivalence relation.
Moreover, both relations are preserved by the operators of the language BCCSP.

Inequational logic An inequation (respectively, an equation) over the language
BCCSP is a formula of the form t ≤ u (respectively, t = u), where t and u are
BCCSP terms. An (in)equational axiom system is a collection of (in)equations over
the language BCCSP. An equation t = u is derivable from an equational axiom
system E if it can be proven from the axioms in E using the rules of equational

84 Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir

logic (viz. reflexivity, symmetry, transitivity, substitution and closure under BCCSP
contexts).

t = t
t = u

u = t

t = u u = v

t = v

t = u

σ(t) = σ(u)

t = u

at = au

t = u t′ = u′

t+ t′ = u+ u′

For the derivation of an inequation t ≤ u from an inequational axiom system E,
the rule for symmetry is omitted.

It is well known that, without loss of generality, one may assume that substi-
tutions happen first in (in)equational proofs, i.e., that the fourth rule may only be
used when its premise is one of the (in)equations in E. Moreover, by postulating
that for each equation in E also its symmetric counterpart is present in E, one
may assume that applications of symmetry happen first in equational proofs, i.e.,
that the second rule is never used in equational proofs. (See, e.g., [12, page 497] for
a thorough discussion of this ‘normalized equational proofs’.) In the remainder of
this paper, we shall always tacitly assume that equational axiom systems are closed
with respect to symmetry. Note that, with this assumption, there is no difference
between the rules of inference of equational and inequational logic. In what follows,
we shall consider an equation t = u as a shorthand for the pair of inequations t ≤ u
and u ≤ t.

The depth of t ≤ u and t = u is the maximum of the depths of t and u. The
depth of a collection of (in)equations is the supremum of the depths of its elements.

An inequation t ≤ u is sound with respect to -TS if t -TS u holds. For example,
as our readers can readily check, the inequation

ax ≤ ax+ x (1)

is sound with respect to -TS if A = {a} and is unsound otherwise.

An (in)equational axiom system E is sound with respect to -TS if so is each
(in)equation in E. It is complete if each valid inequation t -TS u can be derived
from E, and it is ground complete if each valid inequation t -TS u relating closed
terms can be derived from E. A set of complete and sound (in)equations is some-
times referred to as an (in)equational basis.

The core axioms A1–A4 for BCCSP given below are classic and stem from [18].
They are complete [23], and sound and ground complete [18, 22], over BCCSP (over
any nonempty set of actions) modulo bisimulation equivalence [22, 24], which is the
finest semantics in van Glabbeek’s spectrum [26].

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A4 x+ 0 ≈ x

In what follows, for notational convenience, we consider terms up to the least
congruence generated by axioms A1–A4, that is, up to bisimulation equivalence.

Trace Simulation Semantics is not Finitely Based over BCCSP 85

3 The negative result

Our aim in what follows is to show the following theorem.

Theorem 1. The (in)equational theory of -TS over BCCSP does not have a finite
inequational basis. In particular, no finite set of sound inequations over BCCSP
modulo -TS can prove all of the sound inequations in the family

a2m ≤ a2m + am (m ≥ 0).

In what follows, we shall present a proof of the above result, which has proof
has a ‘proof-theoretic’ flavour.

Remark 1. The family of inequations in the statement of Theorem 1 was used
in [5, 4] to prove that the 2-nested simulation preorder from [17] does not afford a
finite ground-complete inequational axiomatization over BCCSP.

3.1 A proof-theoretic argument for Theorem 1

Our proof of Theorem 1 is based on obtaining that result as a corollary of the
following one.

Theorem 2. Let E be a collection of inequations whose elements are sound modulo
-TS and have depth smaller than m. Suppose furthermore that the closed inequation
p ≤ q is derivable from E, that q -TS a2m + am and norm(p) = 2m. Then
norm(q) = 2m.

Having shown the above result, Theorem 1 can be proved as follows. Let E
be a finite inequational axiom system that is sound modulo -TS . Pick m larger
than the depth of E. (Such an m exists since E is finite.) Then, by Theorem 2, E
cannot prove the valid inequation

a2m ≤ a2m + am,

and is therefore incomplete. Indeed, a2m has norm 2m, but a2m + am has norm m.
In the remainder of this section, we shall present a proof of Theorem 2. In

order to show that result, we shall first prove that the property mentioned in that
statement holds true for instantiations of sound inequations whose depth is smaller
than m. Next we use this fact to argue that the stated property is preserved by
arbitrary inequational derivations from a collection of inequations whose elements
have depth smaller than m and are sound modulo -TS .

Definition 2. We say that a term t has an occurrence of variable x reachable via
a sequence of actions s if there is some term t′ such that t

s−→ x+ t′.

For example, ax+a0 has an occurrence of x reachable via a because ax+a0
a−→

x and x = x+ 0.

86 Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir

Lemma 1. Assume that t -TS u and that u has an occurrence of variable x
reachable via a sequence of actions s. Then t also has an occurrence of variable x
reachable via some sequence of actions s′.

Proof. Assume that t -TS u and that u has an occurrence of variable x reachable
via a sequence of actions s. Let m be larger than the depth of t. Consider the
closed substitution σ mapping x to am and every other variable to 0. Since u has

an occurrence of variable x reachable via s, it is easy to see that σ(u)
sam

−→ 0. As

σ(t) -TS σ(u) because t -TS u by assumption, it must be the case that σ(t)
sam

−→ p
for some p. As the depth of t is smaller than m, the substitution σ maps all variables

different from x to 0 and σ(u)
sam

−→ p, it follows that t
s′−→ x+ t′ for some t′, which

was to be shown.

Remark 2. Note that, in general, the traces s and s′ mentioned in the statement
of the above lemma need not be equal. For instance, as we observed previously, the
inequation

ax ≤ ax+ x

is sound with respect to -TS if A = {a} and the term ax+ x has an occurrence of
variable x reachable via the sequence of actions ε. However, the only occurrence of
x in the term ax is reachable via the sequence of actions a.

The following lemma is the first stepping stone towards the proof of Theorem 2.
It establishes that the property mentioned in that statement holds true for instan-
tiations of sound inequations whose depth is smaller than m.

Lemma 2. Suppose that t -TS u and that m is larger than the depth of u. Let
σ be a closed substitution. Suppose, furthermore, that σ(u) -TS a2m + am and
norm(σ(t)) = 2m. Then norm(σ(u)) = 2m.

Proof. The assumption that σ(u) -TS a
2m + am yields that norm(σ(u)) = 2m or

norm(σ(u)) = m. Assume, towards a contradiction, that norm(σ(u)) = m. Then,
since depth(u) < m, there are some i < m and some variable x such that u has

an occurrence of variable x reachable via ai and σ(x)
am−i

−→ 0. Since t -TS u
and depth(t) < m too (because t -TS u clearly implies that depth(t) = depth(u)
and depth(u) < m by our assumption), there is some j < m such that t has an
occurrence of variable x reachable via aj . But then σ(t) has a trace of length
j+ (m− i) < 2m leading to 0. This contradicts the assumption that norm(σ(t)) =
2m. Therefore norm(σ(u)) = 2m, as claimed.

We will now argue that the property stated in Theorem 2 is preserved by arbi-
trary inequational derivations from a collection of inequations whose elements are
sound modulo .TS and have depth smaller than m. The following lemma will allow
us to handle closure under action prefixing in that proof.

Lemma 3. Assume that aq -TS a
2m + am. Then norm(aq) = 2m.

Trace Simulation Semantics is not Finitely Based over BCCSP 87

Proof. By our assumptions, it follows that m ≥ 1, depth(aq) = 2m and that
norm(aq) = 2m or norm(aq) = m.

Assume, towards a contradiction, that norm(aq) = m. Then q has depth 2m−1
and norm m − 1. Since aq -TS a

2m + am and depth(q) = 2m − 1, it must be the
case that q -TS a

2m−1. But this is impossible since q can terminate in m− 1 steps
and a2m−1 cannot. Therefore aq has norm 2m, as claimed.

We now have all the necessary ingredients to complete our proof of Theorem 2,
and therefore of Theorem 1.

Proof. (of Theorem 2) Assume that E is a collection of inequations whose elements
are sound modulo -TS and have depth smaller than m. Suppose furthermore that

• the inequation p ≤ q is derivable from E,

• q -TS a
2m + am, and

• norm(p) = 2m.

(Observe that m is positive because it is larger than the depth of E.) We shall
prove that norm(q) = 2m by induction on a closed derivation of p ≤ q from E. We
proceed by examining the last rule used in the proof of p ≤ q from E. The case
of reflexivity is trivial and that of transitivity follows by applying the inductive
hypothesis twice. If p ≤ q is proved by instantiating an inequation in E, then the
claim follows by Lemma 2. We are therefore left with the congruence rules, which
we examine separately below.

• Suppose that E proves p ≤ q because p = ap′, u = aq′ and E proves p′ ≤ q′

by a shorter inference. By the soundness of E and the proviso of the theorem,
we have that

p = ap′ -TS u = aq′ -TS a
2m + am

and norm(p) = 2m. Lemma 3 now yields norm(q) = 2m, as required.

• Suppose that E proves p ≤ q because p = p1 + p2, q = p1 + p2 and E proves
pi ≤ qi, 1 ≤ i ≤ 2, by shorter inferences. Since p has norm 2m and m is
positive, we may assume, without loss of generality, that p1 has norm 2m.
Moreover, the depth of p1 is also 2m, since

p = p1 + p2 -TS q1 + q2 = q -TS a
2m + am.

Therefore q1 has depth 2m because E is sound. Since q1 + q2 -TS a
2m + am,

for each q′1 such that q1
a−→ q′1 we have that q′1 -TS a

2m−1 or q′1 -TS a
m−1.

As q1 has positive depth, this means that q1 -TS a
2m+am. We may therefore

apply the induction hypothesis to obtain that norm(q1) = 2m. If p2 is 0 then
we are done since, in that case, q2 is also 0 by the soundness of E. If p2 is not
0, then its norm is also 2m, because p has norm and depth equal to 2m. But
then, reasoning as above, we may infer that norm(q2) = 2m. Since q = q1+q2
and norm(q1) = norm(q2) = 2m, we have that norm(q) = 2m, which was to
be shown.

This completes the proof.

88 Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir

Dedication Luca Aceto and Anna Ingólfsdóttir dedicate this paper to the mem-
ory of their collaborator and friend Zoltán Ésik, from whom they have learned much
and with whom they have shared many pleasant days. They will miss him.

References

[1] Aceto, Luca, Ésik, Zoltán, and Ingólfsdóttir, Anna. Equational axioms for
probabilistic bisimilarity. In Kirchner, Hélène and Ringeissen, Christophe,
editors, Algebraic Methodology and Software Technology, 9th International
Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France,
September 9–13, 2002, Proceedings, volume 2422 of Lecture Notes in Com-
puter Science, pages 239–253. Springer, 2002.

[2] Aceto, Luca, Ésik, Zoltán, and Ingólfsdóttir, Anna. Equational theories of
tropical semirings. Theoretical Computer Science, 298(3):417–469, 2003.

[3] Aceto, Luca, Ésik, Zoltán, and Ingólfsdóttir, Anna. The max-plus algebra
of the natural numbers has no finite equational basis. Theoretical Computer
Science, 293(1):169–188, 2003.

[4] Aceto, Luca, Fokkink, Wan, and Ingólfsdóttir, Anna. 2-nested simulation is not
finitely equationally axiomatizable. In STACS 2001 – 18th Annual Symposium
on Theoretical Aspects of Computer Science,, volume 2010 of Lecture Notes in
Computer Science, pages 39–50. Springer, 2001.

[5] Aceto, Luca, Fokkink, Wan, van Glabbeek, Rob, and Ingólfsdóttir, Anna.
Nested semantics over finite tree are equationally hard. Information and Com-
putation, 191(2):203–232, 2004.

[6] Baeten, Jos, Bergstra, Jan A., and Klop, Jan Willem. Decidability of bisimu-
lation equivalence for processes generating context-free languages. Journal of
the ACM, 40(3):653–682, 1993.

[7] Bergstra, Jan A. and Klop, Jan Willem. Process algebra for synchronous
communication. Information and Control, 60(1-3):109–137, 1984.

[8] Bloom, Stephen L. and Ésik, Zoltán. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993.

[9] Bloom, Stephen L. and Ésik, Zoltán. Nonfinite axiomatizability of shuffle in-
equalities. In Mosses, Peter D., Nielsen, Mogens, and Schwartzbach, Michael I.,
editors, TAPSOFT’95: Theory and Practice of Software Development, 6th In-
ternational Joint Conference CAAP/FASE, Aarhus, Denmark, May 22–26,
1995, Proceedings, volume 915 of Lecture Notes in Computer Science, pages
318–333. Springer, 1995.

Trace Simulation Semantics is not Finitely Based over BCCSP 89

[10] Bloom, Stephen L. and Ésik, Zoltán. Iteration algebras are not finitely axioma-
tizable. extended abstract. In Gonnet, Gaston H., Panario, Daniel, and Viola,
Alfredo, editors, LATIN 2000: Theoretical Informatics, 4th Latin American
Symposium, Punta del Este, Uruguay, April 10–14, 2000, Proceedings, volume
1776 of Lecture Notes in Computer Science, pages 367–376. Springer, 2000.

[11] Bloom, Stephen L., Ésik, Zoltán, and Taubner, Dirk. Iteration theories of
synchronization trees. Information and Computation, 102(1):1–55, 1993.

[12] Chen, Taolue, Fokkink, Wan, Luttik, Bas, and Nain, Sumit. On finite alpha-
bets and infinite bases. Information and Computation, 206(5):492–519, 2008.

[13] Crvenkovic, Sinisa, Dolinka, Igor, and Ésik, Zoltán. The variety of Kleene
algebras with conversion is not finitely based. Theoretical Computer Science,
230(1–2):235–245, 2000.

[14] Ésik, Zoltán. Group axioms for iteration. Information and Computation,
148(2):131–180, 1999.

[15] Ésik, Zoltán. Continuous additive algebras and injective simulations of syn-
chronization trees. Journal of Logic and Computation, 12(2):271–300, 2002.

[16] Ésik, Zoltán and Bertol, Michael. Nonfinite axiomatizability of the equational
theory of shuffle. In Fülöp, Zoltán and Gécseg, Ferenc, editors, Automata, Lan-
guages and Programming, 22nd International Colloquium, ICALP95, Szeged,
Hungary, July 10–14, 1995, Proceedings, volume 944 of Lecture Notes in Com-
puter Science, pages 27–38. Springer, 1995.

[17] Groote, Jan Friso and Vaandrager, Frits Willem. Structured operational se-
mantics and bisimulation as a congruence. Information and Computation,
100(2):202–260, 1992.

[18] Hennessy, Matthew and Milner, Robin. Algebraic laws for nondeterminism
and concurrency. Journal of the ACM, 32:137–161, 1985.

[19] Hoare, Charles Antony Richard. Communicating Sequential Processes. Pren-
tice Hall, 1985.

[20] Milner, Robin. An algebraic definition of simulation between programs. In Pro-
ceedings 2nd Joint Conference on Artificial Intelligence, pages 481–489. BCS,
1971. Also available as Report No. CS-205, Computer Science Department,
Stanford University.

[21] Milner, Robin. A Calculus of Communicating Systems. LNCS 92. Springer,
1980.

[22] Milner, Robin. Communication and Concurrency. Prentice Hall, 1989.

[23] Moller, Faron. Axioms for Concurrency. PhD thesis, Report CST-59-89,
Department of Computer Science, University of Edinburgh, 1989.

90 Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir

[24] Park, David M.R. Concurrency and automata on infinite sequences. In Theo-
retical Computer Science, 5th GI-Conference, volume 104 of Lecture Notes in
Computer Science, pages 167–183. Springer, 1981.

[25] Plotkin, Gordon D. A structural approach to operational semantics. Journal
of Logic and Algebraic Programming, 60–61:17–139, 2004.

[26] van Glabbeek, Rob. The linear time – branching time spectrum I; the semantics
of concrete, sequential processes. In Bergstra, J.A., Ponse, A., and Smolka,
S.A., editors, Handbook of Process Algebra, chapter 1, pages 3–99. Elsevier,
2001. Available at http://boole.stanford.edu/pub/spectrum1.ps.gz.

Acta Cybernetica 23 (2017) 91–111.

Commutative Positive Varieties of Languages∗

Jorge Almeidaa, Zoltán Ésikb, and Jean-Éric Pinc

To the memory of Zoltán Ésik.

Abstract

We study the commutative positive varieties of languages closed under
various operations: shuffle, renaming and product over one-letter alphabets.

Most monoids considered in this paper are finite. In particular, we use the term
variety of monoids for variety of finite monoids. Similarly, all languages considered
in this paper are regular languages and hence their syntactic monoid is finite.

1 Introduction

Eilenberg’s variety theorem [12] and its ordered version [17] provide a convenient
setting for studying classes of regular languages. It states that positive varieties of
languages are in one-to-one correspondence with varieties of finite ordered monoids.

There is a large literature on operations on regular languages. For instance,
the closure of [positive] varieties of languages under various operations has been
extensively studied: Kleene star [16], concatenation product [7, 19, 25], renaming
[1, 4, 8, 23, 26] and shuffle [6, 10, 14]. The ultimate goal would be the complete
classification of the positive varieties of languages closed under these operations.

∗The last two authors acknowledge support from the cooperation programme
CNRS/Magyar Tudomanyos Akadémia. The first author was partially supported by CMUP
(UID/MAT/00144/2013), which is funded by FCT (Portugal) with national (MCTES) and
European structural funds (FEDER), under the partnership agreement PT2020. The third
author was partially funded from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No 670624) and by
the DeLTA project (ANR-16-CE40-0007)

aCMUP, Dep. Matemática, Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal. E-mail: jalmeida@fc.up.pt

bDept. of Foundations of Computer Science, University of Szeged, Árpád tér 2, H-6720 Szeged,
P.O.B. 652 Hungary.

cIRIF, CNRS and Université Paris-Diderot, Case 7014, 75205 Paris Cedex 13, France.E-mail:
Jean-Eric.Pin@irif.fr

DOI: 10.14232/actacyb.23.1.2017.7

92 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

The first step in this direction is to understand the commutative case, which is the
goal of this paper.

We first show in Theorem 5.1 that every commutative positive ld-variety of
languages is a positive variety of languages. This means that if a class of commu-
tative languages is closed under Boolean operations and under inverses of length-
decreasing morphisms then it is also closed under inverses of morphisms. This
result has a curious application in weak arithmetic, stated in Proposition 5.4.

Next we study two operations on languages, shuffle and renaming. These two
operations are closely related to the so-called power operator on monoids, which
associates with each monoid the monoid of its subsets. In its ordered version,
it associates with each ordered monoid the ordered monoid of its downsets. We
give four equivalent conditions characterizing the commutative positive varieties of
languages closed under shuffle (Proposition 6.1) or under renaming (Proposition
6.2).

In order to keep the paper self-contained, prerequisites are presented in some
detail in Section 2. Inequalities form the topic of Section 3. We start with their
formal definitions, describe their various interpretations and establish some of their
properties. General results on renaming are given in Section 4 and more specific
results on commutative varieties are proposed in Section 5, including our previously
mentioned result on ld-varieties. Our characterizations of the positive varieties of
languages closed under shuffle or renaming form the meat of Section 6 and are
illustrated by three examples in Section 7. Finally, a few research directions are
suggested in Section 8.

2 Prerequisites

In this section, we briefly recall the following notions: lattices and (positive) vari-
eties of languages, syntactic ordered monoids, varieties of ordered monoids, stamps,
downset monoids, free profinite monoids.

2.1 Languages

Let A be a finite alphabet. Let [u] be the commutative closure of a word u,
that is, the set of words commutatively equivalent to u. For instance, [aab] =
{aab, aba, baa}. A language L is commutative if, for every word u ∈ L, [u] is
contained in L.

A lattice of languages is a set L of regular languages of A∗ containing ∅ and A∗

and closed under finite union and finite intersection. It is closed under quotients if,
for each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L.

The shuffle product (or simply shuffle) of two languages L1 and L2 over A is
the language

L1 xxyL2 = {w ∈ A∗ | w = u1v1 · · ·unvn for some words u1, . . . , un

v1, . . . , vn of A∗ such that u1 · · ·un ∈ L1 and v1 · · · vn ∈ L2}

Commutative Positive Varieties of Languages 93

The shuffle product defines a commutative and associative operation on the set of
languages over A.

A renaming or length-preserving morphism is a morphism ϕ from A∗ into B∗,
such that, for each word u, the words u and ϕ(u) have the same length. It is
equivalent to require that, for each letter a, ϕ(a) is also a letter, that is, ϕ(A) ⊆ B.
Similarly, a morphism is length-decreasing if the image of each letter is either a
letter or the empty word.

A class of languages is a correspondence C which associates with each alphabet
A a set C(A∗) of regular languages of A∗.

A positive variety of languages is a class of regular languages V such that:

(1) for every alphabet A, V(A∗) is a lattice of languages closed under quotients,

(2) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

A variety of languages is a positive variety V such that each lattice V(A∗) is closed
under complement. We shall also use two slight variations of these notions. A
positive ld-variety [lp-variety] of languages [13, 19] is a class of regular languages
V satisfying (1) and

(2′) if ϕ : A∗ → B∗ is a length-decreasing [length-preserving] morphism, then
L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗).

2.2 Syntactic ordered monoids

An ordered monoid is a monoid M equipped with a partial order 6 compatible
with the product on M : for all x, y, z ∈M , if x 6 y then zx 6 zy and xz 6 yz.

The ordered syntactic monoid of a language was first introduced by Schützen-
berger in [24, p. 10]. Let L be a language of A∗. The syntactic preorder of L is
the relation 6L defined on A∗ by u 6L v if, for every x, y ∈ A∗, xuy ∈ L implies
xvy ∈ L. When the language L is clear from the context, we may write 6 instead
of 6L. As is standard in preorder notation, we write u < v to mean that u 6 v
holds but v 6 u does not.

For instance, let A = {a}. If L = a + a3, then a3 6L a, but if L = a + a3a∗,
then a 6L a

3.
The associated equivalence relation∼L, defined by u ∼L v if u 6L v and v 6L u,

is the syntactic congruence of L and the quotient monoid M(L) = A∗/∼L is the
syntactic monoid of L. The natural morphism η : A∗ → A∗/∼L is the syntactic
stamp of L. The syntactic image of L is the set P = η(L).

The syntactic order 6 is defined on M(L) as follows: u 6 v if and only if
for all x, y ∈ M , xuy ∈ P implies xvy ∈ P . The partial order 6 is compatible
with multiplication and the resulting ordered monoid (M,6) is called the ordered
syntactic monoid of L.

Example 2.1. Let L be the language 1 + a. The syntactic monoid of L is the
commutative monoid {1, a, 0} satisfying a2 = 0. The syntactic order is 0 < a < 1.
Indeed, one has a 6 1 since, for each r > 0, the condition ara ∈ L implies ar ∈ L.
Similarly, one has 0 6 a since, for each r > 0, the condition ara2 ∈ L implies
ara ∈ L. However, 1 66 a and a 66 0 since a ∈ L but a2 /∈ L.

94 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

Example 2.2. Let L be the language a+a6a∗. The syntactic monoid of L may be
identified with the commutative monoid {0, 1, . . . , 6} equipped with the operation
xy = min{x + y, 6}. In particular, 0 and 6 are the unique idempotents. The
syntactic order is represented as follows (a path from i to j means that i < j):

0 1 2 3 4 5 6

For instance, one has 1 < 6 since, for each r > 0, the condition aar ∈ L implies
a6ar ∈ L. Similarly, one has 0 < 5 since, for each r > 0, the condition ar ∈ L
implies a5ar ∈ L. But 1 6< 5 since a ∈ L but a5 /∈ L.

Example 2.3. Let L be the language a+ (a3 + a4)(a7)∗. Its minimal automaton
is represented below.

0 1 2

3

4

5

6

7

8

a a

a

a

a

a

a

a

a

The syntactic monoid of L is the monoid presented by 〈a | a9 = a2〉. The syntatic
order is the equality relation.

2.3 Stamps

Monoids and ordered monoids are used to recognise languages, but there is a slightly
more restricted notion. A stamp is a surjective monoid morphism ϕ : A∗ →M from
a finitely generated free monoid A∗ onto a finite monoid M . If M is an ordered
monoid, ϕ is called an ordered stamp.

The restricted direct product of two [ordered] stamps ϕ1 : A∗ → M1 and ϕ2 :
A∗ → M2 is the stamp ϕ with domain A∗ defined by ϕ(a) = (ϕ1(a), ϕ2(a)) (see
Figure 1). The image of ϕ is an [ordered] submonoid of the [ordered] monoid
M1 ×M2.

Commutative Positive Varieties of Languages 95

A∗

M1

M2

Im(ϕ) ⊆M1 ×M2

ϕ1

ϕ2

ϕ

π1

π2

Figure 1: The restricted direct product of two stamps.

Recall that an upset of an ordered set E is a subset U of E such that the conditions
x ∈ U and x 6 y imply y ∈ U . A language L of A∗ is recognised by a stamp
ϕ : A∗ →M if there exists a subset P of M such that L = ϕ−1(P). It is recognised
by an ordered stamp ϕ : A∗ → M if there exists an upset U of M such that
L = ϕ−1(U).

It is easy to see that if two languages L0 and L1 of A∗ are recognised by the
[ordered] stamps ϕ0 and ϕ1, respectively, then L0 ∩ L1 and L0 ∪ L1 are both
recognised by the restricted product of ϕ0 and ϕ1.

2.4 Varieties

Varieties of languages and their avatars all admit an algebraic characterization.
We first describe the corresponding algebraic objects and summarize the corre-
spondence results at the end of this section. See [18] for more details.

[Positive] varieties of languages correspond to varieties of [ordered] monoids. A
variety of monoids is a class of monoids closed under taking submonoids, quotients
and finite direct products. Varieties of ordered monoids are defined analogously.

The description of the algebraic objects corresponding to positive lp- and ld-
varieties of languages is more complex and relies on the notion of stamp defined in
Section 2.3. An lp-morphism from a stamp ϕ : A∗ →M to a stamp ψ : B∗ → N is
a pair (f, α), where f : A∗ → B∗ is length-preserving, α : M → N is a morphism
of [ordered] monoids, and ψ ◦ f = α ◦ ϕ.

A∗ B∗

M N

f

ϕ ψ

α

The lp-morphism (f, α) is an lp-projection if f is surjective. It is an lp-inclusion if
α is injective.

An [ordered] lp-variety of stamps is a class of [ordered] stamps closed under
lp-projections, lp-inclusions and finite restricted direct products. [Ordered] ld-

96 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

varieties of stamps are defined in the same way, just by replacing lp by ld and
length-preserving by length-decreasing everywhere in the definition.

Here are the announced correspondence results. Eilenberg’s variety theorem [12]
and its ordered counterpart [17] give a bijective correspondence between varieties
of [ordered] monoids and positive varieties of languages. Let V be a variety of finite
[ordered] monoids and, for each alphabet A, let V(A∗) be the set of all languages
of A∗ whose [ordered] syntactic monoid is in V. Then V is a [positive] variety of
languages. Furthermore, the correspondenceV → V is a bijection between varieties
of [ordered] monoids and [positive] varieties of languages.

There is a similar correspondence for lp-varieties of [ordered] stamps [13, 27].
Let V be an lp-variety of [ordered] stamps. For each alphabet A, let V(A∗) be
the set of all languages of A∗ whose [ordered] syntactic stamp is in V. Then V
is a [positive] lp-variety of languages. Furthermore, the correspondence V → V
is a bijection between lp-varieties of [ordered] stamps and [positive] lp-varieties of
languages.

Finally, there is a similar statement for ld-varieties of [ordered] stamps.

2.5 Downset monoids

Let (M,6) be an ordered monoid. A downset of M is a subset F ofM such that if
x ∈ F and y 6 x then y ∈ F . The product of two downsets X and Y is the downset

XY = {z ∈M | there exist x ∈ X and y ∈ Y such that z 6 xy}

This operation makes the set of nonempty downsets of M a monoid, denoted by
P↓(M) and called the downset monoid ofM . Its identity element is ↓1. If one also

considers the empty set, one gets a monoid with zero, denoted P↓
0 (M), in which the

empty set is the zero. For instance, ifM is the trivial monoid, P↓
0 (M) is isomorphic

to the ordered monoid {0, 1}, consisting of an identity 1 and a zero 0, ordered by

0 < 1. This monoid will be denoted by U↓
1.

The monoids P↓
0 (M) and P↓(M) are closely related. First, P↓(M) is a sub-

monoid of P↓
0 (M). Secondly, as shown in [10, Proposition 5.1, p. 452], P↓

0 (M) is

isomorphic to a quotient monoid of P↓(M)× U↓
1.

The monoids P↓(M) and P↓
0 (M) are naturally ordered by inclusion, denoted

by 6. Note that X 6 Y if and only if, for each x ∈ X , there exists y ∈ Y such that
x 6 y.

Given a variety of ordered monoids V, let P↓V [P↓
0V] denote the variety of

ordered monoids generated by the monoids of the form P↓(M) [P↓
0 (M)], where

M ∈ V. The operator P↓ was intensively studied in [4]. In particular, it is known

that both P↓ and P
↓
0 are idempotent operators.

The hereinabove relation between P↓
0 (M) and P↓(M) can be extended to vari-

eties as follows. Let Sl↓ be the variety of ordered monoids generated by U↓
1. It is a

well-known fact that Sl↓= Jxy = yx, x = x2, x 6 1K. Moreover, the equality

P
↓
0V = P↓V ∨ Sl↓ (1)

Commutative Positive Varieties of Languages 97

holds for any variety of ordered monoids V.

2.6 Free profinite monoid

We refer the reader to [1, 2, 3, 28] for detailed information on profinite completions
and we just recall here a few useful facts. Let d be the profinite metric on the
free monoid A∗. We let Â∗ denote the completion of the metric space (A∗, d). The
product on A∗ is uniformly continuous and hence has a unique continuous extension
to Â∗. It follows that Â∗ is a compact monoid, called the free profinite monoid on
A. Furthermore, every stamp ϕ : A∗ → M admits a unique continuous extension
ϕ̂ : Â∗ → M . Similarly, every morphism f : A∗ → B∗ admits a unique continuous
extension f̂ : Â∗ → B̂∗. In the sequel, L denotes the closure in Â∗ of a subset L of
A∗.

The length of a word u is denoted by |u|. The length map u → |u| defines a
morphism from A∗ to the additive semigroup N. If A = {a}, this morphism is
actually an isomorphism, which maps an to n. In other words, (N,+, 0) is the free

monoid with a single generator. We let N̂ denote the profinite completion of N,
which is of course isomorphic to â∗.

This allows one to define the length |u| of an element u of Â∗ simply by ex-
tending by continuity the length map defined on A∗. The length map is actually a
morphism, that is, |1| = 0 and |uv| = |u|+ |v| for all u, v ∈ Â∗.

3 Inequalities and identities

The inequalities [equalities] occurring in this paper are of the form u 6 v [u = v],

where u and v are both in Â∗ for some alphabet A. In an ordered context, u = v
is often viewed as a shortcut for u 6 v and v 6 u.

However, these inequalities are interpreted in several different contexts, which
may confuse the reader. Let us clarify matters by giving precise definitions for each
case.

3.1 Inequalities

Ordered monoids. Let M be an ordered monoid, let X be an alphabet and let
u, v ∈ X̂∗. ThenM satisfies the inequality u 6 v if, for each morphism ψ : X∗ →M ,
ψ̂(u) 6 ψ̂(v).

This is the formal definition but in practice, it is easier to think of u and v
as terms in which one substitutes each symbol x ∈ X for an element of M . For
instance, M satisfies the inequality xyω+1 6 xωy if, for all x, y ∈M , xyω+1 6 xωy.

Varieties of ordered monoids. Let V be a variety of ordered monoids, let X
be an alphabet and let u, v ∈ X̂∗. Then V satisfies an inequality u 6 v if each
ordered monoid of V satisfies the inequality. In this context, equalities of the form
u = v are often called identities.

98 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

It is proved in [20] that any variety of ordered monoids may be defined by a
(possibly infinite) set of such inequalities. This result extends to the ordered case
the classical result of Reiterman [22] and Banaschewski [5]: any variety of monoids
may be defined by a (possibly infinite) set of identities.

The case of lp-varieties and ld-varieties of ordered stamps. Let V be an lp-
variety [ld-variety] of ordered stamps, let X be an alphabet and let u, v ∈ X̂∗. Then
V satisfies the inequality u 6 v if, for each stamp ϕ : A∗ → M of V and for every
length-preserving [length-decreasing] morphism f : X∗ → A∗, ϕ̂(f̂(u)) 6 ϕ̂(f̂(v)).

The difficulty is to interpret correctly f̂(u). If f is length-preserving, f̂(u) is
obtained by replacing each symbol x ∈ X by a letter of A. For instance, an lp-
variety V satisfies the inequality xyω+1 6 xωy if, for each stamp ϕ : A∗ →M of V
and for all letters a, b ∈ A, ϕ̂(abω+1) 6 ϕ̂(aωb).

It is proved in [15, 19] that any ordered lp-variety of stamps may be defined by
a (possibly infinite) set of such inequalities.

If f is length-decreasing, this is even more tricky. Then f̂(u) is obtained by
replacing each symbol x ∈ X by either a letter of A or by the empty word. For
instance, an ld-variety V satisfies the inequality xyω+1 6 xωy if, for each stamp
ϕ : A∗ → M of V and for all letters a, b ∈ A, ϕ̂(abω+1) 6 ϕ̂(aωb), ϕ̂(bω+1) 6 ϕ̂(b)
and ϕ̂(a) 6 ϕ̂(aω).

It is proved in [15, 19] that any ordered ld-variety of stamps may be defined by
a (possibly infinite) set of such inequalities.

We will also need the following elementary result. Recall that a variety of [ordered]
monoids is aperiodic if it satisfies the identity xω = xω+1.

Proposition 3.1. Let V be an aperiodic variety of ordered monoids. Then, for
each α ∈ N̂, V satisfies the identity xω = xωxα.

Proof. Let α ∈ N̂. Then α = limn→∞ kn for some sequence (kn)n>0 of nonegative
integers. Since V is aperiodic, it satisfies the identity xω+kn = xω for all n, and
hence it also satisfies the identity xωxα = xω.

4 Renaming

In this section, we give some general results on renaming.
Since any map may be written as the composition of an injective map with a

surjective map, one gets immediately:

Lemma 4.1. A class of languages is closed under renaming if and only if it is
closed under injective and surjective renamings.

The next two results give a simple description of the positive lp-varieties [ld-
varieties] of languages closed under injective renaming:

Proposition 4.1. The following conditions are equivalent for a positive lp-variety
of languages V:

Commutative Positive Varieties of Languages 99

(1) V is closed under injective renaming,

(2) for each alphabet A and each nonempty set B ⊆ A, B∗ belongs to V(A∗),

(3) for each alphabet A and each set B ⊆ A, B∗ belongs to V(A∗).

Proof. (1) implies (3). Suppose that V is closed under injective renaming. Let B
be a subset of an alphabet A. Since B∗ ∈ V(B∗) and since the embedding of B∗

into A∗ is an injective renaming, one also has B∗ ∈ V(A∗).
(3) implies (2) is trivial.
(2) implies (3). We have to show that for any alphabet A, {1} ∈ V(A∗). First

assume that A has at least two elements. If A = B1 ∪ B2 is a partition of A into
two disjoint nonempty sets B1 and B2, then both B∗

1 and B∗
2 are in V(A∗), so that

{1} = B∗
1 ∩ B∗

2 is also in V(A∗). Now consider a one-letter alphabet a and the
two-letter alphabet {a, b}. The inclusion h : a∗ → {a, b}∗ is length preserving and
thus {1} = h−1({1}) is in V(a∗). Finally, the result is trivial if A is empty.

(3) implies (1). Suppose that, for each alphabet A and nonempty set B ⊆
A, B∗ ∈ V(A∗). Let h : B∗ → A∗ be an injective renaming. Then there is a
renaming f : A∗ → B∗ such that f ◦ h is the identity function on B∗. Since for
any L ⊆ B∗, h(L) = f−1(L) ∩ (h(B))∗, we conclude that h(L) ∈ V(A∗) whenever
L ∈ V(B∗).

Proposition 4.2. An ld-variety V is closed under injective renaming if and only
if for each one-letter alphabet a, {1} belongs to V(a∗).

Proof. Since each ld-variety is an lp-variety, Proposition 4.1 shows that V is closed
under injective renaming if and only if, for each alphabet A and each subset B of
A, B∗ belongs to V(A∗). In particular, if V is closed under injective renaming, then
{1} belongs to V(a∗).

Suppose now that V(a∗) contains {1}. Let A be any alphabet and let B be a
subset of A. The morphism h : A∗ → a∗ that maps each element of B to 1 and
all elements of A \ B to a is length-decreasing. Since V is an ld-variety and {1}
belongs to V(a∗), h−1({1}) also belongs to V(a∗). But B∗ = h−1({1}), and hence
V(A∗) contains B∗ as required.

Let V be a variety of ordered monoids and let V be the corresponding positive
variety of languages. A description of the positive variety of languages correspond-
ing to P↓V was given by Polák [21, Theorem 4.2] and by Cano and Pin [9] and
[10, Proposition 6.3]. The following stronger version1 was given in [8]. For each
alphabet A, let us denote by ΛV(A∗) [Λ′V(A∗)] the set of all languages of A∗ of the
form ϕ(K), where ϕ is a [surjective] renaming from B∗ to A∗, B is an arbitrary
finite alphabet, and K is a language of V(B∗).

Theorem 4.1. The class ΛV [Λ′V] is a positive variety of languages and the cor-

responding variety of ordered monoids is P
↓
0V [P↓V].

Corollary 4.1. A positive variety of languages V is closed under [surjective] re-

naming if and only if V = P
↓
0V [V = P↓V].

1We warn the reader that a different notation was used in [8].

100 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

5 Commutative varieties

A stamp ϕ : A∗ →M is said to be commutative ifM is commutative. An ld-variety
is commutative if all its stamps are commutative. A stamp ϕ : A∗ → M is called
monogenic if A is a singleton alphabet.

Proposition 5.1. Every commutative ld-variety of [ordered] stamps is generated
by its monogenic [ordered] stamps.

Proof. We first give the proof in the unordered case. Let V be a commutative
ld-variety of stamps and let ϕ : A∗ → M be a stamp of V. For each a ∈ A, denote
by Ma the submonoid of M generated by ϕ(a) and let γa : A∗ →Ma be the stamp
defined by γa(a) = ϕ(a) and γa(c) = 1 for c 6= a. Let W be the ld-variety of stamps
generated by the stamps γa, for a ∈ A. We claim that V = W.

Let πa : A∗ → A∗ be the length-decreasing morphism defined by πa(a) = a and
πa(c) = 1 for c 6= a. Denoting by ιa the natural embedding from Ma into M , one
gets the following commutative diagram:

A∗ A∗

Ma M

πa

γa ϕ

ιa

Therefore (πa, ιa) is an ld-inclusion and each stamp γa belongs to V. ThusW ⊆ V.
The restricted product γ of the stamps γa also belongs to W. Note that γ

is a surjective morphism from A∗ onto
∏

a∈AMa. Moreover, the function α :∏
a∈AMa → M which maps each family (ma)a∈A onto the product

∏
a∈Ama is a

surjective morphism. Since α ◦ γ = ϕ, the stamp ϕ belongs to W. Thus V ⊆ W.
This proves the claim and the proposition.

In the ordered case, each Ma is an ordered submonoid of M and thus each γa is
an ordered stamp. Since ιa clearly preserves the order, the same argument shows
that each γa is in V and thus W ⊆ V. For the reverse inclusion, one basically
needs to observe that

∏
a∈AMa is equipped with the product order, and that the

map α preserves the order, since M is an ordered monoid.

A similar but simpler proof would give the following result:

Proposition 5.2. Every commutative variety of [ordered] monoids is generated by
its monogenic [ordered] monoids.

Proposition 5.1 has an interesting consequence in terms of languages. Equiva-
lently, a language is commutative if its syntactic monoid is commutative.

Corollary 5.1. Let V1 and V2 be two positive ld-varieties of commutative lan-
guages. Then V1 ⊆ V2 if and only if V1(a

∗) ⊆ V2(a
∗).

Commutative Positive Varieties of Languages 101

Corollary 5.1 shows that a positive commutative ld-variety of languages is en-
tirely determined by its languages on a one-letter alphabet. Here is a more explicit
version of this result.

Proposition 5.3. Let V be a commutative positive ld-variety of languages. Then
for each alphabet A = {a1, . . . , ak}, V(A

∗) consists of all finite unions of languages
of the form L1 xxy · · · xxyLk where, for 1 6 i 6 k, Li ∈ V(a∗i).

Proof. Let A = {a1, . . . , ak} be an alphabet. Let W(A∗) consist of all finite unions
of languages of the form L1 xxy · · · xxyLk where, for 1 6 i 6 k, Li ∈ V(a∗i). Let us
first prove a lemma.

Lemma 5.1. The class W is a commutative positive ld-variety of languages.

Proof. By construction, every language ofW is commutative. Furthermore, W(A∗)
is closed under union. To prove that W(A∗) is closed under intersection, it suffices
to show that the intersection of any two languages L = L1 xxy · · · xxyLk and L′ =
L′
1 xxy · · · xxyL′

k with Li, L
′
i ∈ V(a∗i) is in W(A∗). We claim that

L ∩ L′ = (L1 ∩ L
′
1) xxy · · · xxy (Lk ∩ L′

k) (2)

Let R be the right hand side of (2). The inclusion R ⊆ L ∩ L′ is clear. Moreover,

if u ∈ L ∩ L′, then u ∈ (an1

1 xxy · · · xxy ank

k) ∩ (an
′

1

1 xxy · · · xxy a
n′

k

k), with ani

i ∈ Li and

a
n′

i

i ∈ L′
i for 1 6 i 6 k. This forces ni = n′

i and hence u ∈ R, which proves the
claim.

Let us prove that W(A∗) is closed under quotient by any word u. Setting
ni = |u|ai

for 1 6 i 6 k, it suffices to observe that

u−1(L1 xxy · · · xxyLk) = (an1

1)−1L1 xxy · · · xxy (ank

k)−1Lk

Finally, let α : B∗ → A∗ be a length-decreasing morphism. It is proved in [6,
Proposition 1.1] that

α−1(L1 xxy · · · xxyLk) = α−1(L1) xxy · · · xxyα−1(Lk) (3)

It follows that W is closed under inverses of ld-morphisms, which concludes the
proof.

Let us now come back to the proof of Proposition 5.3. Since W is a commutative
positive ld-variety by Lemma 5.1, it suffices to prove, by Proposition 5.1, that
V(a∗) = W(a∗) for each one-letter alphabet a. But this follows from the definition
of W .

Proposition 5.3 has an interesting consequence.

Theorem 5.1. Every commutative positive ld-variety of languages is a positive
variety of languages.

102 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

Proof. Let V be a commutative positive ld-variety of languages and let W be the
positive variety of languages generated by V . We claim that V = W . Since V is
contained in W , Corollary 5.1 shows that it suffices to prove that W(a∗) ⊆ V(a∗)
for each one-letter alphabet a. Since inverses of morphisms commute with Boolean
operations and quotients, it suffices to prove that if ϕ : a∗ → A∗ is a morphism and
L ∈ V(A∗), then ϕ−1(L) ∈ V(a∗).

Let ϕ(a) = a1 · · ·ak, where a1, . . . , ak are letters of A. Setting C = {c1, . . . , ck},
where c1, . . . , ck are distinct letters, one may write ϕ as α ◦ β where β : a∗ → C∗ is
defined by β(a) = c1 · · · ck and α : C∗ → A∗ is defined by α(ci) = ai for 1 6 i 6 k.

a∗ C∗ A∗

ϕ

β α

Since α is length-preserving, the languageK = α−1(L) belongs to V(C∗). It follows
by Proposition 5.3 that K is a finite union of languages of the form L1 xxy · · · xxyLk

where, for 1 6 i 6 k, Li ∈ V(c∗i). Let, for 1 6 i 6 k, βi be the unique length
preserving morphism from a∗ to c∗i , defined by βi(a

r) = cri . We claim that

β−1(L1 xxy · · · xxyLk) = β−1
1 (L1) ∩ · · · ∩ β−1

k (Lk) (4)

Let R be the right hand side of (4). If ar ∈ R, then βi(a
r) ∈ Li. Therefore

cri ∈ Li and since β(ar) = (c1 · · · ck)
r, β(ar) ∈ L1 xxy · · · xxyLk. Thus R is a subset

of β−1(L1 xxy · · · xxyLk).

If now ar ∈ β−1(L1 xxy · · · xxyLk), then β(a
r) ∈ c

n1

1 xxy · · · xxy cnk

k with cni ∈ Li for
1 6 i 6 k. But since β(ar) = (c1 · · · ck)

r, one has n1 = · · · = nk = r and hence
cri ∈ Li. Therefore a

r ∈ β−1
i (Li) for all i and thus ar belongs R. This proves (4).

Since Li ∈ V(c∗i) and βi is length-preserving, β
−1
i (Li) ∈ V(a∗). As K is a finite

union of languages of the form L1 xxy · · · xxyLk, Formula (4) shows that β−1(K) ∈
V(a∗). Finally, since ϕ = α ◦ β, one gets ϕ−1(L) = β−1(α−1(L)) = β−1(K).
Therefore ϕ−1(L) ∈ V(a∗), which concludes the proof.

Theorem 5.1 has a curious interpretation on the set of natural numbers, men-
tioned in [11]. Setting, for each subset L of N and each positive integer k,

L− 1 = {n ∈ N | n+ 1 ∈ L}

L÷ k = {n ∈ N | kn ∈ L}

one gets the following result:

Proposition 5.4. Let L be a lattice of finite subsets2 of N such that if L ∈ L, then
L− 1 ∈ L. Then for each positive integer k, L ∈ L implies L÷ k ∈ L.

2It also works for a lattice of regular subsets of N.

Commutative Positive Varieties of Languages 103

6 Operations on commutative languages

In this section, we compare the expressive power of three operations on commutative
languages: product, shuffle and renaming.

6.1 Shuffle

Let us say that a positive variety of languages V is closed under product over one-
letter alphabets if, for each one-letter alphabet a, V(a∗) is closed under product.
Commutative positive varieties closed under shuffle may be described in various
ways.

Proposition 6.1. Let V be a commutative positive variety of languages and let
V be the corresponding variety of ordered monoids. The following conditions are
equivalent:

(1) V is closed under surjective renaming,

(2) V is closed under shuffle product,

(3) V is closed under product over one-letter alphabets,

(4) V = P↓V.

Proof. (1) implies (2). Let B = A × {0, 1} and let π0, π1 and π be the three
morphisms from B∗ to A∗ defined for all a ∈ A by

π0(a, 0) = a π1(a, 0) = 1 π(a, 0) = a

π0(a, 1) = 1 π1(a, 1) = a π(a, 1) = a

Let L0 and L1 be two languages of A∗. Since π is a surjective renaming, the
formula L0 xxyL1 = π(π−1

0 (L0) ∩ π
−1
1 (L1)) shows that every positive variety closed

under surjective renaming is closed under shuffle product.

(2) implies (3) is trivial since on a one-letter alphabet, shuffle product and
product are the same.

(3) implies (1). Let π : A∗ → B∗ be a surjective renaming. For each b ∈ B,
let γb : b∗ → a∗ be the renaming which maps b onto a. Let L be a language of
V(A∗). By Proposition 5.3, L is a finite union of languages of the form xxya∈A La

where La ∈ V(a∗) for each a ∈ A. For each b ∈ B, let

Kb =
∏

a∈π−1(b)

γ−1
b (La)

If V(a∗) is closed under product for each one-letter alphabet a, then Kb belongs
to V(b∗). Finally, the formula π(L) = xxyb∈B Kb shows that π(L) belongs to V(B∗).
Therefore V is closed under surjective renaming.

Finally, the equivalence of (1) and (4) follows from Corollary 4.1.

104 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

6.2 Renaming

Let us say that a positive variety of languages contains {1} if, for every alphabet
A, V(A∗) contains the language {1}. The following result is a slight variation on
Proposition 6.1.

Proposition 6.2. Let V be a commutative positive variety of languages and let
V be the corresponding variety of ordered monoids. The following conditions are
equivalent:

(1) V is closed under renaming,

(2) V is closed under surjective renaming and contains {1},

(3) V is closed under shuffle product and contains {1},

(4) V is closed under product over one-letter alphabets and contains {1},

(5) V = P
↓
0V.

Proof. The equivalence of (2)—(4) follows directly from Proposition 6.1. If (2)
holds, then V is closed under injective renaming by Proposition 4.2 and hence is
closed under renaming by Lemma 4.1. Thus (2) implies (1).

To show that (1) implies (2), it suffices to show that if V is closed under renaming
then it contains {1}. Let A = {a, b} and let π : A∗ → A∗ be the renaming defined
by π(a) = π(b) = a. Since A∗ ∈ V(A∗) and π(A∗) = a∗, one has a∗ ∈ V(A∗). A
similar argument would show that b∗ ∈ V(A∗) and thus the language {1}, which
is the intersection of a∗ and b∗ also belongs to V(A∗). Consider now an alphabet
B and the morphism α from B∗ to A∗ defined by α(c) = a for each c ∈ B. Then
α−1({1}) = {1} and thus V contains {1}.

Finally, the equivalence of (1) and (5) follows from Corollary 4.1.

7 Three examples

In this section, we study the positive varieties of languages generated by the lan-
guages of Examples 2.1, 2.2 and 2.3.

7.1 The language 1 + a

Let L be the language 1 + a, let M be its ordered syntactic monoid and let V be
the smallest commutative positive variety such that V(a∗) contains L. Let V be
the variety of finite ordered monoids corresponding to V .

Since a positive variety of languages is closed under quotients, V(a∗) contains
the language a−1L = 1. It follows that V(a∗) contains 4 languages: ∅, 1, 1 + a and
a∗. We claim that

V = Jxy = yx, x 6 1 and x2 6 x3 K.

First, the two inequalities x 6 1 and x2 6 x3 hold in M . Furthermore, the
inequality x 6 1 implies the inequalities of the form xp 6 xq with p > q and the
inequality x2 6 x3 implies all the inequalities of the form xp 6 xq with 2 6 p < q.

Commutative Positive Varieties of Languages 105

The only other nontrivial inequalities that V could possibly satisfy are 1 6 xq for
q > 0 or x 6 xq for q > 1. However, M does not satisfy any of these inequalities.

Let V ′ be the closure of V under shuffle, or equivalently, under product over
one-letter alphabets. Then V ′(a∗) contains the empty language, the language a∗

and all languages of the form (1+a)n with n > 0. By Theorem 4.1 and Proposition
6.1, V ′ corresponds to the variety of ordered monoids P↓V. We claim that

P↓V = Jxy = yx and x 6 1 K.

Indeed, the ordered syntactic monoids of the languages of V ′(a∗) all satisfy xy = yx
and x 6 1. Conversely, if the ordered syntactic monoid of a language K of a∗

satisfies x 6 1, then xn 6K 1 for every n > 0, and K is closed under taking
subwords. If K is infinite, this forces K = a∗. If K is finite, it is necessarily of the
form (1 + a)n with n > 0. In both cases, K belongs to V ′(a∗).

Finally, let W be the variety of ordered monoids corresponding to the closure
of V under renaming. Since U↓

1 ∈ P↓V, Theorem 4.1 and Formula (1) show that

W = P
↓
0V = P↓V ∨ Sl↓= P↓V = Jxy = yx and x 6 1 K.

7.2 The language a+ a
6
a
∗

Let L be the language a+ a6a∗, let M be its ordered syntactic monoid and let V
be the smallest commutative positive variety such that V(a∗) contains L. Let V

be the variety of finite ordered monoids corresponding to V .
Since a positive variety of languages is closed under quotients, V(a∗) contains

the language a−1L = 1+ a5a∗ and the language L ∩ a−1L = a6a∗. It also contains
the quotients of this language, which are the languages aja∗, for j 6 6. Taking the
union with L, a−1L or both, one finally concludes that V(a∗) contains 20 languages:
∅, aia∗ for 0 6 i 6 6, 1+ aia∗ for 1 6 i 6 5, a+ aia∗ for 3 6 i 6 6 and 1+ a+ aia∗

for 3 6 i 6 5.
We claim that

V = Jxy = yx, 1 6 x5, x2 6 x3, x6 = x7K.

Indeed, all defining inequalities hold in M . Since x6 = x7, the other possible
inequalities satisfied by M are equivalent to an inequality of the form xp 6 xq

with p < q 6 6. For p = 0, the only inequalities of this form satisfied by M are
1 6 x5 and 1 6 x6, but 1 6 x6 is a consequence of 1 6 x5 and x2 6 x3 since
1 6 x5 = x3x2 6 x3x3 = x6. For p = 1, the only inequality of this form satisfied
by M is x 6 x6, which is a consequence of 1 6 x5. Finally, the inequality x2 6 x3

implies xp 6 xq for 2 6 p < q 6 6.
Let V ′ be the closure of V under shuffle, or equivalently, under product over one-

letter alphabets. We claim that V ′(a∗) consists of the empty set and the languages
of the form

an(F + a5a∗) (5)

106 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

where n > 0 and F is a subset of (1 + a)4. First of all, the languages of the form
(5) and the empty set form a lattice closed under product, since if 0 6 n 6 m and
F and G are subsets of (1 + a)4, then

an(F + a5a∗) + am(G+ a5a∗) = an(F + am−nG+ a5a∗)

an(F + a5a∗) ∩ am(G+ a5a∗) = am
((

(am−n)−1(F + a5a∗)
)
∩G

)
+ a5a∗

)

an(F + a5a∗)am(G+ a5a∗) = an+m(FG+ a5a∗)

Since V ′(a∗) is closed under finite unions, it just remains to prove that the languages
of the form an(ak+a5a∗), with n > 0 and 0 6 k 6 4 all belong to V ′(a∗). But since
the languages a+ a6a∗ and 1 + a5−ka∗ are in V(a∗), this follows from the formula

an(ak + a5a∗) =
(
a+ a6a∗)n+k(1 + a5−ka∗)

By Theorem 4.1 and Proposition 6.1, V ′ corresponds to the variety of ordered
monoids P↓V. We claim that

P↓V = Jxy = yx and 1 6 xn for 5 6 n 6 9 K.

Indeed, the ordered syntactic monoid of any of the languages of the form (5) satisfies
all inequalities of the form 1 6 xn for n > 5, but the syntactic ordered monoid of
1+ a2a∗ does not satisfy any inequality of the form xp 6 xq with p > q. Moreover,
the only inequalities that are not an immediate consequence of an inequality of the
form 1 6 xn with 5 6 n 6 9 are the inequalities xi 6 xj with 0 6 j − i 6 4.
But none of these inequalities are satisfied by the ordered syntactic monoid of
ai(1 + a5a∗).

Finally, Theorem 4.1 and Formula (1) show that the variety of ordered monoids
corresponding to the closure of V under renaming is

P
↓
0V = P↓V ∨ Sl

↓

= Jxy = yx and 1 6 xn for 5 6 n 6 9 K ∨ Jxy = yx, x2 = x, x 6 1 K.

We claim that P↓
0V = W, where

W = Jxy = yx and x 6 xn for 6 6 n 6 10 K.

First, the inequality x 6 xn is a consequence both of the inequality 1 6 xn−1 and
of the equation x = x2. It follows that P

↓
0V ⊆ W. To establish the opposite

inclusion, it suffices to establish the claim that any inequality of the form xp 6 xq

satisfied by both P↓V and Sl
↓ is also satisfied by W. If p = 0, then the inequality

becomes 1 6 xq and it is not satisfied by Sl↓ since 1 6< 0 in U↓
1. Moreover, for p > 0,

the only inequalities of the form xp 6 xq that are not an immediate consequence
of an inequality of the form x 6 xn with 6 6 n 6 10 are the inequalities xp 6 xq

with 0 6 q − p 6 4. But we already observed that the ordered syntactic monoid of
ap(1 + a5a∗) belongs to P↓V but does not satisfy any of these inequalities, which
proves the claim.

Commutative Positive Varieties of Languages 107

7.3 The language a+ (a3 + a
4)(a7)∗

Let L be the language a + (a3 + a4)(a7)∗, let M be its ordered syntactic monoid
and let V be smallest commutative positive variety such that V(a∗) contains L. Let
V be the variety of finite ordered monoids corresponding to V . One has

(a)−1L = 1 + (a2 + a3)(a7)∗ (a2)−1L = (a+ a2)(a7)∗

(a3)−1L = (1 + a)(a7)∗ (a4)−1L = (1 + a6)(a7)∗

(a5)−1L = (a5 + a6)(a7)∗ (a6)−1L = (a4 + a5)(a7)∗

(a7)−1L = (a3 + a4)(a7)∗ (a8)−1L = (a2 + a3)(a7)∗

The set of final states of the minimal automaton of L is {1, 3, 4}. The quotients of
L are recognised by the same automaton by taking a different set of final states as
indicated below

(a)−1L→ {0, 2, 3} (a2)−1L→ {1, 2, 8}

(a3)−1L→ {0, 1, 7, 8} (a4)−1L→ {0, 6, 7}

(a5)−1L→ {5, 6} (a6)−1L→ {4, 5}

(a7)−1L→ {3, 4} (a8)−1L→ {2, 3}

Observing that

{0} = {0, 2, 3} ∩ {0, 6, 7} {1} = {1, 3, 4} ∩ {1, 2, 8}

{2} = {0, 2, 3} ∩ {1, 2, 8} {3} = {1, 3, 4} ∩ {0, 2, 3}

{4} = {3, 4} ∩ {4, 5} {5} = {4, 5} ∩ {5, 6}

{6} = {5, 6} ∩ {0, 6, 7} {0, 7} = {0, 6, 7} ∩ {0, 1, 7, 8}

{1, 8} = {1, 2, 8} ∩ {0, 1, 7, 8}

it follows that a language belongs to the lattice of languages generated by the
quotients of L if and only if it is accepted by the minimal automaton of L equipped
with a set F of final states satisfying the two conditions

7 ∈ F =⇒ 0 ∈ F and 8 ∈ F =⇒ 1 ∈ F (6)

Now, the complement of a set F satisfying (6) also satisfies (6). It follows that the
lattice of languages generated by the quotients of L is actually a Boolean algebra
and consequently, V is a variety of languages. It also follows that

V = Jxy = yx, x2 = x9K.

Moreover, since U1 = {0, 1} belongs to V, it follows that PV = P0V. By [16,
Théorème 2.14], PV is the variety of all commutative monoids whose groups satisfy
the identity x7 = 1. Therefore

PV = Jxy = yx, xω = xω+7K.

The closure of V under shuffle, or equivalently, under product over one-letter al-
phabets, and the closure of V under renaming both correspond to the variety of
monoids PV.

108 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

8 Conclusion

We gave an algebraic characterization of the commutative positive varieties of lan-
guages closed under shuffle product, renaming or product over one-letter alphabets,
but several questions might be worth a further study.

First, each commutative variety of ordered monoids can be described by the
equality xy = yx and by a set of inequalities in one variable, like xp 6 xq or more
generally xα 6 xβ with α, β ∈ N̂. It would then be interesting to compare these
varieties. We just mention a few results of this flavour, which may help in finding
bases of inequalities for commutative positive varieties of languages.

Proposition 8.1. The variety Jxy = yx, x 6 xn+1K is contained in the variety
Jxy = yx, x 6 xm+1K if and only if n divides m.

Proof. Suppose that n dividesm, that is, m = kn for some k > 0. If x 6 xn+1, then
x 6 xxn and by induction, x 6 xxkn = xxm = xm+1. Thus Jxy = yx, x 6 xn+1K is
contained in the variety Jxy = yx, x 6 xm+1K.

Suppose now that Jxy = yx, x 6 xn+1K is contained in the variety Jxy =
yx, x 6 xm+1K. Then the ordered syntactic monoid of a(an)∗ satisfies the inequality
x 6 xn+1 and thus it also satisfies the inequality x 6 xm+1. Since a ∈ a(an)∗, this
means in particular that am ∈ a(an)∗ and thus that n divides m.

In fact, a more general result holds. For each set of natural numbers S, let

VS = Jxy = yx, x 6 xn+1 for all n ∈ S K.

Let 〈S〉 denote the additive submonoid of N generated by S. It is a well-known fact
that any additive subsemigroup of N is finitely generated and consequently, there
exists a finite set of natural numbers FS such that 〈S〉 = 〈FS〉.

Proposition 8.2. The variety VS satisfies the inequality x 6 xm+1 if and only if
m belongs to 〈S〉.

Proof. Let T be the set of all natural numbers n such thatVS satisfies the inequality
x 6 xn+1. First observe that T is an additive submonoid of N. Indeed, if VS

satisfies the inequalities x 6 xxm and x 6 xxn, then it satisfies x 6 xxm 6

(xxn)xm = xn+m+1. Now T contains S by definition and thus also 〈S〉. It follows
that if m belongs to 〈S〉, then VS satisfies the inequality x 6 xm+1.

Suppose now that VS satisfies the inequality x 6 xm+1 and let

LS = {an+1 | n ∈ 〈S〉}.

Since 〈S〉 = 〈FS〉, one has
LS = a{as | s ∈ FS}

∗

and thus LS is a regular language.
We claim that the ordered syntactic monoid M of LS satisfies an inequality of

the form x 6 xn+1 if and only if n ∈ 〈S〉. Suppose first that M satisfies x 6 xn+1.
Then the property a ∈ LS implies an+1 ∈ LS and hence n ∈ 〈S〉.

Commutative Positive Varieties of Languages 109

Conversely, let n ∈ 〈S〉. We need to prove that M satisfies the inequality
x 6 xn+1, or equivalently, that ak 6LS

(ak)n+1 for all k > 0. But for each r > 0,

the condition arak ∈ LS implies r+k−1 ∈ 〈S〉. Since r+k(n+1)−1 = r+k−1+kn,
one gets r+k(n+1)−1 ∈ 〈S〉 and hence ar(ak)n+1 ∈ LS as required. This concludes
the proof of the claim.

In particular, since M satisfies all the inequalities x 6 xn+1 for n ∈ S, M
belongs to VS and thus also satisfies the inequality x 6 xm+1, which finally implies
that m belongs to 〈S〉.

Corollary 8.1. Let S and T be two sets of natural numbers. Then VS = VT if and
only if 〈S〉 = 〈T 〉.

It would also be interesting to have a systematic approach to treat examples similar
to those given in Section 7. That is, find an algorithm which takes as input a
monogenic ordered monoidM and outputs a set of inequalities defining respectively
V, P↓V and P

↓
0V, where V is the variety of ordered monoids generated by M .

Acknowledgements

We would like to thank the anonymous referees for their helpful comments.

References

[1] Almeida, Jorge. Finite semigroups and universal algebra. Series in Algebra,
volume 3. World Scientific, Singapore, 1995.

[2] Almeida, Jorge. Finite semigroups: an introduction to a unified theory of
pseudovarieties. In Semigroups, algorithms, automata and languages (Coimbra,
2001), pages 3–64. World Sci. Publ., River Edge, NJ, 2002.

[3] Almeida, Jorge. Profinite semigroups and applications. In Kudryavtsev, V. B.
and Rosenberg, I. G., editors, Structural theory of automata, semigroups and
universal algebra, pages 1–45, New York, 2005. Springer.

[4] Almeida, Jorge, Cano, Antonio, Kĺıma, Ondrej, and Pin, Jean-Éric. Fixed
points of the lower set operator. Internat. J. Algebra Comput., 25(1-2):259–
292, 2015.

[5] Banaschewski, Bernhard. The Birkhoff theorem for varieties of finite algebras.
Algebra Universalis, 17(3):360–368, 1983.

[6] Berstel, Jean, Boasson, Luc, Carton, Olivier, Pin, Jean-Éric, and Restivo,
Antonio. The expressive power of the shuffle product. Information and Com-
putation, 208:1258–1272, 2010.

110 Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin

[7] Branco, Mário J.J. and Pin, Jean-Éric. Equations for the polynomial clo-
sure. In Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., and
Thomas, W., editors, ICALP 2009, Part II, volume 5556 of Lect. Notes Comp.
Sci., pages 115–126, Berlin, 2009. Springer.

[8] Cano, Antonio and Pin, Jean-Éric. Upper set monoids and length preserving
morphisms. J. of Pure and Applied Algebra, 216:1178–1183, 2012.

[9] Cano Gómez, Antonio. Semigroupes ordonnés et opérations sur les langages
rationnels. PhD thesis, Université Paris 7 and Departamento de Sistemas
Informáticos y Computación, Universidad Politécnica de Valencia, 2003.

[10] Cano Gómez, Antonio and Pin, Jean-Éric. Shuffle on positive varieties of
languages. Theoret. Comput. Sci., 312:433–461, 2004.

[11] Cégielski, Patrick, Grigorieff, Serge, and Guessarian, Irène. On lattices of
regular sets of natural integers closed under decrementation. Inform. Process.
Lett., 114(4):197–202, 2014.

[12] Eilenberg, S. Automata, Languages and Machines, volume B. Academic Press,
New York, 1976.

[13] Ésik, Zoltán and Ito, Masami. Temporal logic with cyclic counting and the
degree of aperiodicity of finite automata. Acta Cybernetica, 16:1–28, 2003.

[14] Ésik, Zoltan and Simon, Imre. Modeling literal morphisms by shuffle. Semi-
group Forum, 56:225–227, 1998.

[15] Kunc, Michal. Equational description of pseudovarieties of homomorphisms.
Theoret. Informatics Appl., 37:243–254, 2003.

[16] Perrot, Jean-François. Variétés de langages et operations. Theoret. Comput.
Sci., 7:197–210, 1978.

[17] Pin, Jean-Éric. A variety theorem without complementation. Russian Mathe-
matics (Iz. VUZ), 39:80–90, 1995.

[18] Pin, Jean-Éric. Equational descriptions of languages. Int. J. Found. Comput.
S., 23:1227–1240, 2012.

[19] Pin, Jean-Éric and Straubing, Howard. Some results on C-varieties. Theoret.
Informatics Appl., 39:239–262, 2005.

[20] Pin, Jean-Éric and Weil, Pascal. A Reiterman theorem for pseudovarieties of
finite first-order structures. Algebra Universalis, 35:577–595, 1996.

[21] Polák, Libor. Operators on classes of regular languages. In Gomes, Gracinda,
Pin, Jean-Éric, and Silva, P.V., editors, Semigroups, Algorithms, Automata
and Languages, pages 407–422. World Scientific, 2002.

Commutative Positive Varieties of Languages 111

[22] Reiterman, Jan. The Birkhoff theorem for finite algebras. Algebra Universalis,
14(1):1–10, 1982.

[23] Reutenauer, Christophe. Sur les variétés de langages et de monöıdes. In
Theoretical computer science (Fourth GI Conf., Aachen), volume 67 of Lect.
Notes Comp. Sci., pages 260–265. Springer, Berlin, 1979.

[24] Schützenberger, Marcel Paul. Une théorie algébrique du codage. Séminaire
Dubreil. Algèbre et théorie des nombres, 9:1–24, 1955-1956. http://eudml.org/

doc/111094.

[25] Straubing, Howard. Aperiodic homomorphisms and the concatenation product
of recognizable sets. J. Pure Appl. Algebra, 15(3):319–327, 1979.

[26] Straubing, Howard. Recognizable sets and power sets of finite semigroups.
Semigroup Forum, 18:331–340, 1979.

[27] Straubing, Howard. On logical descriptions of regular languages. In LATIN
2002, number 2286 in Lect. Notes Comp. Sci., pages 528–538, Berlin, 2002.
Springer.

[28] Weil, Pascal. Profinite methods in semigroup theory. Int. J. Alg. Comput.,
12:137–178, 2002.

Acta Cybernetica 23 (2017) 113–139.

Varieties of Graphoids and

Birkoff’s Theorem for Graphs

Symeon Bozapalidisa and Antonios Kalampakasb

Abstract

The algebraic structure of graphoids is used in order to obtain the well-
known Birkhoff’s theorem in the framework of graphs. Namely we establish
a natural bijection between the class of Σ-graphoids and the class of strong
congruences overGR(Σ, X), which is the free graphoid over the doubly ranked
alphabet Σ and the set of variables X.

Keywords: hypergraphs, graphoids, graph congruences

1 Introduction

In theoretical computer science structural aspects such as syntax and semantics
have been examined by methods of universal algebra. For example, in order to
describe the semantics of program schemes, algebras can be used as models in
which we suitably interpret all the involved syntactic symbols.

The well known Completeness Theorem (cf. [7]) states that an equation t = t′,
over a type Γ, is valid on the models of a set of equations E , over Γ, if and only
if we can go from t to t′ and vise versa through E , this implies that semantics is
equivalent to syntax. On the other hand every variety of algebras of type Γ is
equationally defined.

Our aim in the present paper is to obtain the above results within the framework
of graphs. This will lead to the development of a robust graph rewriting theory
analogous with the well established term rewriting theory (cf. [11], [3]). The graphs
we consider have edges labeled over a doubly ranked alphabet Σ and are equipped
with a designated sequence of begin and end nodes. Moreover they can be combined
in two basic ways: by horizontal composition and by disjoint union. The set GR(Σ)
of all such graphs is a graphoid, that is a magmoid (cf. [1, 2]) satisfying a finite
set of standard equations (cf. [6]). Actually it is the free such structure over Σ (cf.

aDepartment of Mathematics, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
E-mail: bozapali@math.auth.gr

bDepartment of Mathematics and Statistics, College of Engineering, American University of
the Middle East, 15453, Egaila, Kuwait E-mail: antonios.kalampakas@aum.edu.kw

DOI: 10.14232/actacyb.23.1.2017.8

114 Symeon Bozapalidis and Antonios Kalampakas

[4]). This important result allows us to construct free objects within a variety of
graphoids and it is a cornerstone in the present theory.

The main result of this paper is Birkhoff’s Theorem for graphs stating that
there is a bijection between the class of Σ-G-varieties (i.e., varieties of Σ-designated
graphoids) and the class of strong congruences over GR(Σ∪X), where X a count-
able set of variables. This implies a Completeness Theorem for graphs: a graph
equation G = G′, of type Σ, is valid on the models of a set of graph equations
E , over Σ, iff we can go from G to G′ and vise versa through E . Moreover every
Σ-G-variety is equationally defined.

The paper is divided into 7 sections. In Section 2 we define the categories
of semi-magmoids and magmoids and we construct the free objects within these
categories. Moreover, in the second subsection, we see how the set GR(Σ) of all
graphs over a finite doubly ranked alphabet Σ can be structured into a magmoid.
This magmoid is generated by the elements of Σ, viewed as graphs together with a
finite set D̄ of elementary graphs. Furthermore, we present an important theorem
that provides a finite complete set of equations (E), over Σ∪D̄, axiomatizing graphs
in the sense that two graphs are isomorphic, if and only if, one can be transformed
into the other by using these equations.

Graphoids are defined in the first part of Section 3, they are pairs (M,D) con-
sisting of a semi-magmoid M and a set D ⊆ M such that the equations (E) are
satisfied inside M . We prove that the set GR(Σ) is actually the free graphoid gen-
erated by Σ. In addition we introduce Σ-graphoids which are graphoids (M,D)
equipped with a function interpreting the elements of Σ by elements of M of the
same rank. In the second subsection, by virtue of Σ-graphoids, we introduce a sub-
stitution operation on graphs i.e., substitution of graphs inside graphs and more
generally substitution of graphoid elements inside graphs. This operation is as-
sociative and allows us to explicitly describe the elements of the sub-Σ-graphoid
generated by a set A. In the last subsection we see that the cartesian product
(resp. directed union) of a family (resp. directed family) of semi-graphoids be-
comes a semi-graphoid in a natural way.

Congruences on Σ-graphoids are defined in Section 4, the quotient of a Σ-
graphoid by a congruence can be organized into a Σ-graphoid and congruences
can be characterized by virtue of the substitution operation. The definition of
strong congruences is obtained by suitably extending the notion of a congruence.
Moreover, given a relation on the set of graphs we construct the smallest congruence
(resp. strong congruence) containing this relation.

In the next section we introduce varieties of Σ-graphoids. A variety is class
of Σ-graphoids closed under cartesian products, sub-Σ-graphoids and quotients.
Any variety of graphoids is closed under directed union; additionally a Σ-graphoid
belongs to a variety if and only if every finitely generated sub-Σ-graphoid of it
belongs to the variety. In the same section we construct the free Σ-graphoid over
a variety generated by a set X , its elements can be viewed as “graphs inside the
variety”.

In the sixth section we establish the main theorem of our paper. We say that
a graph equation (G,G′) is satisfied by a Σ-graphoid (or that the Σ-graphoid is a

Varieties of Graphoids and Birkoff’s Theorem for Graphs 115

model of this equation) whenever the equation holds for all possible assignments of
its variables in that Σ-graphoid. We denote by Mod(G,G′) the class of all models
of (G,G′) and for a set of equations E we denote by Mod(E) the intersection of
all the corresponding classes. This set actually constitutes a Σ-G-variety and we
say that a Σ-G-variety is equationally defined whenever it can be obtained in this
way. In the opposite direction, given a class K of Σ-graphoids we denote by Eq(K)
the set of all equations that are satisfied by all the elements of K. It is proved
that every Σ-G-variety V is equationally defined, i.e., V = Mod(Eq(V)), moreover
the variety generated by a class K of Σ-graphoids is equal with Mod(Eq(K)). On
the other hand, if R is a strong congruence on graphs then Eq(Mod(R)) = R. By
virtue of this result we prove (the graph analog of the well known Completeness
Theorem) that if an equation is satisfied by every model of a set of equations E then
we can go from G to G′ and vise versa. The Birkhoff’s Theorem for graphs follows,
namely we construct a bijection between the class of all Σ-G-varieties and the class
of all strong graph congruences over Σ. As an interesting application of this result
we can associate to every graph language L its syntactic variety VL, which is the
variety corresponding to the syntactic strong congruence defined by L.

The relation between graph and pattern congruences is examined in Section
7. The notions of pattern substitution, pattern congruence (resp. strong pattern
congruence) and quotient magmoid are presented and a characterization of pat-
tern congruences (resp. strong pattern congruences) via substitution is given. A
bijection between graph congruences (resp. strong graph congruences) and pattern
congruences (resp. strong pattern congruences) containing (E) is established. Fur-
thermore we prove that the graph congruence which is generated by the projection
on graphs of a pattern relation coincides with the projection on graphs of the pat-
tern congruence that is generated by the same relation. A similar result is also
proved for the inverse of this projection.

2 Preliminaries

2.1 Semi-magmoids

Recall that a doubly ranked alphabet is a set A equipped with a function rank :
A → N× N (N the natural numbers). We write A = (Am,n) with

Am,n = {a | a ∈ A, rank(a) = (m,n)},

for all m,n ∈ N.

A semi-magmoid is a doubly ranked set M = (Mm,n) equipped with two oper-
ations

◦ : Mm,n ×Mn,k → Mm,k, m, n, k > 0

� : Mm,n ×Mm′,n′ → Mm+m′,n+n′ , m, n,m′, n′ > 0

116 Symeon Bozapalidis and Antonios Kalampakas

which are associative in the obvious way and satisfy the distributivity law

(f ◦ g)� (f ′ ◦ g′) = (f � f ′) ◦ (g � g′)

whenever all the above operations are defined.
A magmoid is a semi-magmoid M = (Mm,n), equipped with a sequence of

constants en ∈ Mn,n (n > 0), called units, such that

em ◦ f = f = f ◦ en, e0 � f = f = f � e0

for all f ∈ Mm,n and all m,n > 0, and the additional condition

em � en = em+n, for all m,n > 0

holds (cf. [1, 2]).
Notice that, due to the last equation, the element en (n ≥ 2) is uniquely deter-

mined by e1. From now on e1 will be simply denoted by e.
Subsemi-magmoids and morphisms of semi-magmoids (resp. magmoids) are

defined in the obvious way.
Let Σ be a doubly ranked alphabet. We denote by SM(Σ) = (SMm,n(Σ)) the

smallest doubly ranked set satisfying the next items :

- Σm,n ⊆ SMm,n(Σ) for all m,n ≥ 0,

- if p ∈ SMm,n(Σ) and q ∈ SMn,k(Σ) then their horizontal concatenation p q ∈
SMm,k(Σ),

- if p ∈ SMm,n(Σ) and p′ ∈ SMm′,n′(Σ) then their vertical concatenation
p
p′

∈

SMm+m′,n+n′(Σ).

Let ∼= (∼m,n) be the doubly ranked equivalence on SM(Σ), compatible with
horizontal and vertical concatenation, generated by the relations

p1 p
′
1

p2 p
′
2

∼
p1
p2

p′1
p′2

for all pi, p
′
i of suitable ranks. The quotient

SM(Σ)/ ∼= (SMm,n(Σ)/ ∼m,n)

is denoted smag(Σ) and is, by construction, a semi-magmoid. The elements of
smagm,n(Σ) are called (m,n)-patterns or patterns of rank (m,n).

Convention. In order to avoid confusion in the pattern calculus instead of
p
p′

we

write

(

p
p′

)

. The associativity law takes the form

p1
(

p2
p3

)

 =

(

p1
p2

)

p3

 .

Varieties of Graphoids and Birkoff’s Theorem for Graphs 117

This common pattern will be denoted

p1
p2
p3

 .

The distributivity law takes the form

(

p1 p
′
1

p2 p
′
2

)

=

(

p1
p2

)(

p′1
p′2

)

.

Actually smag(Σ) is the free semi-magmoid generated by Σ as confirms the
next result.

Proposition 1. For every semi-magmoid M = (Mm,n) and every doubly ranked

function f : Σ → M , there exists a unique morphism of semi-magmoids f̂ :
smag(Σ) → M making the following triangle commutative.

Σ

j
smag(Σ)

M

f̂
f

j(x) = x, x ∈ Σ

Actually, f̂ is given by the clauses,

- f̂(x) = f(x), for all x ∈ Σ,

- f̂(p q) = f̂(p) ◦ f̂(q), f̂

(

p
p′

)

= f̂(p)� f̂(p′),

for all p, q, p′ ∈ smag(Σ) of suitable rank.

The construction of the free magmoid follows naturally. Let (en)n≥0 be a se-
quence of symbols not in Σ and denote bymag(Σ) the free semi-magmoid smag(Σ∪
{en | n ≥ 0}) divided by the congruence generated by the relations

em p ≈ p ≈ p en,

(

e0
p

)

≈ p ≈

(

p
e0

)

,

(

em
en

)

≈ em+n

for all m,n ≥ 0 and all patterns p of suitable rank. Then mag(Σ) clearly consti-
tutes a magmoid which has a universal property analogous to the one stated in
Proposition 1, i.e., mag(Σ) is the free magmoid generated by Σ (cf. [4]).

2.2 Graphs

Now we introduce the magmoid of hypergraphs which will be of constant use
throughout this paper. Given a finite alphabet X , we denote by X∗ the set of

118 Symeon Bozapalidis and Antonios Kalampakas

all words over X and for every word w ∈ X∗, |w| denotes its length. Formally, a
concrete (m,n)-graph over a doubly ranked alphabet Σ = (Σm,n) is a tuple

G = (V,E, s, t, l, begin, end)

where

- V is the finite set of nodes,

- E is the finite set of hyperedges,

- s : E → V ∗ is the source function,

- t : E → V ∗ is the target function,

- l : E → Σ is the labelling function such that rank(l(e)) = (|s(e)|, |t(e)|) for every
e ∈ E,

- begin ∈ V ∗ with |begin| = m is the sequence of begin nodes and

- end ∈ V ∗ with |end| = n is the sequence of end nodes.

Notice that according to this definition vertices can be duplicated in the begin
and end sequences of the graph and also at the sources and targets of an edge. For
an edge e of a hypergraph G we simply write rank(e) to denote rank(l(e)).

The specific sets V and E chosen to define a concrete graph G are actually
irrelevant. We shall not distinguish between two isomorphic graphs. Hence we
have the following definition of an abstract graph. Two concrete (m,n)-graphs
G = (V,E, s, t, l, begin, end) and G′ = (V ′, E′, s′, t′, l′, begin′, end′) over Σ are iso-
morphic iff there exist two bijections hV : V → V ′ and hE : E → E′ commuting
with source, target, labelling, begin and end in the usual way.

An abstract (m,n)-graph is defined to be the equivalence class of a concrete
(m,n)-graph with respect to isomorphism. We denote by GRm,n(Σ) the set of
all abstract (m,n)-graphs over Σ. Since we shall mainly be interested in abstract
graphs we simply call them graphs except when it is necessary to emphasize that
they are defined up to an isomorphism. Any graph G ∈ GRm,n(Σ) having no edges
is called a discrete (m,n)-graph.

If G is an (m,n)-graph represented by (V,E, s, t, l, begin, end) and H is an
(n, k)-graph represented by (V ′, E′, s′, t′, l′, begin′, end′) then their product G◦H is
the (m, k)-graph represented by the concrete graph obtained by taking the disjoint
union of G and H and then identifying the ith end node of G with the ith begin
node of H , for every i ∈ {1, ..., n}; also, begin(G◦H) = begin(G) and end(G◦H) =
end(H).

The sum G�H of arbitrary graphs G and H is their disjoint union with their
sequences of begin nodes concatenated and similarly for their end nodes.

For instance let Σ = {a, b, c}, with rank(a) = (2, 1), rank(b) = (1, 1) and
rank(c) = (1, 2). In the following pictures, edges are represented by boxes, nodes
by dots, and the sources and targets of an edge by directed lines that enter and

Varieties of Graphoids and Birkoff’s Theorem for Graphs 119

leave the corresponding box, respectively. The order of the sources and targets of
an edge is the vertical order of the directed lines as drawn in the pictures. We
display two graphs G ∈ GR3,4(Σ) and H ∈ GR4,2(Σ), where the ith begin node is
indicated by bi, and the ith end node by ei.

b

a

b3

b2

e1
e4
b1

G

e3

e2 b1

b2
b3

a c

b4
e1

e2

H

Then their product G ◦H is the (3, 2)-graph

a c
e2

b

a

b3

b2

b1 e1

and, their sum G�H is the (7, 6)-graph

b

a e2

e3b3

b2

e1
e4
b1

b4

b5
b6

a c

b7
e5

e6

For every n ∈ N we denote by En the discrete graph of rank (n, n) with nodes
x1, ..., xn and begin(En) = end(En) = x1 · · ·xn; we write E for E1. Note that E0

is the empty graph.
It is straightforward to verify that GR(Σ) = (GRm,n(Σ)) with the operations

defined above is a magmoid whose units are the graphs En, n ≥ 0, see Lemma 6
of [10]. The discrete graphs of GR(Σ) form obviously a sub-magmoid DISC of
GR(Σ) and the function sending each graph G ∈ GR(Σ) to its underlying discrete
graph is an epimorphism of magmoids

discΣ : GR(Σ) → DISC.

120 Symeon Bozapalidis and Antonios Kalampakas

Let us denote by Ip,q the discrete (p, q)-graph having a single node x and whose
begin and end sequences are x · · ·x (p times) and x · · ·x (q times) respectively. Note
that I1,1 is equal with E. Let also Π be the discrete (2, 2)-graph having two nodes
x and y and whose begin and end sequences are xy and yx, respectively. Finally,
for every σ ∈ Σm,n, we denote again by σ the (m,n)-graph having only one edge
and m + n nodes x1, . . . , xm, y1, . . . , yn. The edge is labelled by σ, and the begin
(resp. end sequence) of the graph is the sequence of sources (resp. targets) of the
edge, viz. x1 · · ·xm (resp. y1 · · · yn).

As usual Sm stands for the group of all permutations of the set {1, 2, . . . ,m}.
Given a permutation α ∈ Sm

α =

(

1 2 . . . m
α(1) α(2) . . . α(m)

)

the discrete graph having {x1, x2, . . . , xm} as set of nodes, xα(1)xα(2) · · ·xα(m) as
begin sequence and x1x2 · · ·xm as end sequence, is denoted Πα and is called the
permutation graph associated with α. Observe that Π is the graph associated with
the permutation

α =

(

1 2
2 1

)

.

We denote by Πn,1 the graph associated with the permutation

(

1 2 . . . n+ 1
2 . . . n+ 1 1

)

interchanging the last n numbers with the first one.
For every σ ∈ Σm,n, BF (σ) is the same as the graph σ, except that

begin(BF (σ)) = begin(σ)end(σ) = x1 · · ·xmy1 · · · yn

and end(BF (σ)) = ε (where ε denotes the empty sequence).
Next important result provides a complete set of equations axiomatizing graphs.

Theorem 1 (cf. [4]). Let Σ = {σ1, . . . , σr} and assume that in the graph G ∈
GRm,n(Σ) the symbol σi occurs λi times, (1 ≤ i ≤ r) then G admits a decomposition
of the form

G = Πα ◦ (Ip1,q1 � · · ·� Ips,qs) ◦Πβ

◦ (En �BF (σ1
1)� · · ·�BF (σλ1

1)� · · ·� BF (σ1
r)� · · ·�BF (σλr

r))

where α, β are suitable permutations and σ1
i = · · · = σλi

i = σi, 1 ≤ i ≤ r. Moreover,
if

G′ = Πα′ ◦ (Ip′

1
,q′

1
� · · ·� Ip′

t,q
′

t
) ◦Πβ′

◦ (En �BF (σ1
1)� · · ·�BF (σ

λ′

1

1)� · · ·�BF (σ1
r)� · · ·�BF (σ

λ′

r
r))

Varieties of Graphoids and Birkoff’s Theorem for Graphs 121

then G = G′ if and only if we can transform G into G′ through the finite set of
equations (E):

Π ◦Π = E � E, (E �Π) ◦ (Π� E) ◦ (E �Π) = (Π� E) ◦ (E �Π) ◦ (Π� E) ,

(E � I2,1) ◦ I2,1 = (I2,1 � E) ◦ I2,1, (E � I0,1) ◦ I2,1 = E, Π ◦ I2,1 = I2,1

(Π� E) ◦ (E �Π) ◦ (I2,1 � E) = (E � I2,1) ◦Π, (E � I0,1) ◦Π = (I0,1 � E) ,

I1,2 ◦ (E � I1,2) = I1,2 ◦ (I1,2 � E) , I1,2 ◦ (E � I1,0) = E, I1,2 ◦Π = I1,2,

I1,2 ◦ I2,1 = E, (I1,2 � E) ◦ (E �Π) ◦ (Π� E) = Π ◦ (E � I1,2) ,

Π ◦ (E � I1,0) = (I1,0 � E) , (I1,2 � E) ◦ (E � I2,1) = I2,1 ◦ I1,2,

Πp,1 ◦ (σ � E) = (E � σ) ◦Πq,1, where σ ∈ Σp,q, p, q ≥ 0.

Now let us introduce the alphabet D̄, formed by the following five symbols

ī21 : 2 → 1 ī01 : 0 → 1 ī12 : 1 → 2 ī10 : 1 → 0 π̄ : 2 → 2

where x : m → n indicates that symbol x has first rank m and second rank n, and
denote by mag(Σ∪ D̄) the free magmoid generated by the doubly ranked alphabet
Σ ∪ D̄. We denote by

valΣ : mag(Σ ∪ D̄) → GR(Σ)

the unique magmoid morphism extending the function described by the assignments

ī21 7→ I2,1, ī01 7→ I0,1, ī12 7→ I1,2, ī10 7→ I1,0, π̄ 7→ Π,

σ 7→ σ, for all σ ∈ Σ, en 7→ En, for all n ∈ N.

According to the previous theorem valΣ is a surjection and GR(Σ) is the quo-
tient of mag(Σ ∪ D̄) by the congruence generated by the relations (E):

π̄π̄ ∼ e2,

(

e
π̄

)(

π̄
e

)(

e
π̄

)

∼

(

π̄
e

)(

e
π̄

)(

π̄
e

)

,

(

e
ī21

)

ī21 ∼

(

ī21
e

)

ī21,

(

e
ī01

)

ī21 ∼ e,

122 Symeon Bozapalidis and Antonios Kalampakas

π̄ī21 ∼ ī21,

(

e
ī01

)

π̄ ∼

(

ī01
e

)

,

(

π̄
e

)(

e
π̄

)(

ī21
e

)

∼

(

e
ī21

)

π̄,

ī12

(

e
ī12

)

∼ ī12

(

ī12
e

)

, ī12

(

e
ī10

)

∼ e,

ī12π̄ ∼ ī12, π̄

(

e
ī10

)

∼

(

ī10
e

)

,

(

ī12
e

)(

e
π̄

)(

π̄
e

)

∼ π̄

(

e
ī12

)

,

ī12 ī21 ∼ e,

(

ī12
e

)(

e
ī21

)

∼ ī21 ī12,

π̄m,1

(

σ
e

)

∼

(

e
σ

)

π̄n,1,

where σ ∈ Σm,n, m,n ≥ 0 and π̄n,1 is the pattern inductively defined by

π̄1,0 = e, π̄n,1 =

(

π̄n−1,1

e

)(

en−1

π̄

)

which will represent the graph Πn,1.
The next definition will be used later on. We call size of a pattern p ∈ mag(Σ∪

D̄) the number of symbols of Σ∪D̄ occurring in p. The size of a graph G ∈ GR(Σ)
is then

size(G) = min{size(p) | p ∈ val−1
Σ (G)}.

3 Graphoids and their algebra

3.1 Free graphoids

The algebraic structure underneath GR(Σ) is that of a graphoid.
More precisely, a graphoid M = (M,D) consists of a semi-magmoid M and a

set

D = {e0, e, π, i01, i21, i10, i12},

where e0 ∈ M0,0, e ∈ M1,1, π ∈ M2,2, i01 ∈ M0,1, i21 ∈ M2,1, i10 ∈ M1,0, i12 ∈ M1,2

such that (M, e0, e) is a magmoid, i.e.,

(1) em ◦ f = f = f ◦ en, e0 � f = f = f � e0,

where en = e � · · · � e (n-times, n ≥ 0), f ∈ Mm,n, (m,n ≥ 0), and additionally
the following equations hold

Varieties of Graphoids and Birkoff’s Theorem for Graphs 123

(2) π ◦ π = e2, (π � e) ◦ (e� π) ◦ (π � e) = (e� π) ◦ (π � e) ◦ (e� π)

(3) (e� i21) ◦ i21 = (i21 � e) ◦ i21, (e� i01) ◦ i21 = e,

π ◦ i21 = i21, (e � i01) ◦ π = (i01 � e) ,

(π � e) ◦ (e � π) ◦ (i21 � e) = (e � i21) ◦ π,

(4) i12 ◦ (e� i12) = i12 ◦ (i12 � e) , i12 ◦ (e� i10) = e,

i12 ◦ π = i12, π ◦ (e� i10) = (i10 � e) ,

(i12 � e) ◦ (e � π) ◦ (π � e) = π ◦ (e� i12) ,

(5) i12 ◦ i21 = e, (i12 � e) ◦ (e� i21) = i21 ◦ i12.

(6) πm,1 ◦ (f � e) = (e� f) ◦ πn,1, for all f ∈ Mm,n,

where the element πm,1 ∈ Mm,1 is defined by

π1,0 = e, πm,1 = (πm−1,1 � e) ◦ (em−1 � π).

We point out that equation (6) holds in GR(Σ) since it holds for all the letters of
the alphabet Σ (cf. [4]).

Observe that (GR(Σ), {E0, E,Π, I0,1, I2,1, I1,0, I1,2}) is a graphoid which from
now on will be simply denoted by GR(Σ).

Given graphoids (M,D) and (M ′, D′), a semi-magmoid morphism H : M → M ′

preserving D-sets, i.e., H(e0) = e′0, H(e) = e′, H(π) = π′ and H(iκλ) = i′κλ, is
called a morphism of graphoids.

We have already discussed how the set GR(Σ) can be structured into a graphoid;
in fact it is the free graphoid generated by Σ.

Theorem 2. The doubly ranked function j : Σ → GR(Σ), with j(σ) = σ, for
all σ ∈ Σ, has the following universal property: for any graphoid M = (M,D),
D = {e0, e, π, i10, i12, i01, i21} and any doubly ranked function f : Σ → M , there
exists a unique morphism of graphoids f̄ : GR(Σ) → M making commutative the
following triangle.

Σ

j
GR(Σ)

M

f̄
f

The morphism f̄ is defined by the clauses

124 Symeon Bozapalidis and Antonios Kalampakas

- f̄(σ) = f(σ), σ ∈ Σ,

- f̄(E0) = e0, f̄(E) = e, f̄(Π) = π, f̄(Ip,q) = ipq,

- f̄(G1 ◦G2) = f̄(G1) ◦ f̄(G2),

- f̄(G1 �G2) = f̄(G1)� f̄(G2),

for all graphs G1, G2 of suitable rank.

Proof. Since mag(Σ ∪ D̄) is the free magmoid over Σ ∪ D̄, f is uniquely extended

into a morphism of magmoids f̂ : mag(Σ ∪ D̄) → M making commutative the
triangle:

Σ ∪ D̄

j
mag(Σ ∪ D̄)

M

f̂
f

where

- j(σ) = j(σ), σ ∈ Σ and j(α) = α, α ∈ D̄;

- f(σ) = f(σ), σ ∈ Σ and f (̄i21) = i21, f (̄i01) = i01, f (̄i12) = i12, f (̄i10) = i10,
f(π̄) = π.

Since all the relations (E) are valid in M, the kernel of f̂ includes the congruence

=(E) generated by (E), and thus f̂ induces a unique graphoid morphism

f̄ : mag(Σ ∪ D̄)/ =(E)−→ M

rendering commutative the triangle

mag(Σ ∪ D̄)

g

mag(Σ ∪ D̄)/ =(E)

M

f̄
f̂

where g is the canonical projection sending every element of mag(Σ∪D̄) to its class
with respect to =(E). The result comes by combining the above two diagrams and
Theorem 1.

A graph homomorphism H : GR(Σ) → GR(Σ′) is just a morphism of graphoids.
Hence, by virtue of the previous theorem it is completely determined by its values
H(σ), σ ∈ Σ. A graph homomorphism H : GR(Σ) → GR(Σ′) is called a projection
whenever H(Σ) ⊆ Σ′.

Varieties of Graphoids and Birkoff’s Theorem for Graphs 125

In the sequel, we mostly deal with Σ-graphoids, (Σ doubly ranked alphabet)
which are graphoids (M,D) equipped with a function µ : Σ → M interpreting the
letters σ ∈ Σ by elements of M with the same rank.

By virtue of Theorem 2 any graph G of GR(Σ) is interpreted, in a Σ-graphoid
M = (M,D, µ), by the element µ̄(G). In other words, we are able to make graph
theory inside any Σ-graphoid.

The set GR(Σ) is a Σ-graphoid where t is the function sending every element
σ ∈ Σ to the graph it represents.

If M = (M,D, µ) and M′ = (M ′, D′, µ′) are two Σ-graphoids then any graphoid
morphism H : (M,D) → (M ′, D′) commuting with the µ-assignments, i.e., render-
ing commutative the triangle

M ′M
H

Σ

µ µ′

is called a Σ-graphoid morphism.
Graphs whose labels of edges are variables will be frequently used. From now

on Xp = {x1, . . . , xp} is a set of doubly ranked variables with rank(xi) = (αi, βi),
1 ≤ i ≤ p.

Convention. The Σ-graphoid GR(Σ ∪Xp) will be denoted by GR(Σ, Xp).

Theorem 3. The Σ-graphoid GR(Σ, X) is free over X, i.e., for any Σ-graphoid
M = (M,D, µ) and any function f : X → M there is a unique Σ-graphoid mor-
phism f̄ : GR(Σ, X) → M such that the next diagram commutes

X

j
GR(Σ, X)

M

f̄
f

f̄(σ) = µ(σ),

j(x) = x, x ∈ X.

3.2 The substitution operation

The well known edge replacement operation on graphs (cf. [9], [8]) can be de-
fined with the help of Theorem 3 in an elegant way. Let X = {x1, x2, . . . } with
rank(xi) = (αi, βi), i = 1, 2, . . . and Xp = {x1, . . . , xp}. For

Gi ∈ GRαi,βi
(Σ, Xp).

The function

f : Xp → GR(Σ, Xk), f(xi) = Gi,

126 Symeon Bozapalidis and Antonios Kalampakas

is then uniquely extended into a Σ-graphoid morphism

f̄ : GR(Σ, Xp) → GR(Σ, Xk).

For all G ∈ GRα,β(Σ, Xp), the graph f̄(G) is denoted by G[G1, . . . , Gp] (it is the
graph obtained by simultaneously replacing xi by Gi inside G, i = 1, . . . , p).

Proposition 2. It holds

G[G1, . . . , Gp][G
′
1, . . . , G

′
k] = G[G1[G

′
1, . . . , G

′
k], . . . , Gp[G

′
1, . . . , G

′
k]]

for all graphs of suitable rank.

Proof. We define the functions

f : Xp → GR(Σ, Xk), g : Xk → GR(Σ, Xs)

by setting
f(xi) = Gi (1 ≤ i ≤ p), g(xj) = G′

j (1 ≤ j ≤ k),

respectively. For uniqueness reasons invoked by Theorem 3 we get the equality

ḡ ◦ f = ḡ ◦ f̄ .

Since (ḡ ◦ f)(xi) = ḡ(f(xi)) = ḡ(Gi) = Gi[G
′
1, . . . , G

′
k] we get

G[G1, . . . , Gp][G
′
1, . . . , G

′
k] = ḡ(G[G1, . . . , Gp])

= ḡ(f̄(G)) = (ḡ ◦ f̄)(G) = ḡ ◦ f(G)

= G[G1[G
′
1, . . . , G

′
k], . . . , Gp[G

′
1, . . . , G

′
k]]

as wanted.

Let ξm,n be a new symbol with rank (m,n) and denote by FRα,β
m,n(Σ, X) the

subset of GRα,β(Σ, X ∪ {ξm,n}) with just one occurrence of ξm,n; its elements
are called frames with exterior rank (α, β) and interior rank (m,n). The set
FRα,β

m,n(Σ, X) acts on GRm,n(Σ, X) via substitution at ξm,n: for F ∈ FRα,β
m,n(Σ, X)

and G ∈ GRm,n(Σ, X),
F ·G = F [G/ξm,n].

The substitution of graphs inside graphs can be extended into a substitution of
graphoid elements inside graphs. This will be achieved be means of the universal
property described in Theorem 3. Let a1, . . . , ap be elements of a Σ-graphoid M =
(M,D, µ)

ai ∈ Mαi,βi
, i = 1, . . . , p

and consider the Σ-graphoid morphism h̄ : GR(Σ, Xp) → M determined by the
assignments

h(x1) = a1, . . . , h(xp) = ap.

For any graph G ∈ GR(Σ, Xp) we denote by G[a1, . . . , ap] the element h̄(G). Notice
that from Theorem 3 it holds h̄(σ) = µ(σ). The so defined mixed substitution
operation has the nice properties of graph substitution. More precisely,

Varieties of Graphoids and Birkoff’s Theorem for Graphs 127

Proposition 3 (Associativity law for mixed substitution). It holds

G[G1, . . . , Gp][a1, . . . , ak] = G[G1[a1, . . . , ak], . . . , Gp[a1, . . . , ak]],

where G ∈ GR(Σ, Xp), Gi ∈ GR(Σ, Xk) and ai ∈ Mαi,βi
, 1 ≤ i ≤ k.

Let M = (M,D, µ) be a Σ-graphoid. A sub-Σ-graphoid of M is a subset S ⊆ M
such that

sg1) D ∪ µ(Σ) ⊆ S,

sg2) S is closed under the ◦- and the �-operation.

Thus S becomes a Σ-graphoid with operations the restriction on S of the cor-
responding operations of M .

Lemma 1. Let S be a sub-Σ-graphoid of M = (M,D, µ). Then

a1, . . . , ap ∈ S and G ∈ GR(Σ, Xp) implies G[a1, . . . , ap] ∈ S.

Proof. By induction on the size of G. The assertion is true if G ∈ Σ ∪ Xp ∪ D.
Next let G be a graph of size > 1; then either G = G1 ◦ G2 or G = G1 � G2. In
the first case we have

G[a1, . . . , ap] = (G1 ◦G2)(a1, . . . , ap) = G1(a1, . . . , ap) ◦G2(a1, . . . , ap) ∈ S,

because G1(a1, . . . , ap), G2(a1, . . . , ap) belong by induction to S, and S is a sub-Σ-
graphoid of M. The case G = G1 �G2 is treated in a similar way.

Let M = (M,D, µ) be a Σ-graphoid and A ⊆ M . The sub-Σ-graphoid of M
generated by A is the smallest sub-Σ-graphoid of M containing A. It is denoted
by < A >M. Next result gives us information about the form of the elements of
< A >M.

Proposition 4. It holds

< A >M= {G[a1, . . . , ap] | G ∈ GR(Σ, Xp), a1, . . . , ap ∈ A and p ≥ 0}.

Proof. We consider the doubly ranked set Ã = (Am,n), where

Ãm,n = {G[a1, . . . , ap] | G ∈ GRm,n(Σ, Xp), a1, . . . , ap ∈ A and p ≥ 0}.

By construction D ∪ µ(Σ) ⊆ Ã. On the other hand, let

G[a1, . . . , ap] ∈ Ãm,n and G′[a′1, . . . , a
′
q] ∈ Ãn,k

with G ∈ GRm,n(Σ, Xp), G
′ ∈ GRn,k(Σ, Xq), respectively. We set

H = G ◦ (G′[xp+1/x1, . . . , xp+q/xq]) ∈ GRm,k(Σ, Xp+q)

then
G[a1, . . . , ap] ◦G

′[a′1, . . . , a
′
q] = H [a1, . . . , ap, a

′
1, . . . , a

′
q] ∈ Ãm,k

128 Symeon Bozapalidis and Antonios Kalampakas

and thus Ã is closed under ◦-product. Closure under �-product can be proved
analogously. Therefore, Ã is a sub-Σ-graphoid of M including A. Next let S be a
sub-graphoid of M, such that A ⊆ S, according to the previous proposition

a1, . . . , ap ∈ A and G ∈ GR(Σ, Xp)

implies G[a1, . . . , ap] ∈ S, i.e., Ã ⊆ S. We deduce that Ã =< A >M.

4 Graph congruences

A notion of great importance in graph theory is that of a congruence. Actually there
are two kinds of graph congruence: the ordinary and the strong graph congruences
which correspond respectively to the ordinary and the fully stable tree congruences
(cf. [12]).

Let M = (M,D, µ) be a Σ-graphoid and assume that ∼m,n is an equivalence
on Mm,n (m,n ≥ 0) compatible with ◦- and �-product:

a ∼m,n a′ and b ∼n,k b′, implies a ◦ b ∼m,k a′ ◦ b′,

a ∼m,n a′ and b ∼r,s b
′, implies a� b ∼m+r,n+s a

′ � b′.

Then we say that ∼= (∼m,n) is a congruence on M.
The quotient sets (Mm,n/ ∼m,n) are organized into a semi-magmoid M/ ∼ by

defining the corresponding operations in the natural way

[a]♦[b] = [a♦b], ♦ = ◦,�,

where [a] stands for the ∼-class of the element a. Actually M/ ∼ becomes a
Σ-graphoid through the set

D/ ∼= {[e0], [e], [i12], [i10], [i21], [i01], [π]}

and the function

µ/ ∼ : Σ → M/ ∼, (µ/ ∼)(σ) = [µ(σ)], σ ∈ Σ.

We use the notation M/ ∼ for the so obtained Σ-graphoid. Clearly the function
sending every element a of M into [a] is a Σ-graphoid morphism from M to M/ ∼.

Congruences can be characterized through the substitution operation.

Proposition 5. A family of equivalences ∼= (∼m,n) is a congruence on M =
(M,D, µ) if and only if a1 ∼ a′1, . . . , ap ∼ a′p and G ∈ GR(Σ, Xp) implies

G[a1, . . . , ap] ∼ G[a′1, . . . , a
′
p].

Proof. (⇒) We establish the announced implication by using induction on the size
of the graph G. Clearly we have nothing to prove if G ∈ Σ ∪ Xp ∪ D. Now any

Varieties of Graphoids and Birkoff’s Theorem for Graphs 129

graph G of positive size can be written either as G = G1 ◦G2 or G = G1�G2 with
size(G1), size(G2) < size(G). Then

G[a1, . . . , ap] = (G1 ◦G2)[a1, . . . , ap]

= G1[a1, . . . , ap] ◦G2[a1, . . . , ap] ∼ G1[a
′
1, . . . , a

′
p] ◦G2[a

′
1, . . . , a

′
p]

= G[a′1, . . . , a
′
p].

The �-case is treated analogously.
(⇐) The converse is easy to prove: we only have to take G = ξ1♦ ξ2 with

♦ = ◦,�.

Corollary 1. The equivalence ∼ on GR(Σ, X) is a congruence if for all graphs
Gi, G

′
i ∈ GR(Σ, X), 1 ≤ i ≤ p, and G ∈ GR(Σ, Xp) we have

G1 ∼ G′
1, . . . , Gp ∼ G′

p implies G[G1, . . . , Gp] ∼ G[G′
1, . . . , G

′
p].

Congruences on GR(Σ, X) can be characterized through frame action.

Proposition 6. The equivalence ∼= (∼m,n) is a congruence on GR(Σ, X) if and
only if for all G,G′ ∈ GRm,n(Σ, X) and all frames F ∈ FRr,s

m,n(Σ, X) we have

G ∼m,n G′ implies F ·G ∼r,s F ·G′.

Proof. (⇒) One direction comes immediately from the previous corollary:

F ·G = F [G/ξm,n] ∼r,s F [G′/ξm,n] = F ·G′.

(⇐) For the converse, let Gi, G
′
i ∈ GRri,si(Σ, X), and G ∈ GRr,s(Σ, Xp) with

rank(xi) = (ri, si), 1 ≤ i ≤ p. We may assume that the occurrences of the same
variable xi into G can be linearly ordered. For this we only have to decompose G
into a normal form as in Theorem 1:

G = Πα ◦ (Ip1,q1 � · · ·� Ipt,qt) ◦Πβ

◦ (Es �BF (x1
1)� · · ·�BF (xµ1

1)� · · ·�BF (x1
p)� · · ·�BF (xµp

p)

�BF (σ1
1)� · · ·�BF (σλ1

1)� · · ·�BF (σ1
u)� · · ·�BF (σλu

u))

where x1
i = · · · = xµi

i = xi (1 ≤ i ≤ p) and σ1
j = · · · = σ

λj

j = σj , σj ∈ Σ.
We introduce the frames

F
(j)
i = G[G′

1/x1, . . . , G
′
i−1/xi−1, G

′
i/x

1
i , . . . , G

′
i/x

j−1
i , ξri,si/x

j
i ,

Gi/x
j+1
i , . . . , Gi/x

λi

i , Gi+1/xi+1, . . . , Gp/xp]

then we have

G[G1, . . . , Gp] = F 1
1 ·G1 ∼r1,s1 F 1

1 ·G′
1

= F 2
1 ·G1 ∼r1,s1 F 2

1 ·G′
1 ∼r1,s1 · · · ∼r1,s1 Fλ1

1 ·G1 ∼r1,s1 Fλ1

1 ·G′
1

= G[G′
1, G2, . . . , Gp] ∼ · · · ∼ G[G′

1, G
′
2, . . . , G

′
p]

and so, according to Corollary 1 the equivalence ∼ is a congruence.

130 Symeon Bozapalidis and Antonios Kalampakas

This result allows us to characterize the congruence generated by a relation on
GR(Σ, X).

Let R ⊆ GR(Σ, X) × GR(Σ, X), i.e., Rm,n ⊆ GRm,n(Σ, X) × GRm,n(Σ, X)
for all m,n ≥ 0. For all G,G′ ∈ GRα,β(Σ, X) we set G ∼R,α,β G′ if there exist
(H,H ′) ∈ Rm,n and F ∈ FRα,β

m,n(Σ, X) so that

G = F ·H , G′ = F ·H ′ or G = F ·H ′, G′ = F ·H .

The relation ∼∗
R is clearly an equivalence relation on GR(Σ, X) which by construc-

tion contains R. To show that ∼∗
R is a congruence it suffices to show that

G ∼R,m,n G′ and F ∈ FRα,β
m,n(Σ, X), implies F ·G ∼R,α,β F ·G′.

Indeed there exist a pair (H,H ′) ∈ Rr,s and F ′ ∈ FRm,n
r,s (Σ, X) so that either

G = F ′ ·H , G′ = F ′ ·H ′ or G = F ′ ·H ′, G′ = F ′ ·H .

Hence either,

F ·G = (F · F ′) ·H , F ·G′ = (F · F ′) ·H ′

or

F ·G = (F · F ′) ·H ′, F ·G′ = (F · F ′) ·H.

By the definition of ∼R:

F ·G ∼R,α,β F ·G′,

as wanted.
Furthermore, let ∼ be a congruence on GR(Σ, X) such that R ⊆∼. Since ∼

is reflexive and transitive, in order to show that ∼∗
R⊆∼ it suffices to show the

inclusion ∼R⊆∼. For this let G ∼R,α,β G′ then for some (H,H ′) ∈ Rm,n and
F ∈ FRα,β

m,n(Σ, X), we have either G = F · H , G′ = F · H ′ or G = F · H ′ ,
G′ = F ·H . But, according to Proposition 6

H ∼m,n H ′ implies G = F ·H ∼α,β F ·H ′ = G′ implies G ∼α,β G′.

In other words ∼∗
R is the smallest congruence on GR(Σ, X) containing R.

We summarize.

Theorem 4. Given R ⊆ GR(Σ, X)×GR(Σ, X), ∼∗
R is the congruence generated

by R.

5 Strong Graph Congruences

Let X = {x1, x2, . . . }, with rank(xi) = (αi, βi), i ≥ 1. An equivalence ∼ on
GR(Σ, X) is said to be a strong congruence if for all p ≥ 1, G,G′, Gi, G

′
i ∈

GR(Σ, Xp), 1 ≤ i ≤ p, it holds

G ∼ G′ and G1 ∼ G′
1, . . . , Gp ∼ G′

p implies G[G1, . . . , Gp] ∼ G′[G′
1, . . . , G

′
p].

Varieties of Graphoids and Birkoff’s Theorem for Graphs 131

Since the intersection of any family of such congruences has the same property
we may speak of the strong congruence generated by a relation E ⊆ GR(Σ, X) ×
GR(Σ, X). It is the intersection of all strong congruences including E and is denoted
by < E >.

In order to get a more treatable form of < E > we introduce the p-ranked
symbols

xp· · ·x1

ϕm,n
p

rank(xi) = (mi, ni), 1 ≤ i ≤ p (m,n, p ≥ 1)

and we consider the set REDEX(Σ)α,βm,n of all pairs π = (F, φm,n
p (G1, . . . , Gp)),

where F ∈ FRα,β
m,n(Σ, Xp) and Gi ∈ GRmi,ni

(Σ, Xp), 1 ≤ i ≤ p. For every π ∈

REDEX(Σ)α,βm,n and π′ ∈ REDEX(Σ)m,n
r,s :

π = (F, ϕm,n
p (G1, . . . , Gp)), π′ = (F ′, ϕr,s

p (G′
1, . . . , G

′
p))

we define the product

π · π′ = (F · F ′[G1/x1, . . . , Gp/xp], ϕ
r,s
p (G′

1[G1, . . . , Gp], . . . , G
′
p[G1, . . . , Gp])).

The sets REDEX(Σ)α,βm,n are organized into a category whose object set is N× N

and whose composition is given by the above formula. The identity element in
REDEX(Σ)m,n

m,n is the pair εm,n = (ξm,n, ϕ
m,n
p (x1, . . . , xp)). There result actions

REDEX(Σ)α,βm,n ×GRm,n(Σ, Xp) → GRα,β(Σ, Xp), α, β,m, n ≥ 0,

defined as follows: for π = (F, ϕm,n
p (G1, . . . , Gp)) and G ∈ GRm,n(Σ, Xp) we set

(act) π ·G = F ·G[G1, . . . , Gp].

The formulas (π · π′) ·G = π · (π′ ·G), εm,n ·G = G folow.

Proposition 7. The equivalence ∼= (∼m,n) in GR(Σ, Xp) is a strong congruence
iff it is compatible with the above actions.

Proof. (⇒) Suppose that G ∼m,n G′ and

π = (F, ϕm,n
p (G1, . . . , Gp)) ∈ REDEX(Σ)α,βm,n,

then we have G[G1, . . . , Gp] ∼m,n G′[G1, . . . , Gp] and thus by Proposition 6 we get

F ·G[G1, . . . , Gp] ∼α,β F ·G′[G1, . . . , Gp]

that is π ·G ∼α,β π ·G′.
(⇐) Conversely, assume that

G ∼m,n G′ and Gi ∼mi,ni
G′

i, 1 ≤ i ≤ p

132 Symeon Bozapalidis and Antonios Kalampakas

and choose

π = (F, ϕm,n
p (x1, . . . , xp)), F ∈ FRα,β

m,n(Σ, Xp)

then we have

π ·G ∼α,β π ·G′, i.e., F ·G ∼α,β F ·G′

and thus ∼ is a congruence (see Proposition 6). Consequently, we have

(σ) G[G1, . . . , Gp] ∼m,n G[G′
1, . . . , G

′
p],

choosing this time π = (ξm,n, ϕ
m,n
p (G′

1, . . . , G
′
p)) we obtain π ·G ∼m,n π ·G′ or

(τ) G[G′
1, . . . , G

′
p] ∼m,n G′[G′

1, . . . , G
′
p].

Combining (σ) and (τ) above we find

G[G1, . . . , Gp] ∼m,n G′[G′
1, . . . , G

′
p]

i.e., ∼ is a strong congruence.

We are now ready to describe the strong congruence generated by a set E ⊆
GR(Σ, X)×GR(Σ, X). For H,H ′ ∈ GRα,β(Σ, Xp), we write H ↔

E
H ′ if there exist

π ∈ REDEX(Σ)α,βm,n and (G,G′) ∈ E , G,G′ ∈ GRm,n(Σ, Xp) so that either

H = π ·G, H ′ = π ·G′ or H = π ·G′, H ′ = π ·G.

We denote by
∗
↔
E
, the reflexive and transitive closure of ↔

E
, i.e., H

∗
↔
E

H ′ if

H = H0 ↔
E

H1 ↔
E

· · · ↔
E

Hk−1 ↔
E

Hk = H ′,

for some k ≥ 0. The
∗
↔
E

is by construction an equivalence relation.

If H ↔
E

H ′, then by definition,

H = π ·G, H ′ = π ·G′ or H = π ·G′, H ′ = π ·G,

for some π ∈ REDEX(Σ)α,βm,n and (G,G′) ∈ E and so for every π̄ ∈ REDEX(Σ)γ,δα,β

we shall have

π̄ ·H = (π̄ · π) ·G, π̄ ·H ′ = (π̄ · π) ·G′

or

π̄ ·H = (π̄ · π) ·G′, π̄ ·H ′ = (π̄ · π) ·H

and thus π̄ ·H ↔
E

π̄ ·H ′.

It turns out that
∗
↔
E

is compatible with (act) and so it is a strong congruence by

virtue of the previous proposition. Now if ∼ is a strong congruence on GR(Σ, X)

Varieties of Graphoids and Birkoff’s Theorem for Graphs 133

including E we shall show that
∗
↔
E
⊆∼. Since ∼ is reflexive and transitive it suffices

to show that ↔
E
⊆∼. For this let H ↔

E
H ′, i.e.,

H = π ·G, H ′ = π ·G′ or H = π ·G′, H ′ = π ·G,

for π ∈ REDEX(Σ)α,βm,n and (G,G′) ∈ E . As E ⊆∼ we shall have G ∼m,n G′ and

so π · G ∼α,β π · G′. Hence, H ∼α,β H ′. In other words,
∗
↔
E

is the smallest strong

congruence including E . We state

Theorem 5. Given a relation E ⊆ GR(Σ, X) × GR(Σ, X), the
∗
↔
E

is the strong

congruence generated by E.

6 Pattern Congruences

In this section we discuss congruences on patterns in connection with congruences
on graphs.

Pattern substitution is obtained in a natural way. Let X = {x1, x2, . . . },
rank(xi) = (mi, ni), i ≥ 1 and set Xk = {x1, . . . , xk}. For p ∈ magα,β(Σ∪Xk) and
pi ∈ magmi,ni

(Σ), 1 ≤ i ≤ k, the pattern p[p1, . . . , pk] is by definition the image of
p via the magmoid morphism mag(Σ∪Xk) → mag(Σ) defined by the assignments

x1 7→ p1, . . . , xk 7→ pk, σ 7→ σ (σ ∈ Σ).

The set Fr(Σ)α,βm,n of pattern frames is the subset of magα,β(Σ ∪ ξm,n) consisting
of all patterns with just one occurrence of the symbol ξm,n, rank(ξm,n) = (m,n).
Again Fr(Σ)α,βm,n acts on magm,n(Σ) via substitution

f · p = f [p/ξm,n] for f ∈ Fr(Σ)α,βm,n, p ∈ magm,n(Σ).

Given an equivalence relation Sm,n on magm,n(Σ), we say that S = (Sm,n) is a
congruence onmag(Σ) whenever we have compatibility with horizontal and vertical
pattern concatenation, i.e.,

p1 ≡ p′1(Sm,n) and p2 ≡ p′2(Sn,k) imply p1p2 ≡ p′1p
′
2(Sm,k)

and

p1 ≡ p′1(Sm,n) and p2 ≡ p′2(Sr,s) imply

(

p1
p2

)

≡

(

p′1
p′2

)

(Sm+r,n+s).

Of course the quotients magm,n(Σ)/Sm,n are organized, in the obvious way, into a
magmoid denoted by mag(Σ)/S.

Proposition 8. Given an equivalence S ⊆ mag(Σ)×mag(Σ) next conditions are
equivalent:

134 Symeon Bozapalidis and Antonios Kalampakas

i) S is a congruence;

ii) S is compatible with frame action, i.e.,

p ≡ p′(Sm,n) and f ∈ Fr(Σ)α,βm,n imply f · p ≡ f · p′(Sα,β);

iii) S is compatible with substitution, i.e.,

pi ≡ p′i(Smi,ni
), 1 ≤ i ≤ k, imply p[p1, . . . , pk] ≡ p[p′1, . . . , p

′
k],

for all p ∈ magm,n(Σ ∪Xk).

We now return to the standard magmoid morphism

valΣ : mag(Σ ∪ D̄) → GR(Σ)

whose kernel, denoted by ∼Σ,

p1 ∼Σ p2 if valΣ(p1) = valΣ(p2)

coincides with the congruence generated by the set of relations (E) (see Subsection
2.2). Given any pattern congruence S ⊆ mag(Σ ∪ D̄) × mag(Σ ∪ D̄) containing
(E), its projection valΣ(S) defined by

G1 ≡ G2(valΣ(S)) if Gi = valΣ(pi), 1 ≤ i ≤ 2, p1 ≡ p2(S)

is a graph congruence.
Conversely, for any congruenceR ⊆ GR(Σ)×GR(Σ) its inverse image val−1

Σ (R)
defined by

p1 ≡ p2(val
−1
Σ (R)) iff valΣ(p1) ≡ valΣ(p2)(R)

is a congruence on mag(Σ ∪ D̄) containing (E). Therefore

Proposition 9. The mappings

S 7→ valΣ(S) and R 7→ val−1
Σ (R)

establish a bijection between the congruences on GR(Σ) and the congruences on
mag(Σ ∪ D̄) including (E).

By working as in Section 4 we can show that the congruence generated by the
relation S ⊆ mag(Σ)×mag(Σ) is the reflexive and transitive closure of ∼S with

p1 ∼S p2 iff pi = f · qi, (1 ≤ i ≤ 2),

f ∈ Fr(Σ) and either (q1, q2) ∈ S or (q2, q1) ∈ S.
We have the next remarkable result.

Varieties of Graphoids and Birkoff’s Theorem for Graphs 135

Proposition 10. It holds

valΣ(
∗
∼S∪(E)) =

∗
∼valΣ(S), S ⊆ mag(Σ ∪ D̄)×mag(Σ ∪ D̄)

that is the graph congruence generated by valΣ(S) coincides with the projection, via
valΣ, of the congruence generated by S ∪ (E).

Proof. By construction valΣ(
∗
∼S∪(E)) is a congruence onGR(Σ) containing valΣ(S).

Now, if R is a congruence with R ⊇ valΣ(S), then val−1
Σ (R) is a congruence on

mag(Σ ∪ D̄) containing S and so

val−1
Σ (R) ⊇

∗
∼S∪(E) .

Projecting by valΣ we get

R = valΣ(val
−1
Σ (R)) ⊇ valΣ(

∗
∼S∪(E)),

i.e., valΣ(
∗
∼S∪(E)) is the smallest congruence containing valΣ(S). Hence the result.

Proposition 11. If R ⊆ GR(Σ)×GR(Σ) is a relation then

val−1
Σ (

∗
∼R) =

∗
∼val

−1

Σ
(R)∪(E) .

Proof. By construction val−1
Σ (

∗
∼R) is a congruence including val−1

Σ (R) ∪ (E) while
if S is a congruence on mag(Σ ∪ D̄) with

S ⊇ val−1
Σ (R) ∪ (E),

then its projection valΣ(S) is a congruence on GR(Σ) such that

valΣ(val
−1
Σ (R ∪ (E))) = valΣ(val

−1
Σ (R)) ∪ valΣ((E)) = R.

Thus
∗
∼R⊆ valΣ(S) and so

valΣ(
∗
∼R) ⊆ val−1

Σ (valΣ(S)) = S,

i.e., val−1
Σ (

∗
∼R) is the congruence generated by val−1

Σ (R) ∪ (E), as wanted.

In the sequel we discuss strong pattern congruences. An equivalence S = (Sm,n)
onmag(Σ∪X) is called a strong congruence if for every k ≥ 0 and p, p′ ∈ magα,β(Σ∪
Xk), pi, p

′
i ∈ magmi,ni

(Σ ∪X), 1 ≤ i ≤ k, we have

p ≡ p′(Sα,β) and pi ≡ p′i(Smi,ni
), 1 ≤ i ≤ k

imply
p[p1, . . . , pk] ≡ p′[p′1, . . . , p

′
k](Sα,β).

136 Symeon Bozapalidis and Antonios Kalampakas

Here we also can achieve an action characterization. For this we introduce the set
of redexes Redex(Σ)α,βm,n consisting of all pairs

(f, ϕm,n
k (p1, . . . , pk)), f ∈ Fr(Σ)α,βm,n, pi ∈ magmi,ni

(Σ ∪X), 1 ≤ i ≤ k.

where ϕm,n
k are k-ranked symbols as in Section 4.

These sets are organized into a category whose object set is N × N and whose
composition is defined by

(f, ϕm,n
k (p1, . . . , pk)) · (f

′, ϕr,s
k (p′1, . . . , p

′
k))

= (f · f ′[p1, . . . , pk], ϕ
r,s
k (p′1[p1, . . . , pk], . . . , p

′
k[p1, . . . , pk])).

There results a canonical action

Redex(Σ)α,βm,n ×magm,n(Σ ∪X) → magα,β(Σ ∪X)

if for every π = (f, ϕm,n
k (p1, . . . , pk)) and p ∈ magm,n(Σ ∪Xk) we set

π · p = (f · p[p1, . . . , pk])

Proposition 12. The equivalence S ⊆ mag(Σ ∪ X) × mag(Σ ∪ X) is a strong
congruence if and only if it is compatible with the above action i.e.,

p ≡ p′(Sm,n) and π ∈ Cont(Σ)α,βm,n

implies
π · p ≡ π · p′(Sα,β).

Theorem 6. The strong congruence generated by the relation

S ⊆ mag(Σ ∪X)×mag(Σ ∪X)

is
∗
↔S, the reflexive and transitive closure of ↔S defined by

p1 ↔S pi iff pi = π · qi (1 ≤ i ≤ 2)

with π ∈ Cont(Σ) and either (q1, q2) ∈ S or (q2, q1) ∈ S.

Let valΣ,X : mag(Σ∪D̄∪X) → GR(Σ∪X) be the magmoid morphism extending
valΣ by setting valΣ,X(x) = x, for all x ∈ X .

Theorem 7. The mapping R 7→ val−1
Σ,X(R) and S 7→ valΣ,X(S) establish a bijec-

tion between the strong congruences R of GR(Σ ∪ X) and the strong congruences
S on mag(Σ ∪ D̄ ∪ X) including the set EX obtained by adding to (E) the set of
relations

π̄m,1

(

x
e

)

∼

(

e
x

)

π̄n,1, x ∈ X.

Moreover, given relations

S ⊆ mag(Σ ∪ D̄ ∪X)2, R ⊆ GR(Σ ∪X)2

it holds
val−1

Σ,X(
∗
↔R) =

∗
↔val

−1

Σ,X
(R)∪EX

,

and
valΣ,X(

∗
↔S∪EX

) =
∗
↔valΣ,X(S) .

Varieties of Graphoids and Birkoff’s Theorem for Graphs 137

7 Birkhoff’s Variety Theorem for Graphs

The important Birkhoff’s variety theorem is valid for graphs due to the universal
characterization of GR(Σ) displayed in Theorem 3. We must point out that most of
the results of this section can be obtained by suitably adapting the proof argument
of the corresponding results for trees (cf. [12]). Hence we will only present, without
proofs, the main theorems in this direction. Let us begin with a classical definition.

A class V of Σ-graphoids forms a variety of Σ-graphoids (Σ-G-variety in short) if
it is closed under isomorphism, cartesian products, sub-Σ-graphoids and quotients.
Of course cartesian products are defined in the classical categorical manner.

Theorem 8. Let V be a Σ-G-variety. For every set X the (doubly ranked) function

jX : X → GR(V , X), jX(x) = x, x ∈ X

has the following universal property: for every M ∈ V and every (doubly ranked)
function g : X → M, there is a unique Σ-graphoid morphism g̃ : GR(V , X) → M
rendering commutative the triangle

X

jX
GR(V , X)

M

g̃
g

Remark 1. The previous result means that GR(V , X) is the free Σ-graphoid over
V generated by X and its elements can be considered as “graphs inside V”.

In the case thatX = ∅, the Σ-graphoidGR(V) = GR(V , ∅) has the characteristic
property: for all M ∈ V there is a unique Σ-graphoid morphism hV,M : GR(V) →
M.

Theorem 9. Every Σ-G-variety V is generated by the Σ-graphoids GR(V , Xn),
n ≥ 0, i.e.,

V = V ({GR(V , Xn) | n ≥ 0}).

Next we discuss equationality of Σ-G-varieties.
A graph equation over the doubly ranked alphabet Σ is just a pair (G,G′) where

G,G′ ∈ GR(Σ, Xn), for some n ≥ 0. Frequently a graph equation (G,G′) will be
denoted by G = G′. We say that the equation (G,G′) is satisfied in the Σ-graphoid
M (or that M is a model of (G,G′)) whenever

G[a1, . . . , an] = G′[a1, . . . , an], for all a1, . . . , an ∈ M.

This fact is denoted by M |= (G,G′).
For a class K of Σ-graphoids, we write K |= (G,G′) if M |= (G,G′), for all

M ∈ K. By Mod(G,G′) we denote the class of all models of (G,G′) and for a set
of equations E ⊆ GR(Σ, X)×GR(Σ, X), we set

Mod(E) =
⋂

(G,G′)∈E

Mod(G,G′).

138 Symeon Bozapalidis and Antonios Kalampakas

Clearly Mod(E) is a Σ-G-variety. We say that a Σ-G-variety is equationally defined
whenever V = Mod(E) for some E .

Given a class K of Σ-graphoids, Eq(K) is the set of all equations (G,G′) with
K |= (G,G′). It is easy to see that Eq(K) is a strong congruence on GR(Σ, X).

Applying Theorem 8 we get that for any Σ-G-variety V we have

Eq(V) =∼V,X .

Proposition 13. For every Σ-G-variety V, it holds

V = Mod(Eq(V)).

Consequently every Σ-G-variety is equationally defined.

Theorem 10 (Birkhoff). The correspondences

R 7→ Mod(R), V 7→ Eq(V)

define a bijection between the class of all Σ-G-varieties and the class of all strong
congruences on GR(Σ, X).

Theorem 11 (Completness). For any set E of equations in GR(Σ, X), we have

Mod(E) |= (G,G′) if and only if G
∗
↔
E

G′,

i.e., if the equation (G,G′) is satisfied by every model of E then we can go from G
to G′ by means of the equations of E and vise versa.

References

[1] A. Arnold and M. Dauchet, Théorie des magmoides. I. RAIRO Inform. Théor.
12 (3), 235-257 (1978).

[2] A. Arnold and M. Dauchet, Théorie des magmoides. II. RAIRO Inform. Théor.
13 (2), 135-154 (1979).

[3] F. Baader and T. Nipkow, Term Rewriting and All That, Cambridge University
Press, (1999).

[4] S. Bozapalidis and A. Kalampakas, An axiomatization of graphs Acta Infor-
matica 41, 19 - 61 (2004).

[5] S. Bozapalidis and A. Kalampakas, Recognizability of graph and pattern lan-
guages. Acta Informatica 42, 553 - 581 (2006).

[6] S. Bozapalidis and A. Kalampakas, Graph Automata, Theoretical Computer
Science 393, 147 - 165 (2008).

Varieties of Graphoids and Birkoff’s Theorem for Graphs 139

[7] P.M. Cohn, Universal Algebra, D. Reidel Publishing, Dordrecht, Netherlands,
(1981)

[8] F. Drewes, H.-J. Kreowski and A. Habel, Hyperedge Replacement, Graph
Grammars. Handbook of Graph Grammars, 95-162, (1997).

[9] J. Engelfriet, Context-free graph grammars. In G. Rozenberg and A. Salomaa,
eds, Handbook of Formal Languages. Vol. III: Beyond Words, chapter 3, pages
125-213. Springer, 1997.

[10] J. Engelfriet, J.J. Vereijken, Context-free graph grammars and concatenation
of graphs. Acta Informatica 34, 773-803, (1997).

[11] J.W. Klop, Term rewriting systems, in S. Abramsky, D.M. Gabbay, and T.S.E.
Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1116. Oxford University Press, 1992.

[12] W. Wechler, Universal Algebra for Computer Scientists. Grzegorz Rozenberg,
Arto Salomaa, W. Brauer (Eds), Eatcs Monographs on Theoretical Computer
25, Springer-Verlag New York, (1992).

Acta Cybernetica 23 (2017) 141–157.

Ambiguity, Nondeterminism and State Complexity

of Finite Automata

Yo-Sub Hana, Arto Salomaab, and Kai Salomaac

Abstract

The degree of ambiguity counts the number of accepting computations of
a nondeterministic finite automaton (NFA) on a given input. Alternatively,
the nondeterminism of an NFA can be measured by counting the amount of
guessing in a single computation or the number of leaves of the computation
tree on a given input. This paper surveys work on the degree of ambiguity
and on various nondeterminism measures for finite automata. In particu-
lar, we focus on state complexity comparisons between NFAs with quantified
ambiguity or nondeterminism.

Keywords: finite automata, nondeterminism, degree of ambiguity, state
complexity

Dedicated to the memory of Zoltán Ésik (1951–2016).

1 Introduction

Finite automata are a fundamental model of computation that has been system-
atically studied since the 1950’s. At the same time many important questions on
finite automata and regular languages remain open [7, 18, 52]. The last decades
have seen much work on the descriptional complexity, or state complexity, of regular
languages [10, 13, 15, 16, 17, 28]. The state complexity (respectively, nondetermin-
istic state complexity) of a regular language L is the optimal size of a deterministic
finite automaton (DFA) (respectively, a nondeterministic finite automaton (NFA))
recognizing L. The effect of a regularity preserving operation on the minimal DFA
(or alternatively a minimal NFA) is called the state complexity of the operation.
The state complexity of basic operations on regular languages was considered first
by Maslov [34] and further references can be found in the survey by Gao et al. [9].

aDepartment of Computer Science, Yonsei University, 50, Yonsei-Ro, Seodaemum-Gu, Seoul
120-749, Republic of Korea, E-mail: emmous@yonsei.ac.kr

bDepartment of Mathematics and Statistics and Turku Centre for Computer Science, University
of Turku, 20014 Turku, Finland, E-mail: salomaaenator@gmail.com

cSchool of Computing, Queen’s University, Kingston, Ontario K7L 2N8, Canada, E-mail:
ksalomaa@cs.queensu.ca

DOI: 10.14232/actacyb.23.1.2017.9

142 Y.-S. Han, A. Salomaa, K. Salomaa

Yu and co-authors have considered also the state complexity of combined opera-
tions and in a sequence of papers culminating with [6] have determined the precise
worst-case state complexity of all combinations of two basic language operations.
Establishing the precise state complexity of combined language operations is often
quite involved, and for general combinations of operations that include marked con-
catenation and intersection the question is even undecidable [45]. Ésik et al. [8] have
introduced techniques to estimate the state complexity of combined operations.

Ambiguity is a fundamental concept in grammar derivations. The ambiguity
of regular expressions and finite state machines was first systematically considered
by Book et al. [3]. A regular expression is unambiguous if it denotes each string
in at most one way. A nondeterministic finite automaton (NFA) is unambiguous if
each string has at most one accepting computation. Book et al. [3] show that the
Glushkov automaton construction preserves ambiguities of a regular expression. A
more restrictive notion of one-unambiguity was introduced by Brüggemann-Klein
and Wood [4]: every regular language can be denoted by an unambiguous regular
expression but not, in general, by a one-unambiguous regular expression.

The degree of ambiguity of an NFA A on a string w is the number of accepting
computations of A on w. The degree of ambiguity of A is the maximal degree of
ambiguity of A on any input string, if the maximum exists, and in this case A is said
to be finitely ambiguous. Otherwise the degree of ambiguity of A can be measured
as a function of the length of the inputs. Ravikumar and Ibarra [42] have first stud-
ied systematically the size trade-offs between the unambiguous, finitely ambiguous,
polynomially ambiguous and exponentially ambiguous NFAs. The celebrated sep-
aration result of Leung [30] establishes that there exist (exponentially ambiguous)
n-state NFAs such that any equivalent polynomially ambiguous NFA needs 2n − 1
states. Hromkovič et al. [19, 20] have used powerful techniques from communica-
tions complexity for state complexity separations for NFAs with different degree of
ambiguity.

The degree of ambiguity is defined in terms of the number of accepting compu-
tations, and does not directly limit the amount of nondeterminism, or the amount
of guessing, used by an automaton. In an unambiguous NFA, even though an ac-
cepting computation is unique, the computation may include any number of non-
deterministic steps – unambiguity implies just that at any nondeterministic step at
most one choice can lead to acceptance. In order to develop a quantitative under-
standing of the power of nondeterminism, one can directly measure the number of
nondeterministic steps used by an NFA.

Nondeterminism measures for Turing machine computations were originally con-
sidered by Kintala and Fischer [25]. Kintala and Wotschke [26] first quantified the
amount of nondeterminism in a finite automaton computation and showed, roughly
speaking, that there is a significant difference in the determinization size blow-up
between NFAs allowing different finite numbers of nondeterministic choices in a
computation (where the number of nondetermistic steps is at most the logarithm
of the number of states). The hierarchy result has been refined in the spectrum
result of Goldstine et al. [11] that will be discussed in section 4.3.

Commonly used nondeterminism measures count the number of nondeterminis-

Ambiguity, Nondeterminism and State Complexity 143

tic steps (or the amount of guessing in bits of information) on a best accepting com-
putation [11], or the number of leaves of the entire computation tree [19, 38]. Fur-
ther variants limit the amount of nondeterminism on a worst computation [19, 39].
Some interesting relationships between the degree of ambiguity and various nonde-
terminism measures have been established by Goldstine et al. [12] and Hromkovič
et al. [19].

This paper surveys work on the growth rates of the degree of ambiguity and
the various nondeterminism measures, and on algorithms to determine the growth
rate for a given NFA. In particular, we focus on state completity comparisons be-
tween NFAs having different degrees of ambiguity or allowing different amounts of
nondeterminism. Strong separation results are known for succinctness comparisons
between NFAs of different ambiguity growth rates (finite, polynomial or exponen-
tial). However, in the case of limited nondeterminism, practically all existing work
on state complexity is restricted to comparisons between different finite amounts
of nondeterminism, that is, the amount of nondeterminism on any input is at most
a given constant. State complexity of NFAs with limited nondeterminism that is
measured as a function of input length is a topic for future study.

First we fix some notation in section 2. Work on the degree of ambiguity is
described in section 3 and section 4 deals with the various nondeterminism measures
for NFAs.

2 Definitions

Here we recall and introduce some basic notation and definitions. More information
on finite automata and regular languages can be found e.g. in [44, 47, 51]. General
background on degrees of ambiguity and limited nondeterminism for finite automata
can be found in [10, 13, 16, 41].

The set of positive integers is N and the cardinality of a finite set F is |F |. The
set of strings over a finite alphabet Σ is Σ∗ and ε is the empty string. A bounded
language is a subset of a∗1a

∗
2 · · · a∗k, where ai, 1 ≤ i ≤ k, are (not necessarily distinct)

elements of the alphabet Σ.

A nondeterministic finite automaton (NFA) is a tuple A = (Q,Σ, δ, q0, F) where
Q is the finite set of states, Σ is the input alphabet, δ : Q×Σ→ 2Q is the transition
function, q0 ∈ Q is the initial state and F ⊆ Q is the set of final states. The
transition function δ is in the usual way extended as a function Q× Σ∗ → 2Q and
the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w)∩F 6= ∅}. If |δ(q, b)| ≤ 1
for all q ∈ Q and b ∈ Σ, the automaton A is a deterministic finite automaton
(DFA). Note that we allow DFAs to have undefined transitions.

It is well known that DFA’s and NFA’s both recognize the class of regular
languages. For a regular language L, the state complexity of L (respectively, the
nondeterministic state complexity of L) is the number of states of the state minimal
DFA (respectively, of a state minimal NFA1) recognizing L.

1An NFA with the smallest number of states recognizing a language L need not be unique.

144 Y.-S. Han, A. Salomaa, K. Salomaa

Consider an NFA A = (Q,Σ, δ, q0, F). The branching of a transition from
state q ∈ Q on input symbol b ∈ Σ is |δ(q, b)|. A computation of A on a string
w = b1b2 · · · bk, bi ∈ Σ, i = 1, . . . , k, k ≥ 0, is a sequence of states (p1, . . . , p`),
where p1 ∈ δ(q0, b1), pj+1 ∈ δ(pj , bj+1), j = 1, . . . `− 1, and either ` = k, or, ` < k
and δ(p`, b`+1) = ∅.

The sequence of states (p1, . . . , p`) is a complete computation on b1b2 · · · bk if ` =
k and an accepting computation is a complete computation that ends in an accepting
state of F . The set of all computations (respectively, all accepting computations)
of A on the string w is denoted compA(w) (respectively, compacc

A (w)).
Intuivively, a computation of A on a string w is a sequence of states that A

reaches when started with the initial state and the symbols of w are read one by
one. A complete computation ends with a state reached after consuming all symbols
of w. A computation may also end with a state where the transition on the next
symbol of w is undefined.

3 Degree of ambiguity

Book et al. [3] first considered systematically the ambiguity of regular expressions
and NFAs, and the relationship between these notions. A regular expression is
unambiguous if it denotes each string in at most one way. A more restrictive
notion of 1-unambiguity, or 1-determinism, was introduced by Brüggemann-Klein
and Wood [4]. A regular expression is 1-unambiguous if its position automaton is
deterministic. Every regular language has an unambiguous regular expression but
the 1-unambiguous expressions define a strict subclass of regular languages [4, 14].

An NFA is unambiguous if any string has at most one accepting computation.
Formally, the degree of ambiguity of an NFA A on a string w, daA(w), is the number
of accepting computations of A on w. The degree of ambiguity of A on strings of
length m is defined as

daA(m) = max{daA(w) | w ∈ Σm}.

Strictly speaking, we use the symbol daA to denote two different functions: it
denotes a function Σ∗ → N and a function N→ N.

The degree of ambiguity of A is said to be finite (or bounded) if the values
daA(m), m ∈ N are bounded, and in this case we denote

dasup
A = sup

m∈N
daA(m).

The NFA A is unambiguous if dasup
A = 1. Clearly every DFA is unambiguous.

Following Ravikumar and Ibarra [42], with respect to the degree of ambigu-
ity we consider five different classes of NFAs: DFAs, unambiguous NFAs (UFA),
finitely ambiguous NFAs (FNFA), polynomially ambiguous NFAs (PNFA) and gen-
eral (potentially exponentially ambiguous) NFAs. An NFA A is strictly polynomi-
ally ambiguous if A is not finitely ambiguous and there is a polynomial p(·) such
that daA(m) ≤ p(m) for all m ∈ N. The polynomial degree of growth of A is the

Ambiguity, Nondeterminism and State Complexity 145

minimal degree of a polynomial p′(m) that upper bounds the function daA(m). An
NFA A is strictly exponentially ambiguous if it is not polynomially ambiguous.

It is known that for a fixed k ∈ N the equivalence of FNFAs with degree of
ambiguity k can be tested in polynomial time [27, 49]. This is significant because,
as we will see, the determinization of even UFAs can cause an exponential size
blow-up. Also, different variants of the minimization problem for UFAs remain
intractable, see [16] for references.

The syntactic definition of an NFA A does not directly tell us what is the degree
of ambiguity of A. It was shown by Mandel and Simon [33] and Reutenauer [43],
and by others independently, that it is decidable whether a given NFA is finitely
ambiguous or polynomially ambiguous. Reutenauer [43] also gave an algorithm to
compute the polynomial degree of growth of an NFA.

Building on charaterizations by Ibarra and Ravikumar [21] and Reutenauer [43],
Weber and Seidl [50] gave a simpler structural characterization of finitely ambigu-
ous and polynomial ambiguous NFAs that yields a polynomial time algorithm for
the corresponding decision problems. The characterization implies also that, for
an NFA with unbounded ambiguity, the degree of ambiguity must grow at least
linearly.

Theorem 1 (Weber and Seidl [50]). It can be decided in polynomial time whether
a given NFA A is finitely ambiguous, strictly polynomially ambiguous or strictly
exponentially ambiguous. Furthermore, the polynomial degree of growth of A can
be computed in polynomial time.

For the question of determining the exact finite degree of ambiguity, the com-
plexity depends essentially on whether the finite degree of ambiguity is a constant
or considered part of the input. For a fixed k, it can be tested in polynomial time
whether the degree of ambiguity of an NFA is greater than k [49], but when k is
part of the input the complexity is essentially worse.

Theorem 2 (Chan and Ibarra [5]). For a given NFA A and k ∈ N, testing whether
the degree of ambiguity of A is at least k is PSPACE-complete.

A relevant question is also how large can be the degree of ambiguity of an n-
state FNFA. A double exponential upper bound was given already by Mandel and
Simon [33] and this was impoved to 2Θ(n3) by Reutenauer [43]. The bound was
further improved by Weber and Seidl [50] who also show that for some subclasses
of NFAs the maximal finite degree of ambiguity is exactly 2Θ(n).

Theorem 3 (Weber and Seidl [50]). The degree of ambiguity of an n-state FNFA
is at most 5

n
2 · nn.

3.1 Ambiguity and state complexity

Clearly every regular language can be recognized by an unambiguous NFA, but the
succinctness of the description depends significantly on the degree of ambiguity.
Schmidt [46] first developed methods to prove lower bounds for the size of UFAs

146 Y.-S. Han, A. Salomaa, K. Salomaa

and also showed that the determinization of UFAs causes, in the worst case, an
exponential size blow-up. The lower bound was improved by different authors
and the precise worst case size blow-up was determined by Leung [32]. Leiss [29]
constructed n-state UFAs with multiple initial states where any equivalent DFA
needs 2n − 1 states and Leung [32] gave a construction for the same exponential
size blow-up using UFAs with only one initial state.

Theorem 4 (Leiss [29], Leung [32]). For each n ∈ N, there exists an UFA with n
states such that the minimal equivalent DFA has 2n − 1 states. For each n ∈ N,
there exists an FNFA with n states such that any equivalent UFA has 2n−1 states.

Note that because our definition allows DFAs to be incomplete the above bound
for the UFA determinization differs by one from the bound stated in [32]. Input-
driven pushdown automata (IDPDA) define a subclass of deterministic context-free
languages that retains many of the desirable properties of the regular languages.
In particular, an n-state nondeterministic IDPDA has an equivalent deterministic
machine with 2Θ(n2) states [1]. Recently, Okhotin and Salomaa [36] have shown
that, analogously with Theorem 4, determinizing an unambiguous IDPDA and
converting a general nondeterministic IDPDA to an unambiguous one both cause,
in the worst case, the same 2Θ(n2) size blow-up.

For state complexity comparisons between NFAs with different growth rates
of ambiguity we use the following terminology. Consider classes X and Y of de-
vices (the classes we consider are DFAs, UFAs, FNFAs, PNFAs and general NFAs,
possibly with additional restictions). We say that class Y is (super-polynomially)
separated from class X, if there exists a collection of languages Ln, n ∈ N, such that
Ln is recognized by a device from class Y having n states, but for any polynomial
p(n) and for sufficiently large values of n, a device from class X for Ln must have
more than p(n) states. This means, roughly speaking, that simulation of devices
of class Y by devices of class X, in the worst case, causes a super-polynomial size
blow-up.

Ravikumar and Ibarra [42] first considered systematically succinctness compar-
isons between FNFAs, PNFAs and general NFAs. In particular, they established
the following result for NFAs accepting bounded languages.

Theorem 5 (Ravikumar and Ibarra [42]). Any NFA accepting a bounded lan-
guage can be converted to an FNFA with at most polynomial size blow-up. The
class of FNFAs (respectively, the class of UFAs) recognizing a bounded language is
super-polynomially separated from the corresponding class of UFAs (respectively, of
DFAs).

The descriptional complexity comparison between the classes FNFA, PNFA and
NFA recognizing general regular languages was left open in [42]. Although in the
case of bounded languages, NFAs of exponential ambiguity can be simulated by
PNFAs and FNFAs of polynomial size, it was conjectured that for general regular
languages the classes are super-polynomially separated. Leung [30] and Hromkovič
et al. [19] have established that general NFAs can be super-polynomially more
succinct than PNFAs.

Ambiguity, Nondeterminism and State Complexity 147

Theorem 6 (Leung [30], Hromkovič et al. [19]). The class of NFAs is super-
polynomially separated from the class of PNFAs.

The communication complexity techniques used by Hromkovič et al. [19] to
prove Theorem 6 yield a substantially simplified proof. However, their proof does
not give the optimal size blow-up 2n−1 for the NFA–to–PNFA transformation that
is obtained in the original ad hoc proof where Leung [30] shows that any PNFA for
the family of languages Ln = (0 + (01∗)n−10)∗, n ≥ 1, cannot be smaller than an
incomplete DFA. It is easy to give an n-state NFA of exponential ambiguity that
recognizes Ln.

Ravikumar and Ibarra [42] also conjectured that polynomially ambiguous NFAs
can be significantly more succinct than finitely ambiguous NFAs. This question
remained open for over 20 years. After about 10 years Hromkovič et al. [19] gave a
partial result showing that there exist (n + 2)-state PNFAs (with linear degree of
ambiguity) such that any equivalent FNFA with degree of ambiguity k must have

at least 2
n−2
k − 2 states. The question was solved affirmatively by Hromkovič and

Schnitger [20] using the powerful communication complexity techniques.

Theorem 7 (Hromkovič and Schnitger [20]). For n ∈ N there exists PNFA A with
number of states polynomial in n such that any FNFA recognizing the language

L(A) has at least 2Ω(n
1
3) states.

Theorem 7 is obtained as a special case of the more technical statement given
next in Theorem 8 by setting there the parameter k to be one and, in fact, the
degree of ambiguity of the PNFA A is only linear. The general result by Hromkovič
and Schnitger [20] gives a super-polynomial succinctness separation between NFAs
with degree of ambiguity O(mk) and O(mk−1), k ∈ N.

Theorem 8 (Hromkovič and Schnitger [20]). Let r and t = (r/k2)
1
3 be positive

integers. There exist languages Lr,k having an NFA with degree of ambiguity O(mk)
and k · poly(r) states such that any NFA for Lr,k with degree of ambiguity o(mk)

has at least 2Ω(r(
1
3 /k

5
3
)) states.

Theorem 7 and Theorem 8 give a super-polynomial separation, respectively, be-
tween PNFAs and FNFAs and between NFAs having different polynomial degree of
growth for ambiguity. The statement of Theorem 8 defines the languages Lr,k only
for restricted values of the subindices, but for the separation result it is sufficient
that Lr,k exists for infinitely many values of r and k. However, the lower bounds
are not of the order 2Θ(n) as is known in the separation of general NFAs and PN-
FAs [30]. In fact, Hromkovič and Schnitger [20] suspect that the lower bound of
Theorem 8 may not be optimal even for the languages used in the lower bound
construction.

To conclude this section, we mention that Okhotin [35] has studied the state
complexity of determinization of unary UFAs and Jirasek et al. [22] recently studied
the state complexity of operations on UFAs.

148 Y.-S. Han, A. Salomaa, K. Salomaa

4 Limited nondeterminism

Nondeterminism measures can be based on the amount of nondeterminism used in
a best accepting computation of an NFA A on a given string w, on the amount of
nondeterminism in a worst computation of A on w or on the size of the computation
tree of A on w [10, 11, 19, 38].

In the following, A = (Q,Σ, δ, q0, F) is always an NFA. Consider a string w =
b1b2 · · · bk, bi ∈ Σ, i = 1, . . . , k, and a computation of A on w,

C = (p1, . . . , p`), pi ∈ Q, 1 ≤ i ≤ ` ≤ k.

Recall that ` < k is possible only if δ(p`, b`+1) = ∅, that is, a computation reads
the entire string w unless it encounters an undefined transition.

The guessing of the computation C, γA(C) [11], is

γA(C) = log2 |δ(q0, b1)|+
`−1∑
i=1

log2 |δ(pi, bi+1)|.

The branching of the first step of the computation C is |δ(q0, b1)|, and after the
first step the state is p1. The branching of the second step is then |δ(p1, b2)|, and
the branching of the ith step is |δ(pi−1, bi)|, 3 ≤ i ≤ `− 1. Thus, intuitively, γA(C)
represents the amount of guessing, in bits of information, that occurs during the
computation C. If A is a DFA, the amount of guessing in any computation of A is
zero.

The branching of the computation C, βA(C) [11], is defined as the product of the
branchings of the individual transitions of C, or in other words, βA(C) = 2γA(C).

The amount of guessing an NFA uses on a string can be defined either as a best
case or a worst case measure. The guessing of a string w ∈ L(A) [11] is the amount
of guessing of the best accepting computation:

γA(w) = min{ γA(C) | C ∈ compacc
A (w) },

and the maximum guessing of A on a string w ∈ Σ∗ [39] is

γmax
A (w) = max{ γA(C) | C ∈ compA(w) }.

Note that the best case measure is defined as the amount of guessing on the best
accepting computation while the maximum guessing considers all, not necessarily
complete, computations. Instead of counting the amount of guessing in bits of
information, Hromkovič et al. [19] use the advice measure that counts the number
of nondeterministic steps on the worst computation on a given input and Leung [31]
uses a corresponding best case measure. These measures are within a multiplicative
constant (depending only on the NFA A) of the γmax

A and γA measures, respectively.
The branching (respectively, the trace) of A on the string w is then βA(w) =

2γA(w) (respectively, τA(w) = 2γ
max
A (w) [39, 41]).

The total amount of nondeterminism used by A in all computations on a string
w is represented by the number of leaves of the computation tree of A on w. The

Ambiguity, Nondeterminism and State Complexity 149

number of leaves is the same as the number of computations of A on w, |compA(w)|,
and this value is called the tree width of A on w, twA(w). The tree width measure
is called ‘leaf size’ in [19].

Similarly as we did with the degree of ambiguity, the tree width, the (maximum)
guessing, the branching and the trace of an NFA A defines a function on naturals
by taking the maximum value of the measure on strings of length m (m ∈ N). If χ
is any of tw, γ, γmax, β, or τ then χA : N→ N is defined as

χA(m) = max{ χA(w) | w ∈ Σm }, m ∈ N.

We say that the χ-function of A is finite (or bounded) if the value χsup
A =def

supm∈N χA(m) is finite.
Hromkovič et al. [19] have characterized the possible growth rates of the tree

width of an NFA. As for degree of ambiguity, the tree width of an NFA cannot be
unbounded and sublinear.

Theorem 9 (Hromkovič et al. [19]). For any NFA A, the function twA(m) is
either bounded by a constant, or between linear and polynomial in m, or otherwise
in 2Θ(m).

The above characterization can be effectively decided. An NFA A has un-
bounded tree width if and only if some cycle of A contains a nondeterministic
transition and this observation yields a simple polynomial time algorithm to test
whether twA(m) is bounded [38]. On the other hand, there is no efficient algorithm
to determine whether the guessing of an NFA is bounded.

Theorem 10 (Leung [31]). For a given NFA A, it is PSPACE-complete to decide
whether γA(m) is bounded.

Interestingly it is known that the guessing of an NFA may be unbounded and
grow sublinearly.

Theorem 11 (Simon [48], Goldstine et al. [12]). For each k ∈ N, there is an NFA
A such that γA(m) = Θ(k

√
m).

Due to the exponential correspondence between the guessing and branching
measures, Theorem 11 implies that, for each k ∈ N, there exists an NFA A such
that βA(m) = 2Θ(k

√
m). It is not known whether the branching of an NFA can be

polynomially bounded but infinite [39].

Open 1. If NFA A has unbounded branching does this imply that the growth rate
of βA(m) must be superpolynomial?

It is known that, for a unary NFA A, βA(m) is always either bounded or in
2Θ(m) [41] and the possible growth rates of a variant of the branching measure
considered in [37] are similarly restricted. For the worst-case branching measure
trace, Palioudakis et al. [39] have shown that, for an n-state NFA A, τA(m) is either
bounded or τA(m) ≥ 2b

m
n c.

150 Y.-S. Han, A. Salomaa, K. Salomaa

4.1 NFAs with large finite nondeterminism

Similarly as in the case of degree of ambiguity [50], for an n-state NFA A with
bounded guessing (respectively, bounded tree width) we can ask how large can
the guessing (respectively, the tree width) of A be. Leung [31] has shown that an
n-state NFA with limited nondeterminism in any computation can make at most
2n − 2 nondeterministic transitions and has constructed a family of NFAs with
bounded nondeterminism that is considerably larger than the number of states.

Theorem 12 (Leung [31]). If A is an n-state NFA with bounded guessing, then
γA(m) = O(2n). There exist n-state NFAs Bn, n ∈ N such that γsup

Bn
= 2

n
3 − 2.

A limitation of the above result is that in the NFAs Bn are defined over a
growing alphabet and a large number of the nondeterministic moves are redundant.
It remains open whether there exist n-state NFAs A with bounded guessing that
is larger than n and where the language L(A) cannot be recognized by an NFA
of same size and less nondeterminism [31]. The notion of “less nondeterminism”
could be formalized analogously as is done below with the notion of optimality in
the case of tree width.

Hromkovič et al. [19] observed that the tree width of an n-state NFA, if bounded,
is at most nn. Palioudakis et al. [38] improved this bound and, furthermore, gave
a construction of n-state NFAs with all possible values of bounded tree width that
do not have “redundant” nondeterminism.

The notion of avoiding redundant nondeterminism is formalized as follows. A
finite tree width NFA A with n states is said to have optimal tree width if L(A)
cannot be recognized by any NFA B with n1 states where n1 ≤ n and twsup

B ≤ twsup
A

and at least one of the inequalities is strict.

Theorem 13 (Palioudakis et al. [38]). The tree width of an n-state finite tree width
NFA is at most 2n−2. For every n ≥ 2 and 1 ≤ k ≤ 2n−2 there exists an n-state
NFA over a binary alphabet having optimal tree width k.

Note that the above bound is less than the upper bound for the finite ambiguity
of an n-state NFA (from Theorem 3). Naturally, for any NFA A and string w, the
degree of ambiguity of A on w is at most the tree width of A on w (and usually
much smaller than the tree width). However, an upper bound for the finite tree
width of an n-state NFA does not imply a corresponding bound for the degree of
ambiguity because an NFA may have finite ambiguity and unbounded tree width.

4.2 Comparing nondeterminism measures and ambiguity

Directly from the definitions it follows that if an NFA A has finite tree width, then
the guessing (and branching) of A is also finite, but the converse implication does
not need to hold. The tree width of A is finite if and only if the trace of A is finite.

Proposition 1 (Palioudakis et al. [39]). If A is an NFA with finite tree width, then

twsup
A ≤ τ sup

A ≤ 2twsup
A −1.

Ambiguity, Nondeterminism and State Complexity 151

It is known that the above inequalities cannot be improved in general, that is,
there are NFAs for which either of the inequalities of Proposition 1 becomes and
equality [39].

Hromkovič et al. [19] have established relationships between the tree width,
maximum guessing and degree of ambiguity in a minimal NFA. They use the name
‘leaf size’ for tree width and instead of maximum guessing they use an “advice”
measure that is within a constant factor of maximum guessing. The advice of an
NFA A on a string w counts the largest number of nondeterministic steps in any
computation of A on w.

Theorem 14 (Hromkovič et al. [19]). If A is a minimal NFA, then for all m ∈ N,

max(γmax
A (m),daA(m)) ≤ twA(m) = O(daA(m) · γmax

A (m)).

Goldstine et al. [12] have established a subtle relationship between ambiguity
and guessing for NFAs where all states are final. They define the ambiguity of a
string w as the number of complete computations on w. To avoid confusion, we
call the number of complete computations of an NFA A on a string w the complete
ambiguity2 of A on w. Note that if all states of A are final, the complete ambiguity
of A coincides with the degree of ambiguity as defined in section 3 and if A has
no undefined transitions then the complete ambiguity of A coincides with the tree
width of A.

By definition, the guessing function γA(m) of an NFA grows at most linearly.
If the guessing is bounded or grows linearly, then the complete ambiguity may be
either bounded or unbounded but, in the intermediate case, where the guessing is
unbounded but sublinear, then ambiguity must always be unbounded. Recall from
Theorem 11 that there exist NFAs with unbounded and sublinear growth rate of
the guessing function.

Theorem 15 (Goldstine et al. [12]). Let A be an NFA. If γA(m) is non-constant
and sublinear, then the complete ambiguity of A must be unbounded. On the other
hand, if γA(m) is in O(1) or in Θ(m), then the complete ambiguity may be either
bounded or unbounded.

4.3 Limited nondeterminism and state complexity

An important descriptional complexity question is the succinctness comparison
of NFAs employing different amounts of nondeterminism and, in particular, the
determinization size blow-up of NFAs with limited nondeterminism. Goldstine et
al. [11] have shown that converting a general NFA to an NFA with finite branching
involves, in the worst case, an exponential size blow-up.

Theorem 16 (Goldstine et al. [11]). For each n ∈ N, there exists an n-state NFA
A such that any finite branching NFA recognizing the language L(A) needs at least
2n−1 states.

2Keeler [24] calls this the string path width of A on w.

152 Y.-S. Han, A. Salomaa, K. Salomaa

Also, Goldstine et al. [11] have shown that there exist regular languages for
which different finite amounts of nondeterminism yield incremental savings in the
number of states. The following two theorems give the “spectrum” result of [11]
stated in a slightly simplified form.

Theorem 17 (Goldstine et al. [11]). Let A be a minimal DFA of size 2n−1, n ≥ 2.
Then

(i) for 2 ≤ k ≤ n
log2 n

, the optimal size of an NFA with branching k for L(A) is

at least 2
n
k , and,

(ii) for k ≥ n
log2 n

, an NFA with branching k for L(A) has size at least n.

Furthermore, they show that the bounds of Theorem 17 are close to best pos-
sible:

Theorem 18 (Goldstine et al. [11]). For n ≥ 2 there exists a minimal NFA An
with n + 1 states such that if we denote by σn[k] the optimal size of an NFA with
branching k recognizing L(An) then the following relations hold:

(i) σn[1] = 2n, and, 2
n
k ≤ σn[k] < 2k · 2n

k when 2 ≤ k < n
log2 n

,

(ii) n+ 1 ≤ σn[k] < 2k · 2n
k when n

log2 n
≤ k < n,

(iii) n+ 1 ≤ σn[k] < 4n, when k ≥ n.

Recall that tree width is more restrictive than branching in the sense that
an NFA with finite tree width necessarily has finite branching, but the converse
implication does not hold, in general. Contrasting the result of Theorem 16, every
finite tree width NFA has an equivalent DFA of polynomial size.

Theorem 19 (Palioudakis et al. [38]). For an NFA A with n states having tree

width at most k ≤ n − 1, the language L(A) has a DFA of size 1 +
∑k
j=1

(
n−1
j

)
.

Furthermore, for every 1 ≤ k ≤ n − 1, there exists an n state NFA An,k with
tree width k over a binary alphabet such that the minimal DFA for L(An,k) has

1 +
∑k
j=1

(
n−1
j

)
states.

Palioudakis et al. [38] gives also an upper bound 1+
∑k−`+1
i=1

(
n−1
i

)
for converting

an n state NFA with tree width k to an NFA with tree width 2 ≤ ` < k, but a
corresponding lower bound is missing. Also no spectrum result for tree width
analogous to the spectrum result for branching (Theorem 18) is known. That is,
there is no result that yields good bounds, for a given sequence of languages, for
the succinctness of NFAs over a range of different tree width values.

Deterministic finite automata with multiple initial states (MDFA) can be viewed
as a restricted type of automata with limited nondeterminism: the only nondeter-
minism consists of the choice of the initial state. With an elegant construction
based on modular arithmetic, Kappes [23] has given an efficient simulation of an
NFA with finite branching by an MDFA.

Ambiguity, Nondeterminism and State Complexity 153

Theorem 20 (Kappes [23]). An NFA with n states and branching k (k ∈ N) can
be simulated by an MDFA with k · n states and k initial states.

The bound as stated in [23] is k ·n+ 1 and the construction produces an MDFA
with a dead state. Above in Theorem 20 we allow the possibility that an MDFA can
have undefined transitions (following the definition of [40]). Palioudakis et al. [40]
have established an almost matching lower bound by showing that for infinitely
many values n, k ∈ N there exists an n-state NFA with branching k such that any
equivalent MDFA needs at least k

1+log k · n states.

To conclude we mention that limiting the nondeterminism of an NFA is not
sufficient to make the minimization problem tractable. It is well known that min-
imization of general NFAs is PSPACE-complete. Björklund and Martens [2] have
shown that minimization remains NP-hard, roughly speaking, for all finite automa-
ton models that extend the class of DFAs. The hardness result is for the class of
δNFAs which are a very restricted subclass of tree width two NFAs [2].

5 Conclusion and open problems

Descriptional complexity comparison of nondeterministic finite automata of differ-
ent degrees of ambiguity and employing different amounts of nondeterminism is
a foundational question in automata theory. The spectrum result of Goldstine et
al. [11] (Theorems 17 and 18) establishes the existence of a sequence of languages
for which different finite amounts of branching allow incremental savings in the
number of states, and the succinctness comparisons are approximately the best
possible.

On the other hand, very little is known about the state complexity of NFAs
where the amount of nondeterminism is unbounded and measured as a function
of input length. While there is a super-polynomial separation between the size of
finitely ambiguous, polynomially ambiguous, and general NFAs, no succinctness
comparisons between NFAs of different unbounded branching or unbounded tree
width are known. This can be a topic for future research. In particular, it would
be interesting to know whether the powerful communication complexity techniques
used by Hromkovič et al. [19, 20] for succinctness comparisons of NFAs with differ-
ent degrees of ambiguity can be used to establish good lower bounds and separation
results for the state complexity of NFAs where the branching (or the tree width) is
measured as a function of input length.

A further topic of interest could be the succinctness comparison of NFAs of
given degree of ambiguity and NFAs of given branching (or tree width). Only a
few tentative results are known [38] in this direction.

Acknowledgements

Han was supported by the Basic Science Research Program through NRF funded
by MEST (2015R1D1A1A01060097) and the Yonsei University Future-leading Re-

154 Y.-S. Han, A. Salomaa, K. Salomaa

search Initiative of 2016. K. Salomaa was supported by the Natural Sciences and
Engineering Research Council of Canada Grant OGP0147224.

References

[1] Alur, R. and Madhusudan, P. Adding nesting structure to words. Journal of
the ACM, 56(3), 2009.

[2] Björklund, H. and Martens, W. The tractability frontier for NFA minimization.
J. Comput. System Sci., 78: 198–210, 2012.

[3] Book, R., Even, S., Greibach, S. and Ott, G. Ambiguity in graphs and expres-
sions. IEEE Transactions on Computers, c-20(2):149–153, 1971.

[4] Brüggemann-Klein, A. and Wood, D. One-unambiguous regular languages.
Information and Computation, 140(2):229–253, 1998.

[5] Chan, T.-H. and Ibarra, O. On the finite-valuedness problem for sequential
machines. Theoret. Comput. Sci., 23: 95–101, 1983.

[6] Cui, B., Gao, Y., Kari, L., Yu, S. State complexity of combined operations
with two basic operations. Theoret. Comput. Sci., 437: 82–102, 2012.

[7] Ellul, K., Krawetz, B., Shallit, J. and Wang, M.-W. Regular expressions: New
results and open problems. Journal of Automata, Languages and Combina-
torics, 10: 407–437, 2005.

[8] Ésik, Z., Gao, Y, Liu, G., Yu, S. Estimation of state complexity of combined
operations. Theoret. Comput. Sci., 410: 3272–3280, 2009.

[9] Gao, Y., Moreira, N., Reis, R., Yu, S. A review on state complexity of in-
dividual operations. To appear in Computer Science Review. (Available at
www.dcc.fc.up.pt/dcc/Pubs/TReports/TR11/dcc-2011-08.pdf)

[10] Goldstine, J., Kappes, M., Kintala, C.M.R., Leung, H., Malcher, A. and
Wotschke, D. Descriptional complexity of machines with limited resources.
J. Universal Computer Science, 8(2): 193–234, 2002.

[11] Goldstine, J., Kintala, C.M.R. and Wotschke, D. On measuring nondetermin-
ism in regular languages. Inform. Comput., 86: 179–194, 1990.

[12] Goldstine, J., Leung, H. and Wotschke, D. On the relation between ambiguity
and nondeterminism in finite automata. Inform. Comput., 100: 261–270, 1992.

[13] Gruber, H., Holzer, M. From finite automata to regular expressions and back
— A summary of descriptional complexity. Intern. J. Foundations Comput.
Sci., 26: 1009–1040, 2015.

Ambiguity, Nondeterminism and State Complexity 155

[14] Han, Y.-S. and Wood, D. Generalizations of 1-deterministic regular languages.
Information and Computation, 206(9-1): 1117–1125, 2008.

[15] Holzer, M. and Kutrib, M. Nondeterministic finite automata – Recent results
on the descriptional and computational complexity. Intern. J. Foundations
Comput. Sci., 20(4): 563–580, 2009.

[16] Holzer, M. and Kutrib M. Descriptional complexity of (un)ambiguous finite
state machines and pushdown automata. In: Reachability Problems 2010, Lect.
Notes Comput. Sci. 6227, pp. 1–23, 2010

[17] Holzer, M. and Kutrib, M. Descriptional and computational complexity of
finite automata — A survey. Information and Computation, 209: 456–470,
2011.

[18] Hromkovič, J. Descriptional complexity of finite automata: Concepts and open
problems. Journal of Automata, Languages and Combinatorics, 7(4): 519–531,
2002.

[19] Hromkovič, J., Seibert, S., Karhumäki, J., Klauck, H. and Schnitger, G. Com-
munication complexity method for measuring nondeterminism in finite au-
tomata. Inform. Comput., 172: 202–217, 2002.

[20] Hromkovič, J. and Schnitger, G. Ambiguity and communication. Theory Com-
put. Syst., 48: 517–534, 2011.

[21] Ibarra, O. and Ravikumar, B. On sparseness, ambiguity and other decision
problems for acceptors and transducers. In Proc. of STACS’86, Lect. Notes
Comput. Sci. 210, Springer, pp. 171–179, 1986.

[22] Jirásek, J., Jirásková, G., Šebej, J. Operations on unambiguous finite au-
tomata. In Developments in Language Theory, DLT, Lect. Notes Comput. Sci.
9840, Springer, pp. 243–255, 2016.

[23] Kappes, M. Descriptional complexity of deterministic finite automata with
multiple intial states. J. Automata, Languages and Combinatorics, 5: 269–
278, 2000.

[24] Keeler, C. New measures for finite automaton complexity and subregular lan-
guage hierarchies. MSc thesis, Queen’s University, 2016.

[25] Kintala, C.M.R. and Fischer, P.C. Refining nondeterminism in relativized
polynomial time computations. SIAM J. Comput., 9(1): 46–53, 1980.

[26] Kintala, C.M.R and Wotschke, D. Amounts of nondeterminism in finite au-
tomata. Acta Informatica, 13(2): 199–204, 1980.

[27] Kuich, W. Finite automata and ambiguity. Rept. 253 of the IIG. Techinische
Universität Graz, 1988.

156 Y.-S. Han, A. Salomaa, K. Salomaa

[28] Kutrib, M. and Pighizzini, G. Recent trends in descriptional complexity of
formal languages. Bulletin of the EATCS, 111: 70–86, 2013.

[29] Leiss, E. Succinct representation of regular languages by Boolean automata.
Theoret. Comput. Sci., 13: 323–330, 1981.

[30] Leung, H. Separating exponentially ambiguous finite automata from poly-
nomially ambiguous finite automata. SIAM Journal of Computing, 27(4):
1073–1082, 1998.

[31] Leung, H. On finite automata with limited nondeterminism. Acta Informatica,
35: 595–624, 1998.

[32] Leung, H. Descriptional complexity of NFA of different ambiguity. Intern. J.
Foundations Comput. Sci., 16(5): 975–984, 2005.

[33] Mandel, A. and Simon, I. On finite semi-groups of matrices. Theoret. Comput.
Sci., 5: 183–204, 1977.

[34] Maslov, A.N. Estimates of the number of states of finite automata. Soviet
Math. Dokl., 11: 1373–1375, 1970.

[35] Okhotin, A. Unambiguous finite automata over a unary alphabet. Inform.
Comput., 212: 15–36, 2012.

[36] Okhotin, A., Salomaa, K. Descriptional complexity of unambiguous input-
driven pushdown automata. Theoret. Comput. Sci., 566: 1–11, 2015.

[37] Palioudakis, A., Han, Y.-S. and Salomaa, K. Growth rate of minimum branch-
ing. Submitted for publication, February 2017.

[38] Palioudakis, A., Salomaa, K. and Akl, S.G. State complexity of finite tree
width NFAs. J. Automata, Languages and Combinatorics, 17(2–4): 245–264,
2012.

[39] Palioudakis, A., Salomaa, K. and Akl, S.G.: Comparisons between measures of
nondeterminism for finite automata. In Proc. of DCFS’13, Lect. Notes Com-
put. Sci. 8031, Springer, pp. 217–228, 2013.

[40] Palioudakis, A., Salomaa, K. and Akl, S.G. Lower bound for converting an
NFA with finite nondeterminism into an MDFA. J. Automata, Languages and
Combinatorics, 19: 251–264, 2014.

[41] Palioudakis, A., Salomaa, K. and Akl, S.G. Quantifying nondeterminism in
finite automata. Annals of the University of Bucharest, No. 2, pp. 89–100,
2015.

[42] Ravikumar, B. and Ibarra, O.H. Relating the type of ambiguity of finite
automata to the succinctness of their representation. SIAM Journal of Com-
puting, 18(6): 1263–1282, 1989.

Ambiguity, Nondeterminism and State Complexity 157

[43] Reutenauer, C. Propriétés arithmétiques et topologiques de séries rationnelles
en variables non commutatives. Thése troisiéme cycle, Université Paris VI,
1977.

[44] Rozenberg, G., Salomaa, A. (Eds.) Handbook of Formal Languages, Vol. I–III,
Springer-Verlag, 1997.

[45] Salomaa, A., Salomaa, K., and Yu, S. Undecidability of state complexity.
Internat. J. Comput. Math., 90: 1310–1320, 2013.

[46] Schmidt, E.M. Succinctness of descriptions of context-free, regular and finite
languages. PhD thesis, Cornell University, Ithaca, NY, 1978

[47] Shallit, J. A Second Course in Formal Languages and Automata Theory, Cam-
bridge University Press, 2009.

[48] Simon, I. The nondeterministic complexity of a finite automaton. In: Lothaire,
M. (ed.) Mots - mélanges offerts a M.P. Schützenberger, Paris, Hermes, pp.
384–400, 1990.

[49] Stearns, R. and Hunt III, H. On the equivalence and containment problems
for unambiguous regular expressions, regular grammars and finite automata.
SIAM J. Comput., 14: 598–611, 1985.

[50] Weber, A. and Seidl, H. On the degree of ambiguity of finite automata. Theoret.
Comput. Sci., 88: 325–349, 1991.

[51] Yu, S. Regular languages, in [44], Vol. I, pp. 41–110, 1997.

[52] Yu, S. State complexity of regular languages. Journal of Automata, Languages
and Combinatorics, 6(2): 221–234, 2001.

Acta Cybernetica 23 (2017) 159–174.

On DR Tree Automata, Unary Algebras and

Syntactic Path Monoids

Magnus Steinbya

To the memory of Zoltán Ésik

Abstract

We consider deterministic root-to-frontier (DR) tree recognizers and the
tree languages recognized by them from an algebraic point of view. We make
use of a correspondence between DR algebras and unary algebras shown by
Z. Ésik (1986). We also study a question raised by F. Gécseg (2007) that
concerns the definability of families of DR-recognizable tree languages by
syntactic path monoids. We show how the families of DR-recognizable tree
languages path-definable by a variety of finite monoids (or semigroups) can
be derived from varieties of string languages. In particular, the three path-
definable families of Gécseg and B. Imreh (2002, 2004) are obtained this way.

Keywords: deterministic root-to-frontier tree automaton, tree language,
unary algebra, syntactic path monoid, variety of finite monoids, variety of
languages

1 Introduction

The tree languages recognized by deterministic root-to-frontier (top-down) tree
recognizers form a proper subfamily DRec of the family Rec of all recognizable
tree languages. The members of DRec, the DR-recognizable tree languages, are
characterized by the fact that they are completely determined by the labeled paths
appearing in their trees (cf. [11, 15, 16, 20]). Any path from the root of a tree to
one of its leaves is represented as a word over the so-called path alphabet. Each
symbol of this alphabet indicates both the label of a node of a tree and the direction
taken at that node. If we group together the paths leading to a leaf labeled with a
given symbol x of the leaf alphabet X, then all the paths appearing in the trees of a
given tree language T form a family 〈Tx〉x∈X of languages over the path alphabet,
and if T is DR-recognizable, it is completely determined by these languages Tx.
This implies that the DR-recognizable tree languages resemble string languages
more than general recognizable tree languages do. In particular, while few known

aDepartment of Mathematics and Statistics, University of Turku, FI-20014 Turku, Finland,
E-mail: steinby@utu.fi

DOI: 10.14232/actacyb.23.1.2017.10

160 Magnus Steinby

families of recognizable tree languages can be characterized by syntactic monoids or
semigroups, Gécseg and Imreh [7, 8] could characterize three subfamilies of DRec,
those of DR nilpotent, DR monotone and DR definite tree languages, in terms of
the syntactic path monoids or semigroups introduced in [12]. We shall show that
there exist many more such examples: any ∗ - or + -variety of string languages, as
defined by Eilenberg [2], yields a subfamily of DRec that can be characterized by
syntactic path monoids or semigroups.

If we regard the path alphabet as a unary ranked alphabet, then the path set
of a tree language T becomes a unary tree language δ(T) that carries the same
information as the family 〈Tx〉x∈X . A DR recognizer may be seen as a finite DR
algebra equipped with an initial state and a final state assignment. In [3] Zoltán
Ésik associated with each DR algebra a unary algebra over the path alphabet, and
noted that using this association one may apply ideas of standard general algebra
to DR algebras. We complete the bijection between the two types of algebras by
the converse transformation from unary algebras to DR algebras. The usefulness of
this bijection derives from the fact that it preserves subalgebras, homomorphisms,
congruences and direct products. In particular, we may refer to varieties of finite
unary algebras when considering varieties of finite DR algebras. By extending
this correspondence to tree recognizers, we study the connections between DR-
recognizable tree languages and their unary path languages.

We shall recall or introduce all the special concepts used here. The basic uni-
versal algebra needed can be found in the first two chapters of [1], for example. For
tree automata and tree languages, the reader may consult [11] and for the theory
of varieties of (string) languages the books [2] and [17].

This paper is dedicated to the memory of Zoltán Ésik whom I learned know
already in the 1970s. He has made many important contributions in several areas
of theoretical computer science, and all his work is characterized by mathematical
elegance and precision. It is a pleasure to acknowledge the inspiration I got from
one of his, probably less well known, papers.

2 Preliminaries

For any integer n > 0, let [n] = {1, . . . , n}. Let A be any set. For any i ∈ [n], let
πi : An → A, (a1, . . . , an) 7→ ai be the ith projection map. The power-set of A is
denoted by ℘(A). If ϕ : A→ B is a mapping, the image ϕ(a) of an element a ∈ A
may be denoted also by aϕ. Especially homomorphisms will be written this way as
right operators. For any equivalence θ ∈ Eq(A) on A, we write aθ for the θ-class of
an element a ∈ A, and A/θ := {aθ | a ∈ A} is the quotient set. For any alphabet
X, the set of (finite) words over X is denoted by X∗ and the empty word by ε.

Let Σ be a ranked alphabet, i.e., a finite set of operation symbols, which does
not contain nullary symbols. For each m ≥ 1, Σm denotes the set of m-ary symbols
in Σ. The rank type of Σ is the set r(Σ) := {m | Σm 6= ∅}. In what follows, Σ is
always a ranked alphabet of rank type R and X is an ordinary finite non-empty
alphabet, called a leaf alphabet, disjoint from Σ. The set TΣ(X) of ΣX-trees is the

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 161

least set such that X ⊆ TΣ(X), and f(t1, . . . , tm) ∈ TΣ(X), for all m ∈ R, f ∈ Σm
and t1, . . . , tm ∈ TΣ(X). A ΣX-tree language is any subset of TΣ(X). Often we
speak about trees and tree languages without specifying the alphabets.

A Σ-algebra A consists of a nonempty set A and a Σ-indexed family of operations
on A such that if f ∈ Σm (m ∈ R), then fA : Am → A is an m-ary operation. We
writeA = (A,Σ), and callA finite if A is a finite set. Subalgebras, homomorphisms,
congruences etc. are defined as usual. For any class K of Σ-algebras, let S(K)
consist of all algebras isomorphic to a subalgebra of a member of K, H(K) be the
class of all images of members of K, and Pf (K) be the class of algebras isomorphic
to a finite direct product of members of K. A class K of finite Σ-algebras is a
variety of finite Σ-algebras (a Σ-VFA for short) if S(K), H(K), Pf (K) ⊆ K. The
Σ-VFA generated by a class K of finite Σ-algebras is denoted by Vf (K).

The ΣX-term algebra TΣ(X) = (TΣ(X),Σ) is defined by setting, for all m ∈
R, f ∈ Σm and t1, . . . , tm ∈ TΣ(X), fTΣ(X)(t1, . . . , tm) = f(t1, . . . , tm).

A ΣX-recognizer A = (A, α, F) consists of a finite Σ-algebra A = (A,Σ), an
initial assignment α : X → A, and a set F ⊆ A of final states. The ΣX-tree
language recognized by A is the set T (A) := {t ∈ TΣ(X) | tαA ∈ F} where
αA : TΣ(X)→ A is the homomorphic extension of α. A ΣX-tree language is called
recognizable, or regular, if it is recognized by a ΣX-recognizer. Let Rec(Σ, X)
denote the set of all recognizable ΣX-tree languages.

If Σ = Σ1, we call Σ a unary alphabet and Σ-algebras are unary algebras. A
unary alphabet Σ may also be treated as an ordinary alphabet and we write Σ-terms
as expressions ξu, where ξ is a variable and u ∈ Σ∗. The term functions induced
by such terms ξu in a Σ-algebra C = (C,Σ) are mappings uC : C → C, c 7→ cuC ,
defined by cεC = c and cuC = gC(cvC) for u = vg (v ∈ Σ∗, g ∈ Σ).

On the other hand, we may view an ordinary (finite) alphabet Z as a unary
ranked alphabet and define Z-automata as unary algebras A = (A,Z) in which
each letter z ∈ Z induces a unary operation zA : A → A, a 7→ azA. For any word
w = z1 . . . zk in Z∗ (k ≥ 0, z1, . . . , zk ∈ Z), the operation wA : A → A is the
composition of zA1 , . . . , z

A
k . A Z-recognizer is now a system A = (A, a0, F), where

A = (A,Z) is a finite Z-algebra, a0 ∈ A is the initial state, and F ⊆ A is the set of
final states. The language recognized by A is the set L(A) := {w ∈ Z∗ | a0w

A ∈ F}.
A language L ⊆ Z∗ is regular if it is recognized by a Z-recognizer.

Often we will say that a string or tree language is recognized by an algebra A if
it is recognized by a recognizer of an appropriate kind based on A.

3 DR algebras and unary algebras

In what follows, the frequently recurring phrase deterministic root-to-frontier is
abbreviated to DR. The following basic algebraic notions for DR algebras were
defined by Virágh [20], but most of them are obtained from those defined for DR tree
recognizers in [10]. To simplify the notation, we extend mappings and equivalence
relations to m-tuples: if a = (a1, . . . , am) ∈ Am, then for any map ϕ : A → B, let
aϕ̄ := (a1ϕ, . . . , amϕ), and for any θ ∈ Eq(A), let aθ̄ := (a1θ, . . . , amθ).

162 Magnus Steinby

A (finite) DR Σ-algebra consists of a nonempty (finite) set A and a Σ-indexed
family of root-to-frontier operations fA : A −→ Am (f ∈ Σ), where the arity m is
that of f(∈ Σm). Again we write simply A = (A,Σ).

Let A = (A,Σ) and B = (B,Σ) be any DR Σ-algebras. Then A is a subalgebra
of B if A ⊆ B and fA(a) = fB(a) for all f ∈ Σ and a ∈ A. A mapping ϕ : A→ B is
a homomorphism from A to B, and we write ϕ : A → B, if fA(a)ϕ̄ = fB(aϕ) for all
f ∈ Σ and a ∈ A. If ϕ is also bijective, it is an isomorphism, and we write A ∼= B
if A and B are isomorphic. The direct product of A and B is the DR Σ-algebra
A×B = (A×B,Σ) such that for all m ∈ R, f ∈ Σm and (a, b) ∈ A×B, if fA(a) =
(a1, . . . , am) and fA(b) = (b1, . . . , bm), then fA×B((a, b)) = ((a1, b1), . . . , (am, bm)).
The general finite direct product A1 × · · · × An (n ≥ 0) is defined the same way.

A congruence on A is an equivalence θ on A such that for any a, a′ ∈ A and
f ∈ Σ, if aθa′, then fA(a)θ̄ = fA(a′)θ̄. Let Con(A) denote the set of all congruences
on A. For any θ ∈ Con(A), the quotient DR algebra A/θ = (A/θ,Σ) is defined by
fA/θ(aθ) := fA(a)θ̄ for all a ∈ A and f ∈ Σ.

All the usual facts about subalgebras, homomorphisms, congruences, etc. hold
for DR algebras, too. For example, the kernel of any homomorphism ϕ : A → B is
a congruence on A, and A/ kerϕ ∼= B if ϕ is surjective.

The tree languages recognized by deterministic root-to-frontier recognizers are
characterized by the labeled paths appearing in their trees. The paths are described
using the path alphabet Σ̂ :=

⋃
m∈R Σm × [m]. A pair (f, i) ∈ Σ̂ is written simply

as fi. We regard Σ̂ either as a unary ranked alphabet or as an ordinary alphabet.
Following Ésik [3] we associate with any DR Σ-algebra A = (A,Σ) a unary

algebra Au = (A, Σ̂) such that fA
u

i (a) = fA(a)πi for all a ∈ A, m ∈ R, f ∈ Σm
and i ∈ [m]. Let us also introduce a converse transformation: for any Σ̂-algebra

C = (C, Σ̂), let Cd = (C,Σ) be the DR Σ-algebra with fCd(c) = (fC1 (c), . . . , fCm(c))
for all c ∈ C, m ∈ R and f ∈ Σm. Since Aud = A for any DR Σ-algebra A and
Cdu = C for any Σ̂-algebra C, there is a natural bijective correspondence between
DR Σ-algebras and Σ̂-algebras.

Lemma 3.1. Let A = (A,Σ) and B = (B,Σ) be any DR Σ-algebras.

(a) A is a subalgebra of B if and only if Au is a subalgebra of Bu.

(b) A mapping ϕ : A→ B is a homomorphism from A to B if and only if it is a
homomorphism from Au to Bu.

(c) (A× B)u = Au × Bu.

(d) Con(A) = Con(Au).

(e) (A/θ)u = Au/θ for any θ ∈ Con(A).

Proof. All five statements follow directly from the appropriate definitions, and (c)
was noted already in [3]. Let us verify (e) as an example.

Firstly, (A/θ)u and Au/θ are Σ̂-algebras with the same set A/θ of elements.
Moreover, for any a ∈ A, m ∈ R, f ∈ Σm and i ∈ [m],

f
(A/θ)u
i (aθ) = fA/θ(aθ)πi = fA(a)θ̄πi = fA(a)πiθ = fA

u

i (a)θ = f
Au/θ
i (aθ),

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 163

so also their operations are the same.

4 DR tree recognizers and unary recognizers

Let us now extend the correspondence between DR algebras and unary algebras to
recognizers. A DR ΣX-recognizer A = (A, a0, α) consists of a finite DR Σ-algebra
A = (A,Σ), an initial state a0 ∈ A, and a final state assignment α : X → ℘(A). To
accept or reject an input tree t ∈ TΣ(X), A starts at the root of t in state a0, and if it
has reached a node ν of t labeled with f ∈ Σm in state a and fA(a) = (a1, . . . , am),
then it continues its working at the ith immediate successor node of ν in state ai
(i ∈ [m]). The tree is accepted if A reaches each leaf in a state a (∈ A) matching
the label x (∈ X) of that leaf, i.e., a ∈ α(x). For a formal definition, we extend
α to a mapping α̃ : TΣ(X) → ℘(A) by setting α̃(x) = α(x) for each x ∈ X,
and α̃(t) = {a ∈ A | fA(a) ∈ α̃(t1) × . . . × α̃(tm)} for t = f(t1, . . . , tm). Then
T (A) := {t ∈ TΣ(X) | a0 ∈ α̃(t)} is the tree language recognized by A, and the
ΣX-tree language T (A) is said to be DR-recognizable. Let DRec(Σ, X) denote the
set of DR-recognizable ΣX-tree languages. Two DR ΣX-recognizers A and B are
equivalent if T (A) = T (B).

The set δ(t) ⊆ TΣ̂(X) of paths in a ΣX-tree t is defined by δ(x) = {x} for
x ∈ X, and δ(t) = f1δ(t1) ∪ . . . ∪ fmδ(tm) for t = f(t1, . . . , tm). Thus δ(t) is a set
of unary trees in Polish form. The path language of a ΣX-tree language T is the
set δ(T) :=

⋃
{δ(t) | t ∈ T}. The path closure ∆(T) := δ−1(δ(T)) of T ⊆ TΣ(X)

consists of all ΣX-trees t such that δ(t) ⊆ δ(T), and T is path closed if T = ∆(T).
Quite generally, for any U ⊆ TΣ̂(X), the set δ−1(U) := {t ∈ TΣ(X) | δ(t) ⊆ U}
is path-closed. As shown in [16], a regular tree language is DR-recognizable if and
only if it is path closed. For properties of the operators δ and ∆, cf. [15, 20].

Remark 4.1. Let Σ be unary. Then Σ̂ = {f1 | f ∈ Σ} and we may use Σ itself
as the path alphabet. Furthermore, we may regard any DR Σ-algebra A = (A,Σ)
also as a Σ-algebra by identifying any 1-tuple (a) with the element a(∈ A), but as
a DR ΣX-recognizer and as a ΣX-recognizer A reads the input trees in opposite
directions. Nevertheless, it is clear that DRec(Σ, X) = Rec(Σ, X) for every X.

Let us now regard Σ̂ as a usual alphabet. For each x ∈ X, the set of x-paths in
a ΣX-tree t is gx(t) := {u ∈ Σ̂∗ | ux ∈ δ(t)}. For any T ⊆ TΣ(X) and x ∈ X, let
Tx denote the set

⋃
{gx(t) | t ∈ T} of x-paths appearing in T . Obviously, δ(T) can

be recovered from the family 〈Tx〉x∈X .
Next we recall a few notions from [10, 11]. Let A = (A, a0, α) be a DR ΣX-

recognizer and A = (A,Σ). For any a ∈ A, let Aa := (A, a, α). A state a is a
0-state if T (Aa) = ∅, and it is reachable if a0 ⇒∗A a for the reflexive transitive
closure ⇒∗A of the relation ⇒A⊆ A × A, where for any a, b ∈ A, a ⇒A b if and
only if b = fA(a)πi for some m ∈ R, f ∈ Σm and i ∈ [m]. The recognizer A
is normalized, if for all m ∈ R, f ∈ Σm and a ∈ A, either every component in
fA(a) = (a1, . . . , am) is a 0-state or no ai is a 0-state, reduced if T (Aa) = T (Ab)
implies a = b (a, b ∈ A), connected if all of its states are reachable, and it is minimal

164 Magnus Steinby

if it is connected and reduced. In [10] it was shown that any DR ΣX-recognizer can
be converted into an equivalent normalized minimal DR ΣX-recognizer, and this is
also minimal with respect to the number of states and unique up to isomorphism
(the isomorphism of DR ΣX-recognizers is defined in the natural way, cf. [10]).

Let us associate with any DR ΣX-recognizer A = (A, a0, α) the DR Σ̂X-

recognizer Au = (Au, a0, α), and with any DR Σ̂X-recognizer C = (C, c0, γ) the
DR ΣX-recognizer Cd = (Cd, c0, γ). Obviously, Aud = A and Cdu = C.

Proposition 4.1. T (A) = δ−1(T (Au)) for any DR ΣX-tree recognizer A.

Proof. Let A = (A, a0, α) with A = (A,Σ). We show by induction on t that for all
t ∈ TΣ(X) and a ∈ A, t ∈ T (Aa) if and only if t ∈ δ−1(T (Aua)). The case t ∈ X is
obvious, so let t = f(t1, . . . , tm). If fA(a) = (a1, . . . , am), then

t ∈ T (Aa) iff t1 ∈ T (Aa1
), . . . , tm ∈ T (Aam)

iff δ(t1) ⊆ T (Aua1
), . . . , δ(tm) ⊆ T (Auam)

iff f1δ(t1), . . . , fmδ(tm) ⊆ T (Aua)
iff δ(t) ⊆ T (Aua)
iff t ∈ δ−1(T (Aua)).

Hence, T (Aa) = δ−1(T (Aua)) and, in particular, T (A) = δ−1(T (Au)).

Corollary 4.1. T (Cd) = δ−1(T (C)) for any DR Σ̂X-recognizer C.

Proof. T (Cd) = δ−1(T (Cdu)) = δ−1(T (C)) by Proposition 4.1 and Cdu = C.

Proposition 4.2. T (Au) = δ(T (A)) for any normalized DR ΣX-recognizer A.

Proof. Let A = (A, a0, α) with A = (A,Σ). The inclusion δ(T (A)) ⊆ T (Au)
follows from Proposition 4.1 and the fact that δ(δ−1(U)) ⊆ U for any U ⊆ TΣ̂(X).

For the converse inclusion we need the assumption that A is normalized. It is
enough to show that for all a ∈ A and r ∈ TΣ̂(X), if r ∈ T (Aua), then r ∈ δ(t) for
some t ∈ T (Aa). This we do by induction on r. For r ∈ X, we may let t := r. Next,
let r = fis for some f ∈ Σm, m ∈ R, i ∈ [m] and s ∈ TΣ̂(X), and assume that the
claim holds for s. If fA(a) = (a1, . . . , am), then s ∈ T (Auai) implies that s ∈ δ(ti)
for some ti ∈ T (Aai). Since ai is not a 0-state, there is for every j ∈ [m], j 6= i a
tree tj ∈ T (Aaj). Clearly, t := f(t1, . . . , tm) ∈ T (Aa) and r ∈ δ(t).

The following fact appears, in a different form, already in [16].

Corollary 4.2. If T ∈ DRec(Σ, X), then δ(T) ∈ DRec(Σ̂, X).

Proposition 4.3. A normalized DR ΣX-recognizer A is minimal if and only if
Au is a minimal DR Σ̂X-recognizer of δ(T (A)).

Proof. Let A = (A, a0, α) with A = (A,Σ). Consider any two states a, b ∈ A. If
T (Aa) = T (Ab), then T (Aua) = δ(T (Aa)) = δ(T (Ab)) = T (Aub) by Proposition 4.2.
On the other hand, if T (Aua) = T (Aub), then Proposition 4.2 yields δ(T (Aa)) =

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 165

δ(T (Ab)). Since T (Aa) and T (Ab) are path-closed, this means that T (Aa) =
T (Ab). Hence, A is reduced if and only if Au is reduced.

It is obvious that the reachability relations ⇒∗A and ⇒∗Au of A and Au are
identical. Hence, A is connected if and only if Au is connected.

Next we show how a DR Σ-algebra recognizing a ΣX-tree language T yields a
DR Σ̂-algebra recognizing the Σ̂-languages Tx (x ∈ X), and how a DR Σ-algebra

recognizing T is obtained from DR Σ̂-algebras recognizing the Σ̂-languages Tx.

Proposition 4.4. Let T be a DR-recognizable ΣX-tree language.

(a) If a finite DR Σ-algebra A = (A,Σ) recognizes T , then Au = (A, Σ̂) recognizes
every language Tx (x ∈ X).

(b) For each x ∈ X, let Ax = (Ax, Σ̂) be a finite Σ̂-algebra that recognizes Tx.
Then the direct product

∏
(Adx | x ∈ X) recognizes T .

Proof. Let A = (A, a0, α) be a DR ΣX-recognizer of T . It is easy to see that, for

each x ∈ X, the Σ̂-recognizer Ax = (Au, a0, α(x)) recognizes Tx.

To prove (b), consider for each x ∈ X a Σ̂-recognizer Ax = (Ax, ax0, Fx) of
Tx. The direct product A :=

∏
x∈X Adx simulates the computation of Ax by its

x-component along every path of a given tree t ∈ TΣ(X). Hence, started in state
(ax0)x∈X , A should accept t if and only if it reaches, for each y ∈ X, every y-
labeled leaf in a state (ax)x∈X such that ay ∈ Fy. This means that T = T (A) for
A = (A, (ax0)x∈X , α) if we define α by α(y) =

∏
x∈X Gy(x), where Gy(y) = Fy

and Gy(x) = Ax for all x ∈ X,x 6= y.

5 Definability by syntactic monoids

Let us first recall (cf. [2, 17]) that the syntactic congruence of a string language
L ⊆ Z∗ is the relation θL on Z∗ defined by

u θL v iff (∀w,w′ ∈ Z∗)(wuw′ ∈ L↔ wvw′ ∈ L),

and that the syntactic monoid of L is the quotient monoid M(L) := Z∗/θL.
Next we define the syntactic monoids and syntactic path monoids of tree lan-

guages introduced in [19] and [12], respectively.
Let ξ be a symbol that does not appear in our alphabets Σ or X. A ΣX-context

is a Σ(X ∪ {ξ})-tree in which ξ occurs exactly once. The set of all ΣX-contexts is
denoted by CΣ(X). If p, q ∈ CΣ(X) and t ∈ TΣ(X), then p ·q = q(p) and t ·q = q(t)
are the ΣX-context and the ΣX-tree obtained by replacing the ξ in q by p or t,
respectively. Then CΣ(X) forms for the product p · q a monoid in which ξ is the
identity element. If Σ is unary, no X-symbols appear in ΣX-contexts, and hence
we write CΣ for CΣ(X).

The syntactic monoid congruence µT of a ΣX-tree language T is the relation
on CΣ(X) is defined by

p µT q iff (∀t ∈ TΣ(X))(∀r ∈ CΣ(X))(t · p · r ∈ T ↔ t · q · r ∈ T),

166 Magnus Steinby

and the syntactic monoid of T is the quotient monoid SM(T) := CΣ(X)/µT . The
syntactic path congruence µ̂T is the relation on CΣ̂ defined by

p µ̂T q iff (∀s ∈ TΣ̂(X))(r ∈ CΣ̂)(s · p · r ∈ δ(T) ↔ s · q · r ∈ δ(T)),

and the syntactic path monoid of T is the quotient monoid PM(T) := CΣ̂/µ̂T .
In [19] it was shown that T is regular if and only if SM(T) is finite, and in [12]

that a path closed T is DR-recognizable if and only if PM(T) is finite.

In [12] PM(T) was defined as the quotient Σ̂∗/θT where θT is the intersection

of the congruences θTx
(x ∈ X). It is easy to see that CΣ̂/µ̂T

∼= Σ̂∗/θT , and hence
the next lemma follows from the fact that θT =

⋂
{θTx | x ∈ X}. To see this,

combine Theorem II.6.2 and Lemma II.8.2 of [1]. In [5] the corresponding fact
about transition monoids was used.

Lemma 5.1. For any T ∈ DRec(Σ, X), PM(T) is a subdirect product of the
monoids M(Tx) (x ∈ X).

If Σ is unary and we use Σ itself as the path alphabet, then TΣ̂(X) = TΣ(X)
and CΣ̂ = CΣ. Moreover, δ(U) = U for any U ⊆ TΣ(X), and µ̂U and µU become
identical. Hence, PM(U) ∼= SM(U) for any unary tree language U . Similarly,

for any ranked alphabet Σ, we may use Σ̂ as its own path alphabet, and then
δ(δ(T)) = δ(T) for any T ⊆ TΣ(X), which implies µ̂T = µ̂δ(T). By combining these
observations, we obtain the following result.

Proposition 5.1. PM(T) ∼= PM(δ(T)) ∼= SM(δ(T)) for any ΣX-tree language T .

In [5] Gécseg poses the following question. Assume that some property P of
regular string languages is determined by a class M of finite monoids in the sense
that a language has property P if and only if its syntactic monoid is in M. Under
what conditions can we conclude that the ‘corresponding’ property of regular tree
languages is similarly determined by M? In [6] the question is also considered for
DR tree languages in terms of syntactic path monoids. Let us describe the result
of [6] concerning the DR-case.

A class M of finite monoids is said to be closed under subdirect products if any
subdirect product of a finite family of members of M also belongs to M, and it
is closed under subdirect factors if whenever a subdirect product of a finite family
of monoids belongs to M, then all the factors are in M, too1. A property P of
DR tree languages is path-defined by M if a DR-recognizable tree language T has
property P if and only if PM(T) ∈M. Somewhat reformulated, Theorem 11 of [6]
reads as follows.

Proposition 5.2. (F. Gécseg 2011) Let P be a property of tree languages that is
also defined for string languages, and let M be a class of finite monoids. Assume
that the following three conditions are satisfied.

(1) A DR-recognizable ΣX-tree language T has property P if and only if Tx has
property P for every x ∈ X.

1In [5, 6] this is required of subdirect products of two factors only, but the stronger form is
actually used.

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 167

(2) For string languages the property P is defined by M.

(3) M is closed under subdirect products and subdirect factors.

Then P is path-defined for DR-recognizable tree languages by M.

Condition (3) is explained by Lemma 5.1. If M is a variety of finite monoids
(VFM), i.e., if S(M), H(M), Pf (M) ⊆M, condition (3) is always satisfied. Hence,
it is redundant when we consider properties that define varieties of string languages
(cf. [2, 17]), and this concerns many of the best-known families of regular languages.
In what follows, we replace “properties” by families of tree or string languages.

A family of tree languages (FTL) V assigns to all pairs Σ, X a set V(Σ, X) of
ΣX-tree languages. We write V = {V(Σ, X)} with the understanding that Σ and X
range over the appropriate alphabets. If Σ is allowed to range over the unary ranked
alphabets only, then V is a family of unary tree languages (FUTL). From any FTL
V = {V(Σ, X)} we get a FUTL Vu = {Vu(Σ, X)} by restricting the range of Σ to
unary alphabets. We call V = {V(Σ, X)} a DR family of tree languages (DR-FTL)
if V(Σ, X) ⊆ DRec(Σ, X) for all Σ and X. Similarly, a FUTL V = {V(Σ, X)} is a
DR-FUTL if V(Σ, X) ⊆ DRec(Σ, X) for every unary Σ and every X.

Let M be a class of finite monoids. For any Σ and X, let

Mp(Σ, X) := {T ∈ DRec(Σ, X) | PM(T) ∈M}.

Then Mp = {Mp(Σ, X)} is the DR-FTL path-defined by M, and Mu := (Mp)u is
the DR-FUTL path-defined by M.

Note that owing to Proposition 5.1, the third condition could be dropped in the
following variant of Proposition 5.2.

Proposition 5.3. Let V = {V(Σ, X)} be a DR-FTL, and let M be a class of finite
monoids. If

(1) Vu = Mu, and

(2) T ∈ V(Σ, X) if and only if δ(T) ∈ Vu(Σ̂, X) for all Σ, X and T ⊆ TΣ(X),

then V = Mp.

Proof. Consider any Σ and X. For every T ∈ DRec(Σ, X),

T ∈Mp(Σ, X) iff PM(T) ∈M iff PM(δ(T)) ∈M

iff δ(T) ∈Mu(Σ̂, X) iff δ(T) ∈ Vu(Σ̂, X)

iff T ∈ V(Σ, X),

where we used the definition of Mp, Proposition 5.1, the definition of Mu, assump-
tion (1), and finally assumption (2). Hence V = Mp.

Let us now show a way to get all DR-FTLs path-defined by a VFM. For this,
recall that Eilenberg [2] defines a ∗-variety as a family of languages with certain
closure properties and shows that every ∗-variety L = {L(Z)} is defined by a unique

168 Magnus Steinby

VFM M in the sense that for any L ⊆ Z∗, L ∈ L(Z) if and only if M(L) ∈M. For
any ∗-variety L, let VL = {VL(Σ, X)} be the FTL where

VL(Σ, X) = {T ∈ DRec(Σ, X) | (∀x ∈ X)Tx ∈ L(Σ̂)},

for all Σ and X.

Proposition 5.4. If L = {L(Z)} is a ∗-variety and M is the corresponding VFM,
then VL = {VL(Σ, X)} is a DR-FTL path-defined by M.

Proof. Let T ∈ DRec(Σ, X). Since PM(T) is a subdirect product of the monoids
M(Tx) (x ∈ X) and M is a VFM, we conclude that PM(T) ∈ M if and only if

M(Tx) ∈M for every x ∈ X. Because T ∈ VL(Σ, X) if and only if Tx ∈ L(Σ̂) for

every x ∈ X, and Tx ∈ L(Σ̂) if and only if M(Tx) ∈M (x ∈ X), this implies that
T ∈ VL(Σ, X) if and only if PM(T) ∈M. Hence, VL = Mp.

Next we show that every DR-FTL path-defined by a VFM is obtained this way.

Proposition 5.5. If a DR-FTL V = {V(Σ, X)} is path-defined by a VFM M and
L = {L(Z)} is the ∗-variety defined by M, then V = VL.

Proof. Consider any Σ and X. For every T ∈ DRec(Σ, X),

T ∈ V(Σ, X) iff PM(T) ∈M iff PM(Tx) ∈M for every x ∈ X

iff Tx ∈ L(Σ̂) for every x ∈ X iff T ∈ VL(Σ, X),

where we used the assumptions of the proposition and Lemma 5.1.

Many families of regular languages are characterized by syntactic semigroups
rather than by syntactic monoids, and in [6] Gécseg gives the corresponing versions
of his results. Let us modify our Propositions 5.3, 5.4 and 5.5 in the same manner.

Firstly, all languages to be considered are ε-free, and ∗-varieties are replaced by
+-varieties and VFMs by varieties of finite semigroups (VFSs). Also, instead of
the syntactic monoid M(L) of a language L ⊆ Z+(:= Z∗ \ {ε}) we use its syntactic
semigroup S(T). For these notions, cf. [2] or [17]. Furthermore, the syntactic path
monoid PM(T) of a ΣX-tree language is replaced by the syntactic path semigroup
PS(T) := C+

Σ̂
/σ̂T , where C+

Σ̂
:= CΣ̂ \ {ξ} and σ̂T is µ̂T restricted to C+

Σ̂
.

Let T+
Σ (X) := TΣ(X) \X, and let us call a ΣX-tree language T ε-free if T ⊆

T+
Σ (X). Obviously T is ε-free if and only if every Tx (x ∈ X) is ε-free. Furthermore,

we call a DR-FTL or a DR-FUTL V = {V(Σ, X)} ε-free if every tree language in
V is ε-free. The ε-free DR-FTL Sp = {Sp(Σ, X)} path-defined by a class of finite
semigroups S is defined by

Sp(Σ, X) := {T ∈ DRec(Σ, X) | T ⊆ T+
Σ (X), PS(T) ∈ S},

and the ε-free DR-FUTL path-defined by S is Su := (Sp)u. Finally, for any
+-variety L = {L(Z)}, let VL = {VL(Σ, X)} be the ε-free DR-FTL defined by

VL(Σ, X) := {T ∈ DRec(Σ, X) | T ⊆ T+
Σ (X), (∀x ∈ X)Tx ∈ L(Σ̂)}.

We may now state the following variants of Propositions 5.3, 5.4 and 5.5.

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 169

Proposition 5.6. Let V = {V(Σ, X)} be an ε-free DR-FTL, and let S be a class
of finite semigroups. If (1) Vu = Su, and (2) T ∈ V(Σ, X) if and only if δ(T) ∈
V(Σ̂, X) for all Σ, X and T ⊆ T+

Σ (X), then V = Sp.

Proposition 5.7. If L = {L(Z)} is a +-variety and S is the corresponding VFS,
then VL = {VL(Σ, X)} is an ε-free DR-FTL path-defined by S.

Proposition 5.8. If an ε-free DR-FTL V = {V(Σ, X)} is path-defined by a VFS
S and L = {L(Z)} is the +-variety defined by S, then V = VL.

6 Some examples

Let us now apply the above results to the families of DR-recognizable tree languages
considered by Gécseg and Imreh [5, 6, 7, 8]. In [7] they studied monotone string
and tree automata and languages. Since monotonicity is basically a property of
the underlying algebras, we begin by defining monotone algebras. A Z-algebra
A = (A,Z) is monotone if there is a partial order ≤ on A such that a ≤ azA for all
a ∈ A and z ∈ Z. A language is monotone if it is recognized by a finite monotone
algebra. Let Mon = {Mon(Z)} be the family monotone languages.

A DR Σ-algebra A is monotone if Au is monotone. A ΣX-tree language is DR
monotone if it is recognized by a finite monotone DR Σ-algebra. Let DMon =
{DMon(Σ, X)} be the DR-FTL of DR monotone tree languages. These definitions
are equivalent to the ones of Gécseg and Imreh [7] and the next lemma is an
immediate consequence of their corresponding results.

Lemma 6.1. A DR Σ-algebra A = (A,Σ) is monotone if and only if the reachability
relation ⇒∗A is a partial order on A. Moreover, if A is monotone for some partial
order ≤, then a⇒∗A b implies a ≤ b (a, b ∈ A).

Let Mcld be the class of the finite monoids in which all right-unit submonoids are
closed under divisors. These notions, introduced in [7], can be defined by saying
that a finite monoid M belongs to Mcld if s(r1r2) = s implies sr1 = s for all
s, r1, r2 ∈M ; each s ∈M has its right-unit submonoid RU(s) := {r ∈M | sr = s}.
In [7] it was shown that that a regular string language is monotone if and only if its
syntactic monoid is in Mcld, and in [5] Proposition 5.2 was used for showing that
the DR monotone tree languages are path-defined by Mcld. That Mcld is closed
under subdirect products and factors is also implied by the following fact.

Proposition 6.1. Mcld is a VFM.

Proof. It is clear that S(Mcld), Pf (Mcld) ⊆ Mcld. To prove H(Mcld) ⊆ Mcld, let
ϕ : M →M ′ be an epimorphism and assume that M ∈Mcld. If M ′ /∈Mcld, there
are elements a′, b′, c′ ∈ M ′ such that a′b′c′ = a′, but a′b′ 6= a′. Let a, b, c ∈ M
be elements for which aϕ = a′, bϕ = b′ and cϕ = c′. Since M is finite, there
are numbers k ≥ 0,m ≥ 1 such that (bc)k+m = (bc)k. Let d := a(bc)k. Then
d · (b · (c(bc)m−1)) = a(bc)k+m = d but d · b 6= d because (d · b)ϕ = a′b′ while
dϕ = a′. This would mean that b /∈ RU(d) although b · (c(bc)m−1) ∈ RU(d). Hence,
M ′ ∈Mcld must hold.

170 Magnus Steinby

Since Mon is defined by Mcld, it follows from Eilenberg’s Variety Theorem that
Mon = {Mon(Z)} is a ∗-variety.

Proposition 6.2. DMon = VMon.

Proof. Let T ∈ DRec(Σ, X). If T ∈ DMon(Σ, X), then T is recognized by a finite
monotone DR Σ-algebra A. By Proposition 4.4, every Tx (x ∈ X) is recognized by

the monotone Σ̂-algebra Au. Hence, T ∈ VMon(Σ, X).

Conversely, if Tx ∈ Mon(Σ̂) for every x ∈ X, then each Tx is recognized by a

monotone Σ̂-algebraAx. By Proposition 4.4 T is recognized by the direct product of
the algebras Adx, and this DR algebra is monotone (cf. Proposition 7.2 below).

By Proposition 5.4, Theorem 22 of [7] follows from Proposition 6.2.

Corollary 6.1. DMon is path-defined by the VFM Mcld.

As a second example we consider nilpotent DR algebras and tree languages.
Since nilpotent string languages are characterized by their syntactic semigroups, we
shall use Proposition 5.7. The finite and co-finite ε-free languages form a +-variety
Nil = {Nil(Z)} which corresponds to the VFS Nil of finite nilpotent semigroups:
a semigroup S is nilpotent if it has a zero-element 0 and there is a number k ≥ 1
such that s1 · . . . · sk = 0 for all s1, . . . , sk ∈ S (cf. [2, 17]). A Z-algebra A = (A,Z)
is nilpotent if there exist an element ã ∈ A and a number k ≥ 0 such that avA = ã
for all a ∈ A and every v ∈ Z∗ of length k. It is easy to see that the ε-free languages
recognized by these algebras are exactly the members of Nil (cf. [9], p. 125).

Let us call a DR Σ-algebra A nilpotent if the Σ̂-algebra Au is nilpotent. It is
clear that this definition is equivalent to the one of [8]. A ΣX-tree language is
DR nilpotent if it is recognized by a finite nilpotent DR Σ-algebra. Let DNil =
{DNil(Σ, X)} be the FTL of ε-free DR nilpotent tree languages.

Proposition 6.3. DNil = VNil.

Proof. The proposition follows from Proposition 4.4 and the facts mentioned above.
Firstly, if T ⊆ T+

Σ (X) is recognized by a finite nilpotent DR Σ-algebraA, then every

Tx is recognized by the finite nilpotent Σ̂-algebra Au, and therefore belongs to
Nil(Σ̂). On the other hand, if each Tx is recognized by a finite nilpotent Σ̂-algebra
Ax, then T is recognized by the finite nilpotent DR Σ-algebra

∏
(Adx | x ∈ X).

Proposition 5.7 yields the following result proved in [8].

Corollary 6.2. DNil is path-defined by the VFS Nil.

As our third example we discuss the DR definite tree languages considered in
[6, 8]. Let us first recall that a Z-algebra A = (A,Z) is definite if there is a k ≥ 0
such that avA = bvA for all a, b ∈ A and every v ∈ Z∗ of length k. The languages
recognized by definite algebras are also called definite, and they are the languages of
the form E∪Z∗F where, for some k ≥ 0, E is a set of words of length < k and F is
a set of words of length k (cf. [9], for example). The ε-free definite languages form

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 171

a +-variety Def = {Def(Z)} characterized by the VFS D of all finite semigroups
S such that Se = {e} for every idempotent e ∈ S (cf. [2]).

Let us call a DR Σ-algebra A definite if the Σ̂-algebra Au is definite, and say
that a ΣX-tree language is DR definite if it is recognized by a finite definite DR
Σ-algebra. Again, these definitions are equivalent to those of [8]. Let DDef =
{DDef(Σ, X)} be the DR-FTL of all ε-free DR definite tree languages.

It follows directly from our definitions and Proposition 4.4 that DDef = VDef .
Hence, Proposition 5.7 yields the following result proved in [8].

Proposition 6.4. DDef is path-defined by the VFS D.

Thus all three families of DR-recognizable tree languages shown in [6, 8] to
be path-definable by a class of finite monoids or semigroups are obtained from a
∗ - or a + -variety using Proposition 5.4 or Proposition 5.7. By Propositions 5.5
and 5.8 this can be expected once we know that the corresponding family of string
languages is a ∗ - or a + -variety. Indeed, any ∗ - and + -variety will yield a DR-FTL
or an ε-free DR-FTL path-definable by a VFM or a VFS, respectively.

7 Varieties of finite DR algebras

In this section we discuss varieties of finite DR Σ-algebras for an arbitrarily fixed
ranked alphabet Σ. The class operators S, H, Pf and Vf are defined for DR Σ-
algebras in the natural way, and we call a class K of finite DR Σ-algebras a variety
of finite DR Σ-algebras (DR Σ-VFA) if S(K), H(K), Pf (K) ⊆ K.

In [3] Ésik defines Ku := {Au | A ∈ K} for any class K of DR Σ-algebras.
He noted that K is a variety of DR Σ-algebras if and only if Ku is a variety of
Σ̂-algebras, and that notions from the theory of varieties of algebras may therefore
be extended to DR algebras. We shall apply the operation K 7→ Ku to classes of
finite DR Σ-algebras, and we also introduce the converse operation that associates
with each class U of finite Σ̂-algebras the class Ud := {Cd | C ∈ U} of finite DR
Σ-algebras. Obviously, Kud = K and Udu = U.

Lemma 7.1. Let K be a class of finite DR Σ-algebras and U be a class of finite
Σ̂-algebras. Then

(a) H(K)u = H(Ku), S(K)u = S(Ku) and Pf (K)u = Pf (Ku), and

(b) H(U)d = H(Ud), S(U)d = S(Ud) and Pf (U)d = Pf (Ud).

Hence, K is a DR Σ-VFA if and only if Ku is a Σ̂-VFA, and U is a Σ̂-VFA if and
only if Ud is a DR Σ-VFA.

Proof. The equalities in (a) and (b) are immediate consequences of Lemma 3.1,
and the remaining claims follow from them.

An easy modification of Tarski’s well-known HSP-theorem (cf. [1], p. 61) yields
Vf (K) = HSPf (K) for any ranked alphabet Σ and any class K of finite Σ-algebras
(cf. [18], for example). Let us derive the corresponding representation for finite
DR Σ-algebras.

172 Magnus Steinby

Proposition 7.1. Vf (K) = HSPf (K) for any class K of finite DR Σ-algebras.

Proof. Clearly, K ⊆ HSPf (K). As a special case of the fact noted above, we get

Vf (Ku) = HSPf (Ku). This means, in particular, that HSPf (Ku) is a Σ̂-VFA.
Since HSPf (K)u = HSPf (Ku), this implies by Lemma 7.1 that HSPf (K) is a
DR Σ-VFA. If L is a DR Σ-VFA with K ⊆ L, then HSPf (K) ⊆ HSPf (L) = L.
Hence, HSPf (K) is the DR Σ-VFA generated by K.

Lemma 7.1 and Proposition 7.1 yield the following fact.

Corollary 7.1. Vf (K) = Vf (Ku)d for any class K of finite DR Σ-algebras.

Let DMonΣ, DNilΣ and DDefΣ denote the classes of all finite monotone,
nilpotent and definite DR Σ-algebras, respectively.

Proposition 7.2. DMonΣ, DNilΣ and DDefΣ are DR Σ-VFAs.

Proof. By Lemma 7.1, it suffices to verify that the corresponding classes DMonuΣ,

DNiluΣ and DDefuΣ of unary algebras are Σ̂-VFAs.
Gécseg and Imreh [7] proved that all finite direct products and homomorphic

images of monotone finite automata are monotone. These results apply directly to
unary algebras, and hence Pf (DMonuΣ) ⊆ DMonuΣ and H(DMonuΣ) ⊆ DMonuΣ.
Since it is clear that subalgebras of monotone algebras are monotone, we may
conclude that DMonuΣ is a Σ̂-VFA.

In [18] it was noted that for any ranked alphabet Σ, the finite nilpotent Σ-
algebras form an Σ-VFA, and in [4] Ésik proved the corresponding fact about finite

definite Σ-algebras. Hence, also DNiluΣ and DDefuΣ are Σ̂-VFAs.

Let us now consider equational definitions of DR Σ-VFAs. The terms appearing
in Σ̂-identities are written as expressions ξu, where ξ is a variable and u ∈ Σ̂∗.
There are two types of Σ̂-identities, the regular identities ξu ≈ ξv and the irregular
identities ξu ≈ ξ′v, in which ξ and ξ′ are two distinct variables. A Σ̂-algebra
C = (C, Σ̂) satisfies ξu ≈ ξv if uC = vC , and it satisfies ξu ≈ ξ′v, where ξ 6= ξ′, if
cuC = dvC for all c, d ∈ C. Furthermore, C ultimately satisfies an ω-sequence

E = 〈`0 ≈ r0, `1 ≈ r1, `2 ≈ r2, . . .〉

of Σ̂-identities if there exists an n0 ≥ 0 such that C satisfies `n ≈ rn for every
n ≥ n0. The class Eu of finite Σ̂-algebras ultimately defined by E consists of the
finite Σ̂-algebras ultimately satisfying E. By a well-known theorem by Eilenberg
and Schützenberger (cf. [2, 17]), a class K of finite Σ̂-algebras is a Σ̂-VFA if and

only if K = Eu for some ω-sequence E of Σ̂-identities.
Following Ésik [3] we say that a DR Σ-algebra A satisfies a Σ̂-identity ` ≈ r if

Au satisfies ` ≈ r. Naturally, A ultimately satisfies an ω-sequence E of Σ̂-identities
if Au ultimately satisfies E. The class of finite DR Σ-algebras ultimate satisfying
E is denoted by Ed. Thus Eu is a class of Σ̂-algebras and Eud := (Eu)d is the
corresponding class of DR Σ-algebras. Similarly, Edu := (Ed)u is the class of

Σ̂-algebras corresponding to the class Ed of DR Σ-algebras. Since Eud = Ed and

On DR Tree Automata, Unary Algebras and Syntactic Path Monoids 173

Edu = Eu, the next proposition follows from the Eilenberg-Schützenberger theorem
and Lemma 7.1.

Proposition 7.3. A class K of finite DR Σ-algebras is a DR Σ-VFA if and only
if K = Ed for some ω-sequence E of Σ̂-identities.

8 Concluding remarks

We have considered some aspects of DR tree recognizers and DR-recognizable tree
languages. Our algebraic approach is in a large part based on the connection
between DR algebras and unary algebras put forward by Ésik [3]. It was used for
describing the relationship between a DR-recognizable tree language and its path
language as well as in the discussion of varieties of finite DR algebras.

In Section 5 we showed that any ∗ - or + -variety defines a family of DR-
recognizable tree languages path-definable by a variety of finite monoids or a variety
of finite semigroups, respectively. Hence there are many families of DR-recognizable
tree languages that could be investigated similarly as the families DMon, DNil
and DDef were studied in the papers [7, 8, 13, 14]. On a more general level,
one should describe the common properties of all such families. In particular, it
is conceivable that they are characterized by some closure properties. It is also
natural to consider the families of DR-recognizable tree languages that correspond
to a varieties of finite DR algebras. Such questions belong to a variety theory of
DR-recognizable tree languages still to be developed.

References

[1] S. Burris and H.P. Sankappanavar, A Course in Universal Algebra, Springer-
Verlag, New York, 1981.

[2] S. Eilenberg, Automata, Languages, and Machines. Vol. B, Academic Press,
New York 1976.

[3] Z. Ésik, Varieties and general products of top-down algebras, Acta Cybernetica
7 (1986), 293-298.

[4] Z. Ésik, Definite tree automata and their cascade composition, Publicationes
Mathematicae Debrecen 48 3–4 (1996), 243–261.

[5] F. Gécseg, Classes of tree languages determined by classes of monoids, Inter-
national Journal of Foundations of Computer Science 18 (2007), 1237-1246.

[6] F. Gécseg, Classes of tree languages and DR tree languages given by classes
of semigroups, Acta Cybernetica 20 (2011), 253-267.

[7] F. Gécseg and B. Imreh, On monotone automata and monotone languages,
Journal of Automata, Languages and Combinatorics 7 (2002), 71-82.

174 Magnus Steinby

[8] F. Gécseg and B. Imreh, On definite and nilpotent DR tree languages, Journal
of Automata, Languages and Combinatorics 9 (2004), 55-60.

[9] F. Gécseg and I. Peák: Algebraic theory of automata, Akadémiai Kiadó, Bu-
dapest 1972.

[10] F. Gécseg and M. Steinby, Minimal ascending tree automata, Acta Cybernetica
4 (1978), 37-44.

[11] F. Gécseg and M. Steinby, Tree Automata, Akadémiai Kiadó, Budapest, 1984.
2. ed. downloadable from arXiv.org as arXiv:1509.06233, September 2015.

[12] F. Gécseg and M. Steinby, Minimal recognizers and syntactic monoids of DR
tree languages, Words, Semigroups and Transductions (eds. M. Ito, G. Paun
and S. Yu), World Scientific, Singapore 2001, 155-167.

[13] Gy. Gyurica, On monotone languages and their characterization by regular
expressions, Acta Cybernetica 18 (2007), 117-134.

[14] Gy. Gyurica, On nilpotent languages and their characterization by regular
expressions, Acta Cybernetica 19 (2009), 231-244.

[15] E. Jurvanen, On Tree Languages Defined by Deterministic Root-to-frontier
Recognizers, Dissertation, Department of Mathematics, University of Turku,
Turku 1995.

[16] M. Magidor and G. Moran, Finite Automata over Finite Trees, Technical Re-
port 30, Department of Mathematics, Hebrew University, Jerusalem 1969.

[17] J.E. Pin, Varieties of Formal Languages, North Oxford Academic Publishers,
London 1986.

[18] M. Steinby, A theory of tree language varieties, Tree Automata and Languages
(eds. M. Nivat and A. Podelski), North-Holland, Amsterdam 1992, 57-81.

[19] W. Thomas, Logical aspects in the study of tree languages, 9th Colloquium
on Trees in Algebra and Programming (ed. B. Courcelle), Proc. 9th CAAP,
Bordeaux, 1984, Cambridge University Press, London, 1984, pp. 31–49.

[20] J. Virágh, Deterministic tree automata I, Acta Cybernetica 5 (1980), 33-42;
II, ibid 6 (1983), 291-301.

Acta Cybernetica 23 (2017) 175–189.

Variations of the Morse-Hedlund Theorem for

k-Abelian Equivalence∗

Juhani Karhumäkia, Aleksi Saarelaa, and Luca Q. Zambonib

Abstract

In this paper we investigate local-to-global phenomena for a new family of
complexity functions of infinite words indexed by k ≥ 0. Two finite words u
and v are said to be k-abelian equivalent if for all words x of length less than
or equal to k, the number of occurrences of x in u is equal to the number of
occurrences of x in v. This defines a family of equivalence relations, bridging
the gap between the usual notion of abelian equivalence (when k = 1) and
equality (when k =∞). Given an infinite word w, we consider the associated
complexity function which counts the number of k-abelian equivalence classes
of factors of w of length n. As a whole, these complexity functions have a
number of common features: Each gives a characterization of periodicity in
the context of bi-infinite words, and each can be used to characterize Sturmian
words in the framework of aperiodic one-sided infinite words. Nevertheless,
they also exhibit a number of striking differences, the study of which is one
of the main topics of our paper.

1 Introduction

A fundamental problem in both mathematics and computer science is to describe
local constraints which imply global regularities. A splendid example of this phe-
nomena may be found in the framework of combinatorics on words. In their seminal
papers [19, 20], G. A. Hedlund and M. Morse proved that a bi-infinite word w is
periodic if and only if for some positive integer n, the word w contains at most n dis-
tinct factors of length n. In other words, it describes the exact borderline between
periodicity and aperiodicity of words in terms of the factor complexity function
which counts the number of distinct factors of each length n. An analogous result
was established some thirty years later by E. Coven and G. A. Hedlund in the
framework of abelian equivalence. They show that a bi-infinite word is periodic if

∗Partially supported by the Academy of Finland grants 257857 and 137991 (FiDiPro), by ANR
grant SUBTILE, and by the Vilho, Yrjö and Kalle Väisälä Foundation.

aDepartment of Mathematics and Statistics, University of Turku, 20014 Turku, Finland,
E-mail: {karhumak,amsaar}@utu.fi

bInstitut Camille Jordan, Université Lyon 1, 43 boulevard du 11 novembre 1918, 69622 Villeur-
banne Cedex, France, E-mail: lupastis@gmail.com

DOI: 10.14232/actacyb.23.1.2017.11

176 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

and only if for some positive integer n all factors of w are abelian equivalent. Thus
once again it is possible to distinguish between periodic and aperiodic words on a
local level by counting the number of abelian equivalence classes of factors of length
n.

In this paper we study the local-to-global behavior for a new family of complex-
ity functions Pk

w of infinite words indexed by k ∈ Z+∪{∞} where Z+ = {1, 2, 3, . . .}
denotes the set of positive integers. Let k ∈ Z+∪{∞} and A be a finite non-empty
set. Two finite words u, v ∈ A∗ are said to be k-abelian equivalent if for all x ∈ A∗
of length at most k, the number of occurrences of x in u is equal to the number
of occurrences of x in v. This defines a family of equivalence relations ∼k on A∗,
bridging the gap between the usual notion of abelian equivalence (when k = 1) and
equality (when k = ∞). Abelian equivalence of words has long been a subject of
great interest (see, for instance, Erdős’s problem, [5, 6, 7, 9, 17, 22, 23, 24, 26]). Al-
though the notion of k-abelian equivalence is quite new, there are already a number
of papers on the topic [11, 12, 13, 14, 15, 18].

Given an infinite word w ∈ Aω, we consider the associated complexity function
Pk
w : Z+ → Z+ which counts the number of k-abelian equivalence classes of factors

of w of length n. Thus P∞w corresponds to the usual factor complexity (sometimes
called subword complexity in the literature) while P1

w corresponds to abelian com-
plexity. As it turns out, each intermediate complexity function Pk

w can be used to
detect periodicity of words. As a starting point of our research, we list two classical
results on factor and abelian complexity in connection with periodicity, and their
k-abelian counterparts proved by the authors in [15]. We note that in each case,
the first two items are included in the third.

Theorem 1. Let w be a bi-infinite word over a finite alphabet. Then the following
properties hold:

• (M. Morse, G. A. Hedlund, [19]) The word w is periodic if and only if
P∞w (n) < n+ 1 for some n ≥ 1.

• (E. M. Coven, G. A. Hedlund, [6]) The word w is periodic if and only if
P1
w(n) < 2 for some n ≥ 1.

• The word w is periodic if and only if Pk
w(n) < min{n + 1, 2k} for some

k ∈ Z+ ∪ {∞} and n ≥ 1.

Also, each complexity provides a characterization for an important class of
binary words, the so-called Sturmian words:

Theorem 2. Let w be an aperiodic one-sided infinite word. Then the following
properties hold:

• (M. Morse, G. A. Hedlund, [20]). The word w is Sturmian if and only if
P∞w (n) = n+ 1 for all n ≥ 1.

• (E. M. Coven, G. A. Hedlund, [6]). The word w is Sturmian if and only if
P1
w(n) = 2 for all n ≥ 1.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 177

• The word w is Sturmian if and only if Pk
w(n) = min{n + 1, 2k} for all k ∈

Z+ ∪ {∞} and n ≥ 1.

However, in other respects, these various complexities exhibit radically different
behaviors. For instance, in the context of one-sided infinite words, the first item in
Theorem 1 gives rise to a characterization of ultimately periodic words, while for the
other two, the result holds in only one direction: If Pk

w(n) < min{n+1, 2k} for some
k ∈ Z+ and n ≥ 1 then w is ultimately periodic, but not conversely (see [15]). For
instance in the simplest case when k = 1, it is easy to see that if w is the ultimately
periodic word 01ω, then for each positive integer n there are precisely two abelian
classes of factors of w of length n. However, the same is true of the (aperiodic)
infinite Fibonacci word w = 0100101001001 · · · defined as the fixed point of the
morphism 0 7→ 01, 1 7→ 0. Analogously, in Theorem 2 the first item holds without
the added assumption that w be aperiodic, while the other two items do not.
Another striking difference between them is in their rate of growth. Consider for
instance the binary Champernowne word C = 011011100101110111 · · · obtained by
concatenating the binary representation of the consecutive natural numbers. Let w
denote the morphic image of C under the Thue–Morse morphism 0 7→ 01, 1 7→ 10.
Then while P∞w (n) has exponential growth, it can be shown that P1

w(n) ≤ 3 for all
n. Yet another fundamental disparity concerns the difference Pk

w(n + 1) − Pk
w(n).

For factor complexity, one always has P∞w (n+ 1)−P∞w (n) ≥ 0, while for general k
this inequality is far from being true.

A primary objective in this paper is to study the asymptotic lower and upper
complexities defined by

Lk
w(n) = min

m≥n
Pk
w(m) and Uk

w(n) = max
m≤n

Pk
w(m).

Surprisingly these quantities can deviate from one another quite drastically. In-
deed, one of our main results is to compute these values for the famous Thue–Morse
word. We show that the upper limit is logarithmic, while the lower limit is just
constant, in fact at most 8 in the case k = 2. This is quite unexpected considering
the Thue–Morse word is both pure morphic and abelian periodic (of period 2). If
we however allow more general words, then we obtain much stronger evidence of
the non-existence of gaps in low k-abelian complexity classes. We construct uni-
formly recurrent infinite words having arbitrarily low upper limit and just constant
lower limit. The concept of k-abelian complexity also leads to many interesting
open questions. We conclude the paper in Section 6 by mentioning some of these
problems.

This is an extended version of an article that was presented at the 18th confer-
ence on Developments in Language Theory [16].

2 Preliminaries

Let Σ be a finite non-empty set called the alphabet. The set of all finite words over
Σ is denoted by Σ∗ and the set of all (right) infinite words is denoted by Σω. The

178 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

set of positive integers is denoted by Z+. A function f : Z+ → R is increasing if
f(m) ≤ f(n) for all m < n, and strictly increasing if f(m) < f(n) for all m < n.

Let w ∈ Σω. The word w is periodic if there is u ∈ Σ∗ such that w = uω, and
ultimately periodic if there are u, v ∈ Σ∗ such that w = vuω. If w is not ultimately
periodic, then it is aperiodic. Let u = a0 · · · am−1 and a0, . . . , am−1 ∈ Σ. The
prefix of length n of u is prefn(u) = a0 · · · an−1 and the suffix of length n of u is
suffn(u) = am−n · · · am−1. If 0 ≤ i ≤ m, then the notation rfactin(u) = ai · · · ai+n−1
is used. The length of a word u is denoted by |u| and the number of occurrences of
another word x as a factor of u by |u|x. As a trivial boundary case, |u|ε = |u|+ 1.
Two words u, v ∈ Σ∗ are abelian equivalent if |u|a = |v|a for all a ∈ Σ.

Let k ∈ Z+. Two words u, v ∈ Σ∗ are k-abelian equivalent if |u|x = |v|x for all
words x of length at most k. k-abelian equivalence is denoted by ∼k. If the length
of u and v is at least k − 1, then u ∼k v if and only if |u|x = |v|x for all words x of
length k and prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v). This gives an
alternative definition for k-abelian equivalence. A proof can be found in [15].

Let w ∈ Σω. The set of factors of w of length n is denoted by Fw(n). The
factor complexity of w is the function P∞w : Z+ → Z+ defined by

P∞w (n) = #Fw(n),

where # is used to denote the cardinality of a set. Let k ∈ Z+. The k-abelian
complexity of w is the function Pk

w : Z+ → Z+ defined by

Pk
w(n) = #(Fw(n)/ ∼k).

Factor complexity functions are always increasing, and even strictly increasing
for aperiodic words. For k-abelian complexity this is not true. This is why we
define upper k-abelian complexity Uk

w and lower k-abelian complexity Lk
w:

Uk
w(n) = max

m≤n
Pk
w(m) and Lk

w(n) = min
m≥n
Pk
w(m).

These two functions can be significantly different. For example, if w is the Thue–
Morse word and k ≥ 2, then Uk

w(n) = Θ(logn) and Lk
w(n) = Θ(1). This will be

proved in Section 4.
When using Θ-notation, the parameter k and the size of the alphabet are as-

sumed to be fixed, so the implied constants of the Θ-notation can depend on them.
The abelian complexity of a binary word w ∈ {0, 1}ω can be determined by

using the formula (see [24])

P1
w(n) = max {|u|1 | u ∈ Fn(w)} −min {|u|1 | u ∈ Fn(w)}+ 1. (1)

For k ∈ Z+ ∪ {∞}, we define

qk : Z+ → Z+, q
k(n) = min{n+ 1, 2k}.

The significance of this function is that if w is Sturmian, then Pk
w = qk. This is

further discussed in Section 3.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 179

There are large classes of words for which the k-abelian complexities are of the
same order for many values of k. This is shown in the next two lemmas. Thus
when analyzing the growth rate of the k-abelian complexity of a word, it may be
sufficient to analyze the abelian or 2-abelian complexity.

Lemma 1. Let w ∈ {0, 1}ω be such that every factor of w of length k contains at
most one occurrence of 1. Then Pk

w(n) = Θ(P1
w(n)).

Proof. Clearly Pk
w(n) ≥ P1

w(n). Let u be a factor of w of length n. Let x =
0i10k−i−1. Every factor of w of length k except 0k is of this form, because every
factor of w of length k contains at most one occurrence of 1. For the same rea-
son, |u|x = |u|1 − a, where a ∈ {0, 1, 2} depending on prefk−1(u) and suffk−1(u).
It follows that the k-abelian equivalence class of u is determined by prefk−1(u),
suffk−1(u), and |u|1. The number of possible pairs (prefk−1(u), suffk−1(u)) is
at most k2, and the number of possible values for |u|1 is P1

w(n), so Pk
w(n) ≤

k2P1
w(n).

Lemma 2. Let k,m ≥ 2 and let w be a fixed point of an m-uniform morphism h.
Let i be such that mi ≥ k − 1. Then Pk

w(mi(n+ 1)) = O(P2
w(n)).

Proof. Every factor of w of length mi(n+ 1) can be written as phi(u)q, where u is
a factor of w of length n and |pq| = mi. The k-abelian equivalence class of phi(u)q
is determined by p, q, and the 2-abelian equivalence class of u. The number of
possible pairs (p, q) is O(1), and the number of possible values for the 2-abelian
equivalence class of u is P2

w(n). The claim follows.

In particular, Lemma 2 can be applied to the Thue–Morse word to analyze its
k-abelian complexity once the behavior of its 2-abelian complexity is known.

It has been shown that there are many words for which the k-abelian and (k+1)-
abelian complexities are similar, but there are also many words for which they are
very different. For example, there are words having bounded k-abelian complexity
but linear (k + 1)-abelian complexity. These words can even be assumed to be
k-abelian periodic, meaning that they are of the form u1u2 · · · , where u1, u2, . . .
are k-abelian equivalent. This is shown in the next lemma.

Lemma 3. For every k ≥ 1, there is a k-abelian periodic word w such that
Pk+1
w (n) = Θ(n).

Proof. Let W ∈ {0, 1}ω be a word with linear abelian complexity (e.g., the Cham-
pernowne word) and let h be the morphism defined by

h(0) = 0k+110k−11, h(1) = 0k10k1.

Then the word w = h(W) is k-abelian periodic of period 2k+2. If u, v ∈ {0, 1}∗ are
not abelian equivalent, then h(u) and h(v) are not (k+1)-abelian equivalent because
the factor 10k−11 appears only inside h(0). On the other hand, if u, v ∈ {0, 1}∗ are

180 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

abelian equivalent and p, q ∈ {0, 1}∗, then ph(u)q and ph(v)q are (k + 1)-abelian
equivalent. It follows that

Pk+1
w ((2k + 2)n) = Θ(P1

W (n)) = Θ(n). (2)

We know that
Pk+1
w (n+ 1) ≤ 2Pk+1

w (n) (3)

for all n (this would work for all words w if 2 would be replaced by the size of the
alphabet). Every n can be written as (2k+ 2)n′+ r, where 0 ≤ r < 2k+ 2, so from
(2) and (3) it follows that

Pk+1
w (n) = Pk+1

w ((2k + 2)n′ + r) ≤ 2rPk+1
w ((2k + 2)n′) = Θ(n′) = Θ(n).

Similarly, every n can be written as (2k + 2)n′ − r, where 0 ≤ r < 2k + 2, so from
(2) and (3) it follows that

Pk+1
w (n) = Pk+1

w ((2k + 2)n′ − r) ≥ 2−rPk+1
w ((2k + 2)n′) = Θ(n′) = Θ(n).

The claim follows.

3 Minimal k-Abelian Complexities

In this section classes of words with small k-abelian complexity are studied. Some
well-known results about factor complexity are compared to results on k-abelian
complexity proved in [15]. It should be expected that ultimately periodic words
have low complexity, and this is indeed true for k-abelian complexity, although the
k-abelian complexity of some ultimately periodic words is higher that the k-abelian
complexity of some aperiodic words. For many complexity measures, Sturmian
words have the lowest complexity among aperiodic words. This is also true for
k-abelian complexity.

We recall the famous theorem of Morse and Hedlund [19] characterizing ulti-
mately periodic words in terms of factor complexity. This theorem can be gener-
alized for k-abelian complexity: If Pk

w(n) < qk(n) for some n, then w is ultimately
periodic, and if w is ultimately periodic, then P∞w (n) is bounded. This was proved
in [15].

If k is finite, then this generalization does not give a characterization of ulti-
mately periodic words, because the function qk is bounded. In fact, it is impossible
to characterize ultimately periodic words in terms of k-abelian complexity. For
example, the word 02k−11ω has the same k-abelian complexity as every Sturmian
word. On the other hand, for every ultimately periodic word w there is a finite k
such that Pk

w(n) < qk(n) for all sufficiently large n.
The theorem of Morse and Hedlund has a couple of immediate consequences.

The words w with P∞w (n) = n + 1 for all n are, by definition, Sturmian words.
Thus the following classification is obtained:

• w is ultimately periodic ⇔ P∞w is bounded.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 181

• w is Sturmian ⇔ P∞w (n) = n+ 1 for all n.

• w is aperiodic and not Sturmian⇔P∞w (n) ≥ n+1 for all n and P∞w (n) > n+1
for some n.

This can be generalized for k-abelian complexity if the equivalences are replaced
with implications:

• w is ultimately periodic ⇒ Pk
w is bounded.

• w is Sturmian ⇒ Pk
w = qk.

• w is aperiodic and not Sturmian ⇒ Pk
w(n) ≥ qk(n) for all n and Pk

w(n) >
qk(n) for some n.

For k = 1 this follows from the theorem of Coven and Hedlund [6]. For k ≥ 2 it
follows from a theorem in [15].

The above result means that one similarity between factor complexity and k-
abelian complexity is that Sturmian words have the lowest complexity among ape-
riodic words. Another similarity between them is that ultimately periodic words
have bounded complexity, and the largest values can be arbitrarily high: For every
n, there is a finite word u having every possible factor of length n. Then Pk

uω (n) is
as high as it can be for any word, i.e., the number of k-abelian equivalence classes
of words of length n.

Another direct consequence of the theorem of Morse and Hedlund is that there
is a gap between constant complexity and the complexity of Sturmian words. For
k-abelian complexity there cannot be a gap between bounded complexities and qk,
because the function qk itself is bounded. However, the question whether there is
a gap above bounded complexity is more difficult. The answer is that there is no
such gap, even if only uniformly recurrent words are considered. This is proved in
Section 5.

4 k-Abelian Complexity of the Thue–Morse Word

In this section the k-abelian complexity of the Thue–Morse word is analyzed. Before
that, the abelian complexity of a closely related word is determined.

Let σ be the morphism defined by σ(0) = 01, σ(1) = 00. Let

S = 01000101010001000100010101000101 · · ·

be the period-doubling word, which is the fixed point of σ; see, e.g., [8].
The abelian complexity of S is completely determined by the recurrence rela-

tions in the next lemma and by the first value P1
S(1) = 2. These relations were

proved independently in [3]. It is an easy consequence that the abelian complexity
of S is 2-regular (2-regular sequences were defined in [2]). The 2-abelian complex-
ity of the Thue–Morse word has been conjectured to be 2-regular [25], and this is
proved in [10] and [21].

182 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

Lemma 4. For n ≥ 1,

P1
S(2n) = P1

S(n) and P1
S(4n± 1) = P1

S(n) + 1.

Proof. Let

pn = min {|u|1 | u ∈ Fn(S)} and qn = max {|u|1 | u ∈ Fn(S)} .

Let 0 = 1 and 1 = 0. For a ∈ {0, 1}, σ(a) = 0a and σ2(a) = 010a. Because

F2n(S) = {σ(u) | u ∈ Fn(S)} ∪ {aσ(u)0 | au ∈ Fn(S)} ,

it can be seen that p2n = n− qn and q2n = n− pn. Because

F4n−1(S) =
{
σ2(u)010 | u ∈ Fn−1(S)

}
∪
{

10aσ2(u) | au ∈ Fn(S)
}
∪{

0aσ2(u)0 | au ∈ Fn(S)
}
∪
{
aσ2(u)01 | au ∈ Fn(S)

}
,

it can be seen that

p4n−1 = min{pn−1 + n, pn + n, pn + n− 1, pn + n} = pn + n− 1,

q4n−1 = max{qn−1 + n, qn + n, qn + n− 1, qn + n} = qn + n.

Because

F4n+1(S) =
{
σ2(u)0 | u ∈ Fn(S)

}
∪
{

10aσ2(u)01 | au ∈ Fn(S)
}
∪{

0aσ2(u)010 | au ∈ Fn(S)
}
∪
{
aσ2(u) | au ∈ Fn+1(S)

}
it can be seen that

p4n+1 = min{pn + n, pn + n+ 1, pn + n, pn+1 + n− 1} = pn + n,

q4n+1 = max{qn + n, qn + n+ 1, qn + n, qn+1 + n− 1} = qn + n+ 1.

The claim follows because P1
S(n) = qn − pn + 1 for all n by (1).

Theorem 3. For n ≥ 1 and m ≥ 0,

P1
S(n) = O(log n), P1

S((2 · 4m + 1)/3) = m+ 2, P1
S(2m) = 2.

Proof. Follows from Lemma 4 by induction.

The abelian complexity of S has a logarithmic upper bound and a constant
lower bound. These bounds are the best possible increasing bounds.

Corollary 1. U1
S(n) = Θ(logn) and L1

S(n) = 2.

Let τ be the Thue–Morse morphism defined by τ(0) = 01, τ(1) = 10. Let

T = 01101001100101101001011001101001 · · ·

be the Thue–Morse word, which is a fixed point of τ . The first values of P2
T are

2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10.

The 2-abelian equivalence of factors of T can be determined with the help of
the following lemma.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 183

Lemma 5. Words u, v ∈ {0, 1}∗ are 2-abelian equivalent if and only if

|u| = |v|, |u|00 = |v|00, |u|11 = |v|11, and pref1(u) = pref1(v).

Proof. The “only if” direction follows immediately from the alternative definition
of 2-abelian equivalence. For the other direction, it follows from the assumptions
that |u|01 + |u|10 = |v|01 + |v|10. In any word w ∈ {0, 1}∗, the numbers |w|01 and
|w|10 can differ by at most one. If |w|01 + |w|10 is even, then |w|01 = |w|10. If it is
odd and pref1(w) = 0, then |w|01 = |w|10 + 1. If it is odd and pref1(w) = 1, then
|w|01 + 1 = |w|10. This means that |u|01 = |v|01 and |u|10 = |v|10 and u and v are
2-abelian equivalent.

The following lemma states that if u is a factor of T , then the numbers |u|00
and |u|11 can differ by at most one.

Lemma 6. In the image of any word under τ , between any two occurrences of 00
there is an occurrence of 11 and vice versa.

Proof. 00 can only occur in the middle of τ(10), and 11 can only occur in the middle
of τ(01). The claim follows because 10’s and 01’s alternate in all binary words.

Let u be a factor of T . If |u| and |u|00 + |u|11 are given, then there are at
most 4 possibilities for the 2-abelian equivalence class of u. This is stated in a
more precise way in the next lemma. First we define a function φ as follows. If
w = a1 · · · an, then φ(w) = b1 · · · bn−1, where bi = 0 if aiai+1 ∈ {01, 10} and bi = 1
if aiai+1 ∈ {00, 11}. If w = a1a2 · · · is an infinite word, then φ(w) = b1b2 · · · is
defined in an analogous way.

Lemma 7. Let u1, . . . , un be factors of T . Let φ(u1), . . . , φ(un) be abelian equiv-
alent and |φ(u1)|1 = m. If m is even, then u1, . . . , un are in at most 2 different
2-abelian equivalence classes, and if m is odd, then u1, . . . , un are in at most 4
different 2-abelian equivalence classes.

Proof. We have |ui|00 + |ui|11 = |φ(ui)|1 = m for all i. By Lemma 6, we have
{|ui|00, |ui|11} = {bm/2c, dm/2e}. If m is even, there are at most two different
possible values for the triples (|ui|00, |ui|11,pref1(ui)), and if m is odd, there are at
most four different possible values. The claim follows from Lemma 5.

Now it can be proved that the 2-abelian complexity of T is of the same order
as the abelian complexity of φ(T). It is known that φ(T) is actually the period-
doubling word S [1].

Lemma 8. For n ≥ 2,

P1
S(n− 1) ≤ P2

T (n) ≤ 3P1
S(n− 1) +

{
0 if P1

S(n− 1) is even

1 if P1
S(n− 1) is odd.

184 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

Proof. If the factors of T of length n are u1, . . . , um, then the factors of φ(T) of
length n − 1 are φ(u1), . . . , φ(um). If ui and uj are 2-abelian equivalent, then
φ(ui) and φ(uj) are abelian equivalent, so the first inequality follows. The second
inequality follows from Lemma 7, because the number of different values |φ(ui)|1 is
P1
S(n− 1), and at least bP1

S(n− 1)/2c of these different values are even.

Theorem 4. For n ≥ 1 and m ≥ 0,

P2
T (n) = O(log n), P2

T ((2 · 4m + 4)/3) = Θ(m), P2
T (2m + 1) ≤ 6.

Proof. Follows from Lemma 8 and Theorem 3.

With the help of Lemma 2, we see that the k-abelian complexity of T behaves
in a similar way as the abelian complexity of S.

Corollary 2. Let k ≥ 2. Then Uk
T (n) = Θ(log n) and Lk

T (n) = Θ(1).

5 Arbitrarily Slowly Growing k-Abelian Complex-
ities

In this section we study whether there is a gap above bounded k-abelian complexity.
This question can be formalized in several different ways:

1. Does there exist an increasing unbounded function f : Z+ → Z+ such that
for every infinite word w, either Pk

w is bounded or Pk
w = Ω(f)?

2. Does there exist an increasing unbounded function f : Z+ → Z+ such that
for every infinite word w, either Pk

w is bounded or Pk
w 6= O(f)?

3. Does there exist an increasing unbounded function f : Z+ → Z+ such that
for every infinite word w, either lim inf Pk

w <∞ or Pk
w 6= O(f)?

The first question has already been answered negatively in Section 4. The answers
to the second and third question are also negative. In the case of the second
question, we prove this by a uniformly recurrent construction, and in the case of
the third question, we prove this by a recurrent construction.

First, consider the second question. Let n1, n2, . . . be a sequence of integers
greater than 1. Let mj =

∏j
i=1 ni for j = 0, 1, 2, Let ai = 0 if the greatest j

such that mj |i is even and ai = 1 otherwise. Let U = a1a2a3 · · · . The idea is that
the faster the sequence n1, n2, . . . grows, the slower the k-abelian complexity of the
word U grows.

The word U could also be described by a Toeplitz-type construction: Start with
the word (0n1−1�)ω, then replace the �’s by the letters of (1n2−1�)ω, then replace
the remaining �’s by the letters of (0n3−1�)ω, then replace the remaining �’s by the
letters of (1n4−1�)ω, and keep repeating this procedure so that U is obtained as a
limit. It follows from the construction that U ∈ (prefmj−1(U){0, 1})ω for all j.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 185

Lemma 9. The word U is uniformly recurrent.

Proof. For every factor u of U , there is a j such that u is a factor of prefmj−1(U).
Because U ∈ {prefmj−1(U)0,prefmj−1(U)1}ω, every factor of U of length 2mj − 2
contains u.

Lemma 10. For every n ≥ 2, let n′ be such that mn′−1 < n ≤ mn′ . Then

P1
U (n) ≤ n′ + 1.

For all J ≥ 1, if n = 2
∑J

j=1(m2j −m2j−1), then

P1
U (n) ≥ n′ + 1

2
.

For all j ≥ 1,
P1
U (mj) = 2.

Proof. Formula (1) will be used repeatedly in this proof. Another important simple
fact is that if a, b, c are integers and c divides a, then b(a+ b)/cc = a/c+ bb/cc .

For all n ≥ 1,

|prefn(U)|1 =

∞∑
i=1

(−1)i+1

⌊
n

mi

⌋
,

and for all n ≥ 1 and l ≥ 0,

|rfactln(U)|1 = |prefn+l(U)|1 − |pref l(U)|1 =

∞∑
i=1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊
l

mi

⌋)
.

For all i, ⌊
(n+ l)

mi

⌋
−
⌊
l

mi

⌋
∈
{⌊

n

mi

⌋
,

⌈
n

mi

⌉}
.

Moreover, for every n and l there is an i′ such that, for i ≥ n′,⌊
n+ l

mi

⌋
−
⌊
l

mi

⌋
=

{
1 if n′ ≤ i < i′

0 if i ≥ i′
,

so
∞∑

i=n′

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊
l

mi

⌋)
∈
{

0, (−1)n
′+1
}
.

Thus there are at most n′ + 1 possible values for |rfactln(U)|1 and P1
U (n) ≤ n′ + 1.

Consider the second claim. Let n = 2
∑J

j=1(m2j −m2j−1). The sequence (mj)
is increasing and, moreover, mj+1 ≥ 2mj for all j, so by standard estimates for
alternating sums,

m2J ≤ 2(m2J −m2J−1) < n < 2m2J ≤ m2J+1.

186 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

Thus n′ = 2J + 1. Let l = m2J+1 − n/2. Then

|rfactln(U)|1 − |prefn(U)|1 =

∞∑
i=1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊
l

mi

⌋
−
⌊
n

mi

⌋)
and for i ≤ 2J (recall that mi|mj when j ≥ i)⌊

(n+ l)

mi

⌋
−
⌊
l

mi

⌋
−
⌊
n

mi

⌋
=
m2J+1 +

∑
(i+1)/2≤j≤J(m2j −m2j−1)

mi
+

⌊∑
1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
m2J+1 −

∑
(i+1)/2≤j≤J(m2j −m2j−1)

mi
−

⌊
−
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
2
∑

(i+1)/2≤j≤J(m2j −m2j−1)

mi
−

⌊
2
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

=

⌊
s

mi

⌋
−
⌊
− s

mi

⌋
−
⌊

2s

mi

⌋
,

where s =
∑

1≤j<(i+1)/2(m2j −m2j−1). If i is even, then mi/2 ≤ s < mi, and if i

is odd and i > 1, then mi−1/2 ≤ s < mi−1. Thus⌊
s

mi

⌋
−
⌊
− s

mi

⌋
−
⌊

2s

mi

⌋
=

{
0 if i is even or i = 1

1 if i is odd and i > 1

and

P1
U (n) ≥ |rfactln(U)|1 − |prefn(U)|1 + 1

=

J∑
i′=2

(−1)(2i
′−1)+1 +

∞∑
i=2J+1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊
l

mi

⌋
−
⌊
n

mi

⌋)
+ 1

= J + 1 =
n′ + 1

2
.

Consider the third claim. Because U ∈ {prefmj−1(U)0,prefmj−1(U)1}ω, every
factor of U of length mj is abelian equivalent to either the word prefmj−1(U)0 or

the word prefmj−1(U)1. Thus P1
U (mj) ≤ 2. Both prefmj−1(U)0 and prefmj−1(U)1

are factors of U , so P1
U (mj) = 2.

If ni = 2 for all i, then the word U is the period-doubling word S. Thus Lemma
10 gives an alternative proof for Corollary 1.

Theorem 5. For every increasing unbounded function f : Z+ → Z+, there is a
uniformly recurrent word w ∈ {0, 1}ω such that Pk

w(n) = O(f(n)) but Pk
w(n) is not

bounded.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 187

Proof. Follows from Lemmas 1, 9 and 10.

Consider the third question. Let m0,m1, . . . be a sequence of positive integers.
Let v0 = 0m01 and vn = vn−1vn−10mi for n ≥ 1. Let V be the limit of the sequence
v0, v1, v2, Again, the idea is that the faster the sequence m0,m1, . . . grows, the
slower the k-abelian complexity of the word V grows.

Lemma 11. The word V is recurrent and lim inf P1
V (n) =∞.

Proof. Every factor of V is a factor of vn for some n, and vnvn is a prefix of V , so
every factor appears at least twice in V . Thus V is recurrent.

The word V has factors 0i for all i, so by (1), P1
V is increasing. Moreover, the

word V has factors with arbitrarily many 1’s, so lim inf P1
V (n) =∞.

Lemma 12. For every n ≥ m0 + 2, let n′ be such that |vn′−1| < n ≤ |vn′ |. Then

P1
V (n) ≤ 2n

′
+ 1.

Proof. The word V has factors 0i for all i, so by (1),

P1
V (n) = max {|v|1 | v ∈ Fn(V)}+ 1.

Because V ∈ ({vn′} ∪ 0∗)ω,

max {|v|1 | v ∈ Fn(V)} ≤ |vn′ |1 = 2n
′
.

The claim follows.

Theorem 6. For every increasing unbounded function f : Z+ → Z+, there is a
recurrent word w ∈ {0, 1}ω such that Pk

w(n) = O(f(n)) but lim inf Pk
w(n) =∞.

Proof. Follows from Lemmas 1, 11 and 12.

6 Conclusion

In this paper we have investigated some generalizations of the results of Morse
and Hedlund and those of Coven and Hedlund for k-abelian complexity. We have
pointed out many similarities but also many differences. We have studied the k-
abelian complexity of the Thue–Morse word and proved that there are uniformly
recurrent words with arbitrarily slowly growing k-abelian complexities.

There are many open questions and possible directions for future work. Inspired
by Lemma 3, the relations of k-abelian complexities for different values of k could
be studied. In fact, several questions related to this idea were answered in [4].
Another interesting topic would be the k-abelian complexities of morphic words.
For example, for a morphic (or pure morphic) word w, how slowly can Uk

w(n)
grow without being bounded? Can it grow slower than logarithmically? More
generally, can the possible k-abelian complexities of some subclass of morphic words
be classified?

188 Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni

References

[1] Allouche, Jean-Paul, Arnold, André, Berstel, Jean, Brlek, Srečko, Jockusch,
William, Plouffe, Simon, and Sagan, Bruce E. A relative of the Thue-Morse
sequence. Discrete Math., 139(1–3):455–461, 1995.

[2] Allouche, Jean-Paul and Shallit, Jeffrey. The ring of k-regular sequences.
Theoret. Comput. Sci., 98(2):163–197, 1992.

[3] Blanchet-Sadri, Francine, Currie, James, Rampersad, Narad, and Fox, Nathan.
Abelian complexity of fixed point of morphism 0 7→ 012, 1 7→ 02, 2 7→ 1.
Integers, 14:A11, 2014.

[4] Cassaigne, Julien, Karhumäki, Juhani, and Saarela, Aleksi. On growth and
fluctuation of k-abelian complexity. In Proceedings of the 10th CSR, volume
9139 of LNCS, pages 109–122. Springer, 2015.

[5] Cassaigne, Julien, Richomme, Gwénaël, Saari, Kalle, and Zamboni, Luca Q.
Avoiding Abelian powers in binary words with bounded Abelian complexity.
Internat. J. Found. Comput. Sci., 22(4):905–920, 2011.

[6] Coven, Ethan M. and Hedlund, Gustav A. Sequences with minimal block
growth. Math. Systems Theory, 7:138–153, 1973.

[7] Currie, James and Rampersad, Narad. Recurrent words with constant Abelian
complexity. Adv. in Appl. Math., 47(1):116–124, 2011.

[8] Damanik, David. Local symmetries in the period-doubling sequence. Discrete
Appl. Math., 100(1–2):115–121, 2000.

[9] Dekking, Michel. Strongly nonrepetitive sequences and progression-free sets.
J. Combin. Theory Ser. A, 27(2):181–185, 1979.

[10] Greinecker, Florian. On the 2-abelian complexity of the Thue–Morse word.
Theoret. Comput. Sci., 593:88–105, 2015.

[11] Huova, Mari and Karhumäki, Juhani. Observations and problems on k-abelian
avoidability. In Combinatorial and Algorithmic Aspects of Sequence Processing
(Dagstuhl Seminar 11081), pages 2215–2219, 2011.

[12] Huova, Mari, Karhumäki, Juhani, and Saarela, Aleksi. Problems in between
words and abelian words: k-abelian avoidability. Theoret. Comput. Sci.,
454:172–177, 2012.

[13] Huova, Mari, Karhumäki, Juhani, Saarela, Aleksi, and Saari, Kalle. Local
squares, periodicity and finite automata. In Calude, Cristian, Rozenberg, Grze-
gorz, and Salomaa, Arto, editors, Rainbow of Computer Science, volume 6570
of LNCS, pages 90–101. Springer, 2011.

Variations of the Morse-Hedlund Theorem for k-Abelian Equivalence 189

[14] Karhumäki, Juhani, Puzynina, Svetlana, and Saarela, Aleksi. Fine and Wilf’s
theorem for k-abelian periods. Internat. J. Found. Comput. Sci., 24(7):1135–
1152, 2013.

[15] Karhumäki, Juhani, Saarela, Aleksi, and Zamboni, Luca Q. On a general-
ization of Abelian equivalence and complexity of infinite words. J. Combin.
Theory Ser. A, 120(8):2189–2206, 2013.

[16] Karhumäki, Juhani, Saarela, Aleksi, and Zamboni, Luca Q. Variations of the
Morse-Hedlund theorem for k-abelian equivalence. In Proceedings of the 18th
DLT, volume 8633 of LNCS, pages 203–214. Springer, 2014.

[17] Keränen, Veikko. Abelian squares are avoidable on 4 letters. In Proceedings
of the 19th ICALP, volume 623 of LNCS, pages 41–52. Springer, 1992.

[18] Mercaş, Robert and Saarela, Aleksi. 3-abelian cubes are avoidable on binary
alphabets. In Proceedings of the 17th DLT, volume 7907 of LNCS, pages 374–
383. Springer, 2013.

[19] Morse, Marston and Hedlund, Gustav A. Symbolic dynamics. Amer. J. Math.,
60(4):815–866, 1938.

[20] Morse, Marston and Hedlund, Gustav A. Symbolic dynamics II: Sturmian
trajectories. Amer. J. Math., 62(1):1–42, 1940.

[21] Parreau, Aline, Rigo, Michel, Rowland, Eric, and Vandomme, Elise. A new ap-
proach to the 2-regularity of the l-abelian complexity of 2-automatic sequences.
Electron. J. Combin., 22(1):P1.27, 2015.

[22] Puzynina, Svetlana and Zamboni, Luca Q. Abelian returns in Sturmian words.
J. Combin. Theory Ser. A, 120(2):390–408, 2013.

[23] Richomme, Gwénaël, Saari, Kalle, and Zamboni, Luca Q. Balance and Abelian
complexity of the Tribonacci word. Adv. in Appl. Math., 45(2):212–231, 2010.

[24] Richomme, Gwénaël, Saari, Kalle, and Zamboni, Luca Q. Abelian complexity
of minimal subshifts. J. Lond. Math. Soc. (2), 83(1):79–95, 2011.

[25] Rigo, Michel and Vandomme, Elise. 2-abelian complexity of the Thue–Morse
sequence, 2012. http://hdl.handle.net/2268/135841.

[26] Saarela, Aleksi. Ultimately constant abelian complexity of infinite words. J.
Autom. Lang. Comb., 14(3–4):255–258, 2009.

Acta Cybernetica 23 (2017) 191–201.

Initial Algebra for a System of

Right-Linear Functors∗

Anna Labellaa and Rocco De Nicolab

Abstract

In 2003 we showed that right-linear systems of equations over regular
expressions, when interpreted in a category of trees, have a solution when-
ever they enjoy a specific property that we called hierarchicity and that is
instrumental to avoid critical mutual recursive definitions. In this note, we
prove that a right-linear system of polynomial endofunctors on a cocartesian
monoidal closed category which enjoys parameterized left list arithmeticity,
has an initial algebra, provided it satisfies a property similar to hierarchicity.

Keywords: regular expressions, monoidal categories, system of functors

1 Introduction

Our paper [4] acknowledges that “the ideas that led to the work stemmed from
discussions with Zoltán Ésik”; as a homage to Zoltán here we generalise the results
of [4] to a much larger setting. There we defined the class of the linear systems whose
solution is expressible as a tuple of nondeterministic regular expressions [3] when
they are interpreted as trees of actions rather than as sets of action sequences. We
exactly characterized those systems that have a regular expression as a “canonical”
solution, and showed that any regular expression can be obtained as a canonical
solution of a system of the defined class.

The key ingredient for obtaining the wanted solution was our restriction to
“hierarchical” equations that were instrumental to avoid critical mutual recursive
definitions. Indeed, if we model variables as nodes of graphs and their dependences
as directed arcs, we required that whenever a variable y depends on x, (x is at the
beginning of a loop that contains y) we have that y never occurs in other loops
originated by other variables different from x.

Thus, in [4] we proved that a right-linear system of equations, interpreted in
a category of trees has a solution whenever it is hierarchical. In this short note

∗This work is dedicated to Zoltán Ésik whose unexpected and untimely death left us shattered
and without words.

aDipartimento di Informatica, Sapienza Università di Roma, E-mail: labella@di.uniroma1.it
bIMT School for Advanced Studies Lucca, E-mail: rocco.denicola@imtlucca.it

DOI: 10.14232/actacyb.23.1.2017.12

192 Anna Labella and Rocco De Nicola

we prove that a right-linear system of polynomial endofunctors on a cocartesian
monoidal closed category which enjoys parameterized left list arithmeticity, has
an initial algebra, provided it satisfies a property similar again to a hierarchicity
condition. We could thus say that the “solution” for the system provided here is
canonical in a strict sense.

2 Initial algebras and llist-arithmeticity

In order to introduce an initial algebra for a linear polynomial endofunctor ex-
pressed in terms of (canonical) sum + and a possibly non commutative tensor prod-
uct ⊗, we have to consider a notion of recursive object which generalizes Cockett
definition [2] of rec(U, V), where the canonical product × played the role of multi-
plication. As a matter of fact, we still ask for an initial algebra for an endofunctor
U ⊗ (−) + V : C → C in a monoidal category (C,⊗, I), but we have to be aware of
a non commutative situation. We chose to have the left composition, because our
result is particularly meaningful for categories which are monoidal (right) closed
whose objects have an elegant representation (see Proposition 1).

Definition 1. Given a cocartesian monoidal category (C,⊗, I), we call U∗V the
initial algebra of the functor U ⊗ (−) + V , if it does exist. In that case there is a
morphism U ⊗ (U∗V) +V → U∗V canonical w.r.t. any other U ⊗ (−) +V -algebra.
This means that, U∗V is equipped with two morphisms ρ0, ρ1 such that, given an-
other object X with two similar morphisms x0, x1, there is a unique morphism λ
making the following diagram commute.

@
@
@
@@R ? ?

- �

�

V U ⊗ U∗VU∗V

x0 λ U ⊗ λ

ρ1ρ0

X U ⊗X
x1

In case C is a partial order, U∗V is the minimal solution of the corresponding
inequation U ⊗ X + V ≤ X. But, in any case, being U∗V an initial algebra, we
have that U ⊗U∗V +V ' U∗V (U ⊗U∗V +V = U∗V , in the case of partial order),
i.e. it is an initial fixed point.

When ⊗ is the canonical product, we do get the well known definition of
rec(U, V) provided by Cockett [2], i.e., the V -parameterized list(U), that becomes
list(U) when V ' 1 is the terminal object. Since the constant value of the tensor
product we consider is on the left and the tensor product is non-commutative, we
will talk about left lists, that we will refer as llist and as parameterized llist.

For a generic tensor product, ⊗, we have that the initial algebra of U ⊗ (−) +V
is U∗V that we call parameterized llist(U); in case V ' I the initial algebra is U∗I
that we call llist(U).

Initial Algebra for a System of Right-Linear Functors 193

One can easily prove (see Adámek theorem in [1]) that in a monoidal cocartesian
category, which has colimits for every countable chain, there is an initial algebra
for all the functors above. Such initial algebras can be obtained as initial fixed
points, i.e., as colimits of the chain built starting from the initial object 0 and then
repeatedly applying the functor.

Proposition 1. In a monoidal cocartesian, chain cocomplete category C, semidis-
tributive on the right, in the sense of [5], we have that:

1. There is a canonical morphism U∗V → U∗I ⊗ V

2. If tensor product distributes on the right w.r.t. chain colimits, e.g. it has a
right adjoint, then we have U∗V ' U∗I ⊗ V

Proof.

1. It suffices to prove that U∗I ⊗V is a fixed point of the same functor as U∗V .
From this, the existence of the required canonical morphism would follow
because U∗V is the initial fixed point. To prove that U∗I⊗V is a fixed point,
let us apply the functor U⊗(−)+V to U∗I⊗V . By using the associativity law
and the right distributivity law, we get the following series of isomorphisms:

U ⊗ (U∗I⊗V) +V ' (U ⊗U∗I)⊗V + I⊗V ' (I+U ⊗U∗I)⊗V ' U∗I⊗V.

2. If the tensor product preserves chain colimits, it preserves also fixed points.
In particular it is true in case C is monoidal (right)-closed.

If we write U∗ instead of U∗I, Proposition 1 allows us to interchangeably use
U∗ ⊗ V and U∗V when working with monoidal closed categories.

By relying on Proposition 1 we have that if C has llist(U), it has also pa-
rameterized llist(U). In analogy with the case of categories with cartesian product
where a category having (parameterized) lists is called list-arithmetic 1, we will call
our category left− list-arithmetic or llist-arithmetic when it has (parameterized)
llists.

Proposition 2. Given a cocartesian monoidal right closed category C which has
initial algebra for the functor U ⊗ (−) + I, it has initial algebra for all the functors
U ⊗ (−) + V .

Proof. The proof follows from Proposition 1. If U∗ is an initial algebra for functor
U ⊗ (−) + I, U∗ ⊗ V is an initial algebra for functor U ⊗ (−) + V .

We can now consider three instances of llist-arithmetic categories that build on
A∗, the free monoid generated by an alphabet A:

1This name is related to the fact that, when a list-arithmetic category is also a pretopos, it is
possible to develop arithmetic in it and we speak of an arithmetic universe in the sense of Joyal
[7].

194 Anna Labella and Rocco De Nicola

P (A∗) the algebra of sets of words on A, a monoidal category w.r.t. concatenation
whose morphisms are inclusions. Here parameterized llist(U,V), i.e. U∗V , is
the binary Kleene star U∗V and as a consequence of Proposition 1 we have
that it is reducible to the unary star because P (A∗) is a monoidal right closed
category (the derivation operation is right adjoint to concatenation). In this
case, the tensor product distributes over sums on both sides.

Set|A∗ the topos of A∗-labelled sets, where the (non-commutative) tensor product
is obtained from the concatenation in A∗. By taking a (commutative) monoid
M , we could obtain from Set|M a (commutative) monoidal structure.

Tree(A) is generalization of P (A∗). Structured sets of computations are organised
as a category of generalised trees built over a (complete) meet-semilattice
monoid generated from A. The tensor product ⊗ is provided by the concate-
nation of trees allowed by the concatenation of A∗. This concatenation is
non commutative and only right-distributive w.r.t. sums [5], but also right
closed. The category Tree(A) has initial algebra for functors s⊗ (−) + t, i.e
it is llist-arithmetic with the llist s∗t given by iteration of a tree s, followed
every time by a copy of t [4]2.

3 Right-linear hierarchical systems of functors

It is a result of classical theory of regular languages [8] that we can consider a gram-
mar on an alphabet A as a continuous operator from P (A∗)n to P (A∗)n consisting
of a system of n linear equations in n variables. This system can be “solved” by
repeatedly applying the rule

X = U∗V implies X = U ⊗X + V (∗ − rule)

In this way, we obtain a minimal fixed point for the operator associated with the
grammar. In the present categorical context, we could say this rule is a direct
consequence the llist-arithmeticity of the considered structure.

In [4], we extended this result to the category Tree(A), but, due to the fact that
only a right side distributivity of tensor product w.r.t. sum holds, we had to restrict
the class of solvable systems by considering only so-called right-linear hierarchical
systems (rlhs) that allowed us to avoid critical mutual recursive definitions. For-
mulated according to the current terminology the result of [4] is described by the
following proposition.

Proposition 3. In the category Tree(A), the ∗ − rule provides a solution for
hierarchical (see below) finite right-linear systems of polynomial equations.

Now we do generalize this result again and show that llist-arithmeticity in a
cocartesian right-distributive monoidal category C all finite right-linear hierarchical
systems of functors have an initial algebras.

2Actually, Tree(A) is a coherent llist-arithmetic category, but not a pre-topos because not all
its monos are regular.

Initial Algebra for a System of Right-Linear Functors 195

When such a category C contains as its objects the elements of an alphabet
A, some of the objects of C can be rendered as regular expressions generated by
means of the following BNF starting from the elments a of an alphabet A.

E ::= 0 | I | a | E + E | E ⊗ E | E∗ where a is in A.

In such a grammar, 0 denotes the initial object of our category, I denotes the unit
for ⊗, that is the tensor product of C. Moreover + stands for the coproduct of C
and ∗ denotes the llist-constructor.

Our result will be formulated by relying on such terminology. Indeed, if we
suppose that C is cocartesian monoidal closed and elements of A are its objects,
then the interpretation of llists will allow the construction of parameterized llists,
as described in Proposition 2.

Our aim is to prove that, by relying on the following rule

U ⊗X + V → X implies U∗V → X (initiality − rule)

that guarantees that if there is a morphism U⊗X+V → X then there is a canonical
morphism U∗V → X, it is possible to find an initial algebra for every right-linear
hierarchical system of functors on regular expressions.

Summing up, we will extend the result proved in [4] for Tree(A) to a category
C with the properties mentioned above. To this aim we have to formulate it in
terms of functors instead of equations of linear functions in order to prove that
the obtained solution is canonical because it is the initial algebra of the system of
functors.

We need to provide some definitions.

Definition 2.

• Given a category C interpreting regular expressions, a functor F : Cn → C
of the form

∑
1≤i≤n Ui ⊗Xi + V is called right-linear polynomial functor in

n variables.

• A right-linear polynomial functor is called simple when all Ui and V do not
contain the ()∗ operator.

• A right-linear polynomial system of functors of dimension n is a n-tuple

Φ =< F1, . . . , Fn >: Cn → Cn

of right-linear polynomial functors in n variables.

Given a functor F : C ×D → C, for every object d of D, we can consider the
endofunctor F ((−), d) : C → C.

Moreover, if F is a functor with n-argument
∑

1≤i≤n Ui ⊗ Xi + V : Cn → C,

we can write it as U1 ⊗X1 +
∑

2≤i≤n Ui ⊗Xi + V : C × Cn−1 → C.
Then, taking d as

∑
2≤i≤n Ui ⊗ Xi + V , llist-arithmeticity implies that the

functor U1 ⊗ (−) + d : C → C has an initial algebra U∗1 ⊗ d for every d. Obviously,
the same can be done for every index i.

196 Anna Labella and Rocco De Nicola

Let us recall now Bekič theorem about initial algebras of functors [6] that is
important because it means that the simultaneous construction of an initial algebra
for a system of n operators in n variables can be replaced by recursively constructing
of initial algebras for one operator at a time.

Bekič theorem
Given two functors F : C × D → C and G : C × D → D, let (Fµ(d), χd) be
an initial F ((−), d)-algebra for each object d of D and suppose that there exists
an initial algebra, say < ξ, ζ > with ξ : Fµ(β) → α , ζ : G(α, β) → β, of the
functor < Fµ ◦ prD, G >: C ×D → C ×D, where the first component is obtained
by composing the projection prD : C ×D → D with the functor constructing the
D-parameterized initial algebra Fµ : D → C; then the pair < χβ , G(ξ, β)•ζ >
where

• χβ : F (Fµ(β), β)→ Fµ(β)

• G(ξ, β)•ζ : G(Fµ(β), β)→ β

is an initial algebra of the functor < F,G >: C ×D → C ×D.

To understand the impact of this theorem in our context, let us consider a simple
case where F and G are two right-linear polynomial functors over two variables3

and C coincides with D: {
F ≡ ax+ by
G ≡ a′x+ b′y + c′

We take the initial algebra a∗by (not depending on x) associated with the first
functor, when it is considered as F ((−), by), and then we substitute this value in
the expression of G to obtain a′a∗by + b′y + c′. We can get from this an initial
algebra for the pair < F,G >, i.e. for the system. Indeed, using distributivity on
the right, we get (a′a∗b + b′)y + c′ and thus, thanks to the initiality rule, we get
(a′a∗b+ b′)∗c′ as the second component of the initial algebra for the functor system
above.

It is worth noting that this has been possible only because there was no constant
term in the definition of F . Indeed, the slightly different system{

F ′ ≡ ax+ by + c
G ≡ a′x+ b′y + c′

is not solvable using the same machinery. In fact, in this case, we would obtain
a∗(by + c) as initial algebra for F ′((−), by + c) , and once this is substituted in G
we would get a′a∗(by+ c) + b′y+ c′, but then, due to the lack of left distributivity,
the initiality rule cannot be used.

3In the sequel we will often omit the symbol ⊗ using juxtaposition to replace it and use small
letters for variables.

Initial Algebra for a System of Right-Linear Functors 197

In general, for n functors, we have that, if F is F1, then G is < F2, . . . , Fn >
and the initial algebras can be inductively obtained by performing appropriate
substitutions. We fix a variable, say x1, in the expression of F1 and consider the
parameterization of F1 w.r.t. the sum of all the monomials not containing x1. We
calculate the parameterized initial algebra and substitute this value everywhere for
x1. Please notice that a constant functor has this constant with its identity as an
initial algebra.

Summing up, in our case the first requirement of Bekič’s theorem is always
satisfied because our category is llist-arithmetic; but we have to impose additional
conditions on the system of functors in order to meet the second requirement.

Given the system Φ ≡< F1, . . . , Fn > with variables x1 . . . , xn, let us now define
a different indexing for both, functors and variables. This will allow us to introduce
a (partial) order on the set of variables in Φ in such a way that we can exclude
their mutual interference when we build the initial algebra step by step. The partial
ordering, ≤, is obtained by using a string of natural numbers as index for every
variable while guaranteeing that two different variables do not have the same index.
For any two indexed variables xs and xt, we will write xs ≤ xt if t is a prefix of s.

We will consider hierarchical (rlhs) any system for which it is possible to in-
troduce an indexing that satisfies a number of conditions that we will introduce
below.

Definition 3. Let xs ≤ xt, we say that

• xs is ruled by xt if xt appears in Fs.

• xs is recursive if xs appears in the expression of Fs;

• xs is strictly recursive if it is recursive and is not ruled by any other variable.

Definition 4. Right Linear Hierarchical Systems - rlhs
A system of right-linear functors Φ whose variables are ordered by ≤ is hierarchical
if it is possible to associate, as index to every functor, a common prefix of the
indexes of the variables appearing in its expression (either of the same length or at
most one number longer), with the only possible exception for one of the variables,
in case this rules on all the others. Moreover, the indexing has to guarantee that:

1. the ordering of the indexes of the functors is tree-shaped;

2. a variable can be ruled by at most another one;

3. If xi appears in Fi (it is recursive), then alternatively, either Fi does contain
a constant different from 0, or it does contain a variable ruling on xi;

4. If xi does not appear in Fi, then all variables that are immediately smaller
than xi (one number more in their index) appear in Fi and, some of them
can have a common ruling variable while the others are strictly recursive in
the functor corresponding to them.

198 Anna Labella and Rocco De Nicola

If we look at the examples above, we have that we can index the first system as{
F0 ≡ ax0 + bxε
Fε ≡ a′x0 + b′xε + c′

to obtain a rlhs.
Due to the presence of a constant in both the expressions, we cannot provide a

similar ordering for the second system. Indeed, none of the two functors can satisfy
condition 3. of Definition 4. {

F0 ≡ ax0 + bxε + c
Fε ≡ a′x0 + b′xε + c′

We give now a more complex example of a right-linear system that can be indexed
in such a way that it is rlhs. Please notice that, in the example below, we provide
directly the indexed equational system. The original one can be recovered by giving
different names to the variables and the functors with different indexes. After
presenting the indexed system we also outline the procedure to obtain its initial
algebra.

Example 1. Consider the following system

Φ :< F211, F212, F21, F22, F11, F1, F2, Fε >

where we have indexed functors and, accordingly, their variables.

F211 ≡ cx211 + x2

F212 ≡ ax212 + bx2

F21 ≡ x211 + x212

F22 ≡ cx22 + I

F11 ≡ ax11 + b

F1 ≡ x11 + c

F2 ≡ x21 + x22

Fε ≡ ax1 + x2 + a

All variables under x21 depend on the ruling variable x2 (which becomes recur-
sive when substitutions are made into F2), and the corresponding functors do
not contain any constant. We will start from F211 and F212, that are leaf func-
tors according to ≤. The parametrized initial algebra for F211 is c∗x2 while the
one for F212 is a∗bx2. Since F211 and F212 have no constant and x211 and x212
have the same ruling variable, we can substitute c∗x2 and a∗bx2 in F21 to obtain
c∗x2+a∗bx2 = (c∗+a∗b)x2 thanks to right distributivity. We can now consider F22.
Its initial algebra is the constant c∗, thus in F2 we can replace x21 and x22 with

Initial Algebra for a System of Right-Linear Functors 199

(c∗+a∗b)x2 and c∗, which yields (c∗+a∗b)x2+c∗ that has (c∗+a∗b)∗c∗ as initial al-
gebra. We consider now F11, whose initial algebra is a∗b, that we substitute in F1 to
obtain (a∗b)+ c as initial algebra; finally once we substitute all variables in Fε with
the corresponding initial algebras we get the constant (a(a∗b+c)+(c∗+a∗b)∗c∗+a.
Which is the basis for obtaining the full solution by means of appropriate substi-
tutions.

Theorem 1. In a right semidistributive category C where we have a parameterized
initial algebra for linear polynomial functors (parameterized llists), all right-linear
hierarchical systems of functors, with chosen indexing, have a family of regular
expressions as their initial algebra.

Proof. Given a hierarchical right-linear functors system, we can find an initial al-
gebra for it by repeatedly using the (initiality − rule) above, and by relying on
Bekič theorem. This theorem provides an initial algebra for a system of functors in
presence of parameterized initial algebras; to take advantage of it we need to show
that the restricted set of hierarchical systems satisfy its two conditions. The first
condition, i.e. the existence of parameterized initial algebras for a chosen functor
in a recursive variable holds by hypothesis, the second one corresponds to the fact
that the reduced system (with fewer functors) obtained after substituting the initial
algebra has still an initial algebra. We then proceed by induction on the length of
indexes starting from the longest ones. This is possible because, by exploiting right
distributivity, we can take out a (ruling) variable as a common factor from terms
containing it. This is due to our definition of rlhs.

Let us start by considering a functor Fi which has maximal index. The expres-
sion corresponding to Fi cannot contain variables with indexes longer than i. Thus,
the expression may contain xi and at most a single variable, say xt ruling on it (t
is a strict prefix of i), moreover when such ruling variable is present the expression
does not contain any constants.

Let us consider the two cases separately:

1. In case xi is strictly recursive, we obtain as initial algebra of Fi a constant
term which might be 0 in case the expression contains only 0 as a constant.

2. In case the expression of Fi contains a variable xt ruling on xi, the initiality
rule gives a parameterized (w.r.t. xt) initial algebra.

When substituting these terms in Fs with s an immediate prefix of i (i = s n), we
obtain a sum of constants and of terms all containing the same variable xt (due
to condition 4. in Definition 4, no other term with another ruling variable can be
present in Fs). We can then take xt as a common factor. Now we distinguish two
cases, if t = s we can proceed as above because all variables with an index longer
than t have been eliminated. If t is instead a strict prefix of s, we can operate
further substitutions until we reach functor Ft possibly having other terms with
the same variable and nomore variables with a longer index. In this way we have
in any case reduced the system to a smaller one, still rlhs, producing an initial
algebra at every step. At this point we can apply the procedure again.

200 Anna Labella and Rocco De Nicola

It could seem that a very particular kind of linear functors system is taken into
account, but we can prove that any regular expression, when interpreted in C is
the initial algebra of some finite linear hierarchical system of functors.

Theorem 2. Given a cocartesian monoidal semidistributive category C, where we
can interpret regular expressions in such a way that the ()∗ operator is the llist-
operator corresponding to the tensor product ⊗, every regular expression E can be
obtained as the initial algebra of the root component of a n-tuple of right-linear
hierarchical system of simple polynomial functors < F1, . . . , Fn >: Cn → Cn .

In order to prove item 1. of Theorem 2 we need to transform every regular
expression in normal form and we will show that any normal form can be first
associated with a system of simple quadratic polynomial functors and that the
system can be associated with a rlhs of simple linear polynomial functors. The
way we obtain such a rlhs guarantees that the original regular expression E is
the component in the initial algebra of the generated rlhs associated to the root
functor.

Here we omit the details of the proof, it proceeds along the same lines of the
corresponding one in [4] while referring to functors rather than to equations. In
particular we need to use normal forms similar to that of Definition 1. in [4] and
functor systems associated to them like in Definition 5. of [4]. From the functor
systems we will do obtain system of quadratic functors (like in Proposition 1. in
[4]) which we transform into linear ones (Proposition 2. in [4]). The fact that the
regular expression E is the initial algebra of the root component of the system
will descend from the construction, while the verification of the hierarchicity of the
system is now almost immediate by the chosen indexing strategy.

4 Conclusions

A classical result of the theory of regular languages [8] states that we can obtain
solutions of systems of linear equations over regular expressions interpreted as lan-
guages variables.

In [4] we showed that right-linear systems of equations over regular expressions,
when interpreted in a category of trees, have a solution whenever they enjoy a
specific property that we called hierarchicity.

Here, we have completed the generalisation by considering cocartesian non com-
mutative monoidal categories where the tensor product preserves colimits and a
property similar to hierarchicity is satisfied. The key requirement for this kind of
categories was the presence of an iteration operator thought of as initial algebra
of a linear polynomial functor. The existence of such initial algebra is a form of
a one-side list arithmeticity. Now list arithmeticity is a key ingredient to develop
arithmetics in a pretopos [7]: this fact could suggest further investigations about a
connection between results in (possibly non deterministic) language theory and in
an arithmetic based on a one-side natural number object.

Initial Algebra for a System of Right-Linear Functors 201

References

[1] Adámek, J., Koubek, V. Least Fixed Point of a Functor. Journal of Computer
and System Sciences, 19: 163–178, 1979.

[2] Cockett, J.R.B. list-arithmetic distributive categories: locoi. Journal of Pure
and Applied Algebra, 66: 1–29, 1990.

[3] Corradini, F., De Nicola, R., Labella, A. Models of Nondeterministic Regular
Expressions. Journal of Computer and System Science, 59: 412–449, 1999.

[4] De Nicola, R., Labella, A. Nondeterministic regular expressions as solutions
of equational systems, Theoretical Computer Science, 302: 179–189, 2003.

[5] Labella, A. Categories with sums and right distributive tensor product. Jour-
nal of Pure and Applied Algebra, 178 (3): 273–296, 2003.

[6] Lehmann, D. J., Smyth, M. B. Algebraic specification of data types: a syn-
thetic approach. Mathematical Systems Theory, 14 (2): 97-139, 1981.

[7] Maietti, M.E. Joyal’s arithmetic universe as list-arithmetic pretopos, Theory
and Applications of Categories, 24 (3): 39–83, 2010.

[8] Moll, R.N., Arbib, M.A., Kfoury, A.J. An Introduction to Formal Language
Theory Springer-Verlag, Berlin, 1987.

Acta Cybernetica 23 (2017) 203–228.

An Algebraic Approach to Energy Problems I
∗-Continuous Kleene ω-Algebras‡

Zoltán Ésika, Uli Fahrenbergb, Axel Legayc, and Karin Quaasd

Abstract

Energy problems are important in the formal analysis of embedded or
autonomous systems. With the purpose of unifying a number of approaches
to energy problems found in the literature, we introduce energy automata.
These are finite automata whose edges are labeled with energy functions that
define how energy levels evolve during transitions.

Motivated by this application and in order to compute with energy func-
tions, we introduce a new algebraic structure of ∗-continuous Kleene ω-alge-
bras. These involve a ∗-continuous Kleene algebra with a ∗-continuous action
on a semimodule and an infinite product operation that is also ∗-continuous.

We define both a finitary and a non-finitary version of ∗-continuous Kleene
ω-algebras. We then establish some of their properties, including a charac-
terization of the free finitary ∗-continuous Kleene ω-algebras. We also show
that every ∗-continuous Kleene ω-algebra gives rise to an iteration semiring-
semimodule pair.

Keywords: Energy problem, Kleene algebra, ∗-continuity, ∗-continuous Kleene
ω-algebra

1 Introduction

Energy problems are concerned with the question whether a given system admits
infinite schedules during which (1) certain tasks can be repeatedly accomplished
and (2) the system never runs out of energy (or other specified resources). These
are important in areas such as embedded systems or autonomous systems and,

‡This research was supported by grant no. K 108448 from the National Foundation of Hun-
gary for Scientific Research (OTKA), by ANR MALTHY, grant no. ANR-13-INSE-0003 from the
French National Research Foundation, and by Deutsche Forschungsgemeinschaft (DFG), projects
QU 316/1-1 and QU 316/1-2.

aUniversity of Szeged, Hungary (deceased)
bÉcole polytechnique, Palaiseau, France. Most of this work was carried out while this author

was still employed at Inria Rennes.
cInria Rennes, France
dUniversität Leipzig, Germany

DOI: 10.14232/actacyb.23.1.2017.13

204 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

starting with [4], have attracted some attention in recent years, for example in [20,
27, 3, 5, 28, 7, 6, 23, 9].

With the purpose of generalizing some of the above approaches, we have in [14,
21] introduced energy automata. These are finite automata whose transitions are
labeled with energy functions which specify how energy values change from one
system state to another. Using the theory of semiring-weighted automata [10], we
have shown in [14] that energy problems in such automata can be solved in a simple
static way which only involves manipulations of energy functions.

In order to put the work of [14] on a more solid theoretical footing and with an
eye to future generalizations, we have recently introduced a new algebraic structure
of ∗-continuous Kleene ω-algebras [12, 13].

A continuous (or complete) Kleene algebra is a Kleene algebra in which all
suprema exist and are preserved by products. These have nice algebraic properties,
but not all Kleene algebras are continuous, for example the semiring of regular
languages over some alphabet. Hence a theory of ∗-continuous Kleene algebras has
been developed to cover this and other interesting cases [25].

For infinite behaviors, complete semiring-semimodule pairs involving an infinite
product operation have been developed [19]. Motivated by some examples of struc-
tures which are not complete in this sense, for example the energy functions of the
preceding section, we generalize the notion of ∗-continuous Kleene algebra to one of
∗-continuous Kleene ω-algebra. These are idempotent semiring-semimodule pairs
which are not necessarily complete, but have enough suprema in order to develop a
fixed-point theory and solve weighted Büchi automata (i.e., to compute infinitary
power series).

We will define both a finitary and a non-finitary version of ∗-continuous Kleene
ω-algebras. We then establish several properties of ∗-continuous Kleene ω-algebras,
including the existence of the suprema of certain subsets related to regular ω-
languages. Then we will use these results in our characterization of the free finitary
∗-continuous Kleene ω-algebras. We also show that each ∗-continuous Kleene ω-
algebra gives rise to an iteration semiring-semimodule pair.

Structure of the Paper This is the first in a series of two papers which deal with
energy problems and their algebraic foundation. In the present paper, we motivate
the introduction of our new algebraic structures by two sections on energy automata
(Section 2) and on the algebraic structure of energy functions (Section 3). We then
pass to introduce continuous Kleene ω-algebras in Section 4 and to expose the free
continuous Kleene ω-algebras in Section 5.

In Section 6 we generalize continuous Kleene ω-algebras to our central notion of
∗-continuous Kleene ω-algebras and finitary ∗-continuous Kleene ω-algebras. Sec-
tion 7 exposes the free finitary ∗-continuous Kleene ω-algebras; the question whether
general free ∗-continuous Kleene ω-algebras exist is left open.

The penultimate Section 8 shows that every ∗-continuous Kleene ω-algebra is an
iteration semiring-semimodule pair, hence techniques from matrix semiring-semi-
module pairs apply. This will be important in the second paper of the series. In
Section 9 we concern ourselves with least and greatest fixed points and introduce

An Algebraic Approach to Energy Problems I 205

a notion of Kleene ω-algebra, analogous to the concept of Kleene algebra for least
fixed points.

In the second paper of the series [15], we show that one can use matrix operations
to solve reachability and Büchi acceptance in weighted automata over ∗-continuous
Kleene ω-algebras, and that energy functions form a ∗-continuous Kleene ω-algebra.
This will allows us to connect the algebraic structures developed in the present
paper back to their motivating energy problems.

Acknowledgment The origin of this work is a joint short paper [21] between
the last three authors which was presented at the 2012 International Workshop
on Weighted Automata: Theory and Applications. After the presentation, the
presenter was approached by Zoltán Ésik, who told him that the proper setting for
energy problems should be idempotent semiring-semimodule pairs. This initiated
a long-lasting collaboration, including several mutual visits, which eventually led
to the work presented in this paper and its follow-up [15].

We are deeply indebted to our colleague and friend Zoltán Ésik who taught
us all we know about semiring-semimodule pairs and ∗-continuity. Unfortunately
Zoltán could not see this work completed, so any errors are the responsibility of
the last three authors.

In honor of Zoltán Ésik, we propose to give the name “Ésik algebra” to ∗-contin-
uous Kleene ω-algebras.

2 Energy Automata

The transition labels on the energy automata which we consider in this paper will
be functions which model transformations of energy levels between system states.
Such transformations have the (natural) properties that below a certain energy
level, the transition might be disabled (not enough energy is available to perform
the transition), and an increase in input energy always yields at least the same
increase in output energy. Thus the following definition.

Definition 1. An energy function is a partial function f : R≥0 ⇀ R≥0 which is
defined on a closed interval [lf ,∞[or on an open interval]lf ,∞[, for some lower
bound lf ≥ 0, and such that for all x ≤ y for which f is defined,

yf ≥ xf + y − x . (∗)

The class of all energy functions is denoted by F .

We will write composition and application of energy functions in diagrammatical
order, from left to right. Hence we write f ; g, or simply fg, for the composition g◦f
and x; f or xf for function application f(x). This is because we will be concerned
with algebras of energy functions, in which function composition is multiplication,
and where it is customary to write multiplication in diagrammatical order.

Thus energy functions are strictly increasing, and in points where they are
differentiable, the derivative is at least 1. The inverse functions to energy functions

206 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

s1 s2 s3

x 7→ x + 2;x ≥ 2

x 7→ x + 3;x > 1

x 7→ 2x− 2;x ≥ 1
x 7→ x− 1;x > 1

x 7→ x + 1;x ≥ 0

Figure 1: A simple energy automaton.

exist, but are generally not energy functions. Energy functions can be composed,
where it is understood that for a composition fg, the interval of definition is {x ∈
R≥0 | xf and xfg defined}. The following lemma shows an important property of
energy functions which we will use repeatedly later, mostly without mention of the
lemma.

Lemma 1. Let f ∈ F and x ∈ R≥0.

• If xf < x, then there is N ≥ 0 such that xfn is undefined for all n ≥ N .

• If xf = x, then xfn = x for all n ≥ 0.

• If xf > x, then for all P ∈ R there is N ≥ 0 such that xfn ≥ P for all
n ≥ N .

Proof. In the first case, we have x− xf = M > 0. Using (∗), we see that xfn+1 ≤
xfn −M for all n ≥ 0 for which xfn+1 is defined. Hence the sequence (xfn)n≥0
decreases without bound, so that there must be N ≥ 0 such that xfN is undefined,
and then so is xfn for any n > N .

The second case is trivial. In the third case, we have xf − x = M > 0. Again
using (∗), we see that xfn+1 > xfn+M for all n ≥ 0. Hence the sequence (xfn)n≥0
increases without bound, so that for any P ∈ R there must be N ≥ 0 for which
xfN ≥ P , and then xfn ≥ xfN ≥ P for all n ≥ N .

Example 1. The following example shows that property (∗) is not only sufficient
for Lemma 1, but in a sense also necessary: Let α ∈ R with 0 < α < 1 and
f : R≥0 → R≥0 be the function xf = 1 + αx. Then yf = xf + α(y − x) for all

x ≤ y, so (∗) “almost” holds. But xfn =
∑n−1
i=0 α

i + αnx for all n ∈ N, hence
limn→∞ xfn = 1

1−α <∞.

Definition 2. An energy automaton (S, s0, T, F) consists of a finite set S of states,
with initial state s0 ∈ S, a finite set T ⊆ S×F×S of transitions labeled with energy
functions, and a subset F ⊆ S of acceptance states.

Example 2. Figure 1 shows a simple energy automaton. Here we have used
inequalities to give the definition intervals of energy functions, so that for example,
the function labeling the loop at s2 is given by f(x) = 2x − 2 for x ≥ 1 and
undefined for x < 1.

An Algebraic Approach to Energy Problems I 207

A finite path in an energy automaton is a finite sequence of transitions π =
(s0, f1, s1), (s1, f2, s2), . . . , (sn−1, fn, sn). We use fπ to denote the combined energy
function fπ = f1f2 · · · fn of such a finite path. We will also use infinite paths, but
note that these generally do not allow for combined energy functions.

A global state of an energy automaton is a pair q = (s, x) with s ∈ S and
x ∈ R≥0. A transition between global states is of the form ((s, x), f, (s′, x′)) such
that (s, f, s′) ∈ T and x′ = f(x). A (finite or infinite) run of (S, T) is a path in the
graph of global states and transitions.

We are ready to state the decision problems with which our main concern will
lie. As the input to a decision problem must be in some way finitely representable,
we will state them for subclasses F ′ ⊆ F of computable energy functions; an F ′-
automaton is an energy automaton (S, s0, T, F) with T ⊆ S × F ′ × S. Note that
we give no technical meaning to the term “computable” here; we simply need to
take care that the input be finitely representable.

Problem 1 (State reachability). Given an F ′-automaton A = (S, s0, T, F) and a
computable initial energy x0 ∈ R≥0: does there exist a finite run of A from (s0, x0)
which ends in a state in F?

Problem 2 (Coverability). Given an F ′-automaton A = (S, s0, T, F), a com-
putable initial energy x0 ∈ R≥0 and a computable function z : F → R≥0: does
there exist a finite run of A from (s0, x0) which ends in a global state (s, x) such
that s ∈ F and x ≥ sz?

Problem 3 (Büchi acceptance). Given an F ′-automaton A = (S, s0, T, F) and a
computable initial energy x0 ∈ R≥0: does there exist an infinite run of A from
(s0, x0) which visits F infinitely often?

As customary, a run such as in the statements above is said to be accepting.
The special case of Problem 3 with F = S is the question whether there exists an
infinite run in the given energy automaton. This is what is usually referred to as
energy problems in the literature; our extension to general Büchi conditions has not
been treated before.

3 The Algebra of Energy Functions

Let [0,∞]⊥ = {⊥}∪[0,∞] denote the complete lattice of non-negative real numbers
together with extra elements ⊥ and ∞, with the standard order on R≥0 extended
by ⊥ < x < ∞ for all x ∈ R≥0. Also, ⊥ + x = ⊥ − x = ⊥ for all x ∈ R≥0 ∪ {∞}
and ∞+ x =∞− x =∞ for all x ∈ R≥0.

Definition 3. An extended energy function is a mapping f : [0,∞]⊥ → [0,∞]⊥,
for which ⊥f = ⊥ and yf ≥ xf + y − x for all x ≤ y. Moreover, ∞f =∞, unless
xf = ⊥ for all x ∈ [0,∞]⊥. The class of all extended energy functions is denoted E.

This means, in particular, that xf = ⊥ implies yf = ⊥ for all y ≤ x, and
xf =∞ implies yf =∞ for all y ≥ x. Hence, except for the extension to ∞, these

208 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

functions are indeed the same as the energy functions from Definition 1. More
precisely, every energy function f : R≥0 ⇀ R≥0 as of Definition 1 gives rise to an

extended energy function f̃ : [0,∞]⊥ → [0,∞]⊥ given by ⊥f̃ = ⊥, xf̃ = ⊥ if xf is
undefined, xf̃ = xf otherwise for x ∈ R≥0, and ∞f̃ =∞.

Composition of extended energy functions is defined as before, but needs no
more special consideration about its definition interval.

We define a partial order on E , by f ≤ g iff xf ≤ xg for all x ∈ [0,∞]⊥. We
will need three special energy functions, ⊥⊥, id and >>; these are given by x⊥⊥ = ⊥,
x; id = x for x ∈ [0,∞]⊥, and ⊥>> = ⊥, x>> =∞ for x ∈ [0,∞].

Lemma 2. With the ordering ≤, E is a complete lattice with bottom element ⊥⊥ and
top element >>. The supremum on E is pointwise, i.e., x(supi∈I fi) = supi∈I xfi
for any set I, all fi ∈ E and x ∈ [0,∞]⊥. Also, h(supi∈I fi) = supi∈I(hfi) for all
h ∈ E.

Proof. The pointwise supremum of any set of extended energy functions is an ex-
tended energy function. Indeed, if fi, i ∈ I are extended energy functions and x < y
inR≥0, then yfi ≥ xfi+y−x for all i. It follows that supi∈I yfi ≥ supi∈I xfi+y−x.
Also, since ⊥fi = ⊥ for all i ∈ I, supi∈I ⊥fi = ⊥. Finally, if there is some i such
that ∞fi =∞, then supi∈I∞fi =∞. Otherwise each function fi is constant with
value ⊥.

The fact that h(supi∈I fi) = supi∈I hfi is now clear, since the supremum is taken
pointwise: For all x, x(h(supi∈I fi)) = (xh)(supi∈I fi) = supi∈I xhfi = x(supi hfi).

We denote binary suprema using the symbol ∨; hence f ∨ g, for f, g ∈ E , is the
function x(f ∨ g) = max(xf, xg).

Recall that an idempotent semiring [1, 22] S = (S,∨, ·,⊥, 1) consists of a com-
mutative idempotent monoid (S,∨,⊥) and a monoid (S, ·, 1) such that the distribu-
tive laws

x(y ∨ z) = xy ∨ xz
(y ∨ z)x = yx ∨ zx

and the zero laws

⊥ · x = ⊥ = x · ⊥

hold for all x, y, z ∈ S. It follows that the product operation distributes over all
finite sums.

Each idempotent semiring S is partially ordered by its natural order relation
x ≤ y iff x ∨ y = y, and then sum and product preserve the partial order and ⊥ is
the least element. Moreover, for all x, y ∈ S, x ∨ y is the least upper bound of the
set {x, y}.

Lemma 3. (E ,∨, ;,⊥⊥, id) is an idempotent semiring with natural order ≤.

An Algebraic Approach to Energy Problems I 209

Proof. It is clear that (E ,∨,⊥⊥) is a commutative idempotent monoid and that
(E , ;, id) is a monoid. ≤ is the natural order on E because ∨ is given pointwise. It
is also clear that ⊥⊥f = f⊥⊥ = ⊥⊥ for all f ∈ E .

To show distributivity, we have already shown that x(h(f ∨ g)) = x(hf ∨hg) in
the proof of Lemma 2; using monotonicity of h, we also have

x((f ∨ g)h) = x(f ∨ g)h = (xf ∨ xg)h = xfg ∨ xgh = x(fh ∨ gh) .

The proof is complete.

We will show in the second paper [15] of this series that E in fact forms a
∗-continuous Kleene algebra [25], which will allow us to solve energy problems
algebraically.

4 Continuous Kleene Algebras and Continuous
Kleene ω-Algebras

We have already recalled the notion of idempotent semiring in the last section. A
homomorphism of idempotent semirings (S,∨, ·,⊥, 1), (S′,∨′, ·′,⊥′, 1′) is a function
h : S → S′ which respects the constants and operations, i.e., such that h(⊥) = ⊥′,
h(1) = 1′, h(x ∨ y) = h(x) ∨′ h(y), and h(x · y) = h(x) ·′ h(y) for all x, y ∈ S.

A Kleene algebra [25] is an idempotent semiring S = (S,∨, ·,⊥, 1) equipped
with a star operation ∗ : S → S such that for all x, y ∈ S, yx∗ is the least
solution of the fixed point equation z = zx ∨ y and x∗y is the least solution of
the fixed point equation z = xz ∨ y with respect to the natural order. A Kleene
algebra homomorphism is a semiring homomorphism h which respects the star:
h(x∗) = (h(x))∗ for all x ∈ S.

Examples of Kleene algebras include the language semiring P (A∗) over an al-
phabet A, whose elements are the subsets of the set A∗ of all finite words over A,
and whose operations are set union and concatenation, with the languages ∅ and
{ε} serving as ⊥ and 1. Here, ε denotes the empty word. The star operation is the
usual Kleene star: X∗ =

⋃
n≥0X

n = {u1 . . . un : u1, . . . , un ∈ X, n ≥ 0}.
Another example is the Kleene algebra P (A×A) of binary relations over any set

A, whose operations are union and relational composition (written in diagrammatic
order), and where the empty relation ∅ and the identity relation id serve as the
constants ⊥ and 1. The star operation is the formation of the reflexive-transitive
closure, so that R∗ =

⋃
n≥0R

n for all R ∈ P (A×A).
The above examples are in fact continuous Kleene algebras, i.e., idempotent

semirings S such that equipped with the natural order, they are complete lattices
(hence all suprema exist), and the product operation preserves arbitrary suprema
in either argument:

y(
∨
X) =

∨
yX and (

∨
X)y =

∨
Xy

for all X ⊆ S and y ∈ S. The star operation is given by x∗ =
∨
n≥0 x

n, so that x∗

is the supremum of the set {xn : n ≥ 0} of all powers of x.

210 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Homomorphisms of continuous Kleene algebras S, S′ are homomorphisms of
idempotent semirings h : S → S′ which respect arbitrary suprema: h(

∨
X) =∨

h(X) =
∨
{h(x) | x ∈ X} for all X ⊆ S. To distinguish these from semiring

homomorphisms, they are sometimes called continuous homomorphisms, but we
will not do this here.

A larger class of models is given by the ∗-continuous Kleene algebras [25]. By
the definition of a ∗-continuous Kleene algebra S = (S,∨, ·,⊥, 1), all suprema of
sets of the form {xn | n ≥ 0} are required to exist, where x is any element of S,
and x∗ is given by this supremum. Moreover, product preserves such suprema in
both arguments:

y(
∨
n≥0

xn) =
∨
n≥0

yxn and (
∨
n≥0

xn)y =
∨
n≥0

xny .

Every ∗-continuous Kleene algebra is a Kleene algebra. For any alphabet A, the
collection R(A∗) of all regular languages over A is an example of a ∗-continuous
Kleene algebra which is not continuous. There exist Kleene algebras which are
not ∗-continuous, see [25]. For non-idempotent extensions of the notions of contin-
uous Kleene algebras, ∗-continuous Kleene algebras and Kleene algebras, we refer
to [17, 16]. Homomorphisms of ∗-continuous Kleene algebras are the Kleene algebra
homomorphisms.

Recall that an idempotent semiring-semimodule pair [19, 2] (S, V) consists of
an idempotent semiring S = (S,∨, ·,⊥, 1) and a commutative idempotent monoid
V = (V,∨,⊥) which is equipped with a left S-action S × V → V , (x, v) 7→ xv,
satisfying

(x ∨ x′)v = xv ∨ x′v x(v ∨ v′) = xv ∨ xv′

(xx′)v = x(x′v) ⊥v = ⊥
x⊥ = ⊥ 1v = v

for all x, x′ ∈ S and v ∈ V . In that case, we also call V a (left) S-semimodule.
A homomorphism of semiring-semimodule pairs (S, V) and (S′, V ′) is a pair

h = (hS , hV) of functions hS : S → S′ and hV : V → V ′ such that hS is a
semiring homomorphism, hV is a monoid homomorphism, and h respects the action,
i.e., hV (xv) = hS(x)hV (v) for all x ∈ S and v ∈ V .

Definition 4. A continuous Kleene ω-algebra is an idempotent semiring-semi-
module pair (S, V) in which S is a continuous Kleene algebra, V is a complete lattice
with the natural order, and the action preserves all suprema in either argument.
Additionally, there is an infinite product operation which is compatible with the
action and associative in the sense that the following hold:

1. For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

2. Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.

An Algebraic Approach to Energy Problems I 211

Moreover, the infinite product operation preserves all suprema:

3.
∏
n≥0(

∨
Xn) =

∨
{
∏
n≥0 xn : xn ∈ Xn, n ≥ 0}, for all X0, X1, . . . ⊆ S.

The above notion of continuous Kleene ω-algebra may be seen as a special case
of the not necessarily idempotent complete semiring-semimodule pairs of [19]. A ho-
momorphism of continuous Kleene ω-algebras is a semiring-semimodule homomor-
phism h = (hS , hV) such that hS is a homomorphism of continuous Kleene algebras,
hV preserves all suprema, and h respects infinite products: for all x0, x1, . . . ∈ S,
hV (

∏
n≥0 xn) =

∏
n≥0 hS(xn).

One of our aims in this paper is to provide an extension of the notion of con-
tinuous Kleene ω-algebras to ∗-continuous Kleene ω-algebras, which are semiring-
semimodule pairs (S, V) consisting of a ∗-continuous Kleene algebra S acting on
a necessarily idempotent semimodule V , such that the action preserves certain
suprema in its first argument, and which are equipped with an infinite product
operation satisfying the above compatibility and associativity conditions and some
weaker forms of the last axiom.

5 Free Continuous Kleene ω-Algebras

In this section, we offer descriptions of the free continuous Kleene ω-algebras and
the free continuous Kleene ω-algebras satisfying the identity 1ω = ⊥. We recall the
following folklore result.

Theorem 1. For each set A, the language semiring (P (A∗),∨, ·,⊥, 1) is the free
continuous Kleene algebra on A.

In more detail, if S is a continuous Kleene algebra and h : A → S is any
function, then there is a unique homomorphism h] : P (A∗) → S of continuous
Kleene algebras which extends h.

In view of Theorem 1, it is not surprising that the free continuous Kleene ω-
algebras can be described using languages of finite and infinite words. Suppose
that A is a set. Let Aω denote the set of all ω-words over A and A∞ = A∗ ∪ Aω.
Let P (A∗) denote the language semiring over A and P (A∞) the semimodule of
all subsets of A∞ equipped with the action of P (A∗) defined by XY = {xy : x ∈
X, y ∈ Y } for all X ⊆ A∗ and Y ⊆ A∞. We also define an infinite product by∏
n≥0Xn = {u0u1 . . . : un ∈ Xn}. It is clear that (P (A∗), P (A∞)) is a continuous

Kleene ω-algebra.

Theorem 2. For each set A, (P (A∗), P (A∞)) is the free continuous Kleene ω-
algebra on A.

Proof. Suppose that (S, V) is any continuous Kleene ω-algebra an let h : A→ S be a
mapping. We want to show that there is a unique extension of h to a homomorphism
(h]S , h

]
V) from (P (A∗), P (A∞)) to (S, V).

For each u = a0 . . . an−1 in A∗, define hS(u) = h(a0) · · ·h(an−1) and hV (u) =
h(a0) · · ·h(an−1)1ω =

∏
k≥0 bk, where bk = ak for all k < n and bk = 1 for all

212 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

k ≥ n. When u = a0a1 . . . ∈ Aω, define hV (u) =
∏
k≥0 h(ak). Note that we have

hS(uv) = hS(u)hS(v) for all u, v ∈ A∗ and hS(ε) = 1. Also, hV (uv) = hS(u)hV (v)
for all u ∈ A∗ and v ∈ A∞. Thus, hV (XY) = hS(X)hV (Y) for all X ⊆ A∗ and
Y ⊆ A∞. Moreover, for all u0, u1, . . . in A∗, if ui 6= ε for infinitely many i, then
hV (u0u1 . . .) =

∏
k≥0 hS(uk). If on the other hand, uk = ε for all k ≥ n, then

hV (u0u1 . . .) = hS(u0) · · ·hS(un−1)1ω. In either case, if X0, X1, . . . ⊆ A∗, then
hV (

∏
n≥0Xn) =

∏
n≥0 hS(Xn).

Suppose now that X ⊆ A∗ and Y ⊆ A∞. We define h]S(X) =
∨
hS(X)

and h]V (Y) =
∨
hV (Y). It is well-known that h]S is a continuous semiring mor-

phism P (A∗) → S. Also, h]V preserves arbitrary suprema, since h]V (
⋃
i∈I Yi) =∨

hV (
⋃
i∈I Yi) =

∨⋃
i∈I hV (Yi) =

∨
i∈I
∨
hV (Yi) =

∨
i∈I h

]
V (Yi).

We prove that the action is preserved. Let X ⊆ A∗ and Y ⊆ A∞. Then
h]V (XY) =

∨
hV (XY) =

∨
hS(X)hV (Y) =

∨
hS(X)

∨
hV (Y) = h]S(X)h]V (Y).

Finally, we prove that the infinite product is preserved. Let X0, X1, . . . ⊆ A∗.
Then h]V (

∏
n≥0Xn) =

∨
hV (

∏
n≥0Xn) =

∨∏
n≥0 hS(Xn) =

∏
n≥0

∨
hS(Xn) =∏

n≥0 h
]
S(Xn).

It is clear that hS extends h, and that (hS , hV) is unique.

Consider now (P (A∗), P (Aω)) with infinite product defined, as a restriction of
the above infinite product, by

∏
n≥0Xn = {u0u1 . . . ∈ Aω : un ∈ Xn, n ≥ 0}. It is

also a continuous Kleene ω-algebra. Moreover, it satisfies 1ω = ⊥.

Lemma 4. (P (A∗), P (Aω)) is a quotient of (P (A∗), P (A∞)) under the homomor-
phism (ϕS , ϕV) such that ϕS is the identity on P (A∗) and ϕV maps Y ⊆ A∞ to
Y ∩Aω.

Proof. Suppose that Yi ⊆ A∞ for all i ∈ I. It holds that ϕV (
⋃
i∈I Yi) = Aω ∩⋃

i∈I Yi =
⋃
i∈I(A

ω ∩ Yi) =
⋃
i∈I ϕV (Yi).

Let X ⊆ A∗ and Y ⊆ A∞. Then hV (XY) = XY ∩ Aω = X(Y ∩ Aω) =
ϕS(X)ϕV (Y).

Finally, let X0, X1, . . . ⊆ A∗. Then hV (
∏
n≥0Xn) = {u0u1 . . . ∈ Aω : un ∈

Xn} =
∏
n≥0 hS(Xn).

Lemma 5. Suppose that (S, V) is a continuous Kleene ω-algebra satisfying 1ω = ⊥.
Let (hS , hV) be a homomorphism (P (A∗), P (A∞))→ (S, V). Then (hS , hV) factors
through (ϕS , ϕV).

Proof. Define h′S = hS and h′V : P (Aω) → V by h′V (Y) = hV (Y), for all Y ⊆ Aω.
Then clearly hS = h′S ◦ ϕS . Moreover, hV = h′V ◦ ϕV , since for all Y ⊆ A∞,
h′V (ϕV (Y)) = hV (Y ∩Aω) = hV (Y ∩Aω)∨hS(Y ∩A∗)1ω = hV (Y ∩Aω)∨hV ((Y ∩
A∗)1ω) = hV ((Y ∩Aω) ∪ (Y ∩A∗)1ω) = hV (Y).

Since (ϕS , ϕV) and (hS , hV) are homomorphisms, so is (h′S , h
′
V). It is clear that

h′V preserves all suprema.

Theorem 3. For each set A, (P (A∗), P (Aω)) is the free continuous Kleene ω-
algebra on A satisfying 1ω = ⊥.

An Algebraic Approach to Energy Problems I 213

Proof. Suppose that (S, V) is a continuous Kleene ω-algebra satisfying 1ω = ⊥.
Let h : A → S. By Theorem 2, there is a unique homomorphism (hS , hV) :
(P (A∗), P (A∞)) → (S, V) extending h. By Lemma 5, hS and hV factor as hS =
h′S ◦ϕS and hV = h′V ◦ϕV , where (h′S , h

′
V) is a homomorphism (P (A∗), P (Aω))→

(S, V). This homomorphism (h′S , h
′
V) is the required extension of h to a homo-

morphism (P (A∗), P (Aω)) → (S, V). Since the factorization is unique, so is this
extension.

6 ∗-Continuous Kleene ω-Algebras

In this section, we define ∗-continuous Kleene ω-algebras and finitary ∗-continuous
Kleene ω-algebras as an extension of the ∗-continuous Kleene algebras of [24]. We
establish several basic properties of these structures, including the existence of the
suprema of certain subsets corresponding to regular ω-languages.

Definition 5. A generalized ∗-continuous Kleene algebra is a semiring-semimodule
pair (S, V) in which S is a ∗-continuous Kleene algebra (hence S and V are idem-
potent), subject to the usual laws of unitary action as well as the following axiom

Ax0: For all x, y ∈ S and v ∈ V , xy∗v =
∨
n≥0 xy

nv.

Definition 6. A ∗-continuous Kleene ω-algebra is a generalized ∗-continuous Kleene
algebra (S, V) together with an infinite product operation Sω → V which maps ev-
ery ω-word x0x1 . . . over S to an element

∏
n≥0 xn of V , subject to the following

axioms:

Ax1: For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

Ax2: Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.

Ax3: For all x0, x1, . . . and y, z in S,
∏
n≥0(xn(y ∨ z)) =

∨
x′n∈{y,z}

∏
n≥0 xnx

′
n.

Ax4: For all x, y0, y1, . . . ∈ S,
∏
n≥0 x

∗yn =
∨
kn≥0

∏
n≥0 x

knyn.

The first two axioms are the same as for continuous Kleene ω-algebras. The last
two are weaker forms of the complete preservation of suprema of continuous Kleene
ω-algebras. It is clear that every continuous Kleene ω-algebra is ∗-continuous.

A homomorphism of ∗-continuous Kleene ω-algebras is a semiring-semimodule
homomorphism h = (hS , hV) : (S, V) → (S′, V ′) such that hS is a ∗-continuous
Kleene algebra homomorphism and h respects infinite products: for all x0, x1, . . . ∈
S, hV (

∏
n≥0 xn) =

∏
n≥0 hS(xn).

Some of our results will also hold for weaker structures. We define a finitary
∗-continuous Kleene ω-algebra as a structure (S, V) as above, equipped with a star
operation and an infinite product

∏
n≥0 xn restricted to finitary ω-words over S,

i.e., to sequences x0, x1, . . . such that there is a finite subset F of S such that each
xn is a finite product of elements of F . (Note that F is not fixed and may depend on

214 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

the sequence x0, x1, . . .) It is required that the axioms hold whenever the involved
ω-words are finitary.

The above axioms have a number of consequences. For example, if x0, x1, . . . ∈ S
and xi = ⊥ for some i, then

∏
n≥0 xn = ⊥. Indeed, if xi = ⊥, then

∏
n≥0 xn =

x0 · · ·xi
∏
n≥i+1 xn = ⊥

∏
n≥i+1 xn = ⊥. By Ax1 and Ax2, each ∗-continuous

Kleene ω-algebra is an ω-semigroup [26].

Suppose that (S, V) is a ∗-continuous Kleene ω-algebra. For each word w ∈ S∗
there is a corresponding element w of S which is the product of the letters of w in the
semiring S. Similarly, when w ∈ S∗V , there is an element w of V corresponding
to w, and when X ⊆ S∗ or X ⊆ S∗V , then we can associate with X the set
X = {w : w ∈ X}, which is a subset of S or V . Below we will denote w and X by
just w and X, respectively.

The following two lemmas are well-known and follow from the fact that the
semirings of regular languages are the free ∗-continuous Kleene algebras [24] (and
also the free Kleene algebras [25]).

Lemma 6. Suppose that S is a ∗-continuous Kleene algebra. If R ⊆ S∗ is regular,
then

∨
R exists. Moreover, for all x, y ∈ S, x(

∨
R)y =

∨
xRy.

Lemma 7. Let S be a ∗-continuous Kleene algebra. Suppose that R,R1 and R2

are regular subsets of S∗. Then

∨
(R1 ∪R2) =

∨
R1 ∨

∨
R2∨

(R1R2) = (
∨
R1)(

∨
R2)∨

(R∗) = (
∨
R)∗.

In a similar way, we can prove:

Lemma 8. Let (S, V) be a generalized ∗-continuous Kleene algebra. If R ⊆ S∗ is
regular, x ∈ S and v ∈ V , then x(

∨
R)v =

∨
xRv.

Proof. Suppose that R = ∅. Then x(
∨
R)v = ⊥ =

∨
xRv. If R is a singleton set

{y}, then x(
∨
R)v = xyv =

∨
xRv. Suppose now that R = R1 ∪R2 or R = R1R2,

where R1, R2 are regular, and suppose that our claim holds for R1 and R2. Then,
if R = R1 ∪R2,

x(
∨
R)v = x(

∨
R1 ∨

∨
R2)v (by Lemma 7)

= x(
∨
R1)v ∨ x(

∨
R2)v

=
∨
xR1v ∨

∨
xR2v

=
∨
x(R1 ∪R2)v =

∨
xRv,

An Algebraic Approach to Energy Problems I 215

where the third equality uses the induction hypothesis. If R = R1R2, then

x(
∨
R)v = x(

∨
R1)(

∨
R2)v (by Lemma 7)

=
∨

(xR1(
∨
R2)v)

=
∨
{y(
∨
R2)v : y ∈ xR1}

=
∨
{
∨
yR2v : y ∈ xR1}

=
∨
xR1R2v =

∨
xRv,

where the second equality uses the induction hypothesis for R1 and the fourth the
one for R2. Suppose last that R = R∗0, where R0 is regular and our claim holds for
R0. Then, using the previous case, it follows by induction that

x(
∨
Rn0)v =

∨
xRn0 v (1)

for all n ≥ 0. Using this and Ax0, it follows now that

x(
∨
R)v = x(

∨
R∗0)y = x(

∨
n≥0

∨
Rn0)v

= x(
∨
n≥0

(
∨
R0)n)v (by Lemma 7)

=
∨
n≥0

x(
∨
R0)nv (byAx0)

=
∨
n≥0

x(
∨
Rn0)v (by Lemma 7)

=
∨
n≥0

∨
xRn0 v (by (1))

=
∨
xR∗0v =

∨
xRv.

The proof is complete.

Lemma 9. Let (S, V) be a ∗-continuous Kleene ω-algebra. Suppose that the lan-
guages R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite set.
Moreover, let x0, x1, . . . ∈ S. Then∏

n≥0

xn(
∨
Rn) =

∨∏
n≥0

xnRn.

Proof. If one of the Ri is empty, our claim is clear since both sides are equal to ⊥,
so we suppose they are all nonempty.

Below we will suppose that each regular language comes with a fixed decom-
position having a minimal number of operations needed to obtain the language
from the empty set and singleton sets. For a regular language R, let |R| denote

216 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

the minimum number of operations needed to construct it. When R is a finite
set of regular languages, let Rns denote the set of non-singleton languages in it.
Let |R| =

∑
R∈Rns

3|R|. Our definition ensures that if R = {R,R1, . . . , Rn} and
R = R′ ∪R′′ or R = R′R′′ according to the fixed minimal decomposition of R, and
if R′ = {R′, R′′, R1, . . . , Rn}, then |R′| < |R|. Similarly, if R = R∗0 by the fixed
minimal decomposition and R′ = {R0, R1, . . . , Rn}, then |R′| < |R|.

We will argue by induction on |R|.
When |R| = 0, then R consists of singleton languages and our claim follows

from Ax3. Suppose that |R| > 0. Let R be a non-singleton language appearing in
R. If R appears only a finite number of times among the Rn, then there is some
m such that Rn is different from R for all n ≥ m. Then,∏

n≥0

xn(
∨
Rn) =

∏
i<m

xi(
∨
Ri)

∏
n≥m

xn(
∨
Rn) (by Ax1)

= (
∨
x0R0 · · ·xn−1Rn−1)

∏
n≥m

xn(
∨
Rn) (by Lemma 7)

=
∨

(x0R0 · · ·xn−1Rn−1
∏
n≥m

xn(
∨
Rn)) (by Lemma 8)

=
∨
{y
∏
n≥m

xn(
∨
Rn) : y ∈ x0R0 · · ·xn−1Rn−1}

=
∨
{
∨
y
∏
n≥m

xnRn : y ∈ x0R0 · · ·xn−1Rn−1}

=
∨∏

n≥0

xnRn,

where the passage from the 4th line to the 5th uses induction hypothesis and Ax1.
Suppose now that R appears an infinite number of times among the Rn. Let

Ri1 , Ri2 , . . . be all the occurrences of R among the Rn. Define

y0 = x0(
∨
R0) · · · (

∨
Ri1−1)xi1

yj = xij+1(
∨
Rij+1) · · · (

∨
Rij+1−1)xij+1

,

for j ≥ 1. Similarly, define

Y0 = x0R0 · · ·Ri1−1xi1
Yj = xij+1Rij+1 · · ·Rij+1−1xij+1 ,

for all j ≥ 1. It follows from Lemma 7 that

yj =
∨
Yj

for all j ≥ 0. Then ∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
R), (2)

An Algebraic Approach to Energy Problems I 217

by Ax2, and ∏
n≥0

xnRn =
∏
j≥0

YjR.

If R = R′ ∪R′′, then:

∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨

(R′ ∪R′′)) (by (2))

=
∏
j≥0

yj(
∨
R′ ∨

∨
R′′) (by Lemma 7)

=
∨

zj∈{
∨
R′,

∨
R′′}

∏
j≥0

yjzj (by Ax3)

=
∨

zj∈{
∨
R′,

∨
R′′}

∨∏
j≥0

Yjzj

=
∨

Zj∈{R′,R′′}

∨∏
j≥0

YjZj

=
∨∏

n≥0

xn(R′ ∪R′′) =
∨∏

n≥0

xnR,

where the 4th and 5th equalities hold by the induction hypothesis and Ax2.

Suppose now that R = R′R′′. Then, applying the induction hypothesis almost
directly,

∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
R′R′′)

=
∏
j≥0

yj(
∨
R′)(

∨
R′′) (by Lemma 7)

=
∨∏

j≥0

Yj(
∨
R′)(

∨
R′′)

=
∨∏

j≥0

YjR
′R′′

=
∨∏

n≥0

xnR
′R′′ =

∨∏
n≥0

xnR,

where the third and fourth equalities come from the induction hypothesis and Ax2.

The last case to consider is when R = T ∗, where T is regular. We argue as

218 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

follows: ∏
n≥0

xn(
∨
Rn) =

∏
j≥0

yj(
∨
T ∗)

=
∏
j≥0

yj(
∨
T)∗ (by Lemma 7)

=
∨

k0,k1,...

∏
j≥0

yj(
∨
T)kj (by Ax1 and Ax4)

=
∨

k0,k1,...

∨∏
j≥0

Yj(
∨
T)kj

=
∨

k0,k1,...

∨∏
j≥0

YjT
kj

=
∨
j≥0

YjT
∗ =

∨
j≥0

YjRj =
∨
n≥0

xnRn,

where the 4th and 5th equalities follow from the induction hypothesis and Ax2.
The proof is complete.

By the same proof, we have the following version of Lemma 9 for the finitary
case:

Lemma 10. Let (S, V) be a finitary ∗-continuous Kleene ω-algebra. Suppose that
the languages R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite
set. Moreover, let x0, x1, . . . be a finitary sequence of elements of S. Then∏

n≥0

xn(
∨
Rn) =

∨∏
n≥0

xnRn.

Note that each sequence x0, y0, x1, y1, . . . with yn ∈ Rn is finitary.

Corollary 1. Let (S, V) be a finitary ∗-continuous Kleene ω-algebra. Suppose
that R0, R1, . . . ⊆ S∗ are regular and that R = {R0, R1, . . . } is a finite set. Then∨∏

n≥0Rn exists and is equal to
∏
n≥0

∨
Rn.

Using our earlier convention that ω-words v = x0x1 . . . ∈ Sω over S determine
elements

∏
n≥0 xn of V and subsets X ⊆ Sω determine subsets of V , Lemma 9 may

be rephrased as follows.
For any ∗-continuous Kleene ω-algebra (S, V), x0, x1, . . . ∈ S and regular sets

R0, R1, . . . ⊆ S∗ for which R = {R0, R1, . . . } is a finite set, it holds that∏
n≥0

xn(
∨
Rn) =

∨
X,

where X ⊆ Sω is the set of all ω-words x0y0x1y1 . . . with yi ∈ Ri for all i ≥ 0,
i.e., X = x0R0x1R1 . . .

An Algebraic Approach to Energy Problems I 219

Similarly, Corollary 1 asserts that if a subset of V corresponds to an infinite
product over a finite collection of ordinary regular languages in S∗, then the supre-
mum of this set exists.

In any (finitary or non-finitary) ∗-continuous Kleene ω-algebra (S, V), we define
an ω-power operation S → V by xω =

∏
n≥0 x for all x ∈ S. From the axioms we

immediately have:

Corollary 2. Suppose that (S, V) is a (finitary or non-finitary) ∗-continuous Kleene
ω-algebra. Then the following hold for all x, y ∈ S:

xω = xxω

(xy)ω = x(yx)ω

xω = (xn)ω, n ≥ 2.

Thus, each ∗-continuous Kleene ω-algebra gives rise to a Wilke algebra [29].

Lemma 11. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that R ⊆ Sω is ω-regular. Then

∨
R exists in V .

Proof. It is well-known that R can be written as a finite union of sets of the form
R0(R1)ω where R0, R1 ⊆ S∗ are regular, moreover, R1 does not contain the empty
word. It suffices to show that

∨
R0(R1)ω exists. But this holds by Corollary 1.

Lemma 12. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. For all ω-regular sets R1, R2 ⊆ Sω and regular sets R ⊆ S∗ it holds
that ∨

(R1 ∪R2) =
∨
R1 ∨

∨
R2∨

(RR1) = (
∨
R)(
∨
R1).

And if R does not contain the empty word, then∨
Rω = (

∨
R)ω.

Proof. The first claim is clear. The second follows from Lemma 8. For the last, see
the proof of Lemma 11.

7 Free Finitary ∗-Continuous Kleene ω-Algebras

Recall that for a set A, R(A∗) denotes the collection of all regular languages in A∗.
It is well-known that R(A∗), equipped with the usual operations, is a ∗-continuous
Kleene algebra on A. Actually, R(A∗) is characterized up to isomorphism by the
following universal property.

Theorem 4 ([25]). For each set A, R(A∗) is the free ∗-continuous Kleene algebra
on A.

220 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Thus, if S is any ∗-continuous Kleene algebra and h : A → S is any mapping
from any set A into S, then h has a unique extension to a ∗-continuous Kleene
algebra homomorphism h] : R(A∗)→ S.

Now let R′(A∞) denote the collection of all subsets of A∞ which are finite
unions of finitary infinite products of regular languages, that is, finite unions of
sets of the form

∏
n≥0Rn, where each Rn ⊆ A∗ is regular, and the set {R0, R1, . . .}

is finite. Note that R′(A∞) contains the empty set and is closed under finite unions.
Moreover, when Y ∈ R′(A∞) and u = a0a1 . . . ∈ Y ∩Aω, then the alphabet of u is
finite, i.e., the set {an : n ≥ 0} is finite. Also, R′(A∞) is closed under the action
of R(A∗) inherited from (P (A∗), P (A∞)). The infinite product of a sequence of
regular languages in R(A∗) is not necessarily contained in R′(A∞), but by definition
R′(A∞) contains all infinite products of finitary sequences over R(A∗).

Example 3. Let A = {a, b} and consider the set X = {aba2b . . . anb . . . } ∈ P (A∞)
containing a single ω-word. X can be written as an infinite product of subsets of
A∗, but it cannot be written as an infinite product R0R1 . . . of regular languages
in A∗ such that the set {R0, R1, . . .} is finite. Hence X /∈ R′(A∞).

Theorem 5. For each set A, (R(A∗), R′(A∞)) is the free finitary ∗-continuous
Kleene ω-algebra on A.

Proof. Our proof is modeled after the proof of Theorem 2. First, it is clear from
the fact that (P (A∗), P (A∞)) is a continuous Kleene ω-algebra, and that R(A∗)
is a ∗-continuous semiring, that (R(A∗), R′(A∞)) is indeed a finitary ∗-continuous
Kleene ω-algebra.

Suppose that (S, V) is any finitary ∗-continuous Kleene ω-algebra and let h :
A→ S be a mapping. For each u = a0 . . . an−1 in A∗, let hS(u) = h(a0) · · ·h(an−1)
and hV (u) = h(a0) · · ·h(an−1)1ω =

∏
k≥0 bk, where bk = ak for all k < n and

bk = 1 for all k ≥ n. When u = a0a1 . . . ∈ Aω whose alphabet is finite, define
hV (u) =

∏
k≥0 h(ak). This infinite product exists in R′(A∞).

Note that we have hS(uv) = hS(u)hS(v) for all u, v ∈ A∗, and hS(ε) = 1. And if
u ∈ A∗ and v ∈ A∞ such that the alphabet of v is finite, then hV (uv) = hS(u)hV (v).
Also, hV (XY) = hS(X)hV (Y) for all X ⊆ A∗ in R(A∗) and Y ⊆ A∞ in R′(A∞).

Moreover, for all u0, u1, . . . in A∗, if ui 6= ε for infinitely many i, such that
the alphabet of u0u1 . . . is finite, then hV (u0u1 . . .) =

∏
k≥0 hS(uk). If on the

other hand, uk = ε for all k ≥ n, then hV (u0u1 . . .) = hS(u0) · · ·hS(un−1)1ω. In
either case, if X0, X1, . . . ⊆ A∗ are regular and form a finitary sequence, then the
sequence hS(X0), hS(X1), . . . is also finitary as is each infinite word in

∏
n≥0Xn,

and hV (
∏
n≥0Xn) =

∏
n≥0 hS(Xn).

Suppose now that X ⊆ A∗ is regular and Y ⊆ A∞ is in R′(A∞). We de-

fine h]S(X) =
∨
hS(X) and h]V (Y) =

∨
hV (Y). It is well-known that h]S is

a ∗-continuous Kleene algebra morphism R(A∗) → S. Also, h]V preserves finite

suprema, since when I is finite, h]V (
⋃
i∈I Yi) =

∨
hV (

⋃
i∈I Yi) =

∨⋃
i∈I hV (Yi) =∨

i∈I
∨
hV (Yi) =

∨
i∈I h

]
V (Yi).

We prove that the action is preserved. Let X ∈ R(A∗) and Y ∈ R′(A∞). Then

h]V (XY) =
∨
hV (XY) =

∨
hS(X)hV (Y) =

∨
hS(X)

∨
hV (Y) = h]S(X)h]V (Y).

An Algebraic Approach to Energy Problems I 221

Finally, we prove that infinite product of finitary sequences is preserved. Let
X0, X1, . . . be a finitary sequence of regular languages in R(A∗). Then, using Corol-

lary 1, h]V (
∏
n≥0Xn) =

∨
hV (

∏
n≥0Xn) =

∨∏
n≥0 hS(Xn) =

∏
n≥0

∨
hS(Xn) =∏

n≥0 h
]
S(Xn).

It is clear that hS extends h, and that (hS , hV) is unique.

Consider now (R(A∗), R′(Aω)) equipped with the infinite product operation∏
n≥0Xn = {u0u1 ∈ Aω : un ∈ Xn, n ≥ 0}, defined on finitary sequences

X0, X1, . . . of languages in R(A∗).

Lemma 13. Suppose that (S, V) is a finitary ∗-continuous Kleene ω-algebra satis-
fying 1ω = ⊥. Let (hS , hV) be a homomorphism (R(A∗), R′(A∞))→ (S, V). Then
(hS , hV) factors through (ϕS , ϕV).

Proof. Similar to the proof of Lemma 5.

Theorem 6. For each set A, (R(A∗), R′(Aω)) is the free finitary ∗-continuous
Kleene ω-algebra satisfying 1ω = ⊥ on A.

Proof. This follows from Theorem 5 using Lemma 13.

8 ∗-Continuous Kleene ω-Algebras Are Iteration
Semiring-Semimodule Pairs

In this section, we will show that every (finitary or non-finitary) ∗-continuous Kleene
ω-algebra is an iteration semiring-semimodule pair.

Some definitions are in order. Suppose that S = (S,∨, ·,⊥, 1) is an idempotent
semiring. Following [2], we call S a Conway semiring if S is equipped with a star
operation ∗ : S → S satisfying, for all x, y ∈ S,

(x ∨ y)∗ = (x∗y)∗x∗

(xy)∗ = 1 ∨ x(yx)∗y .

(Note that in [2], also non-idempotent Conway semirings have been considered, but
we stick to the idempotent case here.)

It is known [2] that if S is a Conway semiring, then for each n ≥ 1, so is
the semiring Sn×n of all n × n-matrices over S with the usual sum and product
operations and the star operation defined by induction on n so that if n > 1 and
M =

(
a b
c d

)
, where a and d are square matrices of dimension < n, then

M∗ =

(
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗
)
.

The above definition does not depend on how M is split into submatrices.
Suppose that S is a Conway semiring andG = {g1, . . . , gn} is a finite group of or-

der n. For each xg1 , . . . , xgn ∈ S, consider the n×n matrix MG = MG(xg1 , . . . , xgn)

222 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

whose ith row is (xg−1
i g1

, . . . , xg−1
i gn

), for i = 1, . . . , n, so that each row (and col-

umn) is a permutation of the first. We say that the group identity [8] associated
with G holds in S if for each xg1 , . . . , xgn , the first (and then any) row sum of M∗G
is (xg1 ∨ · · · ∨ xgn)∗. Finally, we call S an iteration semiring [2, 11] if the group
identities hold in S for all finite groups of order n.

Classes of examples of (idempotent) iteration semirings are given by the continu-
ous and the ∗-continuous Kleene algebras defined in the introduction. As mentioned
above, the language semirings P (A∗) and the semirings P (A × A) of binary rela-
tions are continuous and hence also ∗-continuous Kleene algebras, and the semirings
R(A∗) of regular languages are ∗-continuous Kleene algebras.

When S is a ∗-continuous Kleene algebra and n is a nonnegative integer, then the
matrix semiring Sn×n is also a ∗-continuous Kleene algebra and hence an iteration
semiring, cf. [24]. The star operation is defined by

M∗i,j =
∨

m≥0, 1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm,j ,

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. It is not trivial to prove that the above
supremum exists. The fact that M∗ is well-defined can be established by induction
on n together with the well-known matrix star formula mentioned above.

An idempotent semiring-semimodule pair (S, V) is a Conway semiring-semi-
module pair if it is equipped with a star operation ∗ : S → S and an omega
operation ω : S → V such that S is a Conway semiring acting on the semimodule
V = (V,∨,⊥) and the following hold for all x, y ∈ S:

(x ∨ y)ω = (x∗y)∗xω ∨ (x∗y)ω

(xy)ω = x(yx)ω.

It is known [2] that when (S, V) is a Conway semiring-semimodule pair, then
so is (Sn×n, V n) for each n, where V n denotes the Sn×n-semimodule of all n-
dimensional (column) vectors over V with the action of Sn×n defined similarly to
matrix-vector product, and where the omega operation is defined by induction so
that when n > 1 and M =

(
a b
c d

)
, where a and d are square matrices of dimension

< n, then

Mω =

(
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
. (3)

We also define iteration semiring-semimodule pairs [2, 19] as those Conway
semiring-semimodule pairs such that S is an iteration semiring and the omega
operation satisfies the following condition: let MG = MG(xg1 , . . . , xgn) like above,
with xg1 , . . . , xgn ∈ S for a finite group G = {g1, . . . , gn} of order n, then the first
(and hence any) entry of Mω

G is equal to (xg1 ∨ · · · ∨ xgn)ω.
Examples of (idempotent) iteration semiring-semimodule pairs include the semi-

ring-semimodule pairs (P (A∗), P (Aω)) of languages and ω-languages over an alpha-
bet A mentioned earlier. The omega operation is defined by Xω =

∏
n≥0X. More

An Algebraic Approach to Energy Problems I 223

generally, it is known that every continuous Kleene ω-algebra gives rise to an iter-
ation semiring-semimodule pair. The omega operation is defined as for languages:
xω =

∏
n≥0 xn with xn = x for all n ≥ 0.

Other not necessarily idempotent examples include the complete and the (sym-
metric) bi-inductive semiring-semimodule pairs of [18, 19].

Suppose now that (S, V) is a ∗-continuous Kleene ω-algebra. Then for each
n ≥ 1, (Sn×n, V n) is a semiring-semimodule pair. The action of Sn×n on V n is
defined similarly to matrix-vector product (viewing the elements of V n as column
vectors). It is easy to see that (Sn×n, V n) is a generalized ∗-continuous Kleene
algebra for each n ≥ 1.

Suppose that n ≥ 2. We would like to define an infinite product operation
(Sn×n)ω → V n on matrices in Sn×n by

(
∏
m≥0

Mm)i =
∨

1≤i1,i2,...≤n

(M0)i,i1(M1)i1,i2 · · ·

for all 1 ≤ i ≤ n. However, unlike in the case of complete semiring-semimodule
pairs [19], the supremum on the right-hand side may not exist. Nevertheless it is
possible to define an omega operation Sn×n → V n and to turn (Sn×n, V n) into an
iteration semiring-semimodule pair.

Lemma 14. Let (S, V) be a (finitary or non-finitary) ∗-continuous Kleene ω-
algebra. Suppose that M ∈ Sn×n, where n ≥ 2. Then for every 1 ≤ i ≤ n,

(
∏
m≥0

M)i =
∨

1≤i1,i2,...≤n

Mi,i1Mi1,i2 · · ·

exists, so that we define Mω by the above equality. Moreover, when M =
(
a b
c d

)
,

where a and d are square matrices of dimension < n, then (3) holds.

Proof. Suppose that n = 2. Then by Corollary 1, (a ∨ bd∗c)ω is the supremum
of the set of all infinite products A1,i1Ai1,i2 · · · containing a or c infinitely often,
and (a∨ bd∗c)∗bdω is the supremum of the set of all infinite products A1,i1Ai1,i2 · · ·
containing a and c only finitely often. Thus, (a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω is the
supremum of the set of all infinite products A1,i1Ai1,i2 · · · . Similarly, (d∨ ca∗b)ω ∨
(d ∨ ca∗b)∗caω is the supremum of the set of all infinite products A2,i1Ai1,i2 · · · .

The proof of the induction step is similar. Suppose that n > 2, and let a be k×k.
Then by induction hypothesis, for every i with 1 ≤ i ≤ k, the ith component of (a∨
bd∗c)ω is the supremum of the set of all infinite products Ai,i1Ai1,i2 · · · containing
an entry of a or c infinitely often, whereas the ith component of (a ∨ bd∗c)∗bdω is
the supremum of all infinite products Ai,i1Ai1,i2 · · · containing entries of a and c
only finitely often. Thus, the ith component of (a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω is the
supremum of the set of all infinite products Ai,i1Ai1,i2 · · · . A similar fact holds for
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω. The proof is complete.

Theorem 7. Every (finitary or non-finitary) ∗-continuous Kleene ω-algebra is an
iteration semiring-semimodule pair.

224 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Proof. Suppose that (S, V) is a finitary ∗-continuous Kleene ω-algebra. Then

(x ∨ y)ω = (x∗y)ω ∨ (x∗y)∗xω,

since by Lemma 7 and Lemma 12, (x∗y)ω is the supremum of the set of all infinite
products over {x, y} containing y infinitely often, and (x∗y)∗xω is the supremum of
the set of infinite products over {x, y} containing y finitely often. Thus, (x∗y)ω ∨
(x∗y)∗xω is equal to (x∨y)ω, which by Ax3 is the supremum of all infinite products
over {x, y}. As noted above, also

(xy)ω = x(yx)ω

for all x, y ∈ S. Thus, (S, V) is a Conway semiring-semimodule pair and hence so
is each (Sn×n, V n).

To complete the proof of the fact that (S, V) is an iteration semiring-semimodule
pair, suppose that x1, . . . , xn ∈ S, and let x = x1 ∨ · · · ∨ xn. Let A be an n × n
matrix whose rows are permutations of the x1, . . . , xn. We need to prove that each
component of Aω is xω. We use Lemma 14 and Ax3 to show that both are equal
to the supremum of the set of all infinite products over the set X = {x1, . . . , xn}.

By Lemma 14, for each i0 = 1, . . . , n, the i0th row ofAω is
∨
i1,i2,...

ai0,i1ai1,i2 · · · .
It is clear that each infinite product ai0,i1ai1,i2 · · · is an infinite product over X.
Suppose now that xj0xj1 · · · is an infinite product over X. We define by induction
on k ≥ 0 an index ik+1 such that aik,ik+1

= xjk . Suppose that k = 0. Then let i1
be such that ai0,i1 = xj0 . Since xj0 appears in the i0th row, there is such an i1.
Suppose that k > 0 and that ik has already been defined. Since xjk appears in the
ikth row, there is some ik+1 with aik,ik+1

= xjk . We have completed the proof of
the fact that the i0th entry of Aω is the supremum of the set of all infinite products
over the set X = {x1, . . . , xn}.

Consider now xω = xx · · · . We use induction on n to prove that xω is also the
supremum of the set of all infinite products over the set X = {x1, . . . , xn}. When
n = 1 this is clear. Suppose now that n > 1 and that the claim is true for n − 1.
Let y = x1 ∨ · · · ∨ xn−1 so that x = y ∨ xn. We have:

xω = (y ∨ xn)ω

= (x∗ny)∗xωn ∨ (x∗ny)ω

= (x∗ny)∗xωn ∨ (x∗nx1 ∨ · · · ∨ x∗nxn−1)ω.

Now

(x∗ny)∗xωn =
∨

k,m1,...,mk≥0

xm1
n y · · ·xmk

n yxωn

by Lemma 8, which is the supremum of all infinite products over X containing
x1, . . . , xn−1 only a finite number of times.

An Algebraic Approach to Energy Problems I 225

Also, using the induction hypothesis and Ax4,

(x∗nx1 ∨ · · · ∨ x∗nxn−1)ω =
∨

1≤i1,i2,...≤n−1

x∗nxi1x
∗
nxi2 · · ·

=
∨

1≤i1,i2,...≤n−1

∨
k0,k1,...

xk0n xi1x
k1
n xi2 · · ·

which is the supremum of all infinite products overX containing one of x1, . . . , xn−1
an infinite number of times. Thus, xω is the supremum of all infinite products over
X as claimed.

9 Kleene ω-Algebras

Recall that when S is a ∗-continuous Kleene algebra, then S is a Kleene algebra [24].
Thus, for all x, y ∈ S, x∗y is the least pre-fixed point (and thus the least fixed point)
of the function S → S defined by z 7→ xz ∨ y for all z ∈ S. Moreover, yx∗ is the
least pre-fixed point and the least fixed point of the function S → S defined by
z 7→ zx ∨ y, for all z ∈ S. Similarly, when (S, V) is a generalized ∗-continuous
Kleene algebra, then for all x ∈ S and v ∈ V , x∗v is the least pre-fixed point and
the least fixed point of the function V → V defined by z 7→ xz ∨ v.

As a natural analogy to Kleene algebras in semiring-semimodule pairs, we pro-
pose a notion of Kleene ω-algebra.

Definition 7. A Kleene ω-algebra is a semiring-semimodule pair (S, V) in which
S is a Kleene algebra and equipped with an omega operation ω : S → V such that
the following hold for all x, y ∈ S and v ∈ V :

• x∗v is the least pre-fixed point of the function V → V defined by z 7→ xz ∨ v,

• xω ∨ x∗v is the greatest post-fixed point of the function V → V defined by
z 7→ xz ∨ v.

It is clear that any Kleene ω-algebra is a bi-inductive semiring-semimodule pair
in the sense of [19]. By the above remarks we have:

Lemma 15. Suppose that (S, V) is a (finitary or non-finitary) ∗-continuous Kleene
ω-algebra. When for all x ∈ S and v ∈ V , xω ∨ x∗v is the greatest post-fixed point
of the function V → V defined by z 7→ xz ∨ v, then (S, V) is a Kleene ω-algebra.

We remark that the precondition of the lemma is indeed necessary, and it is
not the case that any ∗-continuous Kleene ω-algebra is a Kleene ω-algebra. As an
example, note that the above property implies that 1ω is the greatest fixed point
of the mapping z 7→ z; but we have seen in Theorem 6 that there are finitary
∗-continuous Kleene ω-algebras with 1ω = ⊥.

226 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

10 Conclusion

Motivated by an application to energy problems, we have introduced continuous
and ∗-continuous Kleene ω-algebras and exposed some of their basic properties.
Continuous Kleene ω-algebras are idempotent complete semiring-semimodule pairs,
and conceptually, ∗-continuous Kleene ω-algebras are a generalization of continuous
Kleene ω-algebras in much the same way as ∗-continuous Kleene algebras are of
continuous Kleene algebras: In ∗-continuous Kleene algebras, suprema of finite sets
and of sets of powers are required to exist and to be preserved by the product; in
∗-continuous Kleene ω-algebras these suprema are also required to be preserved by
the infinite product.

We have seen that the sets of finite and infinite languages over an alphabet
are the free continuous Kleene ω-algebras, and that the free finitary ∗-continuous
Kleene ω-algebras are given by the sets of regular languages and of finite unions
of finitary infinite products of regular languages. A characterization of the free
(non-finitary) ∗-continuous Kleene ω-algebras (and whether they even exist) is left
open.

We have seen that every ∗-continuous Kleene ω-algebra is an iteration semiring-
semimodule pair, hence also matrix-vector semiring-semimodule pairs over ∗-con-
tinuous Kleene ω-algebras are iteration semiring-semimodule pairs. In the second
paper of the series [15], we will apply the algebraic setting developed here in order
to solve energy problems.

References

[1] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series
With Applications. Cambridge Univ. Press, 2010.

[2] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic
of Iterative Processes. EATCS monographs on theoretical computer science.
Springer-Verlag, 1993.

[3] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Timed
automata with observers under energy constraints. In Karl Henrik Johansson
and Wang Yi, editors, HSCC, pages 61–70. ACM, 2010.

[4] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jǐŕı
Srba. Infinite runs in weighted timed automata with energy constraints. In
Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of Lect.
Notes Comput. Sci., pages 33–47. Springer-Verlag, 2008.

[5] Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. Lower-bound-
constrained runs in weighted timed automata. Perform. Eval., 73:91–109,
2014.

An Algebraic Approach to Energy Problems I 227

[6] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and
mean-payoff timed games. In Martin Fränzle and John Lygeros, editors, HSCC,
pages 283–292. ACM, 2014.

[7] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor.
Comput. Sci., 458:49–60, 2012.

[8] John H. Conway. Regular Algebra and Finite Machines. Chapman and Hall,
1971.

[9] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and
Szymon Toruńczyk. Energy and mean-payoff games with imperfect informa-
tion. In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lect.
Notes Comput. Sci., pages 260–274. Springer-Verlag, 2010.

[10] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 2009.

[11] Zoltán Ésik. Iteration semirings. In Masami Ito and Masafumi Toyama, ed-
itors, DLT, volume 5257 of Lect. Notes Comput. Sci., pages 1–20. Springer-
Verlag, 2008.

[12] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras.
In Igor Potapov, editor, DLT, volume 9168 of Lect. Notes Comput. Sci., pages
240–251. Springer-Verlag, 2015.

[13] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras
for energy problems. In Ralph Matthes and Matteo Mio, editors, FICS, volume
191 of Electr. Proc. Theor. Comput. Sci., pages 48–59, 2015.

[14] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. Kleene alge-
bras and semimodules for energy problems. In Dang Van Hung and Mizuhito
Ogawa, editors, ATVA, volume 8172 of Lect. Notes Comput. Sci., pages 102–
117. Springer-Verlag, 2013.

[15] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. An algebraic
approach to energy problems II: The algebra of energy functions. Acta Cyb.,
2017. In this issue.

[16] Zoltán Ésik and Werner Kuich. Rationally additive semirings. J. Univ. Com-
put. Sci., 8(2):173–183, 2002.

[17] Zoltán Ésik and Werner Kuich. Inductive star-semirings. Theor. Comput. Sci.,
324(1):3–33, 2004.

[18] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of
ω-regular languages, Parts 1 and 2. J. Aut. Lang. Comb., 10:203–264, 2005.

228 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

[19] Zoltán Ésik and Werner Kuich. On iteration semiring-semimodule pairs. Semi-
group Forum, 75:129–159, 2007.

[20] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jǐŕı Srba. Energy games in
multiweighted automata. In Antonio Cerone and Pekka Pihlajasaari, editors,
ICTAC, volume 6916 of Lect. Notes Comput. Sci., pages 95–115. Springer-
Verlag, 2011.

[21] Uli Fahrenberg, Axel Legay, and Karin Quaas. Büchi conditions for general-
ized energy automata. In Manfred Droste and Heiko Vogler, editors, WATA,
page 47, 2012.

[22] Jonathan S. Golan. Semirings and their Applications. Springer-Verlag, 1999.

[23] Line Juhl, Kim G. Larsen, and Jean-François Raskin. Optimal bounds for mul-
tiweighted and parametrised energy games. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, Theories of Programming and Formal Methods, vol-
ume 8051 of Lect. Notes Comput. Sci., pages 244–255. Springer-Verlag, 2013.

[24] Dexter Kozen. On Kleene algebras and closed semirings. In Branislav Rovan,
editor, MFCS, volume 452 of Lect. Notes Comput. Sci., pages 26–47. Springer-
Verlag, 1990.

[25] Dexter Kozen. A completeness theorem for Kleene algebras and the algebra
of regular events. Inf. Comput., 110(2):366–390, 1994.

[26] Dominique Perrin and Jean-Éric Pin. Infinite Words: Automata, Semigroups,
Logic and Games. Academic Press, 2004.

[27] Karin Quaas. On the interval-bound problem for weighted timed automata.
In Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors,
LATA, volume 6638 of Lect. Notes Comput. Sci., pages 452–464. Springer-
Verlag, 2011.

[28] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger,
Alexander Moshe Rabinovich, and Jean-François Raskin. The complexity of
multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196, 2015.

[29] Thomas Wilke. An Eilenberg theorem for infinity-languages. In Javier Leach
Albert, Burkhard Monien, and Mario Rodŕıguez-Artalejo, editors, ICALP,
volume 510 of Lect. Notes Comput. Sci., pages 588–599. Springer-Verlag, 1991.

Acta Cybernetica 23 (2017) 229–268.

An Algebraic Approach to Energy Problems II

The Algebra of Energy Functions∗

Zoltán Ésika, Uli Fahrenbergb, Axel Legayc, and Karin Quaasd

Abstract

Energy and resource management problems are important in areas such
as embedded systems or autonomous systems. They are concerned with the
question whether a given system admits infinite schedules during which cer-
tain tasks can be repeatedly accomplished and the system never runs out of
energy (or other resources). In order to develop a general theory of energy
problems, we introduce energy automata: finite automata whose transitions
are labeled with energy functions which specify how energy values change
from one system state to another.

We show that energy functions form a ∗-continuous Kleene ω-algebra,
as an application of a general result that finitely additive, locally ∗-closed
and >-continuous functions on complete lattices form ∗-continuous Kleene
ω-algebras. This permits to solve energy problems in energy automata in a
generic, algebraic way. In order to put our work in context, we also review
extensions of energy problems to higher dimensions and to games.

Keywords: Energy problem, Kleene algebra, ∗-continuity, ∗-continuous Kleene
ω-algebra

1 Introduction

Energy and resource management problems are important in areas such as em-
bedded systems or autonomous systems. They are concerned with the question
whether a given system admits infinite schedules during which (1) certain tasks
can be repeatedly accomplished and (2) the system never runs out of energy (or

∗This research was supported by grant no. K 108448 from the National Foundation of Hun-
gary for Scientific Research (OTKA), by ANR MALTHY, grant no. ANR-13-INSE-0003 from the
French National Research Foundation, and by Deutsche Forschungsgemeinschaft (DFG), projects
QU 316/1-1 and QU 316/1-2.

aUniversity of Szeged, Hungary (deceased)
bÉcole polytechnique, Palaiseau, France. Most of this work was carried out while this author

was still employed at Inria Rennes.
cInria Rennes, France
dUniversität Leipzig, Germany

DOI: 10.14232/actacyb.23.1.2017.14

230 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

other specified resources). Starting with [11], formal modeling and analysis of such
problems has recently attracted some attention [10,12,15,19,22,33,39,46,48].

As an example, Fig. 1 shows a simple model of an electric car, modeled as a
weighted timed automaton [4,5]. In the working state W, energy is consumed at a
rate of 10 energy units per time unit; in the two recharging states R1 and R2, the
battery is charged at a rate of 20, respectively 10, energy units per time unit. As
the clock c is reset (c← 0) when entering state W and has guard c ≥ 1 on outgoing
transitions, we ensure that the car always has to be in state W for at least one time
unit. Similarly, the system can only transition back from states R1, R2 to W if it
has spent at most one time unit in these states.

Passing from state W to R2 (and back) requires 2 energy units, whereas passing
from W to R1 requires 6 energy units and passing back from R1 to W requires 4
energy units. Passing from R2 to R1 requires 5 energy units, and passing from R1

to R2 requires 1 energy unit.

W
−10

R1

+20

R2

+10

c ≥ 1, c
← 0,−6

c ≤ 1, c
← 0,−4

c ≥ 1, c← 0,−2

c ≤ 1, c← 0,−2

−5 −1

Figure 1: Simple model of an electric
car as a weighted timed automaton.

Altogether, this is intended to model
the fact that there are two recharge sta-
tions available, one close to work but less
powerful, and a more powerful one further
away and located uphill, so that moving
upwards costs more energy than moving
downwards. Now assume that the initial
state W is entered with a given initial en-
ergy x0, then the energy problem of this
model is as follows: Does there exist an infi-
nite trace which (1) visits W infinitely often
and (2) never has an energy level below 0?

In order to develop a general theory
which can be applied to the above and other
types of energy problems, we have in [27,36]
introduced energy automata. These are fi-
nite automata whose transitions are labeled with energy functions which specify
how energy values change from one system state to another. Using the theory of
semiring-weighted automata [24], we have shown in [27] that energy problems in
such automata can be solved in a simple static way which only involves manipula-
tions of energy functions.

In order to put the work of [27] on a more solid theoretical footing and with an
eye to future generalizations, we have recently introduced a new algebraic structure
of ∗-continuous Kleene ω-algebras [25, 26].

In this paper, we are concerned with conditions under which functions on com-
plete lattices form ∗-continuous Kleene ω-algebras. We show that sets of functions
which are finitely additive, locally ∗-closed and >-continuous, all natural conditions
which we will introduce later, form ∗-continuous Kleene ω-algebras. We then show
that energy functions are an example of such functions.

Using general results concerning coverability and Büchi acceptance in automata
with transition weights in ∗-continuous Kleene ω-algebras, we are then able to solve

An Algebraic Approach to Energy Problems II 231

energy problems in energy automata in a generic, algebraic way.

In order to put our work in context, we also review extensions of energy problems
to higher dimensions and to games. We show that even though our algebraic
setting does not apply here, coverability for multi-dimensional energy automata is
decidable. Energy games, on the other hand, are shown to be undecidable from
dimension two.

Structure of the Paper This is the second in a series of two papers which
are concerned with energy problems and their algebraic foundation. In the first
paper of the series [28], we have introduced continuous and ∗-continuous Kleene
ω-algebras and exposed some of their algebraic properties. We have shown that
every ∗-continuous Kleene ω-algebra is an iteration semiring-semimodule pair.

In this paper, we continue our work by showing how to compute Büchi accep-
tance in Section 3. Note that our two papers can be read independently, as we have
taken care to recall the relevant results obtained in [28].

We then turn our attention to ∗-continuous Kleene ω-algebras of functions.
In Section 4 we introduce the properties of finite additivity, ∗-closedness and >-
continuity and show that any set S of finitely additive, ∗-closed and >-continuous
functions on a complete lattice L form ∗-continuous Kleene algebras.

In Section 5 we extend this result and show that if (S, V) is such that S is
a ∗-continuous Kleene algebra of functions L → L, V consists of finitely additive
and >-continuous functions L → 2, where 2 denotes the Boolean lattice, then
(S, V) forms a ∗-continuous Kleene ω-algebra. We then apply this result to energy
automata in Section 6.

In Section 7 we take a more detailed look on two important subclasses of (com-
putable) energy functions and obtain some complexity results. Section 8 reviews
a reduction from energy problems on weighted timed automata to our energy au-
tomata, in order to further motivate our notions of energy function and energy
automaton.

The final Section 9 is concerned with extensions of energy problems to higher
dimensions and to games. Using an extension of the Rackoff technique for affine
Petri nets, we show that coverability for multi-dimensional energy automata is
decidable in exponential time. On the other hand, for a slightly relaxed version of
energy function, coverability becomes undecidable from dimension four. Likewise,
reachability games on two-dimensional energy automata and on one-dimensional
relaxed energy automata are undecidable.

Related Work A simple class of energy automata is the one of integer-weighted
automata, where all energy functions are updates of the form x 7→ x + k for some
(positive or negative) integer k. Energy problems on these automata, and their ex-
tensions to multiple weights (also called vector addition systems with states (VASS))
and to games, have been considered for example in [11, 14, 17–20, 33]. The exact
complexity of the reachability problem for VASS is one of the most challenging
open problems in theoretical computer science; plenty of very recent results aim

232 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

to get more insight into this problem [7, 38, 42, 43]. Our energy automata may be
considered as a generalization of one-dimensional VASS to arbitrary updates; in the
final section of this paper we will also be concerned with multi-dimensional energy
automata and games.

Energy problems on timed automata [2] have been considered in [10–12,46]. Here
timed automata are enriched with integer weights in locations and on transitions
(the weighted timed automata of [4, 5], cf. Fig. 1), with the semantics that the
weight of a delay in a location is computed by multiplying the length of the delay
by the location weight. In [11] it is shown that energy problems for one-clock
weighted timed automata without updates on transitions (hence only with weights
in locations) can be reduced to energy problems on integer-weighted automata with
additive updates.

For one-clock weighted timed automata with transition updates, energy prob-
lems are shown decidable in [10], using a reduction to energy automata as we use
them here. Intuitively, each path in the timed automaton in which the clock is
not reset is converted to an edge in an energy automaton, labeled with a piecewise
affine energy function. We review the reduction from [10] in Section 8 of the present
paper. In a recent paper [16], this class of real-time energy problems is treated di-
rectly, in the setting of ∗-continuous Kleene ω-algebras, without a reduction to the
untimed setting.

Also another class of energy problems on weighted timed automata is considered
in [10], in which weights during delays are increasing exponentially rather than
linearly. These are shown decidable using a reduction to energy automata with
piecewise polynomial energy functions; again our present framework applies.

Acknowledgment We are deeply indebted to our colleague and friend Zoltán
Ésik with whom we started this research and who has led us along the way. Unfortu-
nately Zoltán could not see this work completed, so any errors are the responsibility
of the last three authors.

The second author also acknowledges interesting discussions with Patricia Bou-
yer, Kim G. Larsen and Nicolas Markey which led to [10] and eventually to Section 8
of this paper.

2 Energy Automata

We recall the energy automata introduced in [28] and the decision problems we
are interested in. Let [0,∞]⊥ = {⊥} ∪ [0,∞] denote the complete lattice of non-
negative real numbers together with extra elements ⊥ and ∞, with the standard
order on R≥0 extended by ⊥ < x <∞ for all x ∈ R≥0. Also, ⊥+ x = ⊥− x = ⊥
for all x ∈ R≥0 ∪ {∞} and ∞+ x =∞− x =∞ for all x ∈ R≥0.

Definition 1. An (extended) energy function is a mapping f : [0,∞]⊥ → [0,∞]⊥,
for which ⊥f = ⊥ and

yf ≥ xf + y − x (∗)

An Algebraic Approach to Energy Problems II 233

for all x ≤ y. Moreover, ∞f =∞, unless xf = ⊥ for all x ∈ [0,∞]⊥. The class of
all extended energy functions is denoted E.

We write function composition and application in diagrammatical order, from
left to right. Hence we write f ; g, or simply fg, for the composition g ◦ f and x; f
or xf for function application f(x). This is because we will be concerned with
algebras of functions, in which function composition is multiplication, and where it
is customary to write multiplication in diagrammatical order.

We define a partial order on E , by f ≤ g iff xf ≤ xg for all x ∈ [0,∞]⊥. We
will need three special energy functions, ⊥⊥, id and >>; these are given by x⊥⊥ = ⊥,
x; id = x for x ∈ [0,∞]⊥, and ⊥>> = ⊥, x>> =∞ for x ∈ [0,∞].

Lemma 1 ([28]). With the ordering ≤, E is a complete lattice with bottom ele-
ment ⊥⊥ and top element >>. The supremum on E is pointwise, i.e., x(supi∈I fi) =
supi∈I xfi for any set I, all fi ∈ E and x ∈ [0,∞]⊥. Also, h(supi∈I fi) =
supi∈I(hfi) for all h ∈ E.

We denote binary suprema using the symbol ∨; hence f ∨ g, for f, g ∈ E , is the
function x(f ∨ g) = max(xf, xg). For a subset E ′ ⊆ E , we write 〈E ′〉 for the set of
all finite suprema a1 ∨ · · · ∨ am with ai ∈ E ′ for each i = 1, . . . ,m.

Definition 2. Let E ′ ⊆ E and n ≥ 1. An E ′-automaton of dimension n is a
structure (α,M, k), were α ∈ {⊥⊥, id}n is the initial vector, M ∈ 〈E ′〉n×n is the
transition matrix, and k is an integer 0 ≤ k ≤ n.

Combinatorially, this may be represented as a transition system whose set of
states is {1, . . . , n}. For any pair of states i, j, the transitions from i to j are
determined by the entry Mi,j of the transition matrix: if Mi,j = f1 ∨ · · · ∨ fm, then
there are m transitions from i to j, respectively labeled f1, . . . , fm. The states i
with αi = id are initial, and the states {1, . . . , k} are accepting.

Recall that an idempotent semiring [6,37] S = (S,∨, ·,⊥, 1) consists of a commu-
tative idempotent monoid (S,∨,⊥) and a monoid (S, ·, 1) such that the distributive
laws

x(y ∨ z) = xy ∨ xz
(y ∨ z)x = yx ∨ zx

and the zero laws
⊥ · x = ⊥ = x · ⊥

hold for all x, y, z ∈ S. It follows that the product operation distributes over all
finite sums.

Each idempotent semiring S is partially ordered by its natural order relation
x ≤ y iff x ∨ y = y, and then sum and product preserve the partial order and ⊥ is
the least element. Moreover, for all x, y ∈ S, x ∨ y is the least upper bound of the
set {x, y}.

Lemma 2 ([28]). (E ,∨, ◦,⊥⊥, id) is an idempotent semiring with natural order ≤.

234 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

An energy automaton is hence a weighted automaton over the semiring E , in
the sense of [24]. We recall the decision problems which we are interested in. As
the input to a decision problem must be in some way finitely representable, we will
state them for subsets E ′ ⊆ E of computable energy functions. Note that we give
no technical meaning to the term “computable” here; we simply need to take care
that the input can be finitely represented.

Problem 1 (State reachability). Given an E ′-automaton (α,M, k) of dimension
n ≥ 1 and a computable initial energy x0 ∈ R≥0: does there exist a finite
sequence (k0, . . . , km) of indices 1 ≤ ki ≤ n such that αk0 = id, km ≤ k, and
x0Mk0,k1 · · ·Mkm−1,km 6= ⊥?

Using the representation of A = (α,M, k) as a transition system, we see that
the above problem amounts to asking whether there exists a finite path in A, with
transition labels Mk0,k1 , . . . ,Mkm−1,km , such that the path starts in an initial state,
ends in an accepting state, and x0Mk0,k1 · · ·Mkm−1,km 6= ⊥.

Problem 2 (Coverability). Given an E ′-automaton (α,M, k) of dimension n ≥ 1,
a computable initial energy x0 ∈ R≥0 and a computable function z : {1, . . . , k} →
R≥0: does there exist a sequence (k0, . . . , km) of indices 1 ≤ ki ≤ n such that
αk0 = id, km ≤ k, and x0Mk0,k1 · · ·Mkm−1,km ≥ kmz?

In the transition system representation of A = (α,M, k), this amounts to asking
whether there exists a finite path in A as above, starting in an initial state and
ending in an accepting state km, and such that x0Mk0,k1 · · ·Mkm−1,km ≥ kmz.
Using the function z with iz = 0 for all i = 1, . . . , k, coverability reduces to state
reachability.

Problem 3 (Büchi acceptance). Given an E ′-automaton (α,M, k) of dimension
n ≥ 1 and a computable initial energy x0 ∈ R≥0: does there exist an infinite
sequence (k0, k1, . . .) of indices 1 ≤ ki ≤ n such that αk0 = id, ki ≤ k for infinitely
many indices i, and x0Mk0,k1 · · ·Mkm−1,km 6= ⊥ for all m ≥ 1?

Again using the representation of A = (α,M, k) as a transition system, we
see that this last problem amounts to asking whether there exists an infinite
path in A, with transition labels Mk0,k1 ,Mk1,k2 , . . . , such that the path starts
in an initial state, visits an accepting state infinitely often, and all finite prefixes
x0Mk0,k1 · · ·Mkm−1,km 6= ⊥.

We let ReachE′ denote the function which maps an E ′-automaton together with
an initial energy to the Boolean values ff or tt depending on whether the answer to
the concrete state reachability problem is negative or positive. CoverE′ and BüchiE′
denote the similar mappings for the coverability and Büchi acceptance problems.

3 Büchi Automata in ∗-Continuous Kleene
ω-Algebras

We recall the notion of ∗-continuous Kleene ω-algebra introduced in [28]. First, a
∗-continuous Kleene algebra is an idempotent semiring (S,∨, ·,⊥, 1) in which the

An Algebraic Approach to Energy Problems II 235

infinite suprema
∨
{xn | n ≥ 0} exist for all x ∈ S and product preserves such

suprema:

y
(∨
n≥0

xn
)

=
∨
n≥0

yxn and
(∨
n≥0

xn
)
y =

∨
n≥0

xny

for all x, y ∈ S. One then defines x∗ =
∨
{xn | n ≥ 0} for every x ∈ S.

A ∗-continuous Kleene algebra is continuous if all suprema
∨
X, X ⊆ S, exist

and are preserved by products. ∗-continuous Kleene algebras are hence a general-
ization of continuous Kleene algebras. There are interesting Kleene algebras which
are ∗-continuous but not continuous, for example the Kleene algebra of all regular
languages over some alphabet, see [28].

Recall that an idempotent semiring-semimodule pair [8, 31] (S, V) consists of
an idempotent semiring S = (S,∨, ·,⊥, 1) and a commutative idempotent monoid
V = (V,∨,⊥) which is equipped with a left S-action S × V → V , (x, v) 7→ xv,
satisfying

(x ∨ x′)v = xv ∨ x′v x(v ∨ v′) = xv ∨ xv′

(xx′)v = x(x′v) ⊥v = ⊥
x⊥ = ⊥ 1v = v

for all x, x′ ∈ S and v ∈ V . In that case, we also call V a (left) S-semimodule.
A generalized ∗-continuous Kleene algebra [28] is a semiring-semimodule pair

(S, V) where S = (S,∨, ·,∗ ,⊥, 1) is a ∗-continuous Kleene algebra such that

xy∗v =
∨
n≥0

xynv

for all x, y ∈ S and v ∈ V .
A ∗-continuous Kleene ω-algebra [28] consists of a generalized ∗-continuous

Kleene algebra (S, V) together with an infinite product operation Sω → V which
maps every infinite sequence x0, x1, . . . in S to an element

∏
n≥0 xn of V . The

infinite product is subject to the following conditions:

Ax1: For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

Ax2: Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.

Ax3: For all x0, x1, . . . and y, z in S,
∏
n≥0(xn(y ∨ z)) =

∨
x′n∈{y,z}

∏
n≥0 xnx

′
n.

Ax4: For all x, y0, y1, . . . ∈ S,
∏
n≥0 x

∗yn =
∨
kn≥0

∏
n≥0 x

knyn.

A continuous Kleene ω-algebra [31] is a semiring-semimodule pair (S, V) in
which S is a continuous Kleene algebra, V is a complete lattice, and the S-action
on V preserves all suprema in either argument, together with an infinite product
as above which satisfies conditions Ax1 and Ax2 above and preserves all suprema.
∗-continuous Kleene ω-algebras are hence a generalization of continuous Kleene
ω-algebras.

236 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

For any idempotent semiring S and n ≥ 1, we can form the matrix semiring
Sn×n whose elements are n × n-matrices of elements of S and whose sum and
product are given as the usual matrix sum and product. It is known [41] that
when S is a ∗-continuous Kleene algebra, then Sn×n is also a ∗-continuous Kleene
algebra, with the ∗-operation defined by

M∗i,j =
∨
m≥0

∨
1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm,j

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. The above infinite supremum exists, as it is
taken over a regular set, see [28]. Also, if n ≥ 2 and M =

(
a b
c d

)
, where a and d are

square matrices of dimension less than n, then

M∗ =

(
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗
)
. (1)

For any semiring-semimodule pair (S, V) and n ≥ 1, we can form the matrix
semiring-semimodule pair (Sn×n, V n) whose elements are n×n-matrices of elements
of S and n-dimensional (column) vectors of elements of V , with the action of Sn×n

on V n given by the usual matrix-vector product.
When (S, V) is a ∗-continuous Kleene ω-algebra, then (Sn×n, V n) is a general-

ized ∗-continuous Kleene algebra. By [28, Lemma 14], there is an ω-operation on
Sn×n defined by

Mω
i =

∨
1≤k1,k2,...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Sn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
(
a b
c d

)
, where a and d are

square matrices of dimension less than n, then

Mω =

(
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
. (2)

Note [28] that it is not generally the case that (Sn×n, V n) is again a ∗-continuous
Kleene ω-algebra, as the infinite product may not exist.

Let (S, V) be a ∗-continuous Kleene ω-algebra and A ⊆ S a subset. We write
〈A〉 for the set of all finite suprema a1 ∨ · · · ∨ am with ai ∈ A for each i = 1, . . . ,m.

A weighted automaton [32] over A of dimension n ≥ 1 is a tuple (α,M, k), where
α ∈ {⊥, 1}n is the initial vector, M ∈ 〈A〉n×n is the transition matrix, and k is an
integer 0 ≤ k ≤ n. Combinatorially, this may be represented as a transition system
whose set of states is {1, . . . , n}. For any pair of states i, j, the transitions from i to
j are determined by the entry Mi,j of the transition matrix: if Mi,j = a1∨· · ·∨am,
then there are m transitions from i to j, respectively labeled a1, . . . , an. The states
i with αi = 1 are initial, and the states {1, . . . , k} are accepting.

The finite behavior of a weighted automaton A = (α,M, k) is defined to be

|A| = αM∗κ ,

An Algebraic Approach to Energy Problems II 237

where κ ∈ {⊥, 1}n is the vector given by κi = 1 for i ≤ k and κi = ⊥ for i > k.
(Note that α has to be used as a row vector for this multiplication to make sense.)
It is clear by (1) that |A| is the supremum of the products of the transition labels
along all paths in A from any initial to any accepting state.

The Büchi behavior of a weighted automaton A = (α,M, k) is defined to be

‖A‖ = α

(
(a ∨ bd∗c)ω

d∗c(a ∨ bd∗c)ω
)
,

where a ∈ 〈A〉k×k, b ∈ 〈A〉k×(n−k), c ∈ 〈A〉(n−k)×n and d ∈ 〈A〉(n−k)×(n−k) are such
that M =

(
a b
c d

)
. By (2), ‖A‖ is the supremum of the products of the transition

labels along all infinite paths in A from any initial state which infinitely often visit
an accepting state.

For completeness we also mention a Kleene theorem for the Büchi automata
introduced above, which is a direct consequence of the Kleene theorem for Conway
semiring-semimodule pairs, cf. [29, 32].

Theorem 1. An element of V is the Büchi behavior weighted automaton over A
iff it is rational over A, i.e., when it can be generated from the elements of A
by the semiring and semimodule operations, the action, and the star and omega
operations.

It is a routine matter to show that an element of V is rational over A iff it can
be written as

∨n
i=1 xiy

ω
i , where each xi and yi can be generated from A by ∨, ·,

and ∗.

4 Generalized ∗-Continuous Kleene Algebras of
Functions

In the following two sections our aim is to establish properties which ensure that
semiring-semimodule pairs of functions form ∗-continuous Kleene ω-algebras. We
will use these properties in Section 6 to show that energy functions form a ∗-
continuous Kleene ω-algebra.

Let L and L′ be complete lattices with bottom and top elements ⊥ and >. Then
a function f : L→ L′ is said to be finitely additive if ⊥f = ⊥ and (x∨y)f = xf∨yf
for all x, y ∈ L. (Recall that we write function application and composition in the
diagrammatic order, from left to right.) When f : L→ L′ is finitely additive, then
(
∨
X)f =

∨
Xf for all finite sets X ⊆ L.

Consider the collection FinAddL,L′ of all finitely additive functions f : L→ L′,
ordered pointwise. Since the (pointwise) supremum of any set of finitely additive
functions is finitely additive, FinAddL,L′ is also a complete lattice, in which the
supremum of any set of functions can be constructed pointwise. The least and
greatest elements are the functions ⊥⊥ and >> given by x⊥⊥ = ⊥ for x ∈ L, ⊥>> = ⊥,
and x>> = > for x ∈ \{⊥}.

238 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Definition 3. A function f ∈ FinAddL,L′ is said to be >-continuous if f = ⊥⊥ or
for all X ⊆ L with

∨
X = >, also

∨
Xf = >.

Note that if f 6= ⊥⊥ is >-continuous, then >f = >. The functions id and ⊥⊥ are
>-continuous. Also, the (pointwise) supremum of any set of >-continuous functions
is again >-continuous.

We will first be concerned with functions in FinAddL,L, which we just denote
FinAddL. Since the composition of finitely additive functions is finitely additive
and the identity function id over L is finitely additive, and since composition of
finitely additive functions distributes over finite suprema, FinAddL, equipped with
the operation ∨ (binary supremum), ; (composition), and the constant function ⊥⊥
and the identity function id as 1, is an idempotent semiring. It follows that when
f is finitely additive, then so is f∗ =

∨
n≥0 f

n. Moreover, f ≤ f∗ and f∗ ≤ g∗

whenever f ≤ g.

Lemma 3. Let S be any subsemiring of FinAddL closed under the ∗-operation.
Then S is a ∗-continuous Kleene algebra iff for all g, h ∈ S, g∗h =

∨
n≥0 g

nh.

Proof. Suppose that the precondition of the lemma holds. We need to show that
f(
∨
n≥0 g

n)h =
∨
n≥0 fg

nh for all f, g, h ∈ S. But f(
∨
n≥0 g

n)h = f(
∨
n≥0 g

nh) by
assumption, and we conclude that f(

∨
n≥0 g

nh) =
∨
n≥0 fg

nh since the supremum
is pointwise.

Compositions of >-continuous functions in FinAddL are again >-continuous, so
that the collection of all >-continuous functions in FinAddL is itself an idempotent
semiring.

Definition 4. A function f ∈ FinAddL is said to be locally ∗-closed if for each
x ∈ L, either xf∗ = > or there exists N ≥ 0 such that xf∗ = x ∨ · · · ∨ xfN .

The functions id and ⊥⊥ are locally ∗-closed. As the next example demonstrates,
compositions of locally ∗-closed (and >-continuous) functions are not necessarily
locally ∗-closed.

Example 1. Let L be the following complete lattice (the linear sum of three infinite
chains):

⊥ < x0 < x1 < · · · < y0 < y1 < · · · < z0 < z1 < · · · < >

Since L is a chain, a function L → L is finitely additive iff it is monotone and
preserves ⊥.

Let f, g : L → L be the following functions. First, ⊥f = ⊥g = ⊥ and >f =
>g = >. Moreover, xif = yi, yif = zig = > and xig = ⊥, yig = xi+1, and zig = >
for all i. Then f, g are monotone, uf∗ = u ∨ uf ∨ uf2 and ug∗ = u ∨ ug for all
u ∈ L. Also, f and g are >-continuous, since if

∨
X = > then either > ∈ X or

X∩{z0, z1, . . . } is infinite, but then
∨
Xf =

∨
Xg = >. However, fg is not locally

∗-closed, since x0(fg)∗ = x0 ∨ x0(fg) ∨ x0(fg)2 · · · = x0 ∨ x1 ∨ · · · = y0.

Lemma 4. Let f ∈ FinAddL be locally ∗-closed. Then also f∗ is locally ∗-closed.
If f is additionally >-continuous, then so is f∗.

An Algebraic Approach to Energy Problems II 239

Proof. We prove that xf∗∗ = x ∨ xf∗ = xf∗ for all x ∈ L. Indeed, this is clear
when xf∗ = >, since f∗ ≤ f∗∗. Otherwise xf∗ =

∨
k≤n xf

k for some n ≥ 0.

By finite additivity, it follows that xf∗f∗ =
∨
k≤n xf

kf∗. But for each k,

xfkf∗ = xfk ∨ xfk+1 ∨ · · · ≤ xf∗, thus xf∗ = xf∗f∗ and xf∗ = xf∗∗. It follows
that f∗ is locally ∗-closed.

Suppose now that f is additionally >-continuous. We need to show that f∗ is
also >-continuous. To this end, let X ⊆ L with

∨
X = >. Since x ≤ xf∗ for all

x ∈ X, it holds that
∨
Xf∗ ≥

∨
X = >. Thus

∨
Xf∗ = >.

Proposition 1. Let S be any subsemiring of FinAddL closed under the ∗-operation.
If each f ∈ S is locally ∗-closed and >-continuous, then S is a ∗-continuous Kleene
algebra.

Proof. Let g, h ∈ S. By Lemma 3, it suffices to show that g∗h =
∨
n≥0 g

nh. Since
this is clear when h = ⊥⊥, assume that h 6= ⊥⊥. As gnh ≤ g∗h for all n ≥ 0, it
holds that

∨
n≥0 g

nh ≤ g∗h. To prove the opposite inequality, suppose that x ∈ L.
If xg∗ = >, then

∨
n≥0 xg

n = >, so
∨
n≥0 xg

nh = > by >-continuity. Thus,
xg∗h = > =

∨
n≥0 xg

nh.

Suppose that xg∗ 6= >. Then there is m ≥ 0 with

xg∗h = (x ∨ · · · ∨ xgm)h = xh ∨ · · · ∨ xgmh ≤
∨
n≥0

xgnh = x(
∨
n≥0

gnh) .

The proof is complete.

Now define a left action of FinAddL on FinAddL,L′ by fv = f ; v, for all f ∈
FinAddL and v ∈ FinAddL,L′ . It is a routine matter to check that FinAddL,L′ ,
equipped with the above action, the binary supremum operation ∨ and the constant
⊥⊥ is an (idempotent) left FinAddL-semimodule, that is, (FinAddL,FinAddL,L′) is a
semiring-semimodule pair.

Lemma 5. Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′
an S-semimodule. Then (S, V) is a generalized ∗-continuous Kleene algebra iff for
all f ∈ S and v ∈ V , f∗v =

∨
n≥0 f

nv.

Proof. Similar to the proof of Lemma 3.

Proposition 2. Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆
FinAddL,L′ an S-semimodule. If each f ∈ S is locally ∗-closed and >-continuous
and each v ∈ V is >-continuous, then (S, V) is a generalized ∗-continuous Kleene
algebra.

Proof. Similar to the proof of Proposition 1.

240 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

5 ∗-Continuous Kleene ω-Algebras of Functions

In this section, let L be an arbitrary complete lattice and L′ = 2, the two-element
lattice {⊥,>}. We define an infinite product FinAddωL → FinAddL,2. Let f0, f1, . . . ∈
FinAddL be an infinite sequence and define v =

∏
n≥0 fn : L→ 2 by

xv =

{
⊥ if there is n ≥ 0 such that xf0 · · · fn = ⊥,
> otherwise

for all x ∈ L. We will write
∏
n≥k fn, for k ≥ 0, as a shorthand for

∏
n≥0 fn+k.

It is easy to see that
∏
n≥0 fn is finitely additive. Indeed, ⊥

∏
n≥0 fn = ⊥

clearly holds, and for all x ≤ y ∈ L, x
∏
n≥0 fn ≤ y

∏
n≥0 fn. Thus, to prove that

(x ∨ y)
∏
n≥0 fn = x

∏
n≥0 fn ∨ y

∏
n≥0 fn for all x, y ∈ L, it suffices to show that

if x
∏
n≥0 fn = y

∏
n≥0 fn = ⊥, then (x ∨ y)

∏
n≥0 fn = ⊥. But if x

∏
n≥0 fn =

y
∏
n≥0 fn = ⊥, then there exist m, k ≥ 0 such that xf0 · · · fm = yf0 · · · fk = ⊥.

Let n = max{m, k}. We have (x ∨ y)f0 · · · fn = xf0 · · · fn ∨ yf0 · · · fn = ⊥, and
thus (x ∨ y)

∏
n≥0 fn = ⊥.

It is clear that this infinite product satisfies conditions Ax1 and Ax2 in the
definition of ∗-continuous Kleene ω-algebra. Below we show that also Ax3 and Ax4
hold.

Lemma 6. For all f0, f1, . . . , g0, g1, . . . ∈ FinAddL,∏
n≥0

(fn ∨ gn) =
∨

hn∈{fn,gn}

∏
n≥0

hn .

Note that this implies Ax3.

Proof. Since infinite product is monotone, the term on the right-hand side of the
equation is less than or equal to the term on the left-hand side. To prove that
equality holds, let x ∈ L and suppose that x

∏
n≥0(fn∨gn) = >. It suffices to show

that there is a choice of the functions hn ∈ {fn, gn} such that x
∏
n≥0 hn = >.

Consider the infinite ordered binary tree where each node at level n ≥ 0 is the
source of an edge labeled fn and an edge labeled gn, ordered as indicated. We can
assign to each node u the composition hu of the functions that occur as the labels
of the edges along the unique path from the root to that node.

Let us mark a node u if xhu 6= ⊥. As x
∏
n≥0(fn ∨ gn) = >, each level contains

a marked node. Moreover, whenever a node is marked and has a predecessor, its
predecessor is also marked. By König’s lemma [40] there is an infinite path going
through marked nodes. This infinite path gives rise to the sequence h0, h1, . . . with
x
∏
n≥0 hn = >.

Lemma 7. Let f ∈ FinAddL and v ∈ FinAddL,2 such that f is locally ∗-closed and
v is >-continuous. If xf∗v = >, then there exists k ≥ 0 such that xfkv = >.

Proof. If xf∗ =
∨N
n=0 xf

n for some N ≥ 0, then xf∗v =
∨N
n=0 xf

nv = > im-
plies the claim of the lemma. If xf∗ = >, then >-continuity of v implies that∨
n≥0 xf

nv = >, which again implies the claim.

An Algebraic Approach to Energy Problems II 241

Lemma 8. Let f, g0, g1, . . . ∈ FinAddL be locally ∗-closed and >-continuous such
that for each m ≥ 0, gm

∏
n≥m+1 f

∗gn ∈ FinAddL,2 is >-continuous. Then∏
n≥0

f∗gn =
∨

k0,k1,...≥0

∏
n≥0

fkngn .

Proof. As infinite product is monotone, the term on the right-hand side of the
equation is less than or equal to the term on the left-hand side. To prove that
equality holds, let x ∈ L and suppose that x

∏
n≥0 f

∗gn = >. We want to show

that there exist integers k0, k1, . . . ≥ 0 such that x
∏
n≥0 f

kngn = >.
Let x0 = x. By Lemma 7, x

∏
n≥0 f

∗gn = x0f
∗g0
∏
n≥1 f

∗gn = > implies that

there is k0 ≥ 0 for which x0f
k0g0

∏
n≥1 f

∗gn = >. We finish the proof by induction.

Assume that we have k0, . . . , km ≥ 0 such that xfk0g0 · · · fkmgm
∏
n≥m+1 f

∗gn =

> and let xm+1 = xfk0g0 · · · fkmgm. Then xm+1f
∗gm+1

∏
n≥m+2 f

∗gn = > im-
plies, using Lemma 7, that there exists an exponent km+1 ≥ 0 for which
xm+1f

km+1gm+1

∏
n≥m+2 f

∗gn = >.

Proposition 3. Let S ⊆ FinAddL and V ⊆ FinAddL,2 such that (S, V) is a gen-
eralized ∗-continuous Kleene algebra of locally ∗-closed and >-continuous functions
L → L and >-continuous functions L → 2. If

∏
n≥0 fn ∈ V for all sequences

f0, f1, . . . of functions in S, then (S, V) is a ∗-continuous Kleene ω-algebra.

Proof. This is clear from Lemmas 6 and 8.

We finish the section by a lemma which exhibits a condition on the lattice L
which ensures that infinite products of locally ∗-closed and >-continuous functions
are again >-continuous.

Lemma 9. Assume that L has the property that whenever
∨
X = > for some X ⊆

L, then for all x < > in L there is y ∈ X with x ≤ y. If f0, f1, . . . ∈ FinAddL is a
sequence of locally ∗-closed and >-continuous functions, then

∏
n≥0 fn ∈ FinAddL,2

is >-continuous.

Proof. Let v =
∏
n≥0 fn. We already know that v is finitely additive. We need to

show that v is >-continuous. But if v 6= ⊥⊥, then there is some x < > with xv = >,
i.e., such that xf0 · · · fn > ⊥ for all n. By assumption, there is some y ∈ X with
x ≤ y. It follows that yf0 · · · fn ≥ xf0 · · · fn > ⊥ for all n and thus

∨
Xv = >.

6 State Reachability, Coverability and Büchi Ac-
ceptance in Energy Automata

We now show how the setting developed in the last sections can be applied to solve
the energy problems of Section 2. Recall that L = [0,∞]⊥ denotes the complete
lattice of nonnegative real numbers together with ∞ and an extra bottom element
⊥, and that E denotes the idempotent semiring of energy functions L → L. Note
that L satisfies the precondition of Lemma 9.

242 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Lemma 10. Energy functions are finitely additive and >-continuous, hence E ⊆
FinAddL.

Proof. Finite additivity follows from monotonicity. For >-continuity, let X ⊆ L
such that

∨
X = ∞ and f ∈ E , f 6= ⊥⊥. By

∨
X = ∞, we know that for every

n ∈ N, there exists xn ∈ X with xn ≥ n. Choose such a sequence (xn) and let
yn = xnf for all n.

If yn = ⊥ for all n ≥ 0, then also nf = ⊥ for all n ≥ 0 (as xn ≥ n), hence f = ⊥⊥.
We must thus have an index N for which yN > ⊥. But then yN+k ≥ yN + k ≥ k
for all k ≥ 0, hence

∨
Xf =∞.

Lemma 11. For f ∈ E, f∗ is given by xf∗ = x if xf ≤ x and xf∗ =∞ if xf > x.
Hence f is locally ∗-closed and f∗ ∈ E.

Proof. We have ⊥f∗ = ⊥ and ∞f∗ =∞. Let x 6= ⊥,∞. If xf ≤ x, then xfn ≤ x
for all n ≥ 0, so that x ≤

∨
n≥0 xf

n ≤ x, whence xf∗ = x. If xf > x, then let
a = xf − x > 0. We have xf ≥ x+ a, hence by (∗), xfn ≥ x+ na for all n ≥ 0, so
that xf∗ =

∨
n≥0 xf

n =∞.

Not all locally ∗-closed functions f : L → L are energy functions: the function
f defined by xf = 1 for x < 1 and xf = x for x ≥ 1 is locally ∗-closed, but f /∈ E .

Corollary 1. E is a ∗-continuous Kleene algebra.

Proof. This is clear by Proposition 1.

Remark 1. It is not true that E is a continuous Kleene algebra: Let fn, g ∈ E be
defined by xfn = x + 1 − 1

n+1 for x ≥ 0, n ≥ 0 and xg = x for x ≥ 1, xg = ⊥
for x < 1. Then 0(

∨
n≥0 fn)g = (

∨
n≥0 0fn)g = 1g = 1, whereas 0

∨
n≥0(fng) =∨

n≥0(0fng) =
∨
n≥0((1− 1

n+1)g) = ⊥.

Lemma 12. For any g ∈ E, there exists f ∈ E such that g = f∗ iff there is
k ∈ [0,∞]⊥ such that xg = x for all x < k, xg = ∞ for all x > k, and kg = k or
kg =∞.

Proof. We first note that if g ∈ E is such that there is k for which xg = x for x < k
and xg = ∞ for x > k, then xg∗ = xg for x 6= k, and if kg = k or kg = ∞, then
also kg∗ = kg.

Now let g ∈ E . If there is f ∈ E with g = f∗, then we set k = sup{x | xf ≤ x}.
Then xf > x and hence xg =∞ for all x > k, and whenever x < k, then there is y
with x ≤ y ≤ k and yf ≤ y, hence by (∗), xf ≤ x, so that xg = x. If kf ≤ k, then
kg = k, otherwise kg =∞ as claimed.

Let V denote the E-semimodule of all >-continuous functions L → 2. For
f0, f1, . . . ∈ E , define the infinite product f =

∏
n≥0 fn : L→ 2 by xf = ⊥ if there

is an index n for which xf0 · · · fn = ⊥ and xf = > otherwise, like in Section 5. By
Lemma 9,

∏
n≥0 fn is >-continuous, i.e.,

∏
n≥0 fn ∈ V.

By Proposition 2, (E ,V) is a generalized ∗-continuous Kleene algebra.

An Algebraic Approach to Energy Problems II 243

Corollary 2. (E ,V) is a ∗-continuous Kleene ω-algebra.

Proof. This is clear by Proposition 3.

Remark 2. As E is not a continuous Kleene algebra, it also holds that (E ,V) is not
a continuous Kleene ω-algebra; in fact it is clear that there is no E-semimodule V ′
for which (E ,V ′) would be a continuous Kleene ω-algebra. The initial motivation
for the work in [25, 26, 28] and the present paper was to generalize the theory of
continuous Kleene ω-algebras so that it would be applicable to energy functions.

Lemma 13. For f ∈ E, fω is given by ⊥fω = ⊥, and for x 6= ⊥, xfω = ⊥ if
xf < x and xfω = > if xf ≥ x.

Proof. The claim that ⊥fω = ⊥ is clear, and so is the lemma for f = ⊥⊥. For f 6= ⊥⊥
and x =∞, xfn =∞ for all n ≥ 0, hence∞fω = >. Now let x 6= ⊥,∞. If xf ≥ x,
then xfn ≥ x for all n ≥ 0, hence xfω = >. If xf < x, then let a = x − xf > 0.
We have xf ≤ x − a, hence by (∗), xfn ≤ x − na for all n ≥ 0, so that there is
N ≥ 0 for which xfN = ⊥, whence xfω = ⊥.

We can now solve the state reachability, coverability, and Büchi problems for
energy automata. We say that E ′ ⊆ E is fixed-point decidable if it is decidable, for
any f ∈ E ′ and x ∈ L, whether xf < x, xf = x or xf > x.

Theorem 2. Let A = (α,M, k) be an energy automaton of dimension n ≥ 1,
x0 ∈ R≥0, and z : {1, . . . , k} → R≥0. Then

• ReachE′(A, x0) = tt iff x0|A| 6= ⊥;

• CoverE′(A, x0, z) = tt iff there exists i ≤ k such that (x0αM
∗)i ≥ iz;

• BüchiE′(A, x0) = tt iff x0‖A‖ = >.

Proof. For state reachability and Büchi acceptance the claims are clear. For cov-
erability, we note that

(x0αM
∗)i =

∨
m≥0

∨
1≤k1,...,km≤n

x0αk1Mk1,k2 · · ·Mkm,i,

and the claim follows.

Corollary 3. For fixed-point decidable subalgebras E ′ ⊆ E, Problems 1, 2, and 3
are decidable. For an energy automaton of dimension n, the decision procedures
use O(n3), O(n3), respectively O(n4), algebra operations.

Proof. If E ′ is fixed-point decidable, then Lemmas 11 and 13 imply that the ∗ and
ω operations are computable in E ′, and the matrix operations in Theorem 2 can be
reduced to compositions, binary suprema, and these two operations. The complex-
ity results follow from the fact that computation of M∗ uses O(n3) operations and
computation of Mω uses O(n4) operations, cf. [30].

244 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

7 Some Complexity Results

We proceed to identify two important subclasses of computable energy functions,
which cover most of the related work mentioned in the introduction, and to give
complexity results on their reachability and Büchi acceptance problems.

The integer update functions in E are the functions fk, for k ∈ Z, given by

xfk =

{
x+ k if x ≥ max(0,−k),
⊥ otherwise,

together with f−∞ := ⊥⊥ and f∞ := >>. These are the update functions usually
considered in integer-weighted automata and VASS [11, 14, 17–20, 33]. We have
fkf` = fk+`, fk ∨ f` = fmax(k,`), and

f∗k =

{
f0 for k ≤ 0,

f∞ for k > 0,
fωk =

{
f−∞ for k < 0,

f∞ for k ≥ 0,

whence the class Eint of integer update functions forms a subalgebra of E . A function
fk ∈ Eint can be represented by the (extended) integer k, and algebra operations
can then be performed in constant time. Also, Eint is trivially fixed-point decidable,
so that Corollary 3 implies the following result.

Theorem 3. For Eint-automata, Problems 1, 2 and 3 are decidable in PTIME.

Remark 3. This means that state reachability, coverability and Büchi acceptance
for one-dimensional VASS are decidable in PTIME, which seems not to have been
noted before. (But see the recent [38], where reachability for one-dimensional
branching VASS is shown decidable in PTIME. In [7] it is claimed that coverability
for one-dimensional VASS is NP-complete.)

Next we turn our attention to piecewise affine functions.

Definition 5. A function f ∈ E is said to be (rational) piecewise affine if there
exist 0 ≤ x0 < x1 < · · · < xk ∈ Q ∪ {∞} such that

• xf = ⊥ for x < x0 and xf =∞ for x > xk,

• xjf ∈ Q ∪ {⊥,∞} for all j, and

• all restrictions f�]xj ,xj+1[are affine functions x 7→ ajx + bj with aj , bj ∈ Q,
aj ≥ 1.

Let Epw ⊆ E denote the class of piecewise affine energy functions. The notion
of integer piecewise affine functions, Epwi, is defined similarly, with all occurrences
of Q above replaced by Z. Clearly Eint ⊆ Epwi ⊆ Epw.

Note that the definition does not make any assertion about continuity at the xj ,
but (∗) implies that limx↗xj xf ≤ xjf ≤ limx↘xj xf . A piecewise affine function
as above can be represented by its break points x0, . . . , xk, the values x0f, . . . , xkf ,

An Algebraic Approach to Energy Problems II 245

1 2 3 4 5

1

2

3

4

5

xf =

⊥ for x < 2

.5 for x = 2

1.5x− 2.5 for 2 < x < 3

2.3 for x = 3

x− .3 for 3 < x < 4.5

4.5 for x = 4.5

2x− 4.5 for x > 4.5

Figure 2: A piecewise affine energy function

and the numbers a0, b0, . . . , ak, bk. These functions arise in the reduction used
in [10] to show decidability of energy problems for one-clock timed automata with
transition updates, see Section 8. Fig. 2 shows an example of a piecewise affine
energy function.

The class of piecewise affine energy functions forms a subsemiring of E : if f, g ∈
Epw with break points x0, . . . , xk and y0, . . . , y`, respectively, then f ∨g is piecewise
affine with break points obtained from the break points of f and g together with
intersection points of lines (which are rational), and fg is piecewise affine with break
points a subset of {x0, . . . , xk, y0f−1, . . . , y`f−1} (which are all rational). Hence
maxima and compositions of piecewise affine energy functions are computable, but
may increase the size of their representation.

Now let, for any p ∈ Q with p ≥ 0, g−p , g
+
p ∈ Epw be the functions defined by

xg−p =

{
x for x < p ,
∞ for x ≥ p , xg+p =

{
x for x ≤ p ,
∞ for x > p .

Proposition 4. Epw is a ∗-continuous Kleene algebra.

Proof. In lieu of Proposition 1, we need to show that Epw is closed under the ∗-
operation. Let f ∈ Epw, then by Lemma 12, there is a p ∈ Q such that f∗ = g−p or
f∗ = g+p .

Remark that, unlike Epw, the class Epwi of integer piecewise affine functions does
not form a subsemiring of E , as composites of Epwi-functions are not necessarily
integer piecewise affine. As an example, for the functions f, g ∈ Epwi given by

xf = 2x , xg =

{
x+ 1 for x < 3 ,

x+ 2 for x ≥ 3 ,

we have

xfg =

{
2x+ 1 for x < 1.5 ,

2x+ 2 for x ≥ 1.5 ,

246 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

which is not integer piecewise affine. The semiring generated by Epwi is the sub-
semiring of Epw of functions with rational break points x0, . . . , xk, but integer values
a0, b0, . . . , ak, bk.

Similarly, the class of rational affine functions x 7→ ax + b, a, b ∈ Q, a ≥ 1
(without break points) is not closed under maximum, and it can be seen that Epw
is the semiring generated by rational affine functions.

Lemma 14. Epw is fixed-point decidable.

Proof. Let f ∈ Epw, with representation (x0, . . . , xk, x0f, . . . , xkf, a0, . . . , ak,
b0, . . . , bk). Let x ∈ R≥0 be computable; we need to decide whether xf < x,
xf = x or xf > x. If x < x0, then xf = ⊥. If x = xj for some j, we can simply
compare xj with xjf .

Assume now that x ∈]xj , xj+1[for some j. If ajxj + bj < xj and ajxj+1 + bj ≤
xj+1, then xf < x by (∗). If ajxj + bj = xj and ajxj+1 + bj = xj+1, then also
xf = x, and if ajxj + bj ≥ xj and ajxj+1 + bj > xj+1, then xf > x. The cases
ajxj + bj > xj , ajxj+1 + bj ≤ xj+1 and ajxj + bj ≥ xj , ajxj+1 + bj < xj+1 cannot
occur because of (∗).

The last case to consider is ajxj + bj < xj and ajxj+1 + bj > xj+1. Then we

must have aj > 1, and then xf < x if x <
bj

1−aj , xf = x if x =
bj

1−aj , and xf > x if

x >
bj

1−aj .

Theorem 4. For Epw-automata, Problems 1, 2 and 3 are decidable in EXPTIME.

Proof. Decidability follows from Corollary 3 and Lemma 14. For the complexity
claim, we note that all algebra operations in Epw can be performed in time linear
in the size of the representations of the involved functions. However, the maxi-
mum and composition operations may triple the size of the representations, hence
our procedure may take time O(3n

3

p) for state reachability and coverability, and

O(3n
4

p) for Büchi acceptance, for an Epw-automaton of dimension n and energy
functions of representation length at most p.

We believe that the above complexity bound of EXPTIME can be considerably
sharpened, but we leave this for future work.

8 Reduction from Weighted Timed Automata

To further motivate the introduction of our notion of energy automata, we review
here how the treatment of lower-bound energy problems for one-clock weighted
timed automata in [10, 11] naturally leads to our energy functions and energy au-
tomata. In this section, and this section only, function application and composition
will be written in the standard right-to-left order.

A weighted timed automaton A = (L, l0, C, I, E, r) consists of a finite set of
locations L with initial location l0, a finite set of clocks C, location invariants

An Algebraic Approach to Energy Problems II 247

+2 +4
−3

c = 1, c← 0
0

0
1 2 3 4

1

2

3

4

(a)
0

0
1 2 3 4

1

2

3

4

(b)

Figure 3: One-clock weighted timed automaton with discrete updates. Any region-
stable scheduler (i.e., with switches at integer times) is doomed (a), but there exists
a feasible schedule with switches at half-integer times (b).

I : L→ Φ(C), weighted edges E ⊆ L×Φ(C)×2C×Z×L and location weight rates
r : L→ Z. Here the set Φ(C) of clock constraints φ is defined by the grammar

φ ::= c ./ k | φ1 ∧ φ2 (c ∈ C, k ∈ Z, ./ ∈ {≤, <,≥, >,=}).

A clock valuation is a mapping C → R≥0. For a clock valuation v : C → R≥0
and a clock constraint φ ∈ Φ(C), we write v |= φ to indicate that v satisfies φ. We
denote by v0 : C → R≥0 the clock valuation given by v0(c) = 0 for all c ∈ C. For
a clock valuation v : C → R≥0, d ∈ R≥0, and R ⊆ C, we denote by v + d and
v[R ← 0] the clock valuations given by (v + d)(c) = v(c) + d for all c ∈ C and
v[R← 0](c) = 0 for c ∈ R, v[R← 0](c) = v(c) for c /∈ R.

The semantics of a weighted timed automaton A = (L, l0, C, I, E, r) is given by
an infinite weighted automaton JAK = (SA, s0, TA) with states SA = {(l, v) | v |=
I(l)} ⊆ L ×RC≥0, initial state s0 = (l0, v0), and transitions TA ⊆ SA ×R × SA of
two types:

• delay transitions (l, v)
r(l)d−−−→ (l, v + d) for all d ∈ R≥0 such that v + d′ |= I(l)

for all d′ ∈ [0, d];

• switch transitions (l, v)
p−→ (l′, v′), where e = (l, φ,R, p, l′) ∈ E is a transition

of A, v |= φ and v′ = v[R← 0].

We refer to [34] for a thorough survey on timed automata and weighted timed
automata.

The lower-bound energy problem for a weighted timed automaton A as above
is, given an initial energy x0 ∈ R≥0, to decide whether there exist an infinite path

(l0, v0)
p0−→ (l1, v1)

p1−→ (l2, v2)
p2−→ · · ·

of delay and switch transitions in JAK for which x0 +
∑n
i=0 pi ≥ 0 for all n ∈ N.

We hence want to decide whether there is a run in A where the accumulated energy
x0 +

∑n
i=0 pi never drops below zero. We shall say that such a run is feasible.

Figure 1 in the introduction shows an example of such an energy problem.
For one-clock weighted timed automata without discrete updates, i.e., with C =

{c} a singleton and p = 0 for all (l, φ,R, p, l′) ∈ E, it was shown in [11] that
this problem can be decided via a simple reduction to a refinement of the region

248 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

W
−10

l′

0

R1

+20

R2

+10

c ≥ 1, c
← 0,−6

c ≤ 1, c
← 0,−4

c ≥ 1, c← 0,−2

c ≤ 1, c← 0,−2

−5 −1

c = 3, c← 0, 0

c = 2, 0

Figure 4: Conversion of the weighted timed automaton of Fig. 1 to a 3-bounded
weighted timed automaton. To simplify the example, we assume that the invariant
of R1 and R2 in the automaton of Fig. 1 (and thus here) is c ≤ 1. The invariant of
location W is c ≤ 3, and the invariant of the new location l′ is c ≤ 2.

graph [2] of A. Figure 3, taken from [10], however, shows that a similar region-stable
reduction is not available for one-clock weighted timed automata with discrete
updates. In the rest of this section we review the substantially more complicated
reduction from [10]. For simplicity of presentation we assume the input timed
automaton to be closed, i.e., only using closed clock constraints c ≤ k, c ≥ k, c = k
and their conjunctions.

Let A = (L, l0, {c}, I, E, r) be a closed one-clock weighted timed automaton.
First, we make sure that A is bounded, i.e., that the value of c never exceeds a
constant M during any run of A. The construction, based on [5], works essentially
by resetting the clock whenever it reaches value M . Formally, let m be the greatest
integer constant which appears in any invariant I(l), l ∈ L and any constraint φ
in (l, φ,R, p, l′) ∈ E and set M = m + 2. Now for each location l ∈ L, add an
invariant c ≤ M to I(l) and a new location l′ to L, with I(l′) = (c ≤ M − 1) and
r(l′) = 0, and edges (l, (c = M), {c}, 0, l′), (l′, (c = M − 1), ∅, 0, l). Figure 4 shows
an example of the construction for the weighted timed automaton in Fig. 1 for
M = 3. It can be shown [5,10] that the so-constructed bounded automaton admits
the same infinite lower-bounded runs for the same initial energies as the old one.

Second, we make sure that the bound M = 1. This is done, like in [13], by
splitting A into stages, one for every integer k ∈ {0, . . . ,M − 1}; the intuition
is that a state ((l, k), ν) at stage k corresponds to a state (l, ν′) with old clock
value ν′ = k + ν. Figure 5 shows an example of the construction. Third, we
also eliminate edges (l, (c′ ≤ 1), {c′}, p, l′) by introducing new locations l′′ with
r(l′′) = 0, I(l′′) = c ≤ 1, and edges (l, (c′ ≤ 1), ∅, 0, l′′), (l′′, (c′ = 1), {c′}, p, l′), see
Figure 6. It can again be shown [10] that this construction does not affect energy
properties.

Next, noticing that A now only has three types of edges: reset-free edges with
constraint c′ ≤ 1 and resetting edges with constraint c′ = 0 or c′ = 1, we split the

An Algebraic Approach to Energy Problems II 249

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0

c
≤

1
,−

5

c
≤

1
,−

1

c
=

0
,−

5

c
=

0
,−

1

c ≤ 1, c
← 0,−6

c ≤ 1, c← 0,−6

c ≤ 1, c← 0,−2
c ≤ 1, c← 0,−2

c ≤
1, c
← 0,−

4

c = 0,−4

c ≤
1, c←

0,−2

c = 0,−2

Figure 5: Conversion of the 3-bounded weighted timed automaton of Fig. 4 to a
1-bounded weighted timed automaton.

locations of A so that each location l either has only incoming reset-free edges or
only incoming resetting edges. Possibly adding a new initial location, we also make
sure that l0 has no incoming edges. Fig. 7 shows the complete conversion of the
weighted timed automaton of Fig. 1.

Let S be the set of locations without incoming reset-free edges, then l0 ∈ S.
For each pair l, l′ ∈ S, let P (l, l′) be the (finite) set of paths in A from l to l′ which

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

1
0

c
≤

1,
0

c ≤
1, 0

c = 1, , c
← 0,−6

2
0

c ≤
1,

0

c
=

1,
c
←

0,
−4

3
0

c ≤
1, 0

c ≤
1, 0

c = 1, , c← 0,−2

4
0

c ≤
1, 0

c
=

1, c←
0,−

2

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0

c
≤

1
,−

5

c
≤

1
,−

1

c
=

0
,−

5

c
=

0
,−

1

c =
0,−

4

c =
0,−2

Figure 6: The 1-bounded weighted timed automaton obtained by eliminating reset-
ting edges with clock constraint c ≤ 1 from the 1-bounded weighted timed automa-
ton in Fig. 5. We eliminate, for instance, the edge (〈W, 2〉, (c ≤ 1), {c},−6, 〈R1, 0〉)
by introducing an auxiliary location 1 with invariant c ≤ 1 and rate 0, and edges
(〈W, 2〉, (c ≤ 1), ∅, 0, 1) and (1, c = 1, {c},−6, 〈R1, 0, 〉). Note that in the resulting
automaton all edges with constraint c ≤ 1 are reset-free, and all resetting edges
have constraint c = 1 or c = 0.

250 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

1
0

c
≤

1,
0

c ≤
1, 0

c = 1, , c
← 0,−6

2
0

c ≤
1,

0

c
=

1,
c
←

0,
−4

3
0

c ≤
1, 0

c ≤
1, 0

c = 1, , c← 0,−2

4
0

c ≤
1, 0

c
=

1, c←
0,−

2

5
+20

6
+10

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0
c
≤

1
,−

5

c
≤

1
,−

1

c
≤

1
,−

5

c
≤

1
,−

1

c ≤
1, 0

c ≤
1, 0

c
=

0
,−

5

c
=

0
,−

1

c =
0,−

4

c =
0,−2

Figure 7: Conversion of the weighted timed automaton in Fig. 6 to one with loca-
tions partitioned into locations with only reset-free incoming edges with constraint
c ≤ 1 and locations with only resetting edges and constraint c = 1 or c = 0 (we
omit resets at edges with constraint c = 0). Note that in Fig. 6 locations (R1, 0)
and (R2, 0) have both resetting and reset-free incoming edges. We introduce two
auxiliary locations 5 and 6 and redirect edges accordingly.

only go through locations in L \ S, and which contain at most two copies of any
simple cycle. (It is shown in [10] that paths which contain more than two copies of
a simple cycle can be reduced to paths in P (l, l′) by collecting all delays in the first
two copies.) For each such path π ∈ P (l, l′), let fπ : R≥0 → R≥0 be the function
mapping input energy in l to maximal achievable output energy in l′ and define
T = {(l, fπ, l′) | π ∈ P (l, l′)}. Let B = (S, l0, T, S); we will show below that B is
an energy automaton.

It is clear that any infinite run in A which traverses resetting edges infinitely
often will translate to an infinite path in B. We need, however, to take special care
of infinite runs in A which are eventually reset-free. To do so, it is shown in [10]
that we can compute, in EXPTIME, a mapping z : L → R≥0 such that there is a
feasible infinite reset-free run from a state (l, v) in JAK iff v ≥ z(l). For the proof of
this, one observes that any such run can be converted, by eliminating all delays in
locations with nonpositive rates and collecting all delays in locations with positive
rates in their first occurrences, into one where, after a finite prefix, no more time
elapses. Also, the length of these prefixes is at most |L|(|L| + 1), so z(l) can be
computed in finite time.

It can now be shown [10, Lemma 17] that, for any x0 ∈ R≥0, there is a feasible
infinite run from (l0, x0) in A iff (1) there is an accepting infinite run in B with
initial energy x0, or (2) a state l ∈ S is reachable in B, with initial energy x0, such
that the energy in l is at least z(l). Hence the lower-bound energy problem for A

An Algebraic Approach to Energy Problems II 251

l1 l2 l3 l4 l5 l6 l7 l8

R2, 0
+10

5
+20

6
+10

5
+20

6
+10

5
+20

2
+0

W, 0
−10c′← 0

−5

≥ 5

−1

≥ 1

−5

≥ 5

−1

≥ 1

−5

≥ 5

+0

≥ 0

−4

≥ 4

R2, 0
+10

5
+20

5
+20

6
+10

5
+20

2
+0

W, 0
−10c′← 0

−5

≥ 5

−6

≥ 6

−1

≥ 1

−5

≥ 5

+0

≥ 0

−4

≥ 4

R2, 0
+10

5
+20

W, 0
−10c′← 0

−5

≥ 5

−16

≥ 16

Figure 8: Reset-free path with annotations (top) and after repeated application of
the first normalization operation.

from x0 reduces to Büchi(B)(x0) and Cover(B)(x0, z).
We miss to show that B = (S, l0, T, S) is an energy automaton. Let l, l′ ∈ S

and π = (l = l1, e1, l2, . . . , en, ln+1 = l′) ∈ P (l, l′); note that en is the only resetting
edge. If the constraint on en is c′ = 0, then no time elapses during π, and, letting
pi denote the weight of ei = (li, φ, ∅, pi, li+1) (where φ = (c′ ≤ 1)), we have

fπ(x) =

{
undefined if x+

∑k
i=1 pi < 0 for some k ∈ {1, . . . , n} ,

x+
∑n
i=1 pi otherwise .

If, on the other hand, the last constraint in π is φn = (c′ = 1), then we face the
task of distributing one time unit of delay optimally through the locations along π.
In order to do so, we first annotate the edges along π with lower-bound constraints.
Hence each ei is now of the form ei = (li, φ, ∅, pi, bi, li+1), with bi = −pi initially
and the semantics that the edge ei is enabled for input energy x ≥ bi.

We modify π by removing locations in which an optimal path (i.e., with max-
imal energy output) will not delay. To ease the presentation, we assume that the
maximal rate along π is positive, i.e., max{r(li) | i = 1, . . . , n} > 0. The construc-
tions are similar in the other case; see [10] for details. Figure 8 shows as an example
a path from (R2, 0) to (W, 0) in the weighted timed automaton of Fig. 7.

First we note that if r(li) ≥ r(li+1) for some i ∈ {1, . . . , n− 1}, then any delay
spent in li+1 could just as well (or better) have been spent in li. (This is the case
for i = 2 (location 6 with rate +10) in the example.) Hence we can remove li+1 and
update π with an edge (li, φ, ∅, pi + pi+1,max(bi, bi+1 − pi), li+2). The new lower-
bound constraint max(bi, bi+1 − pi) is chosen so that the new edge can be taken
precisely when the sequence of the old edges could be taken without intermediate
delay.

This modified path π has the property that r(li) < r(lj) for all 1 ≤ i < j ≤ n.
Next, we see that if there is i ∈ {1, . . . , n− 1} for which bi + pi ≥ bi+1, then there
is no need to spend any delay in li+1, as we can go directly to li+2 which has a
higher rate. (In our example, this case does not occur.) Hence we modify π once
again, removing li+1 and adding a new edge (li, φ, ∅, pi + pi+1, bi, li+2). The result

252 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

x

fπ(x)

0 3 5
0

4

Figure 9: The energy function associated with the path of Fig. 8.

of these two kinds of modifications is a reset-free path in so-called normal form, see
again Fig. 8.

As the last step, we show by example how to compute the energy function of a
path in normal form; we refer to [10] for the general algorithm. Let π be the path
at the bottom of Fig. 8; we want to compute the partial function fπ : R≥0 ⇀ R≥0
which maps the input energy x, entering the first location of π, to the maximum
available output energy fπ(x) when leaving π.

First we notice that if x < 3, then we need to spend a delay of d1 ≥ 5−x
10 > 1

5 in
l1 to meet its output constraint of x ≥ 5. The energy value when entering l2 is then
x+ 10d1 − 5, which is equal to 0, so that after l2, the value is 20d2 ≤ 20(1− d1) =
20 − 20d1 < 16. Hence we cannot match the output constraint x ≥ 16 on l2, so
that fπ(x) is undefined for x < 3. On the other hand, when x = 3 at the start of
π, then we can delay 1

5 time units in l1, then delay 4
5 time units in l2, and finally

achieve fπ(3) = 0.

It can be shown [10] that the general strategy for maximizing the output energy,
given a path in normal form such as the one in the bottom of Fig. 8, is to delay
in every location precisely the time necessary for meeting its output constraint,
and then to spend any remaining time in the last location. Hence when x is
between 3 and 5, we can let d1 = 5−x

10 and then d2 = 1− d1. This gives a value of
fπ(4) = 4 + 1

10 · 10− 5 + 9
10 · 20− 16 = 2. For x ≥ 5, we need not delay in l1 at all,

so in this case, fπ(x) = x− 1. See Fig. 9 for a graph of the function thus obtained.

Given this general strategy for maximizing output energy, it can be shown
that the energy function fπ associated with a path in normal form, or indeed
with a general reset-free path π, is a continuous piecewise affine function which
satisfies (∗), cf. Definition 5. Now when the input timed automaton is not closed,
then the definition interval of fπ ([1,∞[in the example) may be left-open, and
taking maxima of such functions may introduce discontinuities, so that in the end,
B = (S, l0, T, S) is an automaton which has transition weights from the general
class Epw of piecewise-affine energy functions.

The results of Section 7 thus apply and allow us to compute Büchi(B)(x0) and
Cover(B)(x0, z) in exponential time. As the reduction from A to B shown here
may incur an exponential blow-up, our overall procedure for solving lower-bound

An Algebraic Approach to Energy Problems II 253

(−1, 1)

(0,−2)

Figure 10: A simple two-dimensional VASS

energy problems in weighted timed automata has double exponential complexity.

9 Multi-dimensional Energy Automata and Games

We turn our attention to several variants of energy automata. We will first be
concerned with multi-dimensional energy automata and show that their coverability
problem is EXPSPACE-complete. Then we will show that this does not apply to
flat energy functions, which are not required to satisfy (∗); for such functions,
coverability is undecidable from dimension four. Finally, we show that reachability
games on two-dimensional energy automata and on one-dimensional flat energy
automata are undecidable.

An n-dimensional energy automaton, or En-automaton for short, (S, T), for
n ≥ 1, consists of finite sets S of states and T ⊆ S × En × S of transitions.
By restricting transition labelings, we can define subclasses of Enpw-automata, Enpwi-
automata, and Enint-automata.

A global state in such an automaton is a pair (s,x) ∈ S ×Rn≥0, and transitions
are of the form (s,x)

f−→ (s′,x′) such that (s,f , s′) ∈ T and x′(i) = x(i)f(i) for
each i ∈ {1, . . . , n}. Here, u(i) denotes the ith element of the vector u.

A run of an En-automaton (S, T) from (s,x) to (s′,x′) is a finite sequence
(s0,x0), . . . , (sk,xk) of global states such that (s0,x0) = (s,x), (sk,xk) = (s′,x′),
and for all i ∈ {1, . . . , n} there exists fi ∈ En such that (si−1,xi−1)

fi−→ (si,xi).
We say that such a run has length k.

We define an ordering ≤ on global states by (s,x) ≤ (s′,x′) if, and only if,
s = s′ and x(i) ≤ x′(i) for each i = 1, . . . , n. We restate the coverability problem
and the state reachability problem: Given an En-automaton, an initial global state
(s,x), where x ∈ Rn≥0 is a computable initial energy, and some global state (s′,x′),
the coverability problem is to decide whether there exists a run from (s,x) to
(s′,x′′) such that x′ ≤ x′′. The state reachability problem is a special case of the
coverability problem for x′ = 0.

For reachability in En-automata with n ≥ 2, our algebraic results do not apply.
To see this, we refer to the state reachability problem in Fig. 10: with initial energy
(1, 1), the loop needs to be taken precisely once, but with initial energy (2, 0), one
needs to loop twice. To make this argument precise, let f denote the function
corresponding to the (−1, 1) loop and g the function on the (0,−2) edge. Then we
should have (1, 1)f∗g = (1, 1)fg and (2, 0)f∗g = (2, 0)f2g. Hence our framework
of computing with energy functions will not apply.

254 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

9.1 Enpw-automata

Recall that n-dimensional VASS form a subclass of our Enpw-automata. The cov-
erability problem for VASS is EXPSPACE-complete [44, 47]. In this subsection
we aim to show the same complexity for the coverability and the state reachabil-
ity problem for Enpw-automata. For EXPSPACE-membership, we extend Rackoff’s
proof for VASS [47].

The proof is inspired by a proof for EXPSPACE-completeness for the class of
strongly increasing affine nets [9]. Affine nets are extensions of classical Petri nets.
Recall that in Petri nets the current placement of tokens in the places (called mark-
ing) changes according to the transition rules, which simply add or subtract tokens
from a place. In affine nets, the transition rules are affine functions of the form
AM +B, where A ∈ Nn×Nn, B ∈ Nn, and M is a marking of the n-dimensional
net. Such a function is strongly increasing if A is greater than or equal to the iden-
tity matrix, cf. condition (∗) for energy functions. Note that strongly increasing
affine nets operate on vectors over N, while Enpw-automata operate on vectors over
R≥0. However, we remark that even Enpwi-automata and strongly increasing affine
nets are incomparable in expressiveness: affine nets do not allow for piecewise affine
functions, and in Enpwi-automata the value of an energy variables cannot influence
the value of another energy variable as it is the case in affine nets. That is, in
Enpwi-automata all A matrices are diagonal.

Before we prove EXPSPACE-completeness of the coverability problem for Enpw-
automata, we introduce some helpful notions and prove some lemmas.

Recall that every 1-dimensional integer piecewise affine energy function f ∈ Epw
can be represented by its breakpoints x0, . . . , xm ∈ Q, the values x0f, . . . , xmf ∈ Q,
and the numbers a0, b0, a1, b1, . . . , am, bm ∈ Z, where aj ≥ 1 for all 0 ≤ j ≤ m. We
use xminf = x0 to denote the minimal break point of f . For simplicity we assume
that xf is defined iff x ≥ xminf , but our arguments also apply to the case where the
definition interval of f is open. For n-dimensional integer piecewise affine energy
functions f ∈ Enpw, we define xminf ∈ Qn to be the n-dimensional vector defined
by xminf (i) = xminf(i) for all i ∈ {1, . . . , n}.

Fix some Enpw-automaton (S, T). We use bmax to denote the maximum of the
absolute values of all negative constants smaller than or equal to −1 and occurring
in the representation of any energy function in (S, T), or 1 if there is no such
constant. We further use xminmax to denote the maximum of 1 and the minimal
break points of all energy functions occurring in (S, T). (Hence xminmax ≥ 1.)

The next lemma states the easy fact that the decrease in the value of an energy
variable during a run is bounded.

Lemma 15. For every run from (s,x) to (s′,x′) of length k, x′(i) ≥ x(i)− k bmax.

On the other hand, the value of an energy variable can grow quickly even in
very short runs. However, for deciding the coverability problem, already for VASS,
it is not necessary to store the exact concrete value of an energy variable once it has
exceeded a certain high value. Instead, we will represent high values symbolically
by ω. The energy variables in the global states of our algorithm will hence take

An Algebraic Approach to Energy Problems II 255

values in Rω := R≥0 ∪{ω}. Define for every y ∈ Rω, ω+ y = ω− y = ω, y ·ω = ω,
and y ≤ ω. Using this, we can extend the definition of f ∈ Epw to a function
f : Rω → Rω in a natural way. We further extend these definitions to the n-
dimensional case. In the following, we will use x to denote vectors in Rn, and y to
denote vectors in (Rω)n.

Let y ∈ (Rω)n and assume y(i) ∈ R≥0. We explain when to replace the concrete
value y(i) by ω. The crucial point here is that there is not a single threshold value
t ∈ R≥0 such that y(i) is replaced by ω whenever y(i) ≥ t. Instead, y(i) is replaced
by ω whenever y(i) ≥ t(r), where r is the number of indices j for which y(j) ∈ R≥0,
and t is a mapping t : {0, . . . , n} → R≥0. To make this formal, we define

omega(y) = {i ∈ {1, . . . , n} | y(i) = ω},
real(y) = {i ∈ {1, . . . , n} | y(i) ∈ R≥0}.

For a finite set λ we use |λ| to denote its cardinality. Let t : {0, 1, . . . , n} → R≥0
be a mapping. We define the vector yt ∈ (Rω)n by

yt(i) =

{
y(i) if y(i) < t(|real(y)|),
ω if y(i) ≥ t(|real(y)|).

Thus, in yt all entries which are greater than or equal to the value t(|real(y)|) are
replaced by ω; other entries do not change.

Next, we define the abstract t-semantics of (S, T). For this, let t : {0, 1, . . . , n} →
R≥0 be a mapping. A global t-state of (S, T) is a pair (s,y) ∈ S × (Rω)n. We
define a t-transition relation over the set of global t-states by (s,y)

f−→t (s′,y′) iff
(s,f , s′) ∈ T , yf is defined, and y′ = (yf)t. A t-run of (S, T) from (s,y) to
(s′,y′) is a finite sequence (s0,y0), (s1,y1), . . . , (sk,yk) of global t-states such that

(s0,y0) = (s,y), (sk,yk) = (s′,y′), and (si−1,yi−1)
fi−→t (si,yi) for some fi ∈ Enpw,

for all i ∈ {1, . . . , k}. We say that such a t-run has length k.
The following observation can be easily proved.

Lemma 16. If y(i) = ω and (s,y)
f−→t (s′,y′), then y′(i) = ω, hence omega(y) ⊆

omega(y′).

The following lemma will be needed to prove the completeness of our algorithm.
The proof is simple and left to the reader.

Lemma 17. If there is a run from (s1,x1) to (s2,x2) of length k, then there is for
every x′

1 ≥ x1 a t-run from (s1,x
′
1) to (s2,y2) of length k and such that y2 ≥ x2.

For proving the soundness of our algorithm, we need to be able to reverse the
process of abstracting concrete data values. Given y ∈ (Rω)n with y(i) = ω for
some i ∈ {1, . . . , n}, we define the vector ytrev ∈ Rn≥0 by

ytrev(i) =

{
y(i) if y(i) ∈ R≥0,
t(|real(y)|+ 1) if y(i) = ω.

(3)

The following lemma will be crucial for proving the soundness of our algorithm.

256 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Lemma 18. For every P ∈ R≥0, if there is a t-run from (s,y) to (s′,y′) of length
k, |real(y)| = |real(y′)|, and t(|real(y)| + 1) ≥ k bmax + xminmax + P , then there
exists a run from (s,ytrev) to some global state (s′,x′) of length at most k, where
x′(i) = y′(i) for all i ∈ real(y′) and x′(i) ≥ xminmax + P for all i ∈ omega(y′).

Proof. Note that |real(y)| = |real(y′)| implies that in the t-run from (s,y) to (s′,y′)
no ω-abstraction took place. We prove the lemma by induction on k.

For the induction base, let k = 0. Hence (s′,y′) = (s,y). Then we have
ytrev(i) = t(|real(y)| + 1) ≥ xminmax + P for all i ∈ omega(y), where the first
equality holds by (3), and the inequality holds by assumption.

For the induction step, assume k > 0. Hence there exists (s′′,y′′) such that
(s,y)

f−→t (s′′,y′′), and there exists a t-run from (s′′,y′′) to (s′,y′) of length k − 1.
Note that by assumption |omega(y)| = |omega(y′)|, and by Lemma 16 the global

t-states occurring in the t-run have ω-entries in the same dimensions.
We first argue that we can execute the transition labeled with f on the global

state (s,ytrev), i.e., ytrev(i)f(i) is defined for all i ∈ {1, . . . , n}. For i ∈ real(y) this
is clear. So let i ∈ omega(y). By assumption,

ytrev(i) = t(|real(y)|+ 1) ≥ k bmax + xminmax + P. (4)

It follows by xminmax ≥ xminf(i) that ytrev(i)f(i) is defined.
Let (s′′,x′′) be the global state that results from applying f to (s,ytrev), i.e.,

(s,ytrev)
f−→ (s′′,x′′).

By (4) and Lemma 15, we have for all i ∈ omega(y′′), and x′′(i) = y′′(i) for all
i ∈ real(y′′).

Define the mapping t1 : {0, 1, . . . , n} → R≥0 by

t1(j) =

{
t(j) if j 6= |real(y′′)|+ 1,

t(|real(y′′)|+ 1)− bmax otherwise.

Note that

t1(|real(y′′)|+ 1) = t(|real(y′′)|+ 1)− bmax

= t(|real(y)|+ 1)− bmax

≥ (k − 1)bmax + xminmax + P,

where the first equation holds by definition of t1, the second equation holds by
|real(y′′)| = |real(y)|, and the inequality holds by assumption. We can thus apply
the induction hypothesis on the t1-run from (s′′,y′′) to (s′,y′) of length k − 1.
Hence there exists a run from (s′′,y′′

trev1
) to (s′, x′) of length at most k− 1 and such

that x′(i) = y′(i) for all i ∈ real(y′), and x′(i) ≥ xminmax+P for all i ∈ omega(y′).
Observe that x′′ ≥ y′′

trev1
: x′′(i) = y′′

trev1
(i) for all i ∈ real(y′′), and x′′(i) ≥

t(real(y)) − bmax and y′′
trev1

(i) = t(real(y)) − bmax for all i ∈ omega(y′′). We can

thus conclude that there is a run from (s′′,x′′) to some global state (s′,x′
1) of length

at most k − 1 and with x′
1 ≥ x′, which yields the statement of the lemma.

An Algebraic Approach to Energy Problems II 257

We are finally ready to state the main result of this subsection.

Theorem 5. State reachability and coverability are EXPSPACE-complete for Enpw-
automata for n ≥ 3.

Proof. The lower bound follows from EXPSPACE-hardness for VASS [44]. For the
upper bound, let (S, T) be an Enpw-automaton, let (s,x) and (s′,x′), respectively,
be the initial global state and the global state to be covered, respectively. We use
cmax = max{bmax,maxi x

′(i)} to denote the maximum of bmax and the maximum
entry in x′; note that cmax ≥ 1. Define thd : {0, 1, . . . , n} → Q≥0 by

thd(0) = 0, thd(i) = bmax · len(i− 1) + xminmax + cmax

for every i ∈ {1, . . . , n}, where len : {0, . . . , n} → Q≥0 is defined inductively by

len(0) = |S|, len(i) = (thd(i))i |S|+ len(i− 1)

for every i ∈ {1, . . . , n}.
The correctness of our algorithm is based on the following two claims.

Soundness Claim. If there exists a thd-run from (s,y) to (s′,y′) of length k
and such that y′ ≥ x′, then there exists a run from (s,ythdrev) to (s′,x′′) of length
at most k and such that x′′ ≥ x′.

Completeness Claim. If there exists a run from (s0,x0) to (s′,x′′) for some
x′′ ≥ x′, then there is also a thd-run from (s0,x0) to (s′,y′) of length k ≤ len(n)
and such that y′ ≥ x′.

By these two claims, there is a run from (s,x) to (s′,x′′) for some x′′ ≥ x′

if, and only if, there is a thd-run from (s,x) to (s′,y′) such that y′ ≥ x′ and of
length bounded by len(n). The existence of such a thd-run can thus be verified
by a non-deterministic Turing machine that keeps in memory one global thd-state
as well as one counter counting up to len(n). Every entry in (Rω)n occurring in
the analysis is either ω or less than thd(n) = bmax · len(n) + xminmax + cmax. By
the Length Claim below, the memory space needed by the algorithm is O((n +
1)!(log(bmax) + log(cmax) + log(xminmax)) + log(|S|)) = O(2cn logn(log(cmax) +
log(xminmax) + log(|S|))), which is in NEXPSPACE.

Length Claim. For all i ∈ N, len(i) ≤ (6 bmax · cmax · xminmax)(i+1)! |S|.
In the remainder of this subsection, we prove the three claims stated above.

Proof of the Soundness Claim. The proof is by induction on |real(y)|.
For the induction base, assume |real(y)| = 0, i.e., we have y(i) = ω for all

i ∈ {1, . . . , n}. By definition, for every i ∈ {1, . . . , n} we have

ythdrev(i) = thd(|real(y)|+ 1) = thd(1)

= bmax · len(0) + xminmax + cmax

= bmax |S|+ xminmax + cmax. (5)

258 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

For defining the sequence of transitions that leads (s,ythdrev) to some (s′,x′′) in at
most k transition steps and such that x′′ ≥ x′, we distinguish two cases. First,
assume that the length k of the thd-run from (s,y) to (s′,y′) satisfies k > |S|. There
must exist a (syntactical) cycle-free path from s to s′ in (S, T) of length bounded by
|S|. By (5) and Lemma 15, there is a run corresponding to this path from (s,ythdrev)
to (s′,x′′), where x′′ satisfies x′′(i) ≥ xminmax + cmax for all i ∈ {1, . . . , n}. By
definition of cmax, we can conclude x′′ ≥ x′.

Second, assume that the length k of the thd-run from (s,y) to (s′,y′) satisfies
k ≤ |S|. By (5) and Lemma 15, we can argue that starting from (s,ythdrev) we can
use the same sequence of transitions as in the thd-run, yielding a run of length k,
and reaching a global state (s′,x′′) for some x′′ ≥ x′. This finishes the induction
base.

For the induction step assume |real(y)| = i+ 1. We consider two cases.
(i) First assume |real(y)| = |real(y′)|. By definition of the thd-semantics, every

global thd-state (s1,y1) that occurs in the thd-run ρ from (s,y) to (s′,y′) satisfies

• |real(y1)| = i+ 1,

• y1(j) < thd(|real(y1)|) = thd(i+ 1) for all j ∈ real(y1).

Let ρ′ be the run from (s,y) to (s′,y′) that is obtained from ρ by removing all
cycles between identical global thd-states. The length k′ of ρ′ is bounded by

k′ ≤ (thd(i+ 1))i+1 |S| .

Next we prove that there is a corresponding run from (s,ythdrev). For this, note that

thd(|real(y)|+ 1) = thd((i+ 1) + 1)

= bmax · len(i+ 1) + xminmax + cmax

= bmax ((thd(i+ 1))i+1 |S|+ len(i)) + xminmax + cmax

≥ bmax ((thd(i+ 1))i+1 |S|) + xminmax + cmax

≥ bmax · k′ + xminmax + cmax.

By Lemma 18 (for P = cmax), there exists a run from (s,ythdrev) to (s′,x′′) of
length at most k′ and such that x′′(j) = y′(j) for all j ∈ real(y′), and x′′(j) ≥
xminmax + cmax for all j ∈ omega(y′). Then x′′ ≥ x′ follows by cmax ≥ x′(j) for
all j ∈ {1, . . . , n}.

(ii) Now assume |real(y)| > |real(y′)|. In the thd-run ρ from (s,y) to (s′,y′),
let (s1,y1) be the last global thd-state with |real(y1)| = i + 1. Partition ρ into
three parts: A thd-run ρ1 of length k1 from (s,y) to (s1,y1), a thd-transition
(s1,y1)

f−→thd (s2,y2) (where real(y2) ≤ i), and a thd-run ρ2 of length k2 from
(s2,y2) to (s′,y′). Hence k = k1 + k2 + 1. Note that ρ1 may be empty, in case
(s1,y1) = (s,y); in that case, k1 = 0 and k = k2 + 1.

As in case (i), we can show that there is a run ρ′1 from (s,y) to (s1,y1) of length
k′1 ≤ (thd(i+ 1))i+1 |S|. Using similar arguments as above, we obtain

thd(|real(y)|+ 1) ≥ bmax · k′1 + bmax · len(i) + xminmax + cmax.

An Algebraic Approach to Energy Problems II 259

By Lemma 18 (with P = bmax · len(i) + cmax) there exists a run from (s,ythdrev)
to (s1,x1) of length at most k′1 and such that x1(j) = y1(j) for all j ∈ real(y1),
and x1(j) ≥ bmax · len(i) + xminmax + cmax for all j ∈ omega(y1). Note that
x1 ≥ y1thdrev . Hence we also have (s1,x1)

f−→ (s2,x2) for some x2 ≥ y2thdrev .
By induction hypothesis, there exists a run from (s2,y2thdrev) to (s′,x′′) for some
x′′ ≥ x′ and of length at most k2. But by x2 ≥ y2thdrev there also exists such
a run from (s,x2). This completes the induction step and thus the proof of the
soundness claim.

Proof of the Completeness Claim. Assume that there exists a run from (s,x)
to (s′,x′′) for some x′′ ≥ x′. By Lemma 17 there exists a thd-run ρ from (s,x) to
(s′,y) for some y ≥ x′′. Let ρ′ be the thd-run from (s,x) to (s′,y) that is obtained
from ρ by removing all cycles between identical global thd-states. We prove that
|ρ′| ≤ len(n). For all i ∈ {|real(y)|, . . . , n}, let (si,yi) be the first global thd-state
occurring in ρ′ such that |real(yi)| ≤ i, and let ρ′i be the suffix of ρ′ that starts in
(si,yi). We prove by induction on i that |ρ′i| ≤ len(i).

For the base case, let i = |real(y)|. By definition of the thd-semantics, every
global thd-state (s′,y′) occurring in ρ′i satisfies y′(j) < thd(i) for every j ∈ real(y′).
Since there are exactly i entries that take values in {0, . . . , thd(i) − 1}, the length
|ρ′i| of ρ′i is bounded by thd(i)i ·|S|. This and the definition of len yields |ρ′i| ≤ len(i).

For the induction step, let ρi+1 be the prefix of ρ′i+1 that starts in (si+1,yi+1)
and ends in (si,yi). Every global thd-state (s′,y′) that occurs in ρi+1 (except
for (si,yi)) satisfies y′(j) < thd(i + 1) for all j ∈ real(y′) = real(yi+1). Hence
|ρi+1| ≤ (thd(i + 1))i+1 |S|. By induction hypothesis, |ρ′i| ≤ len(i). Altogether, we
obtain

|ρ′i+1| = |ρi+1|+ |ρ′i| ≤ (thd(i+ 1))i+1 |S|+ len(i) ≤ len(i+ 1).

This completes the induction step and the proof of the completeness claim.

Proof of the Length Claim. The claim is proved by induction on i. The base
case, i = 0, trivially holds. So let us assume that the claim holds for i. Then

len(i+ 1) = (bmax · len(i) + xminmax + cmax)i+1 |S|+ len(i)

≤ (2 bmax · cmax · xminmax ·max(len(i), 1))i+1 |S|+ len(i)

≤ 3(2 bmax · cmax · xminmax ·max(len(i), 1))i+1 |S|
≤ 3i+1(2 bmax · cmax · xminmax)i+1(max(len(i), 1))i+1 |S|
≤ (6 bmax · cmax · xminmax)i+1((6 bmax · cmax · xminmax)(i+1)!)i+1 |S|
≤ (6 bmax · cmax · xminmax)(i+1)!(6 bmax · cmax · xminmax)(i+1)(i+1)! |S|
= (6 bmax · cmax · xminmax)(i+2)(i+1)! |S|
= (6 bmax · cmax · xminmax)(i+2)! |S|.

With the proves of these three lemmas, the proof of Theorem 5 is complete.

260 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

9.2 Flat Enpw-automata

Next we show that if the requirement (∗) on energy functions, that yf ≥ xf +y−x
for each x ≤ y, is lifted, then reachability becomes undecidable from dimension 4.
We call such functions flat energy functions; remark that we still require them to
be strictly increasing, but the derivative, where it exists, may be less than 1. The
class of all flat energy functions is denoted Ē and its restrictions by Ēpw and Ēpwi.

Theorem 6. State reachability, coverability, and Büchi acceptance are undecidable
for Ē4pw-automata.

Proof. The proof is a reduction from the halting problem (respectively, the recur-
rent state problem) for two-counter machines. A two-counter machine M is a finite
sequence (Ij)nj=1 of instructions operating on two counters denoted by C1 and C2,
where Ij is one of the following instructions (with i ∈ {1, 2} and j, k,m ∈ {1, ..., n}):

increment Ij :Ci := Ci + 1; go to Ik
zero test/dec Ij : if Ci = 0 then goto Ik else Ci :=Ci − 1; goto Im
halt Ij : halt

A configuration of such a two-counter machine M is a triple γ = (J, c, d) ∈
{I1, . . . , In} ×N ×N, where J indicates the current instruction, and c and d are
the current values of the counters C1 and C2, respectively. A computation ofM is
a finite or infinite sequence (γi)i≥0 of configurations, such that γ0 = (I1, 0, 0) and
γi+1 is the result of executing the instruction Ii on γi for each i ≥ 0. Without
loss of generality, we assume that In is the only instruction of the form halt. The
halting problem for two-counter machines asks, given a two-counter machine M,
whether the (unique) computation ofM reaches a configuration with instruction In,
i.e., the halting instruction. This problem is Σ0

1-complete [45]. The recurrent state
problem for two-counter machines asks, given a two-counter machine M, whether
the (unique) computation ofM visits instruction I1 infinitely often. This problem
is Σ1

1-complete [3].
Given a two-counter machine M, we construct an Ē4pw-automaton AM with

state set S ⊆ {I1, . . . , In} such that M halts (visits instruction I1 infinitely of-
ten, respectively) if, and only if, AM reaches state In (visits I1 infinitely often,
respectively).

We use two variables x and y to store the values of the counters C1 and C2

by requiring that x = 1/(2c13c2) and y = 2c13c2 . Two other variables z and z′

are used for storing temporary information needed for encoding zero tests and
decrementation operations of the 2-counter machine. The initial value of all energy
variables is 1.

For encoding the instructions of the 2-counter machine, we first define the fol-
lowing flat energy functions: dec2 multiplies the current values of x and z′ with 3,
and divides the current values of y and z by 3; inc2 turns these operations back,
i.e., it divides the current values of x and z′ by 3 and multiplies the values of y
and z with 3. Functions dec1 and inc1 are defined analogously by replacing 3 by
2. Finally, function dec′1 behaves like dec1 but does not change the values of z

An Algebraic Approach to Energy Problems II 261

Ij

Ik

Im

dec2

id, x
≥ 1, y ≥

1

inc2

id, z ≥ 1, z′ ≥ 1

dec ′1

dec1

id, x ≥ 1, y ≥ 1

inc1, inc2

id, z ≥ 1, z′ ≥ 1

Figure 11: Module for encoding zero test/decrement instructions of a 2-counter
machine

and z′; likewise for inc′1. An increment instruction for counter C1 is then encoded
by a simple transition from state Ij to state Ik labeled by inc′1; analogously for
an increment of counter C2. The encoding zero test/decrement instructions for
counter C1 can be done as shown in Fig. 11. Here, the additional inequalities for
the definition intervals of the energy functions are crucial for the correctness of the
construction.

9.3 Reachability games on Enpw-automata

Next we extend our energy automata formalism to (turn based) reachability games.
Let (S, T) be an n-dimensional energy automaton such that S = SA ∪ SB forms a
partition of S and T ⊆ (SA × Enpw × SB) ∪ (SB × Enpw × SA). Then (S, SA, SB , T)
induces an n-dimensional energy game G. The intuition of the reachability game
is that the two players A and B take turns to move along the game graph (S, T),
updating energy values at each turn. The goal of player A is to reach a state in F ,
the goal of player B is to prevent this from happening.

The reachability game is a game on a well-structured transition system as in [1].
In general, the reachability game on well-structured transition systems is undecid-
able; in particular, the game on 2-dimensional vector addition systems with states
is undecidable [1]. It is hence clear that it is undecidable whether player A wins
the reachability game in 2-dimensional Eint-automata.

Theorem 7. Whether player A wins the reachability game in E2int-automata is
undecidable.

As a corollary, we can show that for flat energy functions, already one-dimen-
sional reachability games are undecidable.

Theorem 8. It is undecidable for Ēpw-automata whether player A wins the reach-
ability game.

Proof. We show a reduction from reachability games on 2-dimensional Eint-automata
to reachability games on 1-dimensional Ēpw-automata. Let (S, T) be a 2-dimensional

262 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

s s1 s′

s2

s3s4 s5

x 7→ 2f(log2 x);x ≥ 2lf

x 7→ x
3 ;x ≥ 3 · 2lf x 7→ x

2 ;x ≥ 2 · 2lf

x 7→ x;x ≥ 2lfx 7→ x;x > 2lf

s s1 s′

s2

s3s4 s5

x 7→ 3f(log3 x);x ≥ 3lf

x 7→ x
3 ;x ≥ 3 · 3lf x 7→ x

2 ;x ≥ 2 · 3lf

x 7→ x;x ≥ 3lfx 7→ x;x > 3lf

Figure 12: Conversion of two types of edges in (S, T). Top: an edge (s, (f, id), s′)
from a player-A state s; bottom: an edge (s, (id, f), s′) from a player-B state s.
Player-A states are depicted using squares, player-B states are diamonds. Accept-
ing states have a gray background color. The ownership of state s′ is unchanged.

Eint-automaton. By inserting extra states (and transitions) if necessary, we can as-
sume that for any (s, (f, g), s′) ∈ T , either f = id with lf = 0, or g = id with lg = 0.
We build an energy automaton (S′, T ′).

Let (s, (f, id), s′) ∈ T be a player-A transition (i.e., s ∈ SA) in (S, T) (with lower
bound lf as usual), then we model this in (S′, T ′) using s, s′ and the following new
states and transitions; see Figure 12 for a pictorial description.

• player-A states: s2, s4, s5 (accepting); player-B states: s1, s3

• transitions:

– (s, [x 7→ x;x ≥ 0], s1); (s1, [x 7→ 2f(log2 x);x ≥ 2lf], s′)

– (s1, [x 7→ x;x ≥ 0], s2)

An Algebraic Approach to Energy Problems II 263

– (s2, [x 7→ x
3 ;x ≥ 3 · 2lf], s2); (s2, [x 7→ x

2 ;x ≥ 2 · 2lf], s2)

– (s2, [x 7→ x;x ≥ 0], s3)

– (s3, [x 7→ x;x > 2lf], s4); (s3, [x 7→ x;x ≥ 2lf], s5)

Note that s4 is a deadlock state, hence player A loses the reachability game if s4 is
reached. Similarly, she wins if s5 is reached.

The intuition is that the new energy variable x encodes the two old ones as
x = 2x13x2 . If player A wants to bring (S′, T ′) from s to s′, and commits to this
by taking the transition s → s1, she may be interrupted by player B taking the
s1 → s2 transition. Here player A has to prove that x1 was really ≥ lf , by using the
loops at s2 to bring x to the precise value 2lf . If she manages this, then player B
has only the s3 → s5 transition available in s3, hence player A wins. Otherwise,
player B wins.

The conversions of other types of transitions are similar. One can easily see
that player A can reach a state in F in the original energy automaton (S, T) if, and
only if, she can reach a state in F , or one of the new accepting states, in the new
automaton (S′, T ′).

We miss to argue that all energy functions in (S′, T ′) are piecewise affine. Look-
ing at the defined modules, we see that this is the case except perhaps for the func-
tions defined as g2(x) = 2f(log2 x) and g3(x) = 3f(log3 x). However, f is an integer
update function, so that f(x) = x + k for some k ∈ Z; hence g2(x) = 2kx and
g3(x) = 3kx, which are indeed piecewise affine.

10 Conclusion

We have in this paper introduced a functional framework for modeling and ana-
lyzing energy problems, and we have seen that our framework encompasses most
existing formal approaches to energy problems. In the first paper of this series [28],
we have developed a theory of ∗-continuous Kleene ω-algebras in order to analyze
energy problems algebraically.

We have seen here that the algebraic setting of ∗-continuous Kleene ω-algebras
applies to energy functions and that it allows to solve reachability and Büchi ac-
ceptance problems in energy automata in a generic way. For the important class
of piecewise affine energy functions, we have shown that reachability and Büchi
acceptance are decidable in EXPTIME.

In the last part of this paper, we have seen that one quickly comes into trouble
with undecidability if the class of energy functions is extended or if two-player
games are considered. This may be remedied by considering approximate solutions
instead, using notions of distances for energy automata akin to the ones in [35] to
provide quantitative measures for similar energy behavior; this is future work.

In the two papers of this series, we have seen that ∗-continuous Kleene ω-algebras
provide a natural generalization of continuous Kleene ω-algebras, much in the same
way in which ∗-continuous Kleene algebras are a natural generalization of contin-
uous Kleene algebras. We have left open a few algebraic problems, in particular a

264 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

characterization of the free (non-finitary) ∗-continuous Kleene ω-algebras. We have
seen that ∗-continuous Kleene ω-algebras find a natural application in energy func-
tions and energy problems, but we are confident that they will find numerous other
applications. In honor of the late Zoltán Ésik, we propose to rename ∗-continuous
Kleene ω-algebras to “Ésik algebras”.

References

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Monotonic and
downward closed games. J. Log. Comput., 18(1):153–169, 2008.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[3] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM,
41(1):181–204, 1994.

[4] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. In Di Benedetto and Sangiovanni-Vincentelli [23],
pages 49–62.

[5] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pet-
tersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability
for priced timed automata. In Di Benedetto and Sangiovanni-Vincentelli [23],
pages 147–161.

[6] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series
With Applications. Cambridge Univ. Press, 2010.

[7] Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre
McKenzie. Reachability in two-dimensional vector addition systems with states
is PSPACE-complete. In LICS, pages 32–43. IEEE, 2015.

[8] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic
of Iterative Processes. EATCS monographs on theoretical computer science.
Springer-Verlag, 1993.

[9] Rémi Bonnet, Alain Finkel, and M. Praveen. Extending the Rackoff tech-
nique to affine nets. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, FSTTCS, volume 18 of Leibniz Int. Proc. Inf., pages
301–312. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[10] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Timed
automata with observers under energy constraints. In Karl Henrik Johansson
and Wang Yi, editors, HSCC, pages 61–70. ACM, 2010.

An Algebraic Approach to Energy Problems II 265

[11] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jǐŕı
Srba. Infinite runs in weighted timed automata with energy constraints. In
Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of Lect.
Notes Comput. Sci., pages 33–47. Springer-Verlag, 2008.

[12] Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. Lower-bound-
constrained runs in weighted timed automata. Perform. Eval., 73:91–109,
2014.

[13] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen.
Almost optimal strategies in one clock priced timed games. In S. Arun-Kumar
and Naveen Garg, editors, FSTTCS, volume 4337 of Lect. Notes Comput. Sci.,
pages 345–356. Springer-Verlag, 2006.

[14] Tomáš Brázdil, Petr Jančar, and Antońın Kučera. Reachability games on
extended vector addition systems with states. In Samson Abramsky, Cyril
Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spi-
rakis, editors, ICALP, volume 6199 of Lect. Notes Comput. Sci., pages 478–
489. Springer-Verlag, 2010.

[15] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and
mean-payoff timed games. In Martin Fränzle and John Lygeros, editors, HSCC,
pages 283–292. ACM, 2014.

[16] David Cachera, Uli Fahrenberg, and Axel Legay. An omega-algebra for real-
time energy problems. In Prahladh Harsha and G. Ramalingam, editors,
FSTTCS, volume 45 of Leibniz Int. Proc. Inf., pages 394–407. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

[17] Jakub Chaloupka. Z-reachability problem for games on 2-dimensional vector
addition systems with states is in P. In Antońın Kučera and Igor Potapov,
editors, RP, volume 6227 of Lect. Notes Comput. Sci., pages 104–119. Springer-
Verlag, 2010.

[18] Tat-hung Chan. The boundedness problem for three-dimensional vector addi-
tion systems with states. Inf. Proc. Letters, 26(6):287–289, 1988.

[19] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor.
Comput. Sci., 458:49–60, 2012.

[20] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Generalized mean-payoff and energy games. In Kamal Lodaya
and Meena Mahajan, editors, FSTTCS, volume 8 of Leibniz Int. Proc. Inf.,
pages 505–516, 2010.

[21] Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors. Lan-
guage and Automata Theory and Applications - 5th International Conference,
LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings, volume 6638 of
Lect. Notes Comput. Sci. Springer-Verlag, 2011.

266 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

[22] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and
Szymon Toruńczyk. Energy and mean-payoff games with imperfect informa-
tion. In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lect.
Notes Comput. Sci., pages 260–274. Springer-Verlag, 2010.

[23] Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, edi-
tors. Hybrid Systems: Computation and Control, 4th International Workshop,
HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of
Lect. Notes Comput. Sci. Springer-Verlag, 2001.

[24] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 2009.

[25] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras.
In Igor Potapov, editor, DLT, volume 9168 of Lect. Notes Comput. Sci., pages
240–251. Springer-Verlag, 2015.

[26] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras
for energy problems. In Ralph Matthes and Matteo Mio, editors, FICS, volume
191 of Electr. Proc. Theor. Comput. Sci., pages 48–59, 2015.

[27] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. Kleene alge-
bras and semimodules for energy problems. In Dang Van Hung and Mizuhito
Ogawa, editors, ATVA, volume 8172 of Lect. Notes Comput. Sci., pages 102–
117. Springer-Verlag, 2013.

[28] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. An algebraic
approach to energy problems I: ∗-continuous Kleene ω-algebras. Acta Cyb.,
2017. In this issue.

[29] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of
ω-regular languages, Parts 1 and 2. J. Aut. Lang. Comb., 10:203–264, 2005.

[30] Zoltán Ésik and Werner Kuich. Modern Automata Theory. 2007. http:

//dmg.tuwien.ac.at/kuich/mat.pdf.

[31] Zoltán Ésik and Werner Kuich. On iteration semiring-semimodule pairs. Semi-
group Forum, 75:129–159, 2007.

[32] Zoltán Ésik and Werner Kuich. Finite automata. In Handbook of Weighted
Automata [24], pages 69–104.

[33] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jǐŕı Srba. Energy games in
multiweighted automata. In Antonio Cerone and Pekka Pihlajasaari, editors,
ICTAC, volume 6916 of Lect. Notes Comput. Sci., pages 95–115. Springer-
Verlag, 2011.

An Algebraic Approach to Energy Problems II 267

[34] Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Model-based verification,
optimization, synthesis and performance evaluation of real-time systems. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, ICTAC Training
School on Software Engineering, volume 8050 of Lect. Notes Comput. Sci.,
pages 67–108. Springer-Verlag, 2013.

[35] Uli Fahrenberg and Axel Legay. The quantitative linear-time–branching-time
spectrum. Theor. Comput. Sci., 538:54–69, 2014.

[36] Uli Fahrenberg, Axel Legay, and Karin Quaas. Büchi conditions for general-
ized energy automata. In Manfred Droste and Heiko Vogler, editors, WATA,
page 47, 2012.

[37] Jonathan S. Golan. Semirings and their Applications. Springer-Verlag, 1999.

[38] Stefan Göller, Christoph Haase, Ranko Lazić, and Patrick Totzke. A
polynomial-time algorithm for reachability in branching VASS in dimension
one. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and
Davide Sangiorgi, editors, ICALP, volume 55 of Leibniz Int. Proc. Inf., pages
105:1–105:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[39] Line Juhl, Kim G. Larsen, and Jean-François Raskin. Optimal bounds for mul-
tiweighted and parametrised energy games. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, Theories of Programming and Formal Methods, vol-
ume 8051 of Lect. Notes Comput. Sci., pages 244–255. Springer-Verlag, 2013.

[40] Dénes König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta
Sci. Math. (Szeged), 3(2-3):121–130, 1927.

[41] Dexter Kozen. On Kleene algebras and closed semirings. In Branislav Rovan,
editor, MFCS, volume 452 of Lect. Notes Comput. Sci., pages 26–47. Springer-
Verlag, 1990.

[42] Jérôme Leroux. The general vector addition system reachability problem by
Presburger inductive invariants. Logical Meth. Comput. Sci., 6(3), 2010.

[43] Jérôme Leroux. Vector addition system reachability problem: A short self-
contained proof. In Dediu et al. [21], pages 41–64.

[44] Richard J. Lipton. The reachability problem requires exponential space. Tech-
nical report, Department of Computer Science, Yale University, 1976.

[45] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and
other topics in theory of Turing machines. Annals Math., 74(3):437–455, 1961.

[46] Karin Quaas. On the interval-bound problem for weighted timed automata.
In Dediu et al. [21], pages 452–464.

[47] Charles Rackoff. The covering and boundedness problems for vector addition
systems. Theor. Comput. Sci., 6:223–231, 1978.

268 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

[48] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger,
Alexander Moshe Rabinovich, and Jean-François Raskin. The complexity of
multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196, 2015.

Acta Cybernetica 23 (2017) 269–281.

Synchronous Forest Substitution Grammars∗

Andreas Malettia

— dedicated to the memory of Zoltán Ésik (1951–2016) —

Abstract

The expressive power of synchronous forest (tree-sequence) substitution
grammars (SFSGs) is studied in relation to multi bottom-up tree transduc-
ers (MBOTs). It is proved that SFSGs have exactly the same expressive
power as compositions of an inverse MBOT with an MBOT. This result is
used to derive complexity results for SFSGs and the fact that compositions of
an MBOT with an inverse MBOT can compute tree translations that cannot
be computed by any SFSG, although the class of tree translations computable
by MBOTs is closed under composition.

Keywords: tree transducer, synchronous grammar, regular tree language,
machine translation

1 Introduction

Synchronous forest substitution grammars (SFSGs) [19] or the rational binary tree
relations [17] computed by them received renewed interest recently due to their
applications in Chinese-to-English machine translation [21, 22]. The fact that
[19] and [17] arrived independently and with completely different backgrounds at
the same model shows that SFSGs are a natural, practically relevant, and theo-
retically interesting model for tree translations. Roughly speaking, SFSGs are a
synchronous grammar formalism [2] that utilizes only first-order substitution as in
a regular tree grammar [7, 8], but allows several components that develop simulta-
neously for both the input and the output side. This feature allows them to model
linguistic discontinuity on both the source and target language. The rational binary
tree relations or equivalently the tree translations computed by SFSGs can also be
characterized by rational expressions [17] and automata [16].

Multi bottom-up tree transducers (MBOTs) [1, 4] are restricted SFSGs, in which
only the output side is allowed to have several components. They were rediscovered

∗This article is an extended and revised version of [Maletti: Synchronous forest substitution
grammars. In Proc. Algebraic Informatics, LNCS 8080, pages 235–246, 2013]

aUniversität Leipzig, Institute of Computer Science, PO box 100 920, 04009 Leipzig, Germany,
E-mail: maletti@informatik.uni-leipzig.de

DOI: 10.14232/actacyb.23.1.2017.15

270 A. Maletti

in [5, 6], but were studied extensively by [3, 11, 1] already in the 70s and 80s. Their
properties [13] are desirable in statistical syntax-based machine translation [10].
This led to a closer inspection [4, 15, 9] of their properties in recent years. Overall,
their expressive power is rather well-understood by now.

In this contribution, we investigate the expressive power of SFSGs in terms
of MBOTs. We show that the expressive power of SFSGs coincides exactly with that
of compositions of an inverse MBOT followed by an MBOT. This characterization
is natural in terms of bimorphisms and shows that the input and the output tree
are independently obtained by a full MBOT from an intermediate tree language,
which is always regular [7, 8]. This paves the way to complementary results. In
particular, we derive the first complexity results for SFSGs and we demonstrate that
the composition in the other order (first an MBOT followed by an inverse MBOT)
contains tree translations that cannot be computed by any SFSG. This shows a
limitation of MBOTs, which are closed under composition [4]. Overall, we can
thus also characterize the expressive power of SFSGs by an arbitrary chain of
inverse MBOTs followed by an arbitrary chain of MBOTs.

2 Preliminaries

We use N for the set of nonnegative integers, and N+ = N \ {0} for the set of
positive integers. For all k ∈ N, the set {i ∈ N+ | i ≤ k} is abbreviated to [k].
In particular, [0] = ∅. For all relations R ⊆ A × B and subsets A′ ⊆ A, we let
R(A′) = {b ∈ B | ∃a ∈ A′ : (a, b) ∈ R}. Moreover,

R−1 = {(b, a) | (a, b) ∈ R} dom(R) = R−1(B) ran(R) = dom(R−1) ,

which are called the inverse of R, the domain of R, and the range of R, respectively.
Given relations R ⊆ A × B and S ⊆ B × C, the composition R ; S ⊆ A × C of R
followed by S is R ; S = {(a, c) ∈ A × C | ∃b ∈ B : (a, b) ∈ R, (b, c) ∈ S}.
These notions and notations are lifted to sets and classes of relations as usual. For
every k ∈ N, we also write Ak = A×· · ·×A containing the factor A exactly k times.

Given a set Σ, the set Σ∗ =
⋃
k∈N Σk is the set of all words over Σ, which

includes the empty word ε ∈ Σ0. The concatenation of two words u,w ∈ Σ∗ is
denoted by u.w or just uw. The length |w| of a word w ∈ Σ∗ is the unique k ∈ N
such that w ∈ Σk. We simply write wi for the i-th letter of w, so wi = σi for
all i ∈ [k] provided that w = σ1 · · ·σk with letters σi ∈ Σ for all i ∈ [k]. Given
a set A, the set TΣ(A) of all Σ-trees indexed by A is the smallest set T such that
A ⊆ T and σ~u ∈ T for all σ ∈ Σ and ~u ∈ T ∗. Such a sequence ~u of trees is
also called forest. Consequently, a tree t is either an element of A, or it consists
of a root node labeled σ followed by a forest ~u of |~u| children. To improve the
readability, we often write a forest ‘t1 · · · tk’ as ‘t1, . . . , tk’, where t1, . . . , tk ∈ TΣ(A).
In addition, we identify the tree t with the forest (t). The positions pos(t) ⊆ N∗+ of

Synchronous Forest Substitution Grammars 271

a tree t ∈ TΣ(A) are inductively defined by

pos(a) = {ε} and pos(σ~u) = {ε} ∪
|~u|⋃
i=1

{i.p | p ∈ pos(~ui)}

for every a ∈ A, σ ∈ Σ, and ~u ∈ TΣ(A)∗. For each forest ~u ∈ TΣ(A)∗, we

let pos(~u) =
⋃|~u|
i=1{#i−1.p | p ∈ pos(~ui)}. Positions are totally ordered via the

(standard) lexicographic ordering � on N∗+, which can be extended to (N+ ∪{#})∗
with the convention that the additional letter # is larger than all numbers; i.e., n ≺
for every n ∈ N+. Let t, t′ ∈ TΣ(A) and p ∈ pos(t). The label of t at position p
is t(p), the subtree rooted at position p is t|p, and the tree obtained by replacing
the subtree at position p by t′ is denoted by t[t′]p. Formally, they are defined by
a(ε) = a|ε = a and a[t′]ε = t′ for every a ∈ A and

t(p) =

{
σ if p = ε

~ui(p
′) if p = i.p′ with i ∈ N+

t|p =

{
t if p = ε

~ui|p′ if p = i.p′ with i ∈ N+

t[t′]p =

{
t′ if p = ε

σ(~u1, . . . , ~ui−1, ~ui[t
′]p′ , ~ui+1, . . . , ~u|~u|) if p = i.p′ with i ∈ N+

for all t = σ~u with σ ∈ Σ and ~u ∈ TΣ(A)∗. We immediately also extend this
notion to forests ~u ∈ TΣ(A)∗ for all #ip ∈ pos(~u) with i ∈ N and p ∈ pos(~ui+1) by
~u(#ip) = ~ui+1(p) and ~u|#ip = ~ui+1|p and

~u[t′]#ip = (~u1, . . . , ~ui−1, ~ui[t
′]p, ~ui+1, . . . , ~u|~u|) .

In the following, let ~u ∈ TΣ(A)∗ be a forest. By our identification of trees TΣ(A)
with forests TΣ(A)1 of length 1, this choice includes trees. A position p ∈ pos(~u)
is a leaf in ~u if p.1 /∈ pos(~u). For every selection S ⊆ A ∪ Σ of labels, we let
posS(~u) = {p ∈ pos(~u) | ~u(p) ∈ S} and poss(~u) = pos{s}(~u) for every s ∈ A ∪ Σ.
The forest ~u ∈ TΣ(A) is linear in S ⊆ A if |poss(~u)| ≤ 1 for every s ∈ S. The
variables of ~u are var(~u) = {a ∈ A | posa(~u) 6= ∅}. Given a selection S ⊆ A and
a mapping θ : S → TΣ(A)∗ such that |θ(s)| = |poss(~u)| for all s ∈ S, also called
suitable substitution for S in ~u, the forest ~uθ is obtained from ~u by replacing for
every s ∈ S the leaves poss(~u) in lexicographic order by the trees θ(s). Formally,
for every s ∈ S, let poss(~u) = {ps1, . . . , psks} with ps1 ≺ · · · ≺ psks . Then

~uθ = ~u[θ(s1)1]ps11
· · · [θ(s1)|θ(s1)|]ps1ks1

· · · [θ(s`)1]ps`1 · · · [θ(s`)|θ(s`)|]ps`ks`
,

where S = {s1, . . . , s`}.
Given two sets Σ and ∆ with � /∈ ∆, a mapping d : Σ→ (∆∪{�}) is a delabeling.

Thus, a delabeling is similar to a relabeling [7, 8], but it can also map symbols to a
special symbol �, which will yield that those symbols are deleted, when they occur
with exactly one child and project on the delabeling of the child. The delabeling

272 A. Maletti

induces a mapping τd : TΣ(A)→ TΣ∪∆(A) such that τd(a) = a for all a ∈ A and

τd(σ~u) =

τd(~u1) if d(σ) = � and |~u| = 1

σ(τd(~u1), . . . , τd(~u|~u|)) if d(σ) = � and |~u| 6= 1

d(σ)(τd(~u1), . . . , τd(~u|~u|)) otherwise

for all σ ∈ Σ and ~u ∈ TΣ(A)∗.
Finally, let us recall the regular tree languages [7, 8]. A (finite-state) tree au-

tomaton (TA) is a tuple G = (Q,Σ, I, R) such that Q is a finite set of states, Σ is
an alphabet of symbols, I ⊆ Q is a set of initial states, and R ⊆ Q × Σ × Q∗ is a
finite set of rules. A rule (q, σ, ~r) ∈ R is typically written q → σ~r. Given sentential
forms ξ, ζ ∈ TΣ(Q) we write ξ ⇒G ζ if there exists a rule q → σ~r ∈ R and an
occurrence p ∈ posq(ξ) of q in ξ such that ζ = ξ[σ~r]p. The tree automaton G
generates the tree language L(G) = {t ∈ TΣ | ∃q ∈ I : q ⇒∗G t}, where ⇒∗G is the
reflexive and transitive closure of ⇒G. A tree language L ⊆ TΣ is regular if there
exists a TA G such that L = L(G). The class of regular tree languages is denoted
by ‘Reg’. Moreover, ‘FTA’ denotes the class of partial identities computed by the
regular tree languages; i.e., FTA = {idL | L ∈ Reg}, where idL = {(t, t) | t ∈ L}.

3 Synchronous forest substitution grammars

In this section, we introduce our main model, the (finite-state) synchronous forest-
substitution grammar (SFSG), which is the natural finite-state generalization of the
(local non-contiguous) synchronous tree-sequence substitution grammars of [19].
Although we often speak about grammars in the following, we will continue to use
‘states’ instead of ‘nonterminals’. SFSGs naturally coincide in expressive power
with the binary rational relations studied by [17, 16], which we will show later.
We immediately present it in a form inspired by tree bimorphisms [1] and tree
grammars with multi-variables [17].

Definition 1. A (finite-state) synchronous forest-substitution grammar (SFSG) is
a tuple G = (Q,Σ,∆, I, R), where
• Q is a finite set of states,
• Σ and ∆ are alphabets of input and output symbols,
• I ⊆ Q is a set of initial states, and
• R ⊆ TΣ(Q)∗ ×Q× TΣ(Q)∗ is a finite set of rules.

It is a multi bottom-up tree transducer (MBOT) if R ⊆ TΣ(Q)×Q× TΣ(Q)∗ and
a multiple regular tree grammar (MRTG) if R ⊆ TΣ(Q)×Q× {ε}.

In simple terms, an SFSG consists of a finite set of rules that specify a state,
for which the rule applies together with a sequence of input tree fragments and a
sequence of output tree fragments. In an application of such a rule all fragments
replace occurrences of the guarding state at the same time in the input and output
tree. This also yields that all occurrences of the same state in those fragments are
implicitly linked and prepared to be replaced in parallel in a future rule application.

Synchronous Forest Substitution Grammars 273

γ1

q

γ1

q

q
— ε

γ2

q

γ2

q

q
— ε α α q

— ε α q′

— α α

σ

q q′ q
q0
—

σ

q′ α q′

γ1

q′
q′

—

γ1

q′

γ1

q′

γ2

q′
q′

—

γ2

q′

γ2

q′

Figure 1: Example rules of the SFSG of Example 1.

An MBOT is a restricted SFSG, in which only a single input tree fragment is allowed
in each rule. Compared to its traditional definition [4] the linearity of the single
input tree fragment in the states Q is not required here, but as we will see nonlinear
rules will not be useful in our version of MBOTs. To make the rules more readable,

we also write `1 · · · `k
q

— r1 · · · rk′ or ~̀
q

— ~r for a rule (`1, . . . , `k, q, r1, . . . , rk′) ∈ R.

Example 1. Let G = (Q,Σ,Σ, {q0}, R) be the SFSG such that
• Q = {q0, q, q

′} and Σ = {α, γ1, γ2, σ}, and
• for every γ ∈ {γ1, γ2} the following rules are in R:

ρ0 = σ(q, q′, q)
q0
— σ(q′, α, q′) ργ = γ(q) γ(q)

q
— ε ρα = α α

q
— ε

ρ′γ = γ(q′)
q′

— γ(q′) γ(q′) ρ′α = α
q′

— α α .

The rules are illustrated in Figure 1, where we indicate the implicit links by splines.
Clearly, this SFSG G is neither an MBOT nor an MRTG, although the rules for q
are valid MRTG rules and the rules for q′ are valid MBOT rules.

It remains to define the semantics of SFSGs. We use a bottom-up variant of the
classical fixed-points semantics of an SFSG G. It closely corresponds to a semantics
based on the evaluation of derivation trees (and that of bimorphisms), which we also
define as well. We inductively define the pairs of input and output tree sequences
generated by each state, which we call pre-translations. Each pre-translation for a

state q ∈ Q is obtained from a rule ρ = ~̀ q
— ~r of R by replacing all occurrences of

a state q′ ∈ var(~̀.~r) by the corresponding components of a pre-translation for q′.

Definition 2. Let G = (Q,Σ,∆, I, R) be an SFSG. A pre-translation for q ∈ Q
is a pair 〈~u,~v〉 consisting of an input tree sequence ~u ∈ T ∗Σ and an output tree
sequence ~v ∈ T ∗∆. For every state q ∈ Q, the pre-translations Gq ⊆ T ∗Σ × T ∗∆
generated by q are defined to be the smallest set Tq such that 〈~̀θ, ~rθ′〉 ∈ Tq for all

rules ρ = ~̀ q
— ~r ∈ R and suitable substitutions θ : var(~̀)→ T ∗Σ and θ′ : var(~r)→ T ∗∆

for var(~̀) in ~̀ and for var(~r) in ~r, respectively, with pre-translations 〈θ(q′), θ′(q′)〉
of Tq′ for every q′ ∈ var(~̀.~r). The derivation tree corresponding to the newly

constructed pre-translation 〈~̀θ, ~rθ′〉 is ρ(tq1 , . . . , tqk), where var(~̀.~r) = {q1, . . . , qk}

274 A. Maletti

with q1 <N · · · <Q qk for some fixed total order ≤Q on Q and tq′ is the derivation

tree corresponding to the pre-translation 〈θ(q′), θ′(q′)〉 for every q′ ∈ var(~̀.~r). The
derivation tree language Dq(G) ⊆ TR contains all derivation trees for the pre-
translations 〈~u,~v〉 ∈ Gq.

Example 2. Let us recall the SFSG G of Example 1. The rules ρα = αα
q

— ε and

ρ′α = α
q′

— α α immediately yield the corresponding pre-translations 〈α α, ε〉 ∈ Gq
and 〈α, α α〉 ∈ Gq′ with derivation trees ρα and ρ′α, respectively. The former
pre-translation can be combined with the rule ργ for γ ∈ {γ1, γ2} to obtain the pre-
translation 〈γ(α)γ(α), ε〉 ∈ Gq with derivation tree ργ(ρα), and more generally, the
pre-translations

〈γi1(· · · (γik(α)) · · ·) γi1(· · · (γik(α)) · · ·), ε〉 ∈ Gq

for all k ∈ N and i1, . . . , ik ∈ {1, 2}. The derivation tree corresponding to the
displayed pre-translation is ργi1 (· · · (ργik (ρα)) · · ·). Similarly, if we use the rules ρ′γ
with γ ∈ {γ1, γ2} on the already mentioned pre-translation 〈α, α α〉 ∈ Gq′ and the
such obtained pre-translations, then we derive the pre-translation

〈γi1(· · · (γik(α)) · · ·), γi1(· · · (γik(α)) · · ·) γi1(· · · (γik(α)) · · ·)〉 ∈ Gq′

using the derivation tree ρ′γi1 (· · · (ρ′γik (ρ′α)) · · ·) for all k ∈ N and i1, . . . , ik ∈ {1, 2}.
Plugging those pre-translations into the rule ρ0, we obtain pre-translations of the
form 〈σ(t, t′, t), σ(t′, α, t′)〉 ∈ Gq0 . We illustrate the last step of the combination
process in Figure 2.

The tree translation computed by an SFSG is now simply the set of all those
pre-translations computed by the initial states that have sequences of length 1 for
the input and output side. The restriction to sequences of length 1 is necessary
to obtain a relation on trees. Finally, we also formally define the tree language
generated by an SFSG although this notion is most suitable for MRTGs.

Definition 3. Let G = (Q,Σ,∆, I, R) be an SFSG. It computes the tree trans-
lation τG ⊆ TΣ × T∆ defined by τG = (

⋃
q∈I Gq) ∩ (TΣ × T∆). The tree lan-

guage L(G) ⊆ TΣ generated by G is L(G) = (
⋃
q∈I Gq) ∩ (TΣ × {ε}). Two SFSGs

are (translation) equivalent if their computed tree translations coincide and language
equivalent if their generated tree languages coincide. The classes SFSG and MBOT

contain all tree translations computable by SFSGs and MBOTs, respectively, and
the class MRTG denotes the class of all tree languages generated by MRTGs.

In the rest of this section, we present a normal form for MBOTs and an al-
ternative characterization of SFSGs in terms of classical bimorphisms [1] using a
tree language of MRTG as center language. The former result demonstrates that our
MBOTs are as expressive as the notion discussed in [4]. We conclude with some
simple properties of SFSG, but we start with the normal form for MBOTs.

Synchronous Forest Substitution Grammars 275

σ

q q′ q
q0
—

σ

q′ α q′

〈 t t , ε〉 〈 t′ , t′ t′ 〉

Figure 2: Illustration of the combination of a rule with pre-translations.

Lemma 1. For every MBOT G = (Q,Σ,∆, I, R) there is a translation equivalent
MBOT G′ = (Q,Σ,∆, I, R′) such that t is linear in Q and var(~r) ⊆ var(t) for

every t
q

— ~r ∈ R′.

Proof. We set R′ = {t q
— ~r ∈ R | t linear in Q, var(~r) ⊆ var(t)}, which makes sure

that the MBOT G′ obeys the required restrictions. The translation equivalence
of G and G′ remains a proof obligation. We first observe that |~u| = 1 for every
state q ∈ Q and pre-translation 〈~u,~v〉 ∈ Gq due to the rule shape of G. Now,

let ρ = t
q

— ~r ∈ R be a rule that admits a state q′ ∈ var(~r) \ var(t). To build
a pre-translation utilizing ρ (whose derivation tree has root label ρ), we need a
pre-translation 〈ε,~v〉 ∈ Gq′ because q′ ∈ var(t.~r), but q′ /∈ var(t). Such pre-
translations do not exist, hence the rule ρ is useless (i.e., there are no derivation
trees that contain ρ), which proves that deleting it does not affect the semantics.

Similarly, let ρ = t
q

— ~r ∈ R be a rule such that t is not linear in Q; i.e., there
exists a state q′ ∈ Q such that |posq′(t)| ≥ 2. To utilize such a rule, we need a
pre-translation 〈~u,~v〉 ∈ Gq′ with |~u| = |posq′(t)| ≥ 2, which again do not exist.
Consequently, both types of rules can be deleted without effect, which proves that
G and G′ are translation equivalent.

Consequently, our class MBOT coincides with the notion of [4], so we can freely
use the known properties of MBOT. Already in [12, 4] MBOTs were transformed
into a normal form before composition. In this normal form, at most one (input or
output) symbol is allowed in each rule. For our purposes, a slightly less restricted
variant, in which at most one input symbol may occur in each rule is sufficient since
we compose the input parts of two MBOTs. Let us recall the relevant normalization
result [4].

Lemma 2 (see [4, Lemma 14]). For every MBOT G = (Q,Σ,∆, I, R) there exists a
translation equivalent MBOT G′ = (Q′,Σ,∆, I ′, R′) in normal form, which means

that |posΣ(t)| ≤ 1 for every rule t
q

— ~r ∈ R′.

Proof. By Lemma 1 we can construct a translation equivalent MBOT G′′ in the
sense of [4]. With the help of [4, Lemma 14], we can then construct a translation
equivalent MBOT G′ in normal form.

For MBOTs in normal form, we can now define the determinism property, which
we use to avoid the k-morphisms of [1]. We note that deterministic MBOTs are

276 A. Maletti

slightly more expressive than k-morphisms.

Definition 4. An MBOT (Q,Σ,∆, I, R) in normal form is deterministic if |I| = 1,

t /∈ Q for every t
q

— ~r ∈ R, and for every q ∈ Q and σ ∈ Σ there exists at most

one rule t
q

— ~r ∈ R with t(ε) = σ. It is a deterministic linear top-down tree
transducer with regular look-ahead (deterministic LTOPR) if additionally |~r| ≤ 1

for all t
q

— ~r ∈ R.

We conclude with the presentation of some simple properties of SFSG includ-
ing one characterization of it in terms of bimorphisms. We will develop another
bimorphism characterization in the next section.

Lemma 3. We observe that (i) SFSG = SFSG−1, (ii) both the domain dom(τ) and
the range ran(τ) of a tree translation τ ∈ SFSG are not necessarily regular, and
(iii) MBOT (SFSG.

Proof. The first property is immediate because the syntactic definition of SFSGs
is completely symmetric. The tree translation τG computed by the SFSG G of
Example 1 is such that both its domain and its range are not regular, which proves
the second property. Finally, the inclusion in the third item is obvious, and its
strictness follows because dom(τ) is regular for every τ ∈ MBOT by Lemma 1 and
[4, Theorem 25], so τG /∈ MBOT.

Theorem 1. For every SFSG G there exists an MRTG G0 and two deterministic
LTOPRs G1 and G2 such that τG = {(τG1

(t), τG2
(t)) | t ∈ L(G0)}.

Proof. Let G = (Q,Σ,∆, I, R) be the SFSG. We start with the construction of the
MRTG G0 = (Q ∪ {?},Σ ∪∆ ∪ {γ}, ∅, {?}, R0) such that ? /∈ Q, γ /∈ Σ ∪∆, and

R0 = {γ(q0, q0)
?

— ε | q0 ∈ I} ∪ {~̀.~r
q

— ε | ~̀ q
— ~r ∈ R} .

Let Γ = Σ ∪∆ ∪ {γ}. The two deterministic LTOPRs G1 and G2 simply project
on the first and second subtree, respectively. We omit their straightforward, albeit
technical specification and the obvious correctness proof.

Using Theorem 1 the relation of SFSG to the binary rational relations of [17]
should be apparent. The main difference that remains is that we cannot specify
the order, in which components are substituted. However, this does not restrict
the expressive power. For the converse inclusion between SFSG and certain bimor-
phism, we restrict ourselves to linear tree homomorphisms [7, 8], which are slightly
cumbersome to define in our notation. Note that the LTOPRs constructed in the
previous proof are actually linear tree homomorphisms. We let LHOM denote the
class of all linear tree homomorphisms, and assume that each tree homomorphism h
is extended to act on state leaves as the identity; i.e., h(q) = q for all q ∈ Q.

Theorem 2. For all MRTGs G0 = (Q,Γ, ∅, I, R0) and all tree homomorphisms
h1 : TΓ → TΣ and h2 : TΓ → T∆ there exists an SFSG G = (Q,Σ,∆, I, R) such that
τG = {(τG1(t), τG2(t)) | t ∈ L(G0)}.

Synchronous Forest Substitution Grammars 277

Proof. We let R = {h1(`1) · · ·h1(`k)
q

— h2(`1) · · ·h2(`k) | `1 · · · `k
q

— ε ∈ R0}. We
again omit the straightforward correctness proof.

Consequently, SFSG can be characterized by bimorphisms [1] with linear tree
homomorphisms and a center language from MRTG.

4 Composition and decomposition

For our second characterization of SFSG, we first characterize it in terms of MBOT.
Since we already showed that MBOT (SFSG in Lemma 3, we need a composition
of MBOTs to characterize the expressive power of SFSGs. The relevant decompo-
sition is presented in Theorem 3, and the corresponding composition is presented
in Theorem 5.

Theorem 3 (see [17, Proposition 4.5]). For every SFSG G, there exist two deter-
ministic MBOTs G1 and G2 such that τG = τ−1

G1
; τG2

.

Proof. Let G = (Q,Σ,∆, I, R) be the SFSG. As usual, we assume a total or-
der ≤ on Q, and whenever we explicitly list states like {q1, . . . , qk}, we assume
that q1 < · · · < qk. We construct the two MBOTs G1 = (Q,R,Σ, I, R1) and
G2 = (Q,R,∆, I, R2) such that

• R1 = {ρ(q1, . . . , qk)
q

— ~̀ | ρ = ~̀ q
— ~r ∈ R, var(~̀.~r) = {q1, . . . , qk}}, and

• R2 = {ρ(q1, . . . , qk)
q

— ~r | ρ = ~̀ q
— ~r ∈ R, var(~̀.~r) = {q1, . . . , qk}}.

Obviously, both G1 and G2 are deterministic MBOTs. A straightforward induction
can be used to prove that G1 and G2 translate derivation trees of Dq(G) with q ∈ Q
into the corresponding input and output tree, respectively. Since each derivation
tree t ∈ Dq(G) uniquely determines the corresponding input and output tree, we
immediately obtain that τG = τ−1

G1
; τG2

. A more detailed proof can be found
in [17].

In the proof of Theorem 3 the rule ρ uniquely determines the state q. Nev-
ertheless, the constructed MBOTs have (potentially) several states as we need to
check the finite-state behavior of the SFSG. It follows straightforwardly from the
proof of Theorem 3 that each SFSG can be characterized by a regular derivation
tree language and two deterministic MBOTs mapping the derivation trees to the
input and output trees. This view essentially coincides with the bimorphism ap-
proach [1], and SFSGs are equally expressive as the bimorphisms of [1], in which
both the input and output morphisms are allowed to be k-morphisms. We reuse
this characterization later on, so we make it explicit here.

Theorem 4. SFSG = dMBOT−1 ; FTA ; dMBOT, where dMBOT is the class of all tree
translations computed by deterministic MBOTs.

Now we are ready to state our first composition result. We first prove it using
several known results on decompositions and compositions together with a few new
results.

278 A. Maletti

Theorem 5. MBOT−1 ; MBOT ⊆ SFSG.

Proof. Let G1 and G2 be the given input MBOTs. Without loss of generality, let
G1 and G2 be in normal form (see Lemma 2). With the help of the construction
of [4, Lemma 6] applied to both G1 and G2 we obtain delabelings d1 and d2, regular
tree languages L1, L2 ∈ Reg, and deterministic MBOTs G′1 and G′2 such that

τG1
= d−1

1 ; idL1
; τG′

1
and τG1

= d−1
2 ; idL2

; τG′
2
.

This situation is depicted in Figure 3. We observe that

τ−1
G1

; τG2
= (d−1

1 ; idL1
; τG′

1
)−1 ; (d−1

2 ; idL2
; τG′

2
) = τ−1

G′
1

; idL1
; d1 ; d−1

2 ; idL2
; τG′

2
.

Next, we show that the composition d1 ; d−1
2 can equivalently be expressed as the

composition e−1
2 ; e1 for some delabelings e1 and e2 following the construction of [3,

Sect. II-1-4-2-1]. To this end, let d1 : Σ → ∆ ∪ {�}, and we set Σ′ = {σ | σ ∈
Σ, d1(σ) = �}, which is an alphabet containing copies of the elements of Σ that are
erased by d1. Similarly, let d2 : Γ→ ∆∪{�}, and we set Γ′ = {γ | γ ∈ Γ, d2(γ) = �}
to an alphabet that contains copies of those elements of Γ that are erased by d2.
Moreover, let

∆′′ = {〈σ, γ〉 | σ ∈ Σ, γ ∈ Γ, d1(σ) = d2(γ) 6= �}

and ∆′ = Σ′ ∪ Γ′ ∪∆′′. Then we construct the two delabelings e1 : ∆′ → Σ ∪ {�}
and e2 : ∆′ → Γ ∪ {�} as follows:

e2(σ) = σ e2(γ) = � e2(〈σ, γ〉) = σ

e1(σ) = � e1(γ) = γ e1(〈σ, γ〉) = γ

for all σ ∈ Σ′, γ ∈ Γ′, and 〈σ, γ〉 ∈ ∆′′. We leave the formal proof of d1;d−1
2 = e−1

2 ;e1

to the interested reader, but mention that it can be achieved by a simple induction.
Thus, we arrive at

τ−1
G1

; τG2
= τ−1

G′
1

; idL1
; d1 ; d−1

2 ; idL2
; τG′

2
= (τ−1

G′
1

; idL1
; e−1

2) ; (e1 ; idL2
; τG′

2
)

using the just explained exchange of the delabelings. Since inverse delabelings
preserve regular tree languages, we let L′1 = e−1

2 (L1) and L′2 = e−1
1 (L2), which are

clearly both regular, so also their intersection L′1∩L′2 is regular [7, 8]. Consequently,

τ−1
G1

; τG2
= (τ−1

G′
1

; e−1
2) ; idL′

1∩L′
2

; (e1 ; τG′
2
) ,

which we can further simplify to τ−1
G′′

1
; idL′

1∩L′
2

; τG′′
2

by composing the delabelings

e1 and e2 with the deterministic MBOTs G′1 and G′2 to obtain the deterministic
MBOTs G′′1 and G′′2 , respectively, using [4, Theorem 23]. With this final step, we
obtain a bimorphism representation of τ−1

G1
; τG2 and according to Theorem 4 we

have τ−1
G1

; τG2
∈ SFSG.

Synchronous Forest Substitution Grammars 279

L′1 ∩ L′2

L1 L2

e2 e1

τG′
1 d1 d2

τG′
2

Figure 3: Illustration of the approach used in the proof of Theorem 5.

Problem String level Tree level

Parsing O
(
|G| · (|w1| · |w2|)2r+2

)
O
(
|G| · |t1| · |t2|

)
Translation O

(
|G| · |w1|r+2

)
O
(
|G| · |t1|

)
Table 1: Complexity results for an SFSG G and input strings (w1, w2) as well as

trees (t1, t2), where r = max {|~̀.~r| | ~̀ q
— ~r ∈ R} is the length of the longest

sequence of input and output tree fragments in a rule of G.

Corollary 1 (of Theorems 3 and 5). SFSG = MBOT−1 ; MBOT.

We conclude with some additional properties of SFSG and their consequences
for MBOT using our main result of Corollary 1. In particular, it is known [9] that
the output string language of an MBOT is a language generated by an LCFRS
(linear context-free rewriting system) [20, 18]. Using Corollary 1, we can conclude
that both the input and the output string language of an SFSG are generated by
an LCFRS as well. Similarly, together with Theorem 1 we can also conclude that
the input and output tree languages are in MRTG. Moreover, we can import several
complexity results from MBOT [14] to SFSG as indicated in Table 1.

Lemma 4 (see [16, Example 5]). SFSG is not closed under composition.

Corollary 2. MBOT ; MBOT−1 6⊆ SFSG.

Proof. Assume on the contrary that MBOT ; MBOT−1 ⊆ SFSG. Then

SFSG ; SFSG ⊆ (MBOT−1 ; MBOT) ; (MBOT−1 ; MBOT) ⊆ MBOT−1 ; SFSG ; MBOT

⊆ MBOT−1 ; (MBOT−1 ; MBOT) ; MBOT ⊆ MBOT−1 ; MBOT = SFSG

using Corollary 1, our assumption, Corollary 1, the closure under composition
for MBOT [4, Theorem 23], and Corollary 1 once more. However, the result contra-
dicts Lemma 4, thus our assumption is false, proving the result.

280 A. Maletti

References

[1] Arnold, André and Dauchet, Max. Morphismes et bimorphismes d’arbres.
Theoret. Comput. Sci., 20(1):33–93, 1982.

[2] Chiang, David. An introduction to synchronous grammars. In Proc. 44th ACL.
ACL, 2006. Part of a tutorial given with K. Knight.

[3] Dauchet, Max. Transductions de forêts — Bimorphismes de magmöıdes.
Première thèse, Université de Lille, 1977.

[4] Engelfriet, Joost, Lilin, Eric, and Maletti, Andreas. Composition and de-
composition of extended multi bottom-up tree transducers. Acta Inform.,
46(8):561–590, 2009.

[5] Fülöp, Zoltán, Kühnemann, Armin, and Vogler, Heiko. A bottom-up charac-
terization of deterministic top-down tree transducers with regular look-ahead.
Inf. Process. Lett., 91(2):57–67, 2004.

[6] Fülöp, Zoltán, Kühnemann, Armin, and Vogler, Heiko. Linear deterministic
multi bottom-up tree transducers. Theoret. Comput. Sci., 347(1–2):276–287,
2005.

[7] Gécseg, Ferenc and Steinby, Magnus. Tree Automata. Akadémiai Kiadó, 1984.
2nd edition available at https://arxiv.org/abs/1509.06233.

[8] Gécseg, Ferenc and Steinby, Magnus. Tree languages. In Rozenberg, Grze-
gorz and Salomaa, Arto, editors, Handbook of Formal Languages, volume 3,
chapter 1, pages 1–68. Springer, 1997.

[9] Gildea, Daniel. On the string translations produced by multi bottom-up tree
transducers. Comput. Linguist., 38(3):673–693, 2012.

[10] Knight, Kevin and Graehl, Jonathan. An overview of probabilistic tree trans-
ducers for natural language processing. In Proc. 6th CICLing, volume 3406 of
LNCS, pages 1–24. Springer, 2005.

[11] Lilin, Eric. Propriétés de clôture d’une extension de transducteurs d’arbres
déterministes. In Proc. 6th CAAP, volume 112 of LNCS, pages 280–289.
Springer, 1981.

[12] Maletti, Andreas. Compositions of extended top-down tree transducers. In-
form. and Comput., 206(9–10):1187–1196, 2008.

[13] Maletti, Andreas. Why synchronous tree substitution grammars? In Proc.
2010 HLT-NAACL, pages 876–884. ACL, 2010.

[14] Maletti, Andreas. An alternative to synchronous tree substitution grammars.
J. Nat. Lang. Engrg., 17(2):221–242, 2011.

Synchronous Forest Substitution Grammars 281

[15] Maletti, Andreas. How to train your multi bottom-up tree transducer. In Proc.
49th ACL, pages 825–834. ACL, 2011.

[16] Radmacher, Frank G. An automata theoretic approach to rational tree rela-
tions. In Proc. 34th SOFSEM, volume 4910 of LNCS, pages 424–435. Springer,
2008.

[17] Raoult, Jean-Claude. Rational tree relations. Bull. Belg. Math. Soc. Simon
Stevin, 4(1):149–176, 1997.

[18] Seki, Hiroyuki, Matsumura, Takashi, Fujii, Mamoru, and Kasami, Tadao. On
multiple context-free grammars. Theoret. Comput. Sci., 88(2):191–229, 1991.

[19] Sun, Jun, Zhang, Min, and Tan, Chew Lim. A non-contiguous tree sequence
alignment-based model for statistical machine translation. In Proc. 47th ACL,
pages 914–922. ACL, 2009.

[20] Vijay-Shanker, K., Weir, David J., and Joshi, Aravind K. Characterizing
structural descriptions produced by various grammatical formalisms. In Proc.
25th ACL, pages 104–111. ACL, 1987.

[21] Zhang, Min, Jiang, Hongfei, Aw, Aiti, Li, Haizhou, Tan, Chew Lim, and Li,
Sheng. A tree sequence alignment-based tree-to-tree translation model. In
Proc. 46th ACL, pages 559–567. ACL, 2008.

[22] Zhang, Min, Jiang, Hongfei, Li, Haizhou, Aw, Aiti, and Li, Sheng. Gram-
mar comparison study for translational equivalence modeling and statistical
machine translation. In Proc. 22nd CoLing, pages 1097–1104. ACL, 2008.

Acta Cybernetica 23 (2017) 283–317.

Weighted Recognizability over Infinite Alphabets

Maria Pittoua and George Rahonisa

Dedicated to the memory of Zoltán Ésik

Abstract

We introduce weighted variable automata over infinite alphabets and com-
mutative semirings. We prove that the class of their behaviors is closed under
sum, and under scalar, Hadamard, Cauchy, and shuffle products, as well as
star operation. Furthermore, we consider rational series over infinite alpha-
bets and we state a Kleene-Schützenberger theorem. We introduce a weighted
monadic second order logic and a weighted linear dynamic logic over infinite
alphabets and investigate their relation to weighted variable automata. An
application of our theory, to series over the Boolean semiring, concludes to
new results for the class of languages accepted by variable automata.

Keywords: infinite alphabets, semirings, weighted variable automata, weighted
MSO, weighted LDL

1 Introduction

The last two decades a large body of research has been devoted to the develop-
ment of models for infinite state systems which have finite control structure and
handle data from an unbounded domain. This research led to the concept of finite
automata over infinite alphabets. Motivating examples for such models consist, for
instance, XML schemas, software with integer parameters, and system specification
and verification. Later on, it came up that finite automata over infinite alphabets
can contribute also to a series of interesting topics namely, the problem of query
graph databases [33], reasoning about systems with resource generation capabilities
[10, 11], learning theories [30], and systems with freshness needed in object-oriented
languages and security protocols [6].

Several models of automata with data values, i.e., over infinite alphabets have
been investigated, namely register [24, 28, 29, 37], data [5], pebble [28, 36, 39],
nominal [10], variable [21, 22], and P automata [9]. All these models refer to
qualitative aspects of infinite state systems. Furthermore, rational [1, 25] and logic
definable languages [4, 36] have been studied over infinite alphabets.

aDepartment of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
E-mail: {mpittou,grahonis}@math.auth.gr

DOI: 10.14232/actacyb.23.1.2017.16

284 Maria Pittou and George Rahonis

In this paper we intend to study automata models over infinite alphabets in the
quantitative setup. Our motivation origins from the fact that several applications
require a quantitative analysis of systems, for instance the resource usage control
where resource variables are mapped to infinite domains [10, 11]. It is well-known
that weighted automata is a reasonable tool for the description of quantitative fea-
tures of computing systems [14]. According to our best knowledge, a quantitative
counterpart for automata over infinite alphabets does not exist. In [8] the authors
considered quantitative infinite alphabets to model controlled variables for the con-
troller synthesis problem from incompatible situations. For our investigation, we
chose the concept of variable automata from [21, 22]. Variable automata are sim-
ple in their definition and implementation in contrast to other proposed models.
Despite their simplicity, variable automata and their extensions appeared to be
expressive enough for several applications. Indeed, in [2] the authors introduced
fresh variable automata to describe web services in which the agents exchange data
ranging over infinite domains. Furthermore, in [3], fresh variable automata were
equipped with guards consisting of equalities and disequalities. In [10] variable
automata were extended to consume data words, in order to express security poli-
cies (safety properties) for model checking programs that dynamically generate and
operate over resources. Very recently, variable automata have been also used for
querying graph databases [43]. In a similar approach, a variable LTL was has been
investigated in [23]. More precisely, the atomic propositions in that logic were pa-
rameterized with variables over some finite or infinite domain in order to express
specifications over large, possibly infinite domains. The model checking problem
has been also studied for that setting (cf. also [38]).

We consider our weighted variable automata over an infinite alphabet Σ and
a commutative semiring K, and provide a systematic study of the class of their
behaviors. Our framework builds upon the techniques which were developed in
[26, 27] for variable tree automata over infinite ranked alphabets. We prove that, if
in addition the semiring K is idempotent, then the class of series accepted by our
models is closed under sum, and scalar, Hadamard, Cauchy, and shuffle products,
as well as under star operation. As we indicate by a simple example, the proofs for
the aforementioned properties require new techniques than the well-known ones for
recognizable series [14]. We define rational series over infinite alphabets and state
a Kleene-Schützenberger type theorem. Furthermore, we introduce a weighted
monadic second order logic and a weighted linear dynamic logic over infinite al-
phabets. We show the expressive equivalence of the latter logic to our weighed au-
tomata, whereas the corresponding equivalence requires fragments on the weighted
monadic second order logic. Therefore, several well-known results from classical
weighted automata theory hold also for our weighted automata over infinite alpha-
bets. Moreover, by considering the Boolean semiring B, we derive as an application
of our theory new results for the class of variable automata of [21, 22]. This shows
the robustness of our theory and the theory of variable automata [21, 22].

Apart from this Introduction, the paper contains 7 sections. In Section 2 we
present some preliminary background. In Section 3 we introduce our weighted
variable automata and in Section 4 we establish the closure properties of the class

Weighted Recognizability over Infinite Alphabets 285

of series accepted by our models. Then, in Section 5 we consider rational series over
infinite alphabets and state our Kleene-Schützenberger theorem. Sections 6 and 7,
respectively are devoted to weighted monadic second order logic and weighted linear
dynamic logic, and their relation to weighted variable automata. In Section 8 we
expose the new results on variable automata derived by our theory. Finally, in the
Conclusion, we present some ideas for future research.

A preliminary version of this paper appeared in [32] (cf. also [31]).

2 Preliminaries

Let Σ be an alphabet, i.e., a nonempty (potentially infinite) set. As usually, we
denote by Σ∗ the set of all finite words over Σ and Σ+ = Σ∗ \ {ε}, where ε is the
empty word. A subset L ⊆ Σ∗ is a language over Σ. A word w = σ0 . . . σn−1, where
σ0, . . . , σn−1 ∈ Σ (n ≥ 1), is written also as w = w(0) . . . w(n− 1) where w(i) = σi
for every 0 ≤ i ≤ n − 1. For every finite word w = w(0) . . . w(n − 1) and every
0 ≤ i ≤ n−1 we denote by w≥i the suffix w(i) . . . w(n−1). If S is a set, then P (S)
will denote the powerset of S, and the notation S′ ⊆fin S means that S′ is a finite
subset of S.

A semiring (K,+, ·, 0, 1) is an algebraic structure such that (K,+, 0) is a com-
mutative monoid, (K, ·, 1) is a monoid, 0 6= 1, · is both left- and right-distributive
over +, and 0 · k = k · 0 = 0 for every k ∈ K. If no confusion arises, we shall
denote the semiring simply by K and the · operation simply by concatenation. The
semiring K is called commutative if the monoid (K, ·, 1) is commutative. Moreover,
K is called additively idempotent (or simply idempotent), if k + k = k for every
k ∈ K. Finally, K is called locally finite if every finitely generated subsemiring is
finite. Interesting examples of semirings are the following:

- the semiring (N,+, ·, 0, 1) of natural numbers,

- the Boolean semiring B = ({0, 1},+, ·, 0, 1),

- the tropical or min-plus semiring (R+ ∪{∞},min,+,∞, 0) where R+ = {r ∈
R | r ≥ 0},

- the arctical or max-plus semiring (R+ ∪ {−∞},max,+,−∞, 0),

- the Viterbi semiring ([0, 1] ,max, ·, 0, 1),

- every bounded distributive lattice with the operations supremum and infi-
mum, and especially the fuzzy semiring F = ([0, 1],max,min, 0, 1).

All the above semirings, except the first one, are idempotent.

Let Σ be an alphabet and K a semiring. A formal series (or simply series)
over Σ and K is a mapping s : Σ∗ → K. For every w ∈ Σ∗ we write (s, w) for
the value s(w) and refer to it as the coefficient of s on w. The support of s is

286 Maria Pittou and George Rahonis

the set supp(s) = {w ∈ Σ∗ | (s, w) 6= 0}. A series with finite support is called

a polynomial. The constant series k̃ (k ∈ K) is defined, for every w ∈ Σ∗, by(
k̃, w

)
= k. Moreover, for every w ∈ Σ∗, we denote by w the series determined,

for every u ∈ Σ∗, by (w, u) = 1 if u = w and 0, otherwise. The class of all series
over Σ and K is denoted as usual by K 〈〈Σ∗〉〉, and the class of polynomials over
Σ and K by K 〈Σ∗〉. The characteristic series 1L ∈ K 〈〈Σ∗〉〉 of a language L ⊆ Σ∗

is defined by (1L, w) = 1 if w ∈ L and (1L, w) = 0 otherwise.

Let s, r ∈ K 〈〈Σ∗〉〉 and k ∈ K. The sum s + r, the scalar products ks
and sk as well as the Hadamard product s � r are defined elementwise by (s +
r, w) = (s, w) + (r, w), (ks, w) = k · (s, w), (sk, w) = (s, w) · k, and (s � r, w) =
(s, w) · (r, w), respectively, for every w ∈ Σ∗. It is well-known that the structures(
K 〈〈Σ∗〉〉 ,+,�, 0̃, 1̃

)
and

(
K 〈Σ∗〉 ,+,�, 0̃, 1̃

)
are semirings, which moreover are

commutative (resp. idempotent) whenever K is commutative (resp. idempotent).

The Cauchy product of r and s is the series r · s ∈ K 〈〈Σ∗〉〉 defined for every
w ∈ Σ∗ by

(r · s, w) =
∑

u,v∈Σ∗

w=uv

((r, u) · (s, v)).

The nth-iteration rn ∈ K 〈〈Σ∗〉〉 (n ≥ 0) of a series r ∈ K 〈〈Σ∗〉〉 is defined
inductively by

r0 = ε and rn+1 = r · rn for n ≥ 0.

Then, we have (rn, w) =
∑

u1,...,un∈Σ∗

w=u1...un

((r, u1) · . . . · (r, un)) for every w ∈ Σ∗. A

series r ∈ K 〈〈Σ∗〉〉 is called proper whenever (r, ε) = 0. If r is proper, then for
every w ∈ Σ∗ and n > |w| we have (rn, w) = 0. The star r∗ ∈ K 〈〈Σ∗〉〉 of a proper
series r ∈ K 〈〈Σ∗〉〉 is defined by r∗ =

∑
n≥0

rn. Thus, for every w ∈ Σ∗ we have

(r∗, w) =
∑

0≤n≤|w|

(rn, w).

Finally, the shuffle product of r and s is the series r� s ∈ K 〈〈Σ∗〉〉 defined for
every w ∈ Σ∗ by

(r� s, w) =
∑

u,v∈Σ∗

w∈u�v

((r, u) · (s, v))

where u� v denotes the shuffle product of u and v.

Next we turn to weighted automata. For this we assume the alphabet Σ to be
finite. A weighted automaton over Σ and K is a quadruple A = (Q, in,wt, ter)
where Q is the finite state set, in : Q→ K is the initial distribution, wt : Q× Σ×
Q → K is a mapping assigning weights to the transitions of the automaton, and
ter : Q→ K is the final (or terminal) distribution.

Let w = w(0) . . . w(n−1) ∈ Σ∗. A path of A over w is a sequence of transitions

Weighted Recognizability over Infinite Alphabets 287

Pw := ((qi, w(i), qi+1))0≤i≤n−1. The weight of Pw is given by the value

weight(Pw) = in(q0) ·
∏

0≤i≤n−1

wt ((qi, w(i), qi+1)) · ter(qn).

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are given by

(‖A‖ , w) =
∑
Pw

weight(Pw)

for every w ∈ Σ∗.
A series s ∈ K 〈〈Σ∗〉〉 is called recognizable if s = ‖A‖ for some weighted

automaton A over Σ and K. As usual we denote by Rec(K,Σ) the class of rec-
ognizable series over Σ and K. Two weighted automata A = (Q, in,wt, ter) and
A′ = (Q′, in′, wt′, ter′) over Σ and K are called equivalent if ‖A‖ = ‖A′‖.

Finally, a weighted automaton A = (Q, in,wt, ter) over Σ and K is called
normalized if there exist two states qin, qter ∈ Q, qin 6= qter, such that:

- in (q) = 1 if q = qin, and in (q) = 0 otherwise,

- ter (q) = 1 if q = qter, and ter (q) = 0 otherwise, and

- wt ((q, σ, qin)) = wt ((qter, σ, q)) = 0

for every q ∈ Q, σ ∈ Σ. We shall denote a normalized weighted automaton A =
(Q, in,wt, ter) simply by A = (Q, qin, wt, qter). The next result has been proved
by several authors, cf. for instance [18].

Proposition 1. Let A = (Q, in,wt, ter) be a weighted automaton over Σ and
K. We can effectively construct a normalized weighted automaton A′ such that
(‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

3 Weighted variable automata

In this section we introduce the notion of our weighted variable automata. We
show that the well-known constructions on weighted automata are not sufficient
to obtain the closure properties of the class of series recognized by our models.
Therefore, we provide some supplementary matter and we state Lemma 1 which
will be needed in the sequel in our constructions.

Let Σ, Σ′ be (infinite) alphabets. A relabeling from Σ to Σ′ is a mapping
h : Σ → P (Σ′). Next let Γ ⊆fin Σ, Z be a finite set whose elements are called
bounded variables and y an element which is called a free variable. We assume that
the sets Σ, Z, and {y} are pairwise disjoint. A relabeling h from Γ ∪ Z ∪ {y} to Σ
is called valid if

(i) it is the identity on Γ,1

1Abusing notation we identify {σ} with σ, for every σ ∈ Γ.

288 Maria Pittou and George Rahonis

(ii) card(h(z)) = 1 for every z ∈ Z,

(iii) h is injective on Z and Γ ∩ h(Z) = ∅, and

(iv) h(y) = Σ \ (Γ ∪ h(Z)).

The above definition means that the application of h on a word w over Γ∪Z ∪{y}
assigns to every occurrence of a symbol z ∈ Z in w the same symbol from Σ, but
it is possible to assign different symbols from Σ to different occurrences of y in w.
This justifies the names bounded and free for the set of variables Z and the variable
y, respectively. It should be clear that a valid relabeling from Γ ∪ Z ∪ {y} to Σ is
well-defined if it is defined only on Z satisfying conditions (ii) and (iii). We shall
denote by V R(Γ ∪ Z ∪ {y},Σ) the set of all valid relabelings from Γ ∪ Z ∪ {y} to
Σ, and simply by V R(Γ ∪ Z ∪ {y}) if the alphabet Σ is understood.

We set ∆ = Γ ∪ Z ∪ {y} and let w ∈ Σ∗. The preimage of w over ∆ is the set
preim∆(w) = {u ∈ ∆∗ | there exists h ∈ V R(∆) such that u ∈ h−1(w)}.

Now we are ready to introduce our weighted variable automata over the infinite
alphabet Σ and a semiring K.

Definition 1. A weighted variable automaton (wva for short) over Σ and K is
a pair A = 〈Σ, A〉 where Σ is an infinite alphabet and A = (Q, in,wt, ter) is a
weighted automaton over ΓA and K. The input alphabet ΓA of A is defined by
ΓA = ΣA ∪Z ∪{y}, where ΣA ⊆fin Σ, Z is a finite alphabet of bounded variables,
and y is a free variable.

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are determined
by

(‖A‖ , w) =
∑

u∈preimΓA
(w)

(‖A‖ , u)

for every w ∈ Σ∗. Clearly, the above sum is finite and thus (‖A‖ , w) is well-defined
for every w ∈ Σ∗.

Two wva A and A′ over Σ and K are called equivalent whenever ‖A‖ = ‖A′‖.
A series r over Σ and K is called v-recognizable if there exists a wva A such that

r = ‖A‖. We shall denote by V Rec (K,Σ) the class of v-recognizable series over
Σ and K. It should be clear that every weighted automaton A over a subalphabet
Σ′ ⊆fin Σ and K can be considered as a wva such that its transitions labelled by
variables carry the weight 0. Therefore, we get the next result, where the strictness
of the inclusion trivially holds by the definition of wva.

Proposition 2.
⋃

Σ′⊆finΣ

Rec (K,Σ′) (V Rec (K,Σ) .

Throughout the paper Σ will denote an infinite alphabet, Z a finite
set of bounded variables, y a free variable, and K a commutative semir-
ing. In addition, in the present and the next section, K will be assumed
to be idempotent.

Weighted Recognizability over Infinite Alphabets 289

In the sequel, we will call a wva A = 〈Σ, A〉 over Σ and K, simply a wva.

Definition 2. A wva A = 〈Σ, A〉 is called normalized if A is normalized.

Proposition 3. Let A = 〈Σ, A〉 be a wva. We can effectively construct a normalized
wva A′ such that (‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

Proof. We immediately obtain our result by Proposition 1 and Definition 2.

In the sequel, we wish to investigate closure properties of the class V Rec (K,Σ).
For this, we cannot apply the well-known constructions from classical weighted au-
tomata theory. For instance, let A = 〈Σ, A〉 be a normalized wva, where A =
({qin, q, qter}, qin, wtA, qter), ΓA = {a} ∪ {z} ∪ {y} and transitions with non-zero
weights given by wtA((qin, a, q)) = wtA((q, z, qter)) = 1. Consider also the normal-
ized wva A′= 〈Σ, A′〉 where A′ = ({q′in, q′ter}, q′in, wtA′ , q′ter), ΓA′ = {a′}∪{z′}∪{y′}
and wtA′((q

′
in, a

′, q′ter)) = wtA′((q
′
in, y

′, q′ter)) = 1. Moreover, let us assume that
a 6= a′. Clearly, (‖A‖ , aa′) = 1 and (‖A′‖ , a′) = 1. Nevertheless, if we consider the
disjoint union of A and A′, say the weighted automaton B, then a, a′ ∈ ΓB which
implies that we cannot apply a valid relabeling assigning the letter a′ to z. This in
turn, implies that the word aa′ does not belong to the support of the wva derived
by the weighted automaton B. Furthermore, another problem of this construction
is the choice of the free variable among y and y′ which moreover causes new in-
consistencies. Similar, even more complex, situations arise for the constructions of
wva proving closure under further properties like Hadamard, Cauchy, and shuffle
product. Therefore, we state Lemma 1 below which will be of great importance
to our constructions for the closure properties of the class V Rec (K,Σ). We shall
need some preliminary matter.

Let A = 〈Σ, A〉 be a wva where A = (Q, in,wt, ter) with ΓA = ΣA ∪ Z ∪ {y},
and Σ′ ⊆fin Σ such that Σ′ \ ΣA 6= ∅. We define on V R (ΓA) the relation ≡Σ′

determined for every h1, h2 ∈ V R (ΓA) by

h1 ≡Σ′ h2 iff h1(σ) ∩ Σ′ = h2(σ) ∩ Σ′ for every σ ∈ Z ∪ {y}.

It should be clear that ≡Σ′ is an equivalence relation. Moreover, since Z ∪ {y}
and Σ′ are finite, the index of ≡Σ′ is finite. Let V be a set of representatives of
V R (ΓA) / ≡Σ′ . For every h ∈ V , we let Zh = {z ∈ Z | h(z) ∈ Σ′} and Γh = ΣA ∪
Σ′∪(Z\Zh)∪{y}, and we consider the weighted automatonAh = (Qh, inh, wth, terh)
over Γh and K, where Qh = {qh | q ∈ Q} is a copy of Q, inh(qh) = in(q) and
terh(qh) = ter(q) for every qh ∈ Qh. The weight assignment mapping wth is
defined as follows. For every qh, q

′
h ∈ Qh, σ ∈ Γh, we let

wth ((qh, σ, q
′
h)) =

wt ((q, σ, q′)) if σ ∈ ΣA ∪ (Z \ Zh) ∪ {y}
wt ((q, z, q′)) if σ = h(z) and z ∈ Zh

wt ((q, y, q′)) if σ ∈ h (y) ∩ Σ′

0 otherwise

.

290 Maria Pittou and George Rahonis

Without any loss, we assume that the sets Qh are pairwise disjoint. We let QV =⋃
h∈V

Qh, ΓV = ΣA ∪ Σ′ ∪ Z ∪ {y}, and consider the wva A(Σ′,V)=
〈
Σ, A(Σ′,V)

〉
over Σ and K, where A(Σ′,V) = (QV , inV , wtV , terV) is a weighted automaton
with input alphabet ΓV . Its initial and final distribution are defined, respectively,
by inV (q) = inh (q), terV (q) = terh (q) for every q ∈ Qh, h ∈ V . The weight
assignment mapping wtV : QV × ΓV ×QV → K is given by

wtV ((q, σ, q′)) =

{
wth ((q, σ, q′)) if q, q′ ∈ Qh for some h ∈ V
0 otherwise

for every q, q′ ∈ QV , σ ∈ ΓV .
Since the weighted automaton A(Σ′,V) is the disjoint union of Ah, h ∈ V , we

get that
∥∥A(Σ′,V)

∥∥ =
∑
h∈V

‖Ah‖. Therefore, for every w ∈ Σ∗, we have

(∥∥A(Σ′,V)

∥∥ , w) =
∑

u∈preimΓV
(w)

(∥∥A(Σ′,V)

∥∥ , u) =
∑
h∈V

∑
u∈preimΓh

(w)

(‖Ah‖ , u) .

Lemma 1. ‖A‖ =
∥∥A(Σ′,V)

∥∥ .
Proof. Let w = w (0) . . . w (n− 1) ∈ Σ∗. Consider a word u = u (0) . . . u (n− 1) ∈
preimΓA

(w) and a valid relabeling h ∈ V R (ΓA) with w ∈ h (u). We define the
word u′ = u′ (0) . . . u′ (n− 1) ∈ Γ∗V as follows:

u′ (i) =

{
u (i) if (u (i) ∈ ΣA ∪ Z \ Zh) or (u (i) = y and w (i) /∈ Σ′ \ ΣA)
w (i) if (u (i) ∈ Zh) or (u (i) = y and w (i) ∈ Σ′ \ ΣA)

for every 0 ≤ i ≤ n− 1.
We consider the set of valid relabelings V ′ ⊆ V as follows: g ∈ V ′ implies that

g (z) = h (z) for every z ∈ Zh ∩ {u (i) | 0 ≤ i ≤ n− 1} and g (y) ∩ Σ′ = h (y) ∩ Σ′

whenever u (i) = y and w(i) ∈ Σ′ for some 0 ≤ i ≤ n − 1. Let P
(A)
u be a path

of A over u. Then, by construction of A(Σ′,V), for every g ∈ V ′, there exists a

path P
(Ag)
u′ of Ag over u′ with weight

(
P

(Ag)
u′

)
= weight

(
P

(A)
u

)
. Clearly, there are

r = card(V ′) such paths and since K is idempotent, we get
∑
g∈V ′

weight
(
P

(Ag)
u′

)
=

weight
(
P

(A)
u

)
. On the other hand, for every g ∈ V \ V ′ and path P

(Ag)
u′ of Ag, we

have weight
(
P

(Ag)
u′

)
= 0. Therefore, we obtain

∑
P

(A)
u

weight
(
P (A)
u

)
=
∑
g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)
.

We define the valid relabeling h′ ∈ V R (ΓV) as follows:

Weighted Recognizability over Infinite Alphabets 291

- h′(z) = h(z) for every z ∈ Z \ Zh,

and we let, nondeterministically,

- h′(z) ∈ Σ \ (ΣA ∪ Σ′ ∪ h (Z \ Zh) ∪ {w (i) | 0 ≤ i ≤ n− 1 and w (i) ∈ h (y)})
for every z ∈ Zh.

Then we have w ∈ h′ (u′) which implies that u′ ∈ preimΓV
(w).

Conversely, let u′ = u′ (0) . . . u′ (n− 1) ∈ preimΓV
(w). Hence, there is a valid

relabeling h′ ∈ V R (ΓV) such that w ∈ h′ (u′). By construction of A(Σ′,V), there is
a valid relabeling h from ΓA to Σ and a word u = u (0) . . . u (n− 1) ∈ Γ∗A such that

u (i) =

 u′ (i) if u′ (i) ∈ ΣA ∪ Z \ Zh

z if u′ (i) = h(z) and z ∈ Zh

y if u′ (i) ∈ (h(y) ∩ Σ′) ∪ {y}

for every 0 ≤ i ≤ n − 1. Keeping the previous notations, for every g ∈ V ′,

there is a path P
(Ag)
u′ of the weighted automaton Ag over u′. By construction

of A(Σ′,V), all such paths P
(Ag)
u′ (g ∈ V ′) have the same weight and there exist

r = card(V ′) such paths. Furthermore, for every g ∈ V ′ and P
(Ag)
u′ there is a

path P
(A)
u of A over u with weight

(
P

(A)
u

)
= weight

(
P

(Ag)
u′

)
, and since K is

idempotent we get weight
(
P

(A)
u

)
=
∑
g∈V ′

weight
(
P

(Ag)
u′

)
. On the other hand, for

every g ∈ V \V ′ and path P
(Ag)
u′ of Ag, we have that weight

(
P

(Ag)
u′

)
= 0. Therefore∑

g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)
=
∑
P

(A)
u

weight
(
P

(A)
u

)
. We consider the relabeling h′′

from ΓA to Σ defined in the following way. It is the identity on ΣA, h′′(z) =
h′(z) for every z ∈ Z \ Zh, h′′(z) = h(z) for every z ∈ Zh, and h′′(y) = h′(y) ∪
((h(y) ∩ Σ′) \ h (Zh)) (in fact (h(y) ∩ Σ′) ∩ h (Zh) = ∅ since h is a valid relabeling
on ΓA). Trivially h′′ is a valid relabeling and w ∈ h′′(u) which implies that u ∈
preimΓA

(w).
We conclude that for every w ∈ Σ∗ we have(∥∥A(Σ′,V)

∥∥ , w) =
∑

u′∈preimΓV
(w)

(∥∥A(Σ′,V)

∥∥ , u′) =
∑

u′∈preimΓV
(w)

∑
g∈V

(‖Ag‖ , u′)

=
∑

u′∈preimΓV
(w)

∑
g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)

=
∑

u∈preimΓA
(w)

∑
P

(A)
u

weight
(
P (A)
u

)
=

∑
u∈preimΓA

(w)

(‖A‖ , u) = (‖A‖ , w)

and we are done.

292 Maria Pittou and George Rahonis

4 Closure properties of the class V Rec (K,Σ)

In this section, we investigate closure properties of the class of v-recognizable series
over the infinite alphabet Σ and the semiring K. More precisely, we show that the
class V Rec (K,Σ) is closed under sum, and under scalar, Hadamard, Cauchy and
shuffle products, as well as star operation.

Proposition 4. The class V Rec (K,Σ) is closed under sum.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. Then there exist two wva A(i) =〈
Σ, A(i)

〉
with A(i) =

(
Q(i), in(i), wt(i), ter(i)

)
and Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

, ac-

cepting r(i), for i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
with A

(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, in

(1)
V1
, wt

(1)
V1
, ter

(1)
V1

)
over Γ(1) ∪Σ(2) and K

and the wvaA(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
withA

(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, in

(2)
V2
, wt

(2)
V2
, ter

(2)
V2

)
over Γ(2) ∪ Σ(1) and K, determined by the procedure before Lemma 1. More-

over, without any loss, we assume that Q
(1)
V1
∩ Q(2)

V2
= ∅. By Lemma 1 we have∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ = r(1) and

∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ = r(2). Let Q = Q
(1)
V1
∪ Q(2)

V2
and Γ =

Σ(1) ∪ Σ(2) ∪ Z(1) ∪ Z(2) ∪ {y}, where y denotes a new free variable different from
y(1) and y(2). We consider the wva A = 〈Σ, A〉 with A = (Q, in,wt, ter) where in
and ter are defined, for every q ∈ Q, respectively by

in (q) =

{
in

(1)
V1

(q) if q ∈ Q(1)
V1

in
(2)
V2

(q) if q ∈ Q(2)
V2

and ter (q) =

{
ter

(1)
V1

(q) if q ∈ Q(1)
V1

ter
(2)
V2

(q) if q ∈ Q(2)
V2

.

The weight assignment mapping wt : Q× Γ×Q→ K is defined as follows:

wt ((q, σ, q′)) =

wt
(1)
V1

((q, σ, q′)) if q, q′ ∈ Q(1)
V1
, σ ∈ Γ \ {y}

wt
(2)
V2

((q, σ, q′)) if q, q′ ∈ Q(2)
V2
, σ ∈ Γ \ {y}

wt
(1)
V1

((
q, y(1), q′

))
if q, q′ ∈ Q(1)

V1
, σ = y

wt
(2)
V2

((
q, y(2), q′

))
if q, q′ ∈ Q(2)

V2
, σ = y

0 otherwise

for every q, q′ ∈ Q, σ ∈ Γ.
We show that ‖A‖ =

∥∥A(1)
∥∥ +

∥∥A(2)
∥∥. For this, let w ∈ Σ∗, u ∈ preimΓ (w),

and h ∈ V R (Γ) such that w ∈ h (u). Then, for every path P
(A)
u of A over u,

by construction of A, we point out the following cases. (i) There exists a path

Pu(1) of A
(1)

(Σ(2),V1)
over u(1) with weight (Pu(1)) = weight

(
P

(A)
u

)
, where u(1) is

obtained from u by replacing every occurrence of y with y(1). (ii) There exists a

path Pu(2) of A
(2)

(Σ(1),V2)
over u(2) with weight (Pu(2)) = weight

(
P

(A)
u

)
, where u(2)

Weighted Recognizability over Infinite Alphabets 293

is obtained from u by replacing every occurrence of y with y(2). Suppose firstly that
(i) holds. We consider the valid relabeling h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
such that h(1)

coincides with h on Σ(1) ∪ Σ(2) ∪ Z(1) and h(1)
(
y(1)

)
= h (y) ∪ h

(
Z(2)

)
. Trivially,

w ∈ h(1)
(
u(1)

)
which implies that u(1) ∈ preimΓ(1)∪Σ(2) (w). Similarly, in case (ii)

we get that u(2) ∈ preimΓ(2)∪Σ(1) (w).
Conversely, let w ∈ Σ∗, u(1) ∈ preimΓ(1)∪Σ(2) (w), and h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
such that w ∈ h(1)

(
u(1)

)
. Then, for every path Pu(1) of A

(1)

(Σ(2),V1)
over u(1), by

construction of A, there exists a path P
(A)
u of A over u with weight

(
P

(A)
u

)
=

weight (Pu(1)), where u is obtained from u(1) by replacing every occurrence of y(1)

with y. We define the valid relabeling h ∈ V R (Γ) which coincides with h(1) on
Σ(1) ∪ Σ(2) ∪ Z(1), h (z) ∈ Σ \ (Σ(1) ∪ Σ(2) ∪ h(1)

(
Z(1)

)
∪ (h(1)

(
y(1)

)
∩{w(i) | 0 ≤ i ≤ n − 1})) for z ∈ Z(2) and h (y) = h(1)

(
y(1)

)
\ {h(z) | z ∈ Z(2)}.

Trivially, w ∈ h (u) which implies that u ∈ preimΓ (w).
Next assume that u(2) ∈ preimΓ(2)∪Σ(1) (w) and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that

w ∈ h(2)
(
u(2)

)
. Then, for every path Pu(2) of A

(2)

(Σ(1),V2)
over u(2), by construction of

A, there exists a path PA
u′ of A over u′ with weight

(
P

(A)
u′

)
= weight (Pu(2)), where

u′ is obtained from u(2) by replacing every occurrence of y(2) with y. We define
the valid relabeling h′ ∈ V R (Γ) which coincides with h(2) on Σ(1) ∪ Σ(2) ∪ Z(2),
h′ (z) ∈ Σ \

(
Σ(1) ∪ Σ(2) ∪ h(2)

(
Z(2)

)
∪
(
h(2)

(
y(2)

)
∩ {w(i) | 0 ≤ i ≤ n− 1}

))
for

z ∈ Z(1) and h′ (y) = h(2)
(
y(2)

)
\ {h′(z) | z ∈ Z(1)}. Trivially, w ∈ h′ (u′) which

implies that u′ ∈ preimΓ (w).
We conclude that for every w ∈ Σ∗ we have

(‖A‖ , w) =
∑

u∈preimΓ(w)

(‖A‖ , u) =
∑

u∈preimΓ(w)

∑
P

(A)
u

weight
(
P (A)
u

)
=

∑
u(1)∈preim

Γ(1)∪Σ(2) (w)

∑
P

u(1)

weight (Pu(1))

+
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(2)

weight (Pu(2))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u(1)

)

+
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u(2)

)

=

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w)+

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=
(∥∥∥A(1)

∥∥∥ , w)+
(∥∥∥A(2)

∥∥∥ , w)
=
(∥∥∥A(1)

∥∥∥+
∥∥∥A(2)

∥∥∥ , w) =
(
r(1) + r(2), w

)

294 Maria Pittou and George Rahonis

where the sixth equality holds by Lemma 1, and we are done.

Proposition 5. The class V Rec (K,Σ) is closed under the scalar products.

Proof. Let r ∈ V Rec (K,Σ) and k ∈ K. Then there exists a wva A = 〈Σ, A〉
with A = (Q, in,wt, ter) accepting r. We consider the wva A′ = 〈Σ, A′〉 with
A′ = (Q, in′, wt, ter) where in′ (q) = k · in (q) for every q ∈ Q. Then, by standard
arguments we get ‖A′‖ = k ‖A‖, and we are done.

Proposition 6. The class V Rec (K,Σ) is closed under Hadamard product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. Then there exist two wva A(i) =〈
Σ, A(i)

〉
with A(i) =

(
Q(i), in(i), wt(i), ter(i)

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

,

accepting r(i) for i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
with A

(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, in

(1)
V1
, wt

(1)
V1
, ter

(1)
V1

)
over Γ(1) ∪ Σ(2) and

A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
with A

(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, in

(2)
V2
, wt

(2)
V2
, ter

(2)
V2

)
over Γ(2)∪

Σ(1) determined by the procedure described before Lemma 1. Moreover, without

any loss, we assume that Q
(1)
V1
∩Q(2)

V2
= ∅. By Lemma 1 we get

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ = r(1)

and

∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ = r(2).

We consider the set
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\{y} where y =

(
y(1), y(2)

)
,

and a maximal subset G ⊆
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y} satisfying the

next condition: every element of Z(1) (resp. of Z(2)) occurs in at most one pair in G
as a left (resp. as a right) coordinate. Assume that G1, . . . , Gm is an enumeration

of all such sets of pairs of variables. Moreover, we let Q = Q
(1)
V1
×Q(2)

V2
and ΓGj =

Σ(1) ∪ Σ(2) ∪ Gj ∪ {y} for every 1 ≤ j ≤ m, and we consider the wva AGj =〈
Σ, AGj

〉
with AGj

=
(
Q, inGj

, wtGj
, terGj

)
over ΓGj

. For every 1 ≤ j ≤ m,

the initial and terminal distribution are given respectively, by inGj

((
q(1), q(2)

))
=

in
(1)
V1

(
q(1)
)
· in(2)

V2

(
q(2)
)

and terGj

((
q(1), q(2)

))
= ter

(1)
V1

(
q(1)
)
· ter(2)

V2

(
q(2)
)
, and the

weight assignment mapping wtGj
: Q× ΓGj

×Q→ K is defined by

wtGj

((
q(1), q(2)

)
, σ,
(
q′(1), q′(2)

))
=

wt
(1)
V1

((
q(1), σ, q′(1)

))
· wt(2)

V2

((
q(2), σ, q′(2)

))
if σ ∈ Σ(1) ∪ Σ(2)

wt
(1)
V1

((
q(1), x(1), q′(1)

))
· wt(2)

V2

((
q(2), x(2), q′(2)

))
if σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every
(
q(1), q(2)

)
,
(
q′(1), q′(2)

)
∈ Q, σ ∈ ΓGj .

Weighted Recognizability over Infinite Alphabets 295

By Proposition 4, the series
∑

1≤j≤m

∥∥AGj

∥∥ is recognizable. We will show that∥∥A(1)
∥∥� ∥∥A(2)

∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥.

To this end, let w = w (0) . . . w (n− 1) ∈ Σ∗, u(1) ∈ preimΓ(1)∪Σ(2) (w), u(2) ∈
preimΓ(2)∪Σ(1) (w), h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
, and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that

w ∈ h(1)
(
u(1)

)
∩ h(2)

(
u(2)

)
. For every w (t) ∈ Σ, 0 ≤ t ≤ n − 1, we have either

w (t) ∈ Σ(1) ∪ Σ(2) and hence u(1) (t) = u(2) (t) = w (t), or w (t) ∈ Σ \ Σ(1) ∪ Σ(2)

and one of the following cases holds.

• There exist bounded variables z(1) ∈ Z(1), z(2) ∈ Z(2) such that u(1) (t) = z(1),
u(2) (t) = z(2) and h(1)

(
u(1) (t)

)
= h(2)

(
u(2) (t)

)
= w (t).

• There exists a bounded variable z(1) ∈ Z(1) such that u(1) (t) = z(1), u(2) (t) =
y(2) and h(1)

(
u(1) (t)

)
= w (t) ∈ h(2)

(
u(2) (t)

)
.

• There exists a bounded variable z(2) ∈ Z(2) such that u(1) (t) = y(1), u(2) (t) =
z(2) and h(2)

(
u(2) (t)

)
= w (t) ∈ h(1)

(
u(1) (t)

)
.

• u(1) (t) = y(1), u(2) (t) = y(2), and w (t) ∈ h(1)
(
u(1) (t)

)
∩ h(2)

(
u(2) (t)

)
.

We consider the word u = u (0) . . . u (n− 1) by

u (t) =

{
w (t) if w (t) ∈ Σ(1) ∪ Σ(2)(
u(1) (t) , u(2) (t)

)
otherwise

for every 0 ≤ t ≤ n − 1. For every 1 ≤ j ≤ m, we define a valid relabel-
ing hj ∈ V R

(
ΓGj

)
such that hj (σ) = h(1)

(
x(1)

)
for every σ =

(
x(1), x(2)

)
∈(

Z(1) ×
(
Z(2) ∪

{
y(2)

}))
∩Gj , and hj (σ) = h(2)

(
x(2)

)
for every σ =

(
x(1), x(2)

)
∈({

y(1)
}
× Z(2)

)
∩Gj . Hence u ∈ preimΓGj

(w) for some 1 ≤ j ≤ m.

By the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m}, such that
for every path

Pu(1) :
(
q

(1)
0 , u(1) (0) , q

(1)
1

)
. . .
(
q

(1)
n−1, u

(1) (n− 1) , q
(1)
n

)
of A

(1)

(Σ(2),V1)
over u(1), and

Pu(2) :
(
q

(2)
0 , u(2) (0) , q

(2)
1

)
. . .
(
q

(2)
n−1, u

(2) (n− 1) , q
(2)
n

)
of A

(2)

(Σ(1),V2)
over u(2), there exists a path

P
(Gj)
u :

((
q

(1)
0 , q

(2)
0

)
, u (0) ,

(
q

(1)
1 , q

(2)
1

))
. . .
((
q

(1)
n−1, q

(2)
n−1

)
, u (n− 1) ,

(
q

(1)
n , q

(2)
n

))
of AGj over u, for every j ∈ J . Conversely, for every path P

(Gj)
u of AGj over u (j ∈

J) there are two paths Pu(1) of A
(1)

(Σ(2),V1)
over u(1) and Pu(2) of A

(2)

(Σ(1),V2)
over u(2)

respectively, obtained in the obvious way. Moreover, in case weight
(
P

(Gj)
u

)
6= 0,

for every j ∈ J , it holds

296 Maria Pittou and George Rahonis

weight
(
P (Gj)
u

)
= inGj

((
q

(1)
0 , q

(2)
0

))
·

∏
0≤t≤n−1

wtGj

(((
q

(1)
t , q

(2)
t

)
, u (t) ,

(
q

(1)
t+1, q

(2)
t+1

)))
· terGj

((
q(1)
n , q(2)

n

))
= in

(1)
V1

(
q

(1)
0

)
· in(2)

V2

(
q

(2)
0

)
·

∏
0≤t≤n−1

 wt
(1)
V1

((
q

(1)
t , u(1) (t) , q

(1)
t+1

))
·wt(2)

V2

((
q

(2)
t , u(2) (t) , q

(2)
t+1

))
· ter(1)

V1

(
q(1)
n

)
· ter(2)

V2

(
q(2)
n

)
= in

(1)
V1

(
q

(1)
0

)
·

∏
0≤t≤n−1

wt
(1)
V1

((
q

(1)
t , u(1) (t) , q

(1)
t+1

))
· ter(1)

V1

(
q(1)
n

)
· in(2)

V2

(
q

(2)
0

)
·

∏
0≤t≤n−1

wt
(2)
V2

((
q

(2)
t , u(2) (t) , q

(2)
t+1

))
· ter(2)

V2

(
q(2)
n

)
= weight (Pu(1)) · weight (Pu(2)) .

Conversely, if weight (Pu(1)) 6= 0, weight (Pu(2)) 6= 0, then by the consideration

of the list G1, . . . , Gm, there is at least one 1 ≤ j ≤ m with weight
(
P

(Gj)
u

)
=

weight (Pu(1)) · weight (Pu(2)). Therefore, and since K is idempotent, we obtain2

∑
1≤j≤m

∑
P

(Gj)
u

weight
(
P (Gj)
u

)
=

∑
P

u(1) ,Pu(2)

weight (Pu(1)) · weight (Pu(2)) .

We conclude ∑
1≤j≤m

∥∥AGj

∥∥ , w
 =

∑
1≤j≤m

(∥∥AGj

∥∥ , w) =
∑

1≤j≤m

∑
u∈preimΓGj

(w)

(∥∥AGj

∥∥ , u)
=

∑
1≤j≤m

∑
u∈preimΓGj

(w)

∑
P

(Gj)
u

weight
(
P (Gj)
u

)
=

∑
u(1)∈preim

Γ(1)∪Σ(2) (w)

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(1)

P
u(2)

(weight (Pu(1)) · weight (Pu(2)))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

∑
P

u(1)

weight (Pu(1))

2It should be clear that for j ∈ {1, . . . ,m}\J the paths P
(Gj)
u do not exist, hence by definition

weight
(
P

(Gj)
u

)
= 0.

Weighted Recognizability over Infinite Alphabets 297

·
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(2)

weight (Pu(2))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u(1)

)

·
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u(2)

)

=

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w) · (∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
for every w ∈ Σ∗, which, by Lemma 1, implies

(∥∥∥A(1)
∥∥∥� ∥∥∥A(2)

∥∥∥ , w) =

 ∑
1≤j≤m

∥∥AGj

∥∥ , w

for every w ∈ Σ∗, i.e.,
∥∥A(1)

∥∥� ∥∥A(2)
∥∥ =

∑
1≤j≤m

∥∥AGj

∥∥, as required.

Proposition 7. The class V Rec (K,Σ) is closed under Cauchy product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. We consider the proper series r′(1), r′(2)

over Σ and K defined, for every w ∈ Σ∗, by

•
(
r′(1), w

)
=

{ (
r(1), w

)
if w ∈ Σ+

0 otherwise
, and

•
(
r′(2), w

)
=

{ (
r(2), w

)
if w ∈ Σ+

0 otherwise.

Then r(1) · r(2) = r′(1) · r′(2) +
(
r(1), ε

)
r(2) + r(1)

(
r(2), ε

)
+
(
r(1), ε

) (
r(2), ε

)
ε̄ and by

Propositions 2, 4, and 5, it suffices to show that r′(1)·r′(2) ∈ V Rec (K,Σ). By Propo-

sition 3, there are normalized wvaA(i) =
〈
Σ, A(i)

〉
withA(i) =

(
Q(i), q

(i)
in , wt

(i), q
(i)
ter

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

and K, accepting respectively r′(i), with i =

1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅ and
(
Z(1) ∪

{
y(1)

})
∩(

Z(2) ∪
{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=

〈
Σ, A

(1)

(Σ(2),V1)

〉
and

A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
determined by the procedure before Lemma 1. By

Proposition 3 and Lemma 1, A(1)

(Σ(2),V1)
and A(2)

(Σ(1),V2)
can be assumed to be nor-

malized hence, let A
(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, q

(1)
inV1

, wt
(1)
V1
, q

(1)
terV1

)
over Γ(1) ∪ Σ(2) and

A
(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, q

(2)
inV2

, wt
(2)
V2
, q

(2)
terV2

)
over Γ(2)∪Σ(1). Moreover, without any loss,

298 Maria Pittou and George Rahonis

we assume that Q
(1)
V1
∩Q(2)

V2
= ∅. We let y =

(
y(1), y(2)

)
and consider the set H =(

Z(1) ∪
{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y}, and a maximal subset G ⊆ H ∪Z(1) ∪Z(2)

satisfying the following condition: every element of Z(1) (resp. of Z(2)) occurs
either in at most one pair of H as a left (resp. as a right) coordinate, or as
a single element of G. Assume that G1, . . . , Gm is an enumeration of all such

sets. We let Q = Q
(1)
V1
∪ Q(2)

V2
\
{
q

(1)
terV1

}
and consider, for every 1 ≤ j ≤ m, the

normalized wva AGj
=
〈
Σ, AGj

〉
where AGj

=
(
Q, q

(1)
inV1

, wtGj
, q

(2)
terV2

)
and ΓGj

=

Σ(1) ∪ Σ(2) ∪Gj ∪ {y}. The weight assignment mapping wtGj
is defined, for every

1 ≤ j ≤ m, as follows:

wtGj ((q, σ, q′)) =

wt
(1)
V1

((q, σ, q′)) if q, q′ ∈ Q(1)
V1
\
{
q

(1)
terV1

}
and

σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(1) ∩Gj

)
wt

(2)
V2

((q, σ, q′)) if q, q′ ∈ Q(2)
V2

and σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(2) ∩Gj

)
wt

(1)
V1

((
q, σ, q

(1)
terV1

))
if q ∈ Q(1)

V1
\
{
q

(1)
terV1

}
, q′ = q

(2)
inV2

, and

σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(1) ∩Gj

)
wt

(1)
V1

((
q, x(1), q′

))
if q, q′ ∈ Q(1)

V1
\
{
q

(1)
terV1

}
and

σ =
(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(2)
V2

((
q, x(2), q′

))
if q, q′ ∈ Q(2)

V2
and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(1)
V1

((
q, x(1), q

(1)
terV1

))
if q ∈ Q(1)

V1
\
{
q

(1)
terV1

}
, q′ = q

(2)
inV2

, and

σ =
(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every q, q′ ∈ Q, σ ∈ ΓGj .

By Lemma 1 and Proposition 4, it suffices to show that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥·∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =∑
1≤j≤m

∥∥AGj

∥∥.

Let w1, w2 ∈ Σ+, u1 ∈ preimΓ(1)∪Σ(2) (w1), and u2 ∈ preimΓ(2)∪Σ(1) (w2). We
set w1w2 = w = w(0) . . . w(n − 1) hence, w1 = w(0) . . . w(k) and w2 = w(k +
1) . . . w(n−1) for some 0 ≤ k < n−1. Furthermore, we set u1u2 = u = u(0) . . . u(n−
1) and, by our assumption, we have u1 = u(0) . . . u(k) and u2 = u(k+1) . . . u(n−1).
Let h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
, h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that w1 ∈ h(1) (u1) and

w2 ∈ h(2) (u2). Moreover, let

Pu1 :
(
q

(1)
inV1

, u (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u (k) , q

(1)
terV1

)

Weighted Recognizability over Infinite Alphabets 299

be a path of A
(1)

(Σ(2),V1)
over u1, and

Pu2
:
(
q

(2)
inV2

, u (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u (n− 1) , q

(2)
terV2

)
be a path of A

(2)

(Σ(1),V2)
over u2.

We point out the following cases.

• The sets {w(0), . . . , w(k)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w(k+1), . . . , w(n−1)}∩(

Σ \
(
Σ(1) ∪ Σ(2)

))
are disjoint. Then, if weight(Pu1

) 6= 0 6= weight(Pu2
), by

the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such that
for every j ∈ J

P
(Gj)
u′ :

(
q

(1)
inV1

, u′ (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u

′ (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′ (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u

′ (n− 1) , q
(2)
terV2

)
is a path of AGj

over u′, where u′ is obtained by u by replacing every oc-

currence of y(1) in u1 and y(2) in u2, respectively by y. Clearly, it holds

weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). Moreover, since K is idempo-

tent, we get
∑

j∈J weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). By the defi-

nition of the list G1, . . . , Gm we have also weight
(
P

(Gj)
u′

)
= 0 for every j ∈

{1, . . . ,m}\J , and thus
∑

1≤j≤m weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

Furthermore, the relabeling h(j) : ΓGj → P(Σ), for every 1 ≤ j ≤ m, which

is defined as the identity on Σ(1) ∪ Σ(2), and

– h(j)(z(1)) = h(1)(z(1)) for every z(1) ∈ Z(1) ∩Gj ,

– h(j)(z(2)) = h(2)(z(2)) for every z(2) ∈ Z(2) ∩Gj , and

– h(j)((x(1), x(2))) are defined nondeterministically in Σ \ (Σ(1) ∪ Σ(2) ∪
{w(0), . . . , w(n − 1)} ∪ {h(j)(z(i)) | z(i) ∈ Z(i) ∩Gj , i = 1, 2}) whenever
(x(1), x(2)) ∈ Gj \ {y}

is valid, and clearly w ∈ h(j)(u′) for every j ∈ J .

• The sets {w(0), . . . , w(k)} ∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w(k+ 1), . . . , w(n− 1)}

∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are not disjoint. For simplicity, let us assume that the

two sets have only one common letter σ, and let 0 ≤ l1 < . . . < lr ≤ k
and k + 1 ≤ lr+1 < . . . < ls ≤ n − 1 be the positions in w such that
w(l1) = . . . = w(lr) = w(lr+1) = . . . = w(ls) = σ.

Since u1 ∈ preimΓ(1)∪Σ(2) (w1) and u2 ∈ preimΓ(2)∪Σ(1) (w2) we get that
u(l1) = . . . = u(lr) = x(1) and u(lr+1) = . . . = u(ls) = x(2) for some x(1) ∈
Z(1) ∪ {y(1)} and x(2) ∈ Z(2) ∪ {y(2)}. If weight(Pu1) 6= 0 6= weight(Pu2), by
the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such that

for every j ∈ J , the path P
(Gj)
u′ which is determined by

300 Maria Pittou and George Rahonis

(
q

(1)
inV1

, u′ (0) , q
(1)
1

)
. . .
(
q

(1)
l1
, (x(1), x(2)), q

(1)
l1+1

)
. . .
(
q

(1)
lr
, (x(1), x(2)), q

(1)
lr+1

)
. . .
(
q

(1)
k−1, u

′ (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′ (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
lr+1

, (x(1), x(2)), q
(2)
lr+1+1

)
. . .
(
q

(2)
ls
, (x(1), x(2)), q

(2)
ls+1

)
. . .
(
q

(2)
n−1, u

′ (n− 1) , q
(2)
terV2

)
is a path of AGj

over u′, and weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

The word u′ is obtained by u by replacing the letters u(l1), . . . , u(ls) by
(x(1), x(2)) and from the remaining letters we replace every occurrence of
y(1) and y(2) with y. With the same argument, as in the previous case, we ob-

tain
∑

1≤j≤m weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
), and in the obvious

way, we define an h(j) ∈ V R(ΓGj
) such that w ∈ h(j)(u′) for every j ∈ J .

In case the sets {w(0), . . . , w(k)}∩
(
Σ \ Σ(1) ∪ Σ(2)

)
and {w(k+1), . . . , w(n−

1)} ∩
(
Σ \ Σ(1) ∪ Σ(2)

)
have more than one common elements, then we sim-

ilarly merge the labels of the corresponding transitions and construct the

paths P
(Gj)
u′ .

Conversely, let w ∈ Σ+, u′(j) ∈ preimΓGj
(w) for some 1 ≤ j ≤ m, and

P
(Gj)

u′(j) :
(
q

(1)
inV1

, u′(j) (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u

′(j) (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′(j) (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u

′(j) (n− 1) , q
(2)
terV2

)
be a path of AGj

over u′(j). Then, there are two paths Pu1
, Pu2

of A
(1)

(Σ(2),V1)
and

A
(2)

(Σ(1),V2)
over u1 and u2 respectively, where the word u = u1u2 is obtained by the

word u′(j) as follows. For every 0 ≤ t ≤ k we replace every occurrence of (x(1), x(2))
(resp. y) by x(1) (resp. y(1)) and for every k + 1 ≤ t ≤ n − 1 we replace every
occurrence of (x(1), x(2)) (resp. y) by x(2) (resp. y(2)). Moreover, it is not difficult
to show that u1 ∈ preimΓ(1)∪Σ(2)(w1), u2 ∈ preimΓ(2)∪Σ(1)(w2), where w = w1w2

and weight(Pu1)weight(Pu2) = weight
(
P

(Gj)

u′(j)

)
.

We conclude that for every w ∈ Σ+ it holds(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ · ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=
∑{(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

)
| w = w1w2

}

=
∑

∑

u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

)
∑

u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
| w = w1w2

Weighted Recognizability over Infinite Alphabets 301

=
∑

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1
)∑

u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2
) | w = w1w2

=
∑

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)∑

Pu1

∑
Pu2

weight(Pu1
)weight(Pu2

) | w = w1w2

=

∑
1≤j≤m

∑
u′(j)∈preimΓGj

(w)

∑
P

(Gj)

u′(j)

weight
(
P

(Gj)

u′(j)

)

=
∑

1≤j≤m

∑
u′(j)∈preimΓGj

(w)

(∥∥AGj

∥∥ , u′(j)
)

=

 ∑
1≤j≤m

∥∥AGj

∥∥ , w

where the fifth equality holds since K is idempotent. Hence, we get∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ · ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥
as required, and our proof is completed.

Proposition 8. The class V Rec (K,Σ) is closed under the star operation applied
to proper series.

Proof. Let r ∈ V Rec (K,Σ) be proper and A = 〈Σ, A〉 a normalized wva, with
A = (Q, qin, wt, qter) over ΓA = ΣA ∪ Z ∪ {y}, accepting r. We consider the wva
A′ = 〈Σ, A′〉 over Σ and K with Q′ = Q \ {qter} and A′ = (Q′, qin, wt

′, qin) over
ΓA. The weight assignment mapping wt′ : Q′ × ΓA ×Q′ → K is defined for every
q, q′ ∈ Q′, σ ∈ ΓA as follows:

wt′ ((q, σ, q′)) =

{
wt ((q, σ, q′)) if q′ 6= qin
wt ((q, σ, qter)) if q′ = qin

.

By standard arguments on weighted automata, we can show that ‖A′‖ = ‖A‖∗.
Moreover, for every w ∈ Σ∗ we have

(‖A′‖ , w) =
∑

u∈preimΓA
(w)

(‖A′‖ , u)

=
∑

u∈preimΓA
(w)

(
‖A‖∗ , u

)
=

∑
u∈preimΓA

(w)

∑
n≥0,u=u1...un

((‖A‖ , u1) · . . . · (‖A‖ , un))

302 Maria Pittou and George Rahonis

=
∑

n≥0,w=w1...wn

∑
ui∈preimΓA

(wi)

1≤i≤n

((‖A‖ , u1) · . . . · (‖A‖ , un))

=
∑

n≥0,w=w1...wn

∑
u1∈preimΓA

(w1)

(‖A‖ , u1) · . . . ·
∑

un∈preimΓA
(wn)

(‖A‖ , un)

=
∑

n≥0,w=w1...wn

(r, w1) · . . . · (r, wn)

= (r∗, w)

which implies that ‖A′‖ = r∗ hence, r∗ ∈ V Rec (K,Σ) and our proof is completed.

Proposition 9. The class V Rec (K,Σ) is closed under the shuffle product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. We consider the proper series r′(1), r′(2)

over Σ and K defined, for every w ∈ Σ∗, by

•
(
r′(1), w

)
=

{ (
r(1), w

)
if w ∈ Σ+

0 otherwise
, and

•
(
r′(2), w

)
=

{ (
r(2), w

)
if w ∈ Σ+

0 otherwise.

Then r(1)
� r(2) = r′(1)

� r′(2) +
(
r(1), ε

)
r(2) + r(1)

(
r(2), ε

)
+
(
r(1), ε

) (
r(2), ε

)
ε̄.

By Propositions 2, 4, and 5 it suffices to show that r′(1)
� r′(2) ∈ V Rec (K,Σ).

By Proposition 3, we can construct normalized wva A(i) =
〈
Σ, A(i)

〉
with A(i) =(

Q(i), q
(i)
in , wt

(i), q
(i)
ter

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

and K, accepting respec-

tively r′(i), with i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
and A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
determined by the procedure

before Lemma 1. By Proposition 3 and Lemma 1 these wva can be also assumed

to be normalized hence, let A
(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, q

(1)
inV1

, wt
(1)
V1
, q

(1)
terV1

)
over Γ(1) ∪ Σ(2)

and A
(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, q

(2)
inV2

, wt
(2)
V2
, q

(2)
terV2

)
over Γ(2) ∪ Σ(1). Moreover, without

any loss, we assume that Q
(1)
V1
∩ Q(2)

V2
= ∅. We let y =

(
y(1), y(2)

)
and con-

sider the set H =
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y} and a maximal subset

G ⊆ H ∪Z(1) ∪Z(2) satisfying the following condition: every element of Z(1) (resp.
of Z(2)) occurs either in at most one pair of H as a left (resp. as a right) coor-
dinate, or as a single element of G. Assume that G1, . . . , Gm is an enumeration

of all such sets. We let Q = Q
(1)
V1
× Q(2)

V2
, ΓGj

= Σ(1) ∪ Σ(2) ∪ Gj ∪ {y}, for ev-

ery 1 ≤ j ≤ m, and consider the normalized wva AGj=
〈
Σ, AGj

〉
over Σ and K

Weighted Recognizability over Infinite Alphabets 303

with AGj
=
(
Q,
(
q

(1)
inV1

, q
(2)
inV2

)
, wtGj

,
(
q

(1)
terV1

, q
(2)
terV2

))
over ΓGj

, where the weight

assignment mapping wtGj is defined for every 1 ≤ j ≤ m as follows:

wtGj

(((
q(1), q(2)

)
, σ,
(
q′(1), q′(2)

)))
=

wt
(1)
V1

((
q(1), σ, q′(1)

))
if q(2) = q′(2) and σ ∈ Σ(1) ∪ Σ(2) ∪

(
Z(1) ∩Gj

)
wt

(2)
V2

((
q(2), σ, q′(2)

))
if q(1) = q′(1) and σ ∈ Σ(1) ∪ Σ(2) ∪

(
Z(2) ∩Gj

)
wt

(1)
V1

((
q(1), x(1), q′(1)

))
if q(2) = q′(2) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(2)
V2

((
q(2), x(2), q′(2)

))
if q(1) = q′(1) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every
(
q(1), q(2)

)
,
(
q′(1), q′(2)

)
∈ Q, σ ∈ ΓGj

.

Next, we show that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥=
∑

1≤j≤m

∥∥AGj

∥∥.

For this let w,w1 = w1 (0) . . . w1 (n1 − 1) , w2 = w2 (0) . . . w2 (n2 − 1) ∈ Σ+ such
that w ∈ w1 � w2, and u1 ∈ preimΓ(1)∪Σ(2) (w1), u2 ∈ preimΓ(2)∪Σ(1) (w2). Hence,
there exist valid relabelings h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that w1 ∈ h(1) (u1) , w2 ∈ h(2) (u2). We consider a path

Pu1
:
(
q

(1)
inV1

, u1 (0) , q
(1)
1

)
. . .
(
q

(1)
n1−1, u1 (n1 − 1) , q

(1)
terV1

)
of A

(1)

(Σ(2),V1)
over u1 and a path

Pu2 :
(
q

(2)
inV2

, u2 (0) , q
(2)
1

)
. . .
(
q

(2)
n2−1, u2 (n2 − 1) , q

(2)
terV2

)
of A

(2)

(Σ(1),V2)
over u2. We distinguish the following cases.

• The sets {w1(0), . . . , w1(n1−1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w2(0), . . . , w2(n2−

1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are disjoint. Then, if weight(Pu1) 6= 0 6= weight(Pu2),

by the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such

that for every j ∈ J there is a path P
(Gj)
u of AGj over u, for u ∈ (u1 � u2) ∩

preimΓGj
(w) with weight

(
P

(Gj)
u

)
= weight(Pu1

)weight(Pu2
). Since K is

idempotent it holds
∑
j∈J

weight
(
P

(Gj)
u

)
= weight(Pu1

)weight(Pu2
) and thus∑

1≤j≤m
weight

(
P

(Gj)
u

)
= weight(Pu1)weight(Pu2).

• The sets {w1(0), . . . , w1(n1−1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w2(0), . . . , w2(n2−

1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are not disjoint. Moreover, for simplicity, we assume

that the two sets have only one common letter σ, and let 0 ≤ l1 < . . . <
lr ≤ n1 − 1 and 0 ≤ g1 < . . . < gs ≤ n2 − 1 be the positions in w1, w2

respectively, such that w1(l1) = . . . = w1(lr) = w2(g1) = . . . = w2(gs) = σ.

304 Maria Pittou and George Rahonis

Since u1 ∈ preimΓ(1)∪Σ(2) (w1) and u2 ∈ preimΓ(2)∪Σ(1) (w2) we get that
u1(l1) = . . . = u1(lr) = x(1) and u2(g1) = . . . = u2(gs) = x(2) for some x(1) ∈
Z(1) ∪ {y(1)} and x(2) ∈ Z(2) ∪ {y(2)}. If weight(Pu1

) 6= 0 6= weight(Pu2
),

by the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such

that for every j ∈ J there is a path P
(Gj)
u′ of AGj

over u′, where u′ is ob-

tained by u by replacing x(1) (resp. x(2)) in u1 (resp. u2) at the posi-
tions l1, . . . , lr (resp. g1, . . . , gs) by the pair

(
x(1), x(2)

)
, and from the re-

maining letters we replace every occurrence of y(1) and y(2) with y, for

u ∈ u1 � u2. Again, we have weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
)

and hence,
∑

1≤j≤m
weight

(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). On the other

hand, it is trivially shown that u′ ∈ preimΓGj
(w).

Conversely, keeping the previous notations, for every w ∈ Σ+, u′ ∈ preimΓGj
(w)

for some 1 ≤ j ≤ m, there are u1 ∈ preimΓ(1)∪Σ(2)(w1), u2 ∈ preimΓ(2)∪Σ(1)(w2)

with w ∈ w1 � w2, such that for every path P
(Gj)
u′ of AGj

over u′, there are paths

Pu1
of A

(1)

(Σ(2),V1)
over u1 and Pu2

of A
(2)

(Σ(1),V2)
over u2, with weight

(
P

(Gj)
u′

)
=

weight(Pu1
)weight(Pu2

). Using the same as above argument, we can show that∑
1≤j≤m

weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

Now for every w1, w2 ∈ Σ+, it holds(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

)
=

∑
u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

) ∑
u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
=

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1)
∑

u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2)

=
∑

u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu1

∑
Pu2

weight(Pu1)weight(Pu2).

Hence, for every w ∈ Σ+, we get(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=

∑
w1,w2∈Σ+

w∈w1�w2

((∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

))

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

)

Weighted Recognizability over Infinite Alphabets 305

∑
u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
=

∑
w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2
)

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)∑

Pu1

∑
Pu2

weight(Pu1
)weight(Pu2

)

=
∑

1≤j≤m

∑
u∈preimΓGj

(w)

∑
P

(Gj)
u

weight
(
P (Gj)
u

)

=

 ∑
1≤j≤m

∥∥AGj

∥∥ , w

which implies that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ � ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥ hence, r′(1)
�

r′(2) =
∑

1≤j≤m

∥∥AGj

∥∥. Therefore, by Proposition 4, we conclude that r′(1)
� r′(2) ∈

V Rec (K,Σ), as required.

Remark 1. The definition of the weight assignment mappings wtGj for 1 ≤ j ≤ m,
in the above proof, is not completely right. More precisely, it may happen that there

are q(1) ∈ Q(1)
V1
, q(2) ∈ Q(2)

V2
and σ ∈

(
Σ(1) ∩ Σ(2)

)
(resp. σ = (x(1), x(2)) ∈ Gj ∪{y})

such that wt
(1)
V1

((
q(1), σ, q(1)

))
= k1 6= 0, wt

(2)
V2

((
q(2), σ, q(2)

))
= k2 6= 0 with

k1 6= k2 (resp. wt
(1)
V1

((q(1), x(1), q(1))) = k1 6= 0, wt
(2)
V2

((
q(2), x(2), q(2)

))
= k2 6= 0

with k1 6= k2). Then, the value wtGj

(((
q(1), q(2)

)
, σ,
(
q(1), q(2)

)))
is not well-

defined3. Therefore, if this is the case, for every such pair of states
(
q(1), q(2)

)
and

σ ∈
(
Σ(1) ∩ Σ(2)

)
∪Gj ∪ {y}, we introduce a new state r and we set

- wtGj

(((
q(1), q(2)

)
, σ,
(
q(1), q(2)

)))
= k1,

- wtGj

(((
q(1), q(2)

)
, σ, r

))
= k1,

- wtGj

((
r, σ,

(
q(1), q(2)

)))
= k2,

3Other authors proving the closure of the class of recognizable series under the shuffle product
have also ignored this case (cf. for instance [34]).

306 Maria Pittou and George Rahonis

- wtGj ((r, σ, r)) = k2, and

- wtGj

(((
q′(1), q′(2)

)
, σ′, r

))
= wtGj

(((
q′(1), q′(2)

)
, σ′,

(
q(1), q(2)

)))
,

- wtGj

((
r, σ′,

(
q′(1), q′(2)

)))
= wtGj

(((
q(1), q(2)

)
, σ′,

(
q′(1), q′(2)

)))
,

for every q′(1) ∈ Q(1)
V1
, q′(2) ∈ Q(2)

V2
, σ′ ∈ ΓGj

.

The following theorem summarizes the results of this section.

Theorem 1. Let K be a commutative and idempotent semiring and Σ an infinite
alphabet. Then the class of v-recognizable series over Σ and K is closed under
sum, and under scalar, Hadamard, Cauchy and shuffle products, and under star
operation applied to proper series.

5 Rational series over infinite alphabets

In this section, we extend the notion of rational series over the infinite alphabet
Σ and the semiring K4. In fact, we state a Kleene-Schützenberger type result for
v-recognizable series over Σ and K. For this, we define the notion of rationality
for series over Σ in the same way we did it for v-recognizable series. A similar
approach for defining regular expressions over infinite alphabets has been followed
in [1, 25]. Firstly, we recall the concept of rational series over finite alphabets.
Let ∆ be a finite alphabet. The class Rat(K,∆) of rational series over ∆ and
K is the least class of series containing the polynomials over ∆ and K and being
closed under sum, Cauchy product, and star operation applied to proper series.
The subsequent result is the fundamental theorem of Schützenberger stating the
coincidence of rational and recognizable series.

Theorem 2. [35, 18, 34] Let K be a semiring and ∆ a finite alphabet. Then a
series s ∈ K 〈〈∆∗〉〉 is recognizable iff it is rational.

Definition 3. A series s over Σ and K is called v-rational if there is a subalphabet
Γ ⊆fin Σ and a rational series s′ over ∆ = Γ ∪ Z ∪ {y} and K such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

Now we discuss why we adopted the above definition for rational series over infi-
nite alphabets. One could think of alternative definitions, more precisely, by defin-
ing rational series over the infinite alphabet Σ in the same way we do it for rational
series over finite alphabets. It is not difficult to see that such a consideration should

4In this section we can relax the commutativity property of K.

Weighted Recognizability over Infinite Alphabets 307

not derive an expressively equivalent notion to wva. Consider for instance the nor-
malized wva A = 〈Σ, A〉 where A = ({qin, qter}, qin, wt, qter) with ΣA = {a} and
Z = {z}. The only non-zero assignment of wt is given by wt((qin, z, qter)) = k 6= 0.
Then trivially, ‖A‖ =

∑
a′∈Σ\{a} ka

′ and it is not difficult to see that this series is
not rational in the sense of rational series over finite alphabets. Even if we should
consider our rational series to contain, by definition, series of the above form, then
still this is not sufficient. For instance let us consider the normalized wva B = 〈Σ, B〉
where B = ({pin, p, pter}, pin, wt, pter) with ΣB = {b}, Z = {z, z′} and non-zero
weights wt((pin, z, p)) = k,wt((p, z′, pter)) = k′. Then it is easily obtained that

‖B‖ =
∑

a,a′∈Σ\{b}
a 6=a′

kk′aa′.

On the other hand, the Cauchy product of the series
∑

a∈Σ\{b}
ka

∑
a′∈Σ\{b}

k′a′ clearly

differs from ‖B‖.
Next, we state our Kleene-Schützenberger type theorem for series over Σ and

K.

Theorem 3. Let K be a semiring and Σ an infinite alphabet. Then a series
s ∈ K 〈〈Σ∗〉〉 is v-recognizable iff it is v-rational.

Proof. Let s ∈ V Rec(K,Σ). Then, there exists a wva A = 〈Σ, A〉 where A is a
weighted automaton over ΓA = ΣA ∪ Z ∪ {y} such that

s = ‖A‖ =
∑

u∈preimΓA
(w)

(‖A‖ , u) .

By Theorem 2 the recognizable series ‖A‖ over ΓA and K is also rational. This
implies that s is v-rational. By a similar argument, we show that if s is v-rational,
then it is also v-recognizable, and this concludes our proof.

6 Weighted monadic second order logic over infi-
nite alphabets

Droste and Gastin in their seminal paper [12] (cf. also [13]), introduced a weighted
monadic second order logic (MSO logic for short) and proved in the quantitative
setup the fundamental result of Büchi [7], Elgot [17], and Trakhtenbrot [41] relating
recognizable and MSO-definable languages. More precisely, they determined two
fragments of their weighted MSO logic, namely the restricted, and the existential
restricted one, and proved that the classes of series defined by sentences in these
two fragments coincide with the class of recognizable series over a finite alphabet
and a commutative semiring. We would like to extend this result for the class of
v-recognizable series. For this, we introduce a weighted MSO logic over the infinite
alphabet Σ and the commutative semiring K.

308 Maria Pittou and George Rahonis

Firstly we recall, for the reader’s convenience, the basic definitions of weighted
MSO logic (cf. [12, 13]) by adopting the notations of [19].

Let ∆ be a finite alphabet. The syntax of MSO logic formulas over ∆ is given
by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨ φ | ∃x � φ | ∃X � φ

where a ∈ ∆ and we let false = ¬true. The set free(φ) of free variables of an
MSO logic formula φ is defined as usual. In order to define the semantics of MSO
logic formulas we need the notions of the extended alphabet and valid assignment
(cf. for instance [40]). Let V be a finite set of first and second order variables. For
every word u = u(0) . . . u(n − 1) ∈ ∆∗ we let Dom(u) = {0, . . . , n− 1}. A (V, u)-
assignment σ is a mapping associating first order variables from V to elements of
Dom(u), and second order variables from V to subsets of Dom(u). If x is a first
order variable and i ∈ Dom(u), then σ[x→ i] denotes the (V ∪ {x}, u)-assignment
which associates i to x and coincides with σ on V \{x}. For a second order variable
X and I ⊆ Dom(u), the notation σ[X → I] has a similar meaning.

We shall encode pairs of the form (u, σ), where u ∈ ∆∗ and σ is a (V, u)-
assignment, using the extended alphabet ∆V = ∆×{0, 1}V . Indeed, every word in
∆∗V can be considered as a pair (u, σ) where u is the projection over ∆ and σ is the
projection over {0, 1}V . Then σ is a valid assignment if for every first order variable
x ∈ V the x-row contains exactly one 1. In this case, σ is the (V, u)-assignment
such that for every first order variable x ∈ V, σ(x) is the position of the 1 on the
x-row, and for every second order variable X ∈ V, σ(X) is the set of positions
labelled with 1 along the X-row. It is not difficult to see that the language

NV = {(u, σ) ∈ ∆∗V | σ is a valid (V, u)-assignment}

is recognizable.
For every (u, σ) ∈ NV we define the satisfaction relation (u, σ) |= φ by induction

on the structure of φ, as follows:

- (u, σ) |= true,

- (u, σ) |= Pa(x) iff u(σ(x)) = a,

- (u, σ) |= x ≤ x′ iff σ(x) ≤ σ(x′),

- (u, σ) |= x ∈ X iff σ(x) ∈ σ(X),

- (u, σ) |= ¬φ iff (u, σ) 6|= φ,

- (u, σ) |= φ ∨ φ′ iff (u, σ) |= φ or (u, σ) |= φ′,

- (u, σ) |= ∃x � φ iff there exists an i ∈ Dom(u) such that (u, σ[x→ i) |= φ,

- (u, σ) |= ∃X � φ iff there exists an I ⊆ Dom(u) such that (u, σ[X → I) |= φ.

If (u, σ) ∈ ∆∗V \ NV , then we let (u, σ) 6|= φ.

Weighted Recognizability over Infinite Alphabets 309

Definition 4. The syntax of formulas of the weighted MSO logic over ∆ and K
is given by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨ φ | ∃x � φ | ∃X � φ

ϕ ::= k | φ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕

x � ϕ |
⊕

X � ϕ |
⊗

x � ϕ |
⊗

X � ϕ

where k ∈ K, a ∈ ∆.

We denote by MSO(K,∆) the set of all weighted MSO logic formulas ϕ over
∆ and K. We represent the semantics of formulas ϕ ∈ MSO(K,∆) as series
‖ϕ‖ ∈ K 〈〈∆∗〉〉. For the semantics of MSO logic formulas φ we use the satisfaction
relation as defined above. Therefore, the semantics of MSO logic formulas φ gets
only the values 0 and 1.

Definition 5. Let ϕ ∈MSO(K,∆) and V be a finite set of variables with free(ϕ) ⊆
V. The semantics of ϕ is a series ‖ϕ‖V ∈ K 〈〈∆∗V〉〉. Consider an element
(u, σ) ∈ ∆∗V . If (u, σ) /∈ NV , then we let (‖ϕ‖V , (u, σ)) = 0. Otherwise, we de-
fine (‖ϕ‖V , (u, σ)) ∈ K, inductively on the structure of ϕ, as follows:

- (‖k‖V , (u, σ)) = k,

- (‖φ‖V , (u, σ)) =

{
1 if (u, σ) |= φ
0 otherwise

,

- (‖ϕ⊕ ψ‖V , (u, σ)) = (‖ϕ‖V , (u, σ)) + (‖ψ‖V , (u, σ)) ,

- (‖ϕ⊗ ψ‖V , (u, σ)) = (‖ϕ‖V , (u, σ)) · (‖ψ‖V , (u, σ)) ,

-
(
‖
⊕

x � ϕ‖V , (u, σ)
)

=
∑

0≤i≤n−1

(
‖ϕ‖V∪{x} , (u, σ[x→ i])

)
,

-
(
‖
⊕

X � ϕ‖V , (u, σ)
)

=
∑

I⊆Dom(u)

(
‖ϕ‖V∪{X} , (u, σ[X → I])

)
,

-
(
‖
⊗

x � ϕ‖V , (u, σ)
)

=
∏

0≤i≤n−1

(
‖ϕ‖V∪{x} , (u, σ[x→ i])

)
,

-
(
‖
⊗

X � ϕ‖V , (u, σ)
)

=
∏

I⊆Dom(u)

(
‖ϕ‖V∪{X} , (u, σ[X → I])

)
.

We simply denote ‖ϕ‖free(ϕ) by ‖ϕ‖. If ϕ is a sentence, then ‖ϕ‖ ∈ K 〈〈∆∗〉〉.
Furthermore, it holds [12]

(‖ϕ‖V , (u, σ)) =
(
‖ϕ‖ , (u, σ|free(ϕ))

)
for every (u, σ) ∈ NV .

Definition 6. A formula ϕ ∈MSO(K,∆) will be called restricted if

310 Maria Pittou and George Rahonis

• it contains no universal quantification of the form
⊗

X � ψ, and

• whenever it contains a universal first order quantification
⊗

x � ψ, then ψ is
a formula of the form ψ = ⊕1≤i≤n (ki ⊗ φi) where ki ∈ K and φi is an MSO
logic formula for every 1 ≤ i ≤ n.

We denote withRMSO(K,∆) the subclass of all restricted formulas inMSO(K,
∆).

Definition 7. A formula ϕ ∈ RMSO(K,∆) is called restricted existential if it is of
the form

⊕
X1,...,Xn

�ψ with ψ ∈ RMSO(K,∆) and ψ contains no set quantification.

The subclass of all restricted existential formulas in MSO(K,∆) is denoted by
REMSO(K,∆).

Definition 8. A series s over ∆ and K is called MSO (resp. RMSO, REMSO) de-
finable if there is sentence ϕ in MSO(K,∆) (resp. RMSO(K,∆), REMSO(K,∆))
such that s = ‖ϕ‖.

Theorem 4. [12, 13] Let K be a commutative semiring and ∆ a finite alphabet.
Then for every series s ∈ K 〈〈∆∗〉〉 the following statements are equivalent.

i) s is recognizable.

ii) s is RMSO-definable.

iii) s is REMSO-definable.

Furthermore, if the semiring K is locally finite, then the above statements are also
equivalent to

iv) s is MSO-definable.

Now we are ready to introduce the MSO logic characterization for series over
the infinite alphabet Σ and the commutative semiring K.

Definition 9. A series s over Σ and K is called VMSO (resp. VRMSO, VREMSO)
definable if there is a subalphabet Γ ⊆fin Σ and an MSO (resp. RMSO, REMSO)
definable series s′ over ∆ = Γ ∪ Z ∪ {y} and K such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

Theorem 5. Let K be a commutative semiring and Σ an infinite alphabet. Then
for every series s ∈ K 〈〈Σ∗〉〉 the following statements are equivalent.

i) s is v-recognizable.

ii) s is VRMSO-definable.

Weighted Recognizability over Infinite Alphabets 311

iii) s is VREMSO-definable.

Furthermore, if the semiring K is locally finite, then the above statements are also
equivalent to

iv) s is VMSO-definable.

Proof. We obtain our result by Theorem 4 and Definition 9, using similar arguments
as the ones in the proof of Theorem 3.

7 Weighted linear dynamic logic over infinite al-
phabets

Vardi in 2011 introduced a linear dynamic logic (LDL for short) over infinite words
and stated the expressive equivalence of LDL formulas to ω-rational expressions (cf.
[42]). LDL is a combination of propositional dynamic logic and of classical LTL. In
[20] the authors proved the coincidence of the classes of rational and LDL-definable
languages interpreted over finite words. Recently, LDL has been investigated in
the quantitative setup for both finite and infinite words [16]. More precisely, the
authors proved the expressive equivalence of weighted LDL formulas to weighted
automata for finite words over commutative semirings, and for infinite words over
totally commutative complete semirings. In this section, we introduce a weighted
LDL over the infinite alphabet Σ and the commutative semiring K, and we show the
expressive equivalence of weighted LDL formulas to weighted variable automata.

Let us firstly recall the basic definitions for weighted LDL logic over finite al-
phabets [16]. Let ∆ be a finite alphabet. For every letter a ∈ ∆ we consider an
atomic proposition pa, and we let P = {pa | a ∈ ∆}. Moreover, for every p ∈ P we
identify ¬¬p with p.

Definition 10. The syntax of LDL formulas ψ over ∆ is given by the grammar

ψ ::= true | pa | ¬ψ | ψ ∧ ψ | 〈θ〉ψ
θ ::= φ | ψ? | θ + θ | θ; θ | θ+

where pa ∈ P and φ denotes a propositional formula over the atomic propositions
in P .

For every LDL formula ψ and u ∈ ∆∗ we define the satisfaction relation u |= ψ,
inductively on the structure of ψ, as follows:

- u |= true,

- u |= pa iff u(0) = a,

- u |= ¬ψ iff u 6|= ψ,

- u |= ψ1 ∧ ψ2 iff u |= ψ1 and u |= ψ2,

312 Maria Pittou and George Rahonis

- u |= 〈φ〉ψ iff u |= φ and u≥1 |= ψ,

- u |= 〈ψ1?〉ψ2 iff u |= ψ1 and u |= ψ2,

- u |= 〈θ1 + θ2〉ψ iff u |= 〈θ1〉ψ or u |= 〈θ2〉ψ,

- u |= 〈θ1; θ2〉ψ iff u = vv′, v |= 〈θ1〉 true, and v′ |= 〈θ2〉ψ,

- u |= 〈θ+〉ψ iff there exists n with 1 ≤ n ≤ |u| such that u |= 〈θn〉ψ,

where θn, n ≥ 1 is defined inductively by θ1 = θ and θn = θn−1; θ for n > 1.

Definition 11. The syntax of formulas ϕ of the weighted LDL over ∆ and K is
given by the grammar

ϕ ::= k | ψ | ϕ⊕ ϕ | ϕ⊗ ϕ | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ⊕ ρ | ρ · ρ | ρ⊕

where k ∈ K, φ denotes a propositional formula over the atomic propositions in P ,
and ψ denotes an LDL formula as in Definition 10.

We denote by LDL(K,∆) the set of all weighted LDL formulas ϕ over ∆ and
K. We represent the semantics ‖ϕ‖ of the formulas ϕ ∈ LDL(K,∆) as series over
∆ and K.

Definition 12. Let ϕ ∈ LDL(K,∆). The semantics of ϕ is a series ‖ϕ‖ ∈
K 〈〈∆∗〉〉. For every u ∈ ∆∗ the value (‖ϕ‖ , u) is defined inductively as follows:

- (‖k‖ , u) = k,

- (‖ψ‖ , u) =

{
1 if u |= ψ
0 otherwise

,

- (‖ϕ1 ⊕ ϕ2‖ , u) = (‖ϕ1‖ , u) + (‖ϕ2‖ , u),

- (‖ϕ1 ⊗ ϕ2‖ , u) = (‖ϕ1‖ , u) · (‖ϕ2‖ , u),

- (‖〈φ〉ϕ‖ , u) = (‖φ‖ , u) · (‖ϕ‖ , u≥1),

- (‖〈ϕ1?〉ϕ2‖ , u) = (‖ϕ1‖ , u) · (‖ϕ2‖ , u),

- (‖〈ρ1 ⊕ ρ2〉ϕ‖ , u) = (‖〈ρ1〉ϕ‖ , u) + (‖〈ρ2〉ϕ‖ , u),

- (‖〈ρ1 · ρ2〉ϕ‖ , u) =
∑

v,v′∈∆∗

u=vv′

((‖〈ρ1〉 true‖ , v) · (‖〈ρ2〉ϕ‖ , v′)) ,

- (‖〈ρ⊕〉ϕ‖ , u) =
∑
n≥1

(‖〈ρn〉ϕ‖ , u)

where for the definition of (‖〈ρ⊕〉ϕ‖ , u) we assume that ‖〈ρ〉 true‖ is proper, and
ρn, n ≥ 1 is defined inductively by ρ1 = ρ and ρn = ρn−1 · ρ for n > 1.

Weighted Recognizability over Infinite Alphabets 313

A series s ∈ K 〈〈∆∗〉〉 is called LDL-definable if there is a formula ϕ ∈ LDL(K,∆)
such that s = ‖ϕ‖.

Theorem 6. [16] Let K be a commutative semiring and ∆ a finite alphabet. A
series s ∈ K 〈〈∆∗〉〉 is recognizable iff it is LDL-definable.

Now we are ready to introduce the LDL characterization for series over the
infinite alphabet Σ and the semiring K.

Definition 13. A series s over Σ and K is called VLDL-definable if there is a
subalphabet Γ ⊆fin Σ and an LDL-definable series s′ over ∆ = Γ ∪ Z ∪ {y} and K
such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

By Theorem 6 and Definition 13, using similar arguments as the ones in the
proof of Theorem 3, we obtain the subsequent result.

Theorem 7. Let K be a commutative semiring and Σ an infinite alphabet. Then
a series s ∈ K 〈〈Σ∗〉〉 is v-recognizable iff it is VLDL-definable.

8 Application to variable finite automata

In this section, we derive new results for the class of languages accepted by variable
finite automata (vfa for short) over the infinite alphabet Σ (cf. [21, 22]). We
need first to recall the definition of vfa from [21, 22] but we follow the terminology
used previously for wva. Let Z be a finite set of bounded variables and y a free
variable. Then, a variable finite automaton over Σ is a pair A = 〈Σ, A〉 where
A = (Q,ΓA, I, E, F) is a finite automaton with input alphabet ΓA = ΣA ∪Z ∪ {y}
where ΣA ⊆fin Σ. The language of A is defined by

L(A) =
⋃

u∈L(A)

h∈V R(ΓA)

h(u).

Then the vfa A = 〈Σ, A〉 can be considered, in the obvious way, as a wva A′ over
the Boolean semiring B. Moreover, it holds

w ∈ L(A) iff (‖A′‖ , w) = 1

for every w ∈ Σ∗.
A language L ⊆ Σ∗ is called recognizable if there is a vfa A = 〈Σ, A〉 such that

L = L(A).

Theorem 8. Let Σ be an infinite alphabet. The class of recognizable languages
over Σ is closed under union, intersection, concatenation, Kleene star, and shuffle
product.5

5The closure under union and intersection has been also proved in [21, 22].

314 Maria Pittou and George Rahonis

Proof. In Theorem 1 we let K = B. Then for every L ⊆ Σ∗, clearly L is recognizable
iff its characteristic series 1L ∈ B 〈〈Σ∗〉〉 is v-recognizable. We conclude our result
by the idempotency property of B.

Next we define the notions of rational (resp. MSO-definable, LDL-definable)
languages over the infinite alphabet Σ.

Definition 14. Let Σ be an infinite alphabet. A language L over Σ is called rational
(resp. MSO-definable, LDL-definable) if there is a subalphabet Γ ⊆fin Σ and a
rational (resp. MSO-definable, LDL-definable) language L′ over ∆ = Γ ∪ Z ∪ {y}
such that

L =
⋃

u∈L′
h∈V R(∆)

h(u).

The next theorem establishes new characterizations for the class of languages
accepted by vfa.

Theorem 9. Let Σ be an infinite alphabet and L ⊆ Σ∗. Then the following state-
ments are equivalent.

i) L is recognizable.

ii) L is rational.

iii) L is MSO-definable.

iv) L is LDL-definable.

Proof. We take into account the definition of recognizable languages over the infi-
nite alphabet Σ and Definition 14. Then we obtain the equivalence (i) ⇐⇒ (ii)
by Kleene’s theorem, the equivalence (i) ⇐⇒ (iii) by Büchi’s theorem, and the
equivalence (i) ⇐⇒ (iv) by [20].

Conclusion

We introduced weighted variable automata over an infinite alphabet Σ and a com-
mutative semiring K. Our model is based on the variable automaton model of
[21, 22] but we followed the terminology used in [26, 27] for variable tree automata
over infinite ranked alphabets. Indeed, that terminology presents in a strict math-
ematical way the operation of (weighted) variable automata models. With the
additional assumption that K is idempotent we proved the closure of the class of
series accepted by our models under the operations of sum, and scalar, Hadamard,
Cauchy, and shuffle products, as well as star operation applied to proper series. We
introduced the notion of rational series over the infinite alphabet Σ and an arbi-
trary semiring K and stated a Kleene-Schützenberger type theorem. We defined a
weighted MSO logic over the infinite alphabet Σ and the commutative semiring K

Weighted Recognizability over Infinite Alphabets 315

and proved a Büchi type theorem, extending the work of Droste and Gastin [12, 13]
to series over infinite alphabets. Finally, we considered a weighted LDL over the
infinite alphabet Σ and the commutative semiring K and proved the expressive
equivalence of its formulas to weighted variable automata.

It is an open problem whether we can relax the idempotency property of the
semiring K for the closure properties of the class V Rec(K,Σ). Furthermore, it
should be very interesting to study the weighted variable automata theory over
more general weight structures, contributing to real world applications, like for
instance over valuation monoids [15].

References

[1] P. Barceló, J. Reutter, L. Libkin, Parameterized regular expressions and their
languages, Theoret. Comput. Sci. 474(2013) 21–45.

[2] W. Belkhir, Y. Chevalier, M. Rusinowitch, Fresh-variable automata: Applica-
tion to service composition, in: Proceedings of SYNASC 2013, pp.153–160.

[3] W. Belkhir, Y. Chevalier, M. Rusinowitch, Guarded variable automata over
infinite alphabets, CoRR abs/1304.6297, 2013.

[4] M. Benedikt, C. Ley, G. Puppis, Automata vs. logics on data words, in: Pro-
ceedings of CSL 2010, LNCS 6247(2010) 110–124.

[5] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin, Two-
variable logic on data words, ACM Trans. Comput. Log. 12(4)(2011) 27.

[6] B. Bollig, P. Habermehl, M. Leucker, B. Monmege, A robust class of data
languages and an application to learning, Log. Methods in Comput. Sci.
10(4)(2014) 19.

[7] J.R. Büchi, Weak second-order arithmetic and finite automata, Z. Math. Logik
Grundlager Math. 6(1960) 66–92.

[8] P. Černý, S. Gopi, T.A. Henzinger, A. Radhakrishna, N. Totla, Synthesis from
incompatible specifications, in: Proceedings of EMSOFT 2012, ACM (2012)
53–62.

[9] J. Dassow, G. Vaszil, P finite automata and regular languages over countably
infinite alphabets, in: Proceedings of WMC 7, LNCS 4361(2006) 367–381.

[10] P. Degano, G.L. Ferrari, G. Mezzetti, Nominal automata for resource usage
control, in: Proceedings of CIAA 2012, LNCS 7381(2012) 125–137.

[11] A. Deharbe, F. Peschanski, The omniscient garbage collector: A resource anal-
ysis framework, in: Proceedings of ACSD 2014, IEEE Computer Society 102–
111.

316 Maria Pittou and George Rahonis

[12] M. Droste, P. Gastin, Weighted automata and weighted logics, Theoret. Com-
put. Sci. 380 (2007) 69–86.

[13] M. Droste, P. Gastin, Weighted automata and weighted logics, chapter 5, in
[14].

[14] M. Droste, W. Kuich, H. Vogler (eds), Handbook of Weighted Automata.
EATCS Monographs in Theoretical Computer Science, Springer, Berlin, 2009.

[15] M. Droste, I. Meinecke, Weighted automata and regular expressions over val-
uation monoids, Internat. J. Found. Comput. Sci. 22(2011) 1829–1844.

[16] M. Droste, G. Rahonis, Weighted linear dynamic logic, in: Proceedings of
GandALF 2016, EPTCS 226(2016) 149–163.

[17] C. Elgot, Decision problems of finite automata design and related arithmetics,
Trans. Amer. Math. Soc. 98(1961) 21-52.

[18] Z. Ésik, W. Kuich, Finite automata, chapter 3, in [14].

[19] P. Gastin, B. Monmege, A unifying survey on weighted logics and weighted
automata, Soft Computing, to appear.

[20] G. De Giacomo, M. Vardi, Linear temporal logic and linear dynamic logic
on finite traces, in: Proceedings of IJCAI, IJCAI/AAAI. Available at
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

[21] O. Grumberg, O. Kupferman, S. Sheinvald, Variable automata over infinite
alphabets, in: Proceedings of LATA 2010, LNCS 6031(2010) 561–572.

[22] O. Grumberg, O. Kupferman, S. Sheinvald, Variable automata over infinite
alphabets, http://www.cs.huji.ac.il/˜ornak/publications/lata10.pdf

[23] O. Grumberg, O. Kupferman, S. Sheinvald, Model checking systems and spec-
ifications with parameterized atomic propositions, in: Proceedings of ATVA
2012, LNCS 7561(2012) 122–136.

[24] M. Kaminski, N. Francez, Finite-memory automata, Theoret. Comput. Sci.
134(1994) 329–363.

[25] M. Kaminski, T. Tan, Regular expressions for languages over infinite alpha-
bets, Fund. Inform. 69(2006) 301–318.

[26] I.-E. Mens, Tree Automata over Infinite Ranked Alphabets, Master thesis,
Thessaloniki 2011, http://invenio.lib.auth.gr/record/128884/files/GRI-2012-
8361.pdf

[27] I.-E. Mens, G. Rahonis, Variable tree automata over infinite ranked alphabets,
in: Proceedings of CAI 2011, LNCS 6742(2011) 247–260.

Weighted Recognizability over Infinite Alphabets 317

[28] F. Neven, T. Schwentick, V. Vianu, Towards regular languages over infinite
alphabets, in: Proceedings of MFCS 2001, LNCS 2136(2001), 560–572.

[29] F. Neven, T. Schwentick, V. Vianu, Finite state machines for strings over
infinite alphabets, ACM Trans. Comput. Log. 5(2004) 403–435.

[30] G. Pellegrino, Q. Lin, C. Hammerschmidt, S. Verwer, Learning deterministic
finite automata from infinite alphabets, in: Proceedings of ICGI 2016, JMLR:
Workshop and Conference Proceedings 57(2016) 120–131.

[31] M. Pittou, Weighted Variable Automata over Infinite Alphabets, Master The-
sis, Thessaloniki 2014, http://ikee.lib.auth.gr/record/135664/files/GRI-2015-
13622.pdf

[32] M. Pittou, G. Rahonis, Weighted variable automata over infinite alphabets,
in: Proceedings of CIAA 2014, LNCS 8587(2014) 304–317.

[33] M. Praveen, B. Srivathsan, Nesting depth of operators in graph database
queries: Expressiveness vs evaluation complexity, in: Proceedings of ICALP
2016, LIPIcs 55(2016), 117:1–117:14.

[34] J. Sakarovitch, Elements of Automata Theory, Cambridge University Press,
2009.

[35] M. Schützenberger, On the definition of a family of automata, Information
and Control 4(1961) 245–270.

[36] L. Segoufin, Automata and logics for words and trees over an infinite alphabet,
in: Proceedings of CSL 2006, LNCS 4207(2006) 41–57.

[37] Y. Shemesh, N. Francez, Finite-state unification automata and relational lan-
guages, Inform. and Comput. 114(1994) 192–213.

[38] F. Song, Z. Wu, On temporal logics with data variable quantifications: Decid-
ability and complexity, Inform. and Comput. 251(2016) 104–139.

[39] T. Tan, Graph reachability and pebble automata over infinite alphabets, ACM
Trans. Comput. Log. 14(3)(2013) 19:1–19:31.

[40] W. Thomas, Languages, automata and logic, in: Handbook of Formal Lan-
guages vol. 3 (G. Rozenberg, A. Salomaa, eds.), Springer, 1997, pp. 389-485.

[41] B. Trakhtenbrot, Finite automata and logic of monadic predicates (in Russian),
Doklady Akademii Nauk SSSR 140(1961) 326–329.

[42] M.Y. Vardi, The rise and fall of LTL, in: Proceedings of GandALF 2011,
EPTCS 54(2011).

[43] D. Vrgoč, Using variable automata for querying data graphs, Inf. Process. Lett.
115(3)(2015) 425–430.

Acta Cybernetica 23 (2017) 319–326.

Overview of an Abstract Fixed Point Theory for

Non-Monotonic Functions and its Applications to

Logic Programming

Angelos Charalambidisa and Panos Rondogiannisa

Abstract

The purpose of the present paper is to give an overview of our joint work
with Zoltán Ésik, namely the development of an abstract fixed point theory for
a class of non-monotonic functions [4] and its use in providing a novel denota-
tional semantics for a very broad extension of classical logic programming [1].
Our purpose is to give a high-level presentation of the main developments
of these two works, that avoids as much as possible the underlying technical
details, and which can be used as a mild introduction to the area.

Keywords: fixed point theory, higher-order logic programming, semantics
of logic programming

1 Introduction

The purpose of this paper is to present an overview of the authors’ joint work with
Zoltán Ésik. This work [4] concerned the development of an abstract fixed point
theory for a class of functions that exhibit a type of “monotonicity in layers” but
which are overall non-monotonic. Such functions prove to be quite common in
various investigations in logic programming and formal language theory, and may
potentially have other applications. We also describe our development [1], based
on the aforementioned abstract framework, of a novel denotational semantics for a
very broad extension of classical logic programming. In the rest of this section we
provide a short description of the beginnings of our collaboration with Zoltán that
led to the above results.

In 2005, the second author together with Bill Wadge proposed [5] the infinite-
valued semantics for logic programs with negation. This particular work was some-
what ad-hoc, namely the main results relied on techniques custom-tailored for logic
programming. In 2013, the second author of the present paper, together with Zoltán

aDepartment of Informatics and Telecommunications, National and Kapodistrian University
of Athens, E-mail: {a.charalambidis,prondo}@di.uoa.gr

DOI: 10.14232/actacyb.23.1.2017.17

320 Angelos Charalambidis and Panos Rondogiannis

Ésik started a collaboration supported by a “Greek-Hungarian Scientific Collabo-
ration Program” with title “Extensions and Applications of Fixed Point Theory
for Non-Monotonic Formalisms”. The purpose of the program was to create an
abstract fixed point theory based on the infinite-valued approach, namely a theory
that would not only be applicable to logic programs but also to other non-monotonic
formalisms. This abstract theory was successfully developed and is described in de-
tail in [4]. As an application of these results, this abstract theory was used in [1] in
order to obtain the first extensional semantics for higher-order logic programs with
negation. Another application of the new theory to the area of non-monotonic for-
mal grammars was proposed in [3]. Moreover, Zoltán himself further investigated
the foundations and the properties of the infinite-valued approach [2], highlighting
some of its desirable characteristics. Unfortunately, the further joint development
of the abstract infinite-valued approach to non-monotonic fixed point theory, was
abruptly interrupted by the untimely loss of Zoltán.

In the next section we describe the basic concepts behind the abstract approach
to non-monotonic fixed point theory. In Section 3 we describe the application of
the theory to the class of higher-order logic programs with negation. The paper
concludes by giving pointers for future work.

2 Non-Monotonic Fixed Point Theory

Suppose that (L,≤) is a complete lattice in which the least upper bound operation
is denoted by

∨
and the least element is denoted by ⊥. Let κ > 0 be a fixed

ordinal. We assume that for each ordinal α < κ, there exists a preordering vα
on L. We denote with =α the equivalence relation determined by vα. We define
x <α y iff x vα y but x =α y does not hold. Finally, we define <=

⋃
α<κ <α

and let x v y iff x < y or x = y. Given an ordinal α < κ and x ∈ L, define
(x]α = {y ∈ L : ∀β < α x =β y}. We require of our relations to satisfy the
following axioms:

Axiom 1. For all ordinals α < β < κ, vβ is included in =α.

Axiom 2.
⋂
α<κ =α is the identity relation on L.

Axiom 3. For each x ∈ L, for every ordinal α < κ, and for any X ⊆ (x]α
there is some y ∈ (x]α such that:

Overview of an Abstract Fixed Point Theory 321

• X vα y, and

• for all z ∈ (x]α, if X vα z then y vα z and y ≤ z.

Axiom 4. If xj , yj ∈ L and xj vα yj for all j ∈ J then
∨
{xj : j ∈ J} vα∨

{yj : j ∈ J}.

The element y specified by the Axiom 3 above, can be shown to be unique and
we denote it by

⊔
αX.

In the following, we will often talk about “models of the Axioms 1-4” (or simply
“models”). More formally:

Definition 1. A model of Axioms 1-4 or simply model consists of a complete
lattice (L,≤), an ordinal κ > 0 and a set of preorders vα for every α < κ, such
that Axioms 1-4 are satisfied.

Under the above axioms, the following theorem is established in [4]:

Theorem 1. (L,v) is a complete lattice.

The following definition will lead us to the main theorem of [4]:

Definition 2. Suppose that L is a model and let α < κ. A function f : L → L is
called α-monotonic if for all x, y ∈ L, if x vα y then f(x) vα f(y).

The central fixed point theorem of [4] can now be stated:

Theorem 2. Let L be a model. Suppose that f : L → L is α-monotonic for each
ordinal α < κ. Then f has a least pre-fixed point with respect to the partial order
v, which is also the least fixed point of f .

The article [4] contains many more results, but one could say that the above
theorem is possibly the main technical achievement. Actually, the above theorem
is also the main tool that we will need in the developments of the next section.

3 Higher-Order Logic Programs with Negation

In this section we present the application of the non-monotonic fixed point theory
to the class of higher-order logic programs with negation. The approach presented
naturally extends the ideas behind the infinite-valued approach proposed in [5] into
a higher-order setting. The basic idea behind the approach in [5] is that in order to
obtain minimum model semantics for higher-order logic programs with negation it
is necessary to consider a multi-valued logic. We first present the syntax and then
the semantics of our language.

322 Angelos Charalambidis and Panos Rondogiannis

3.1 Syntax

Our higher-order logic programming language is based on a simple type system that
supports two base types: o, the boolean domain, and ι, the domain of individuals
(data objects). The composite types are partitioned into three classes: functional
(assigned to individual constants, individual variables and function symbols), pred-
icate (assigned to predicate constants and variables) and argument (assigned to
parameters of predicates).

Definition 3. A type τ can either be functional, argument, or predicate, denoted
as σ, π and ρ respectively and defined as:

σ := ι | ι→ σ

π := o | ρ→ π

ρ := ι | π

Definition 4. The set of expressions of our higher-order language is defined as
follows:

1. Every predicate variable (respectively, predicate constant) of type π is an ex-
pression of type π; every individual variable (respectively, individual constant)
of type ι is an expression of type ι; the propositional constants false and true
are expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are expressions of type ι, then
(f E1 · · ·En) is an expression of type ι.

3. If E1 is an expression of type ρ → π and E2 is an expression of type ρ, then
(E1 E2) is an expression of type π.

4. If V is an argument variable of type ρ and E is an expression of type π, then
(λV.E) is an expression of type ρ→ π.

5. If E1,E2 are expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2) are ex-

pressions of type π.

6. If E is an expression of type o, then (∼E) is an expression of type o.

7. If E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

8. If E is an expression of type o and V is a variable of type ρ then (∃ρVE) is
an expression of type o.

The notions of free and bound variables of an expression are defined as usual.
An expression is called closed if it does not contain any free variables.

A program clause is a clause p ←π E where p is a predicate constant of type π
and E is a closed expression of type π. A program is a finite set of program clauses.

Overview of an Abstract Fixed Point Theory 323

3.2 Semantics

We start by examining the semantics of types. The most crucial case is that of the
boolean domain o. The boolean values range over a partially ordered set (V,≤) of
truth values. The number of truth values of V will be specified with respect to an
ordinal κ > 0. The set (V,≤) is the following:

F0 < F1 < · · ·< Fα < · · ·< 0 < · · ·< Tα < · · ·< T1 < T0

where α < κ. Intuitively, F0 and T0 are the classical False and True values and 0 is
the undefined value. The new values express different levels of truthness and falsity.
The order of a truth value is defined as follows: order(Tα) = α, order(Fα) = α and
order(0) = +∞.

We define the following preorderings vα on the set V for each α < κ:

1. x vα x if order(x) < α;

2. Fα vα x and x vα Tα if order(x) ≥ α;

3. x vα y if order(x), order(y) > α.

We then have the following result from [1]:

Lemma 1. (V,≤) is a complete lattice and a model.

Let us denote by [A
m→ B] the set of functions from A to B that are α-monotonic

for all α < κ. Based on the above discussion, we can now state the semantics of all
the types of our language:

Definition 5. Let D be a nonempty set. Then:

• [[o]]D = V , and ≤o is the partial order of V ;

• [[ι]]D = D, and ≤ι is the trivial partial order such that d ≤ι d, for all d ∈ D;

• [[ιn → ι]]D = Dn → D. A partial order in this case will not be needed;

• [[ι→ π]]D = D → [[π]]D, and ≤ι→π is the partial order defined as follows: for
all f, g ∈ [[ι→ π]]D, f ≤ι→π g iff f(d) ≤π g(d) for all d ∈ D;

• [[π1 → π2]]D = [[[π1]]D
m→ [[π2]]D], and ≤π1→π2

is the partial order defined as
follows: for all f, g ∈ [[π1 → π2]]D, f ≤π1→π2

g iff f(d) ≤π2
g(d) for all

d ∈ [[π1]]D.

Moreover, we have the following relations vα on our domains:

• The relation vα on [[o]]D is the relation vα on V .

• The relation vα on [[ρ → π]]D is defined as follows: f vα g iff f(d) vα g(d)
for all d ∈ [[ρ]]D.

324 Angelos Charalambidis and Panos Rondogiannis

The following lemma can then be established following the results of [4]:

Lemma 2. Let D be a non-empty set and π be a predicate type. Then, ([[π]]D,≤π)
is a complete lattice and a model.

For the rest of the section we focus on Herbrand interpretations and we assume
for a program P, D = UP where UP is the Herbrand universe and therefore we
simple write [[τ]] instead of [[τ]]UP

. A Herbrand interpretation I for a program P is
a function that maps a predicate of type π to an element of [[π]]. The set of all the
interpretation of P is denoted by IP. It follows directly from the results of [4] that
IP is a complete lattice and a model. A Herbrand state s is a function that assigns
to each argument variable V of type ρ, of an element s(V) ∈ [[ρ]]UP

.
Let I be a Herbrand interpretation and s be a Herbrand state. The semantics

of expressions with respect to I and s, is defined as follows:

1. [[false]]s(I) = F0

2. [[true]]s(I) = T0

3. [[c]]s(I) = I(c), for every individual constant c

4. [[p]]s(I) = I(p), for every predicate constant p

5. [[V]]s(I) = s(V), for every argument variable V

6. [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for every n-ary function sym-
bol f

7. [[(E1E2)]]s(I) = [[E1]]s(I)([[E2]]s(I))

8. [[(λV.E)]]s(I) = λd.[[E]]s[V/d](I), where d ranges over [[type(V)]]D

9. [[(E1

∨
π E2)]]s(I) =

∨
π{[[E1]]s(I), [[E2]]s(I)}, where

∨
π is the lub function on

[[π]]D

10. [[(E1

∧
π E2)]]s(I) =

∧
π{[[E1]]s(I), [[E2]]s(I)}, where

∧
π is the glb function on

[[π]]D

11. [[(∼E)]]s(I) =

Tα+1 if [[E]]s(I) = Fα

Fα+1 if [[E]]s(I) = Tα

0 if [[E]]s(I) = 0

12. [[(E1≈E2)]]s(I) =

{
T0, if [[E1]]s(I) = [[E2]]s(I)
F0, otherwise

13. [[(∃VE)]]s(I) =
∨
d∈[[type(V)]]

D

[[E]]s[V/d](I)

Definition 6. Let P be a program and let M be a Herbrand interpretation of P.
Then M will be called a model of P iff for all clauses p ←π E of P, it holds
[[E]](M) ≤π M(p), where M(p) ∈ [[π]].

Overview of an Abstract Fixed Point Theory 325

We can now define the immediate consequence operator for our language:

Definition 7. Let P be a program. The mapping TP : IP → IP is defined for every
p : π and for every I ∈ IP as

TP(I)(p) =
∨
{[[E]](I) : (p←π E) ∈ P}

As it turns out, TP enjoys the α-monotonicity property [1]:

Lemma 3. For all α < κ, TP is α-monotonic.

We now have all we need in order to apply the main Theorem of [4], getting the
following result [1]:

Theorem 3 (Least Fixed Point Theorem). Let P be a program and let M be the
set of all its Herbrand models. Then, TP has a least fixed point MP which is the
least model of P.

4 Conclusions

We have presented an overview of the abstract fixed point theory developed in [4]
and its application [1] on a very broad class of logic programs, namely higher-order
logic programs with negation. It is our belief that the framework of [4] can find other
interesting applications, especially ones where non-monotonicity plays a prevailing
role. In particular, we believe that an area that has not yet been sufficiently
explored is that of non-monotonic formal grammars. In [3] it was demonstrated that
the semantics of Boolean grammars can be easily captured through an extension
of the framework of [4]. However, it is conceivable to have other non-monotonic
extensions of formal grammars apart from the Boolean ones, such as for example
macro-grammars with conjunction and negation in rule bodies. We believe that
the results of [1] can be used as a yardstick in order to approach the semantics of
such grammar formalisms.

References

[1] Charalambidis, Angelos, Ésik, Zoltán, and Rondogiannis, Panos. Minimum
model semantics for extensional higher-order logic programming with negation.
TPLP, 14(4-5):725–737, 2014.

[2] Ésik, Zoltán. Equational properties of stratified least fixed points (extended
abstract). In de Paiva, Valeria, de Queiroz, Ruy J. G. B., Moss, Lawrence S.,
Leivant, Daniel, and de Oliveira, Anjolina Grisi, editors, Logic, Language, In-
formation, and Computation - 22nd International Workshop, WoLLIC 2015,
Bloomington, IN, USA, July 20-23, 2015, Proceedings, volume 9160 of Lecture
Notes in Computer Science, pages 174–188. Springer, 2015.

326 Angelos Charalambidis and Panos Rondogiannis

[3] Ésik, Zoltán and Rondogiannis, Panos. Theorems on pre-fixed points of non-
monotonic functions with applications in logic programming and formal gram-
mars. In Kohlenbach, Ulrich, Barceló, Pablo, and de Queiroz, Ruy J. G. B.,
editors, Logic, Language, Information, and Computation - 21st International
Workshop, WoLLIC 2014, Valparáıso, Chile, September 1-4, 2014. Proceedings,
volume 8652 of Lecture Notes in Computer Science, pages 166–180. Springer,
2014.

[4] Ésik, Zoltán and Rondogiannis, Panos. A fixed point theorem for non-monotonic
functions. Theor. Comput. Sci., 574:18–38, 2015.

[5] Rondogiannis, Panos and Wadge, William W. Minimum model semantics for
logic programs with negation-as-failure. ACM Trans. Comput. Log., 6(2):441–
467, 2005.

Acta Cybernetica 23 (2017) 327–347.

On the Completeness of the Traced Monoidal

Category Axioms in (Rel,+)∗

Miklós Bartha
a

To the memory of my friend and former colleague Zoltán Ésik

Abstract

It is shown that the traced monoidal category of finite sets and relations

with coproduct as tensor is complete for the extension of the traced sym-

metric monoidal axioms by two simple axioms, which capture the additive

nature of trace in this category. The result is derived from a theorem saying

that already the structure of finite partial injections as a traced monoidal

category is complete for the given axioms. In practical terms this means that

if two biaccessible flowchart schemes are not isomorphic, then there exists an

interpretation of the schemes by partial injections which distinguishes them.

Keywords: monoidal categories, trace, iteration, feedback, identities in cat-

egories, equational completeness

1 Introduction

It was in March, 2012 that Zoltán visited me at the Memorial University in St.
John’s, Newfoundland. I thought we would find out a research topic together, but
he arrived with a specific problem in mind. He knew about the result found by
Hasegawa, Hofmann, and Plotkin [12] a few years earlier on the completeness of
the category of finite dimensional vector spaces for the traced monoidal category
axioms, and wanted to see if there is a similar completeness statement true for the
matrix iteration theory of finite sets and relations as a traced monoidal category.
Unfortunately, during the short time we spent together, we could not find the solu-
tion, and after he had left I started to work on some other problems. Having learned
about his shocking untimely death, I felt impelled to finally solve the problem that
we started to work on together, and have it published in his memory.

The result obtained in this paper points beyond the original goal of finding a
suitable extension of the traced monoidal category axioms for which the category

∗Work initiated by Zoltán Ésik as part of a research project in 2012.
aDepartment of Computer Science, Memorial University of Newfoundland, St. John’s, NL,

Canada, E-mail: bartha@mun.ca

DOI: 10.14232/actacyb.23.1.2017.18

328 Miklós Bartha

(Relfin,+) is complete. We show that already the category (Pinfin,+) of finite
partial injections is complete for the minimal extension of the traced monoidal
axioms that can be expected from these structures. Since (Pinfin,+) is a subcate-
gory of (Relfin,+), the completeness result originally sought by Zoltán follows as
a corollary.

We shall assume familiarity with the basic concepts of category theory [19], and
it helps if the reader is also familiar with Zoltán’s work on iteration theories [9].

2 Traced monoidal categories

A symmetric monoidal category consists of a category C equipped with a bifunctor
⊗ : C × C → C called tensor , and a unit object I of C. Furthermore, C has natural
isomorphisms:

aX,Y,Z : (X ⊗ Y)⊗ Z → X ⊗ (Y ⊗ Z)

called associators,

lX : I ⊗X → X and rX : X ⊗ I → X

called left and right unitors, and

cU,V : U ⊗ V → V ⊗ U

called symmetries, which isomorphisms are subject to the standard coherence ax-
ioms given in [19]. The monoidal category C is strict if the bifunctor ⊗ is strictly
associative, so that

A⊗ (B ⊗ C) = (A⊗B)⊗ C and A⊗ I = I ⊗A = A,

and all of the associators and unitors are the identities.
Let C be a monoidal category with tensor ⊗ and unit object I as specified

above. The following definition of traced monoidal categories uses the terminology
of [15], except that trace in is introduced as left trace, that is, an operation C(U +
A,U + B) → C(A,B), rather than C(A + U,B + U) → C(A,B) (i.e., right trace)
as it appears in [15]. The reason is to remain consistent with the notation used
in Zoltán’s and the author’s own work. Also, following in Zoltán’s footsteps, we
write composition of morphisms in a left-to-right way, that is, the composite of
f : A→ B and g : B → C is f ◦ g : A→ C.

Definition 1. A trace for C is a family of functions

TrUA,B : C(U ⊗A,U ⊗B) → C(A,B)

natural in A and B, satisfying the following four axioms:

vanishing:

TrU⊗V
A,B (aU,V,A ◦ f) = TrVA,B(Tr

U
V ⊗A,V⊗B(f ◦ aU,V,B)),

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 329

where f : U ⊗ (V ⊗A) → (U ⊗ V)⊗B;

superposing:

TrUA,B(f)⊗ g = TrUA⊗C,B⊗D(a−1
U,A,C ◦ (f ⊗ g) ◦ aU,B,D),

where f : U ⊗A→ U ⊗B, and g : C → D;

sliding:
TrUA,B((g ⊗ 1A) ◦ f) = TrVA,B(f ◦ (g ⊗ 1B))

where f : V ⊗A→ U ⊗B and g : U → V ;

yanking:
TrUU,U (cU,U) = 1U .

It is well-known that sliding of symmetries (whereby g is chosen as a symmetry
isomorphism in the sliding axiom) suffices in the presence of the other axioms. Also,
the special vanishing axiom:

TrIA,B(lA ◦ f ◦ l−1
B) = f for f : A→ B,

which was part of the original system in [15], can easily be derived from the other
axioms and can therefore be omitted. As the reader can see, the necessity of using
the associator and unitor morphisms a(X,Y, Z), lX in the traced monoidal axioms
makes them look very complicated, even though their graphical representation be-
low shows that in fact they are quite intuitive and simple. It is known, see e.g. [20],
that every monoidal category is equivalent to a strict one. Quoting an argument
from [14], “most results obtained with the hypothesis that a monoidal category
is strict can, in principle, be reformulated and proved without that condition”.
Our result in this paper is no exception, therefore in the sequel we shall make the
technically simplifying assumption that our monoidal categories (traced or not) are
strict.

The graphical representation of the traced monoidal category axioms (with the
strictness assumption incorporated) is given in Figures 1–5.

Traced monoidal categories (with one additional axiom) and their graphical
language first appeared in [1] in an algebraic setting, using the name “scheme alge-
bra” for these structures. The operation corresponding to trace was called feedback.
The year was 1987, and already at that time Zoltán and Steve Bloom had a signif-
icant number of important results on iterative and iteration theories, the study of
which was initiated by Calvin C. Elgot in the early 1970s. The motivation of that
study was to find out the equational laws characterizing the iteration operation in
flowchart-related algorithms. The algebra (category) of flowcharts itself has also
been axiomatized in terms of the iteration operation [8]. This axiomatization was
a little awkward, however, because the iteration operation

f † : n→ p for f : n→ n+ p,

where n and p are non-negative integers, was intended to capture the semanti-
cal aspects of iteration in the first place. For syntactical purposes the feedback

330 Miklós Bartha

f

g

U

U B

A

C

U

U

A

B

C

f

g

=

Figure 1: Naturality of trace in A.

f f

U V

BU V

A

[

[
A

B

=

Figure 2: Vanishing

operation

↑n f : p→ q for f : n+ p→ n+ q

turns out to be a lot more practical and easier to deal with. No loss of generality
arises from the switch, provided that the underlying structures are algebraic the-
ories, since there are standard rewriting rules between iteration and feedback in
all such theories. See [9, 1, 25]. (The purely syntactical category of flowcharts is
of course not such a structure.) Regarding the exact relationship between traced
monoidal categories and iteration theories, it was proved in [1] that a single-sorted
traced monoidal category is an iteration theory iff it is an algebraic theory and
satisfies the commutative axioms discovered by Zoltán in [11].

Continuing the story of traced monoidal categories, essentially the same axiom-
atization and graphical language as the one presented in [1] was published a few
years later in [10] under the name “biflow”. Neither of these pioneer works noticed,
however, that the monoidal category of finite dimensional vector spaces, in which
tensor is tensor product and feedback is trace, is an obvious scheme algebra/biflow,
provided that the axiomatization is lifted from the single-sorted algebraic language

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 331

gf

U

U

A

B D

C

gf

U

U

A

B D

C

=

Figure 3: Superposing

f

g

U A

V

U B

=

f

g

V

V

A

B

U

Figure 4: Sliding

to the general “polymorphic” categorical one. Finally, in 1996, Joyal, Street, and
Verity made this important point by essentially rediscovering the old scheme axioms
in a general new context, which also covered balanced monoidal categories. They
also presented the fundamental Int construction on the embedding of an arbitrary
balanced traced monoidal category into a tortile one [15]. In case braiding is sym-
metry, as it is in our present study, the Int construction transforms an arbitrary
traced monoidal category into a compact closed category [17].

By virtue of the above discussion, the feedback operation is deeply rooted in
control theory, whereas trace is a concept used primarily in finite dimensional vector
spaces as an operation on linear maps (matrices). The usual interpretations of
trace and feedback have not much in common, since trace is “multiplicative” style
in contrast with feedback, which has a strong “additive” flavour. The informal
distinction “additive or multiplicative” uses the very basic category of sets and
functions as a basis for comparison. Taking tensor in this category as Cartesian
product with I = {∅} (multiplicative) or coproduct with I = ∅ (additive) results
in entirely different monoidal categories. On this basis, “multiplicative” in vector
spaces means that ⊗ is tensor product rather than ordinary product, which happens
to coincide with coproduct.

According to the main result of [1], the free single-sorted category with feedback
generated by a collection of morphisms (boxes) is the algebra of flowchart schemes,

332 Miklós Bartha

=

U U

UUU

U

Figure 5: Yanking

which is definitely additive style and reflects the flow of information in flowchart
algorithms. In summary, there are countless reasons to call the operation

TrUA,B : C(U ⊗A,U ⊗B) → C(A,B)

feedback, and just a few to call it trace. Nevertheless, the name “trace” stuck, and
today everyone calls the categorical structures corresponding to scheme algebras
traced monoidal categories.

To complicate the issue even further, categories with feedback have also been
considered in [16] and a series of works by the present author [2, 3, 4, 5]. In these
categories, however, yanking is missing from the axioms imposed. Feedback in
such categories is delayed like in synchronous systems, e.g. sequential circuits. The
meaning of the loop on the left-hand-side of the yanking axiom (Fig. 5) is a reg-
ister , a memory element, which suggests a step-by-step behavior for synchronous
systems (circuits/schemes). Note that this kind of categorical interpretation over
sets as objects is multiplicative style, since a morphism A→ B is a Mealy automa-
ton U × A → U × B with U being an arbitrary set (of states). As a consequence,
there is no explicit control present in the system. In a sequential circuit, for ex-
ample, every logical gate and flip-flop is engaged in each clock cycle, so that the
whole system is massively parallel. What we call “control” in the von Neumann
computer architecture is just an abstraction, an extra control line carrying a digital
information indicating that the control is present or not. Nevertheless, if the un-
derlying monoidal category of the category of circuits (automata) is additive, then
the automata themselves will be additive, too, possessing the equivalent of some
kind of control.

As stated in the Introduction of [9], and demonstrated throughout the book,
iteration theories are ubiquitous in computer science. If this is true, then traced
monoidal categories are twice as ubiquitous and not only in computer science but in
the whole of mathematics. Indeed, these categories are more general than iteration
theories, therefore they cover more ground. Here are just a few among the most
important traced monoidal categories occurring with great frequency.

1. The additive category (Rel,+) of relations with ⊗ being coproduct.

The base category of (Rel,+) is the category Rel of sets and relations. That is,
objects are sets, and a morphism A→ B is a relation R ⊆ A×B. Tensor of objects
is disjoint union (+), I = ∅, and tensor of morphisms is disjoint union of relations.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 333

For R : U +A→ U +B, TrUA,BR is given by

(a, b) ∈ TrUA,BR iff ∃u1, . . . , un ∈ U , n ≥ 0, such that aRu1R . . . RunRb.

The category (Rel,+) restricts naturally to Relfin, the category of finite sets and
relations. This restriction is equivalent to its full subcategory (RelN,+) induced
by the objects in N = {0, 1, . . . n . . .}, where 0 = ∅ and n + 1 = n ∪ {n} as in
Zermelo-Fraenkel set theory. This subcategory is strict and it is closed for trace.
It is also single-sorted, since the set of objects N is generated by the object 1 using
tensor. Clearly, I = 0 in (RelN,+).

It is very instructive to look at the matrix representation of (RelN,+), for this
category is a matrix iteration theory as well. It was shown in [9, Corollary 5.5] that
this theory is generated by the initial ω-idempotent Boolean semiring B. In other
words, if relations are represented as 0-1 matrices, then composition and tensor
(coproduct!) of relations is that of matrices, using the algebraic rules of B rather
than those of GF(2). (That is, 1+1=1 and not 0.) The trace of a finite relation
R : n+ p→ n+ q having a matrix decomposition

R =

(

A B

C D

)

with A : n → n, B : n → q, C : p → n, D : p → q can then be obtained by the
well-known Kleene formula:

Trnp,qR = D + CA∗B, (1)

where A∗ denotes the infinite sum

A∗ =

∞
∑

k=0

Ak

according to the Boolean semiring addition and multiplication rules. That is, in
the Kleene formula (1), + denotes the Boolean sum of matrices p→ q (rather than
+ as tensor/coproduct). The present definition of the Kleene star ∗ coincides with
the star operation used in matrix iteration theories.

2. The multiplicative category (Rel,×) of relations with product as tensor.

The base category of (Rel,×) is also Rel, but tensor is × (Cartesian product of
sets) rather than +. The object I is {∅}. The tensor of two relations is the product
of them in the usual sense. For R : U ×A→ U ×B, its trace is defined by

(a, b) ∈ TrUA,BR iff ∃u ∈ U such that ((u, a), (u, b)) ∈ R.

Again, (Rel,×) restricts to the category Relfin of finite sets and relations, which
category is equivalent to its full subcategory (RelN, ·) induced by the objects N,
provided that the “set” n×m is identified with n ·m in a given canonical way (e.g.
enumeration by rows or columns). In everyday language, take the matrix repre-
sentation of relations. The unit object I is 1. The category (RelN, ·) is no longer

334 Miklós Bartha

single-sorted, but it is still generated by the prime numbers (and 0) as objects, and
it is strict.

3. The multiplicative category (FdVectK ,⊗) of finite dimensional vector spaces
over a given field K.

The base category is FdVectK , and ⊗ is tensor product of linear maps. The ob-
ject I is the field K as a 1-dimensional vector space. Analogously to (Rel,×), this
category is also equivalent to its restriction induced by the concrete n-dimensional
spaces Fn

K , in which linear maps are simply n × m matrices. In this context we
can even identify the object Fn

K with the number n, since K is fixed. The reduced
category is again strict. For a linear map (matrix, for simplicity) M : U → U ,
TrUI,IM is the sum of diagonal elements in M . The general definition of trace is
technically more complicated, and the reader is referred to [15] for the details of
this definition. The analogy between (Relfin,×) and (FdVectK ,⊗) is that, when
relations are represented as 0-1 matrices, their tensor and trace is calculated in the
exact same way as in (the strict equivalent of) (FdVectK ,⊗), interpreting the ring
operations according to the Boolean semiring B rather than the field K. Since B

is just a commutative semiring (addition is idempotent in B), the morphisms of
(Relfin,×) are not linear maps between vector spaces. (They are just linear maps
of free semimodules over the semiring B.)

4. The additive category (Iso,⊕) of quantum control.

Let FdHilb denote the category of finite dimensional Hilbert spaces. The base
category Iso is then the subcategory of FdHilb having isometries only as its mor-
phisms. Tensor is now ⊕, that is, coproduct/product in FdHilb. The unit object
I is the zero space. Notice the drastic change from the multiplicative tensor ⊗
in (FdVectK ,⊗) to the additive ⊕, which is analogous to + in (Relfin,+) as a
matrix theory.

Let τ : U ⊕ K → U ⊕ L be an isometry. Then TrUK,Lτ : K → L is the isometry
specified as follows. Consider the matrix of τ

U L
U
K

(

τA τB
τC τD

)

according to the biproduct decomposition

τ = 〈[τA, τC], [τB, τD]〉,

where [] stands for coproduct and 〈 〉 for product. Trace is defined again by the
Kleene formula

TrUK,Lτ = lim
n→∞

(τD + τC ◦ τ∗nA ◦ τB). (2)

In the present Kleene formula

τ∗nA =

n
∑

i=0

τ iA,

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 335

where τ0A = IU and τ i+1
A = τ iA ◦ τA. In other words, τ∗nA is the n-th approximation

of τA’s Neumann series well-known in operator theory.

It was proved in [7] that the limit in (2) always exists and the convergence is
strong, resulting in an isometry. This result is very surprising, for the monoidal
category (Iso,⊕) does not even resemble to an algebraic theory and yet, it has a
trace completely analogous to iteration in matrix iteration theories. Also, the ring
operations addition and multiplication performed in matrix composition and sum
are over the field C, not over the trivial Boolean semiring B. The Kleene formula
(2) does not work in the whole category (FdHilb,⊕) [21], and there appears to be
no way to find a reasonable trace for this monoidal category.

The additive style quantum trace explains how the flow of quantum information
can be controlled in a quantum flowchart algorithm [23] or a Turing machine [7].
At the moment its consistency is only proved for finite dimensional Hilbert spaces,
which is insufficient to explain the semantics of general Turing machines with an
infinite number of tape cells (or the semantics of a von Neumann style analog
quantum computer architecture having an infinite memory component). Further
analysis is needed to generalize the quantum trace for separable (i.e. countably
infinite dimensional) Hilbert spaces. This issue is of utmost importance in the
logical design of quantum computers.

At this point the reader might wonder why the very basic monoidal category
(Set,×) is missing from the above list of examples. What is a reasonable trace for
this category, or a suitable extension of it? At the moment this question is still
unanswered. Trace cannot simply be adopted from (Rel,×), because the trace of
a function might turn out to be a relation only. Thus, a deterministic computation
would trigger a nondeterministic one, which we certainly do not want to allow.
The author proved in [4] that the category with (delayed) circular feedback freely
generated from (Setfin,×) is the category Sim(Setfin,×) of simulation equivalent
finite state deterministic Mealy automata. No delay-free model is currently known.

3 Looking at trace in the Hungarian way

In this section we relate the trace operation in (Relfin,+) to bipartite graph match-
ings, and show how the trace of a relation R : U +A→ U +B can be constructed
by the help of the well-known Hungarian method. We also take a closer look at
Selinger’s construction [22] of embedding the category (Rel,+) into (Rel,×), and
interpret this embedding as a network flow problem. Let R : U + A → U + B be
a relation over finite sets. The standard graph representation of R is a bipartite
graph GR = (U + A,U + B). See Fig. 6. Extend GR by edges connecting each
vertex u ∈ U in bipartition U +A with the corresponding u in U +B. See Fig. 7.
Let GU

R denote the resulting graph. Consider the collection of newly added edges
as a matching M in GU

R, and construct the relation RM : A → B in the following
way. For each (a, b) ∈ A × B, put (a, b) in RM iff there is an augmenting path
in GU

R from a to b with respect to M . Recall from [18] that an augmenting path
is an M -alternating path starting and ending at vertices not covered by M . It is

336 Miklós Bartha

a1 a2

b1 b2

U+A

U+B

R:

A

BU

U

Figure 6: The graph of relation R

immediate by the definitions that

(a, b) ∈ TrUA,BR iff (a, b) ∈ RM .

a1 a2

b1 b2

U+A

U+B

A

BU

U

R:Tr
U

A,B

Figure 7: The graph GU
R with matching M

Thus, in order to calculate TrUA,BR, it is sufficient to apply the Hungarian

method on the graph GU
R with matching M to find a maximum matching in GU

R.
This is done by looking at the Hungarian forest F obtained at the final stage of
the algorithm and see which vertex pairs (a, b) are in the same tree of F . See [18]
for the details of the Hungarian method.

The functorial embedding of (Rel,+) into (Rel,×) by Selinger [22] is yet an-
other example of traced monoidal categories emerging naturally in combinatorial
optimization problems. Let R : A → B be a relation between finite sets A and B,
and consider the bipartite graph GR = (A,B) corresponding to R. Interpret GR

as a network flow problem [18] by assigning non-negative integers to the vertices
in A and B. The assignment fA : A→ N specifies the supply of some merchandise
available at each vertex (warehouse) a ∈ A, while the assignment fB : B → N

captures the demand on the B side for the same merchandise. Assume that

tf =
∑

a∈A

fA(a) =
∑

b∈B

fB(b)

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 337

holds, so that the total supply meets the total demand.
The task is to deliver all the goods from side A to side B (in one round) along

the roads (edges) between the two sides according to GR. See Fig. 8. Clearly, a

FR:

n k

m
lm 1 m 2

n 1 n 2

A

B

Figure 8: The network flow problem for R

solution to the problem is an assignment ρ : E(GR) → N satisfying the conditions

fA(a) =
∑

b′∈B

ρ(a, b′) and
∑

a′∈A

ρ(a′, b) = fB(b)

for all a ∈ A and b ∈ B.
The functor F : (Rel,+)→ (Rel,×) is now defined as follows.

On objects: For every set A, FA = [A→ N]fin, where [A→ N]fin denotes the set
of functions f : A→ N by which f(a) = 0 for all but finitely many a ∈ A.

On morphisms: If R : A→ B is a relation, then for every fA ∈ FA and fB ∈ FB,

(fA, fB) ∈ FR iff the network flow problem (fA, fB) in GR has a solution.

Note that the concrete problem (fA, fB) is finite, because both fA and fB are in
[A→ N]fin.

It was proved in [22] that F is a functorial embedding of traced monoidal cate-
gories. Selinger has also proved that there exists no such embedding of (Relfin,+)
into (Relfin,×). In particular, for the restriction of our concrete embedding F to
(Relfin,+), one cannot assume that the supply and demand numbers assigned by
fA and fB to the vertices of GR remain under a fixed upper bound.

4 Free traced monoidal categories

In general, a coherence result for a subcategory µ of monoidal categories is about
establishing a left adjoint for a forgetful functor F from the category of µ-monoidal
categories into an appropriate syntactical category, and providing a graphical char-
acterization of the free monoidal µ-categories so obtained. For some typical exam-
ples, see [19, 20, 17, 24, 1, 2]. In this section we briefly overview the construction
of the free traced monoidal category generated by a set of morphisms (variables)

338 Miklós Bartha

presented in [6]. We shall maintain the assumption that the monoidal category to
be constructed is strict, even though it is very simple to modify the construction
to obtain the non-strict free traced monoidal categories. Our way of choosing the
forgetful functor F differs from the method followed e.g. in [17], where the category
structure was still preserved. We go one step further in forgetting, and preserve
only the alphabet structure of morphisms. To remain consistent with set theory,
assume that the hom-sets of our monoidal categories are indeed sets.

For a class O of object variables, a doubly ranked alphabet or monoidal signature

Σ = (O,M, r)

[14] consists of a set M of morphism variables and a mapping r which assigns for
each variable f ∈ M a domain dom(f) and a codomain cod(f), which are finite
sequences (strings) over O. The pair (dom(f), cod(f)) is called the rank of f . As
it is natural, we write f : dom(f) → cod(f). In case O is the set N, the standard
concept of doubly ranked alphabet is recaptured. An alphabet mapping between
ranked alphabets Σ = (O,M, r) and ∆ = (O′,M ′, r′) is a mapping φ, which assigns
to each object variable A in O an object variable φA in O′ and to each morphism
variable f : u → v in M a morphism variable φf : φu → φv in M ′, where φ is
extended to strings in O∗ in the natural way. Thus, an alphabet mapping preserves
the rank of morphism variables.

Every (strict) monoidal category M can trivially be considered as a ranked
alphabet Σ = AM in which the object variables are the objects of M (denoted by
OM as a concrete monoid structure). As an important twist, however, the empty
string ǫ in O∗

M must be identified with the object I in OM . The morphism variables
of Σ with rank u → v are simply all the morphisms |u| → |v| in M, where |u| and
|v| are the evaluations of u and v in the given monoid structure on OM . We shall
use the distinctive subscript fu→v to refer to the morphism variable u → v that
is actually the morphism f : |u| → |v|. This is necessary in order to define the
domain and codomain of variables in a unique way. Since u and v are finite strings,
the collection of morphism variables u→ v remains a set.

If F : M → M′ is a monoidal functor, then AF : AM → AM′ is the alphabet
mapping φ by which φA = FA and

φfu→v = FfFu→Fv

for every morphism f : |u| → |v| in M, where F is extended to strings of objects
in the obvious natural way.

With the above definition we have established the functor

A : MonCat → Alph

between the category of monoidal categories and that of ranked alphabets. Our
aim is to provide a left adjoint G for the functor A, when restricted to the subcat-
egory TraMon of traced monoidal categories. In algebraic terms this amounts to
constructing the traced monoidal category freely generated by some doubly ranked

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 339

alphabet Σ. In order to keep the discussion simple, we shall assume that O = N that
is, our categories are single-sorted. Then the free traced monoidal category gener-
ated by a doubly ranked alphabet is essentially the category of flowchart schemes
as described in [1]. The only significant difference arises from the absence of the
axiom:

TrUI,I1U = 1I ,

where 1U : U → U denotes the identity morphism. In the single-sorted setting this
axiom is equivalent to

↑ 11 = 10,

which was imposed as axiom S6 in [1]. (Read ↑ simply as Tr11,1.) If this axiom is not
present, then the policy with respect to the so called loop vertex in schemes changes
as follows: every subexpression ↑ 11 contributes a separate loop vertex 0 → 0 to the
scheme being constructed. Thus, loop vertices multiply during the construction,
as opposed to the policy applied in [8, 1] that there is a unique loop vertex in
each scheme. (In other words, loop vertices do not multiply.) This straightforward
change covers the whole impact of adding axiom S6 to the standard trace monoidal
category axioms. The change is clearly visible e.g. in the category (FdVectK ,⊗),
where the sequence of morphisms

Tr2
0

20,20120 , T r
21

21,21121 , T r
22

22,22122 , . . . , T r
2n

2n,2n12n , . . .

produces the sequence of elements

1, 2 = 1 + 1, 22 = 2 · 2, . . . , 2n = 2 · 2 · . . . · 2, . . . in K.

The same dilemma, whether to multiply the loop vertices or not in the axioma-
tization of schemes, occurred already to Bloom and Ésik when writing the paper
[8]. The author knows this from Zoltán himself, who told him in 1986 that they
decided not to multiply the loop vertices because they only had algebraic theories
in mind for possible interpretations. Otherwise the issue was trivial. Since Zoltán
used to be the advisor of the author in previous years, the loop vertices did not
multiply in the axiomatization [1] either.

Rather than giving the formal definition of Σ-schemes for a doubly ranked al-
phabet Σ, we just show an example scheme S : 4 → 1 in Fig. 9. The scheme S has
4 input channels and 1 output channel. The alphabet Σ consists of the morphism
variables h : 2 → 1 and g : 1 → 1. A variable occurrence in S is a box labelled by
that variable. Boxes have numbered input and output ports (numbered from left to
right), with as many input (output) ports as the domain (respectively, codomain)
of the corresponding variable. The input channels have exactly one output port,
while the output channels have a single input port. Each output port in the scheme
is connected to exactly one input port, and every input port is the endpoint of a
single edge coming from an output port. In addition, there are an arbitrary number
of isolated loop vertices (none in our scheme S), which vertices have no input or
output ports and are labelled by the special symbol ⊥ not in Σ.

340 Miklós Bartha

ic 1 ic ic ic2

oc1

g

g

h

h

h

3 4

Figure 9: A Σ-scheme 4 → 1

Two Σ-schemes are isomorphic if they are isomorphic as directed graphs by an
isomorphism φ which preserves the labeling of the boxes, and the input/output
channels. Furthermore, φ must respect the numbering of the ports in boxes as well.

The traced monoidal category Sch(Σ) of Σ-schemes uses the graph operations
disjoint union for tensor, gluing schemes by their input/output channels for compo-
sition, and adding an edge from the first output channel to the first input channel
for feedback, bypassing the pair of the connected channels themselves. Whenever
feedback connects two channels that are already connected to each other in the
opposite direction, a new instance of the loop vertex is created and added to the
scheme. The interpretation of the identity and symmetry morphisms is straight-
forward, using straight lines connecting the input channels to the output ones. See
[1, 6] for details. With this interpretation, the category Sch(Σ) is that of isomor-
phism classes of Σ-schemes.

If Σ is not single-sorted, then the only modification to the above description is
that ports are also labelled by the object variables in such a way that for every box
labelled by morphism variable f , the sequence of object variables corresponding to
the input (output) ports read from left to right is dom(f) (respectively, cod(f)).
Obviously, edges must respect the labeling of the ports. The scheme is u → v if
the sequence of input (output) channel labels is u (respectively, v).

In order to interpret a scheme S : x → y in a traced monoidal category C, one
must first assign an object φA in C to each object variable A occurring in S, and
concrete morphisms φu → φv in C to each morphism variable u → v occurring in
S as a box label. Then represent S in normal form in the following way. Take the
tensor (disjoint union) of the boxes in S, together with some straight lines, apply
a suitable permutation from either side, and create the edges of S using feedback.
Finally, copy this procedure at the level of semantics in the category C. The result
is a morphism φx→ φy, and it will not depend on the concrete syntactical normal
form chosen, as long as we do not introduce a cycle of straight lines with feedback
in the normal form. See again Fig. 7 in Section 3. This should be avoided by
taking only a minimum number of straight lines in the normal form, unless there

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 341

are loop vertices in the scheme. Each loop vertex ⊥A counts as such a “looping”
feedback, which corresponds semantically to ↑A 1A with the chosen interpretation
of the object variable A. Again, see [1, 6] for details.

We shall be interested in two more axioms in Section 5.

Acc (accessibility): f = g for f, g : I → A, and

Ter (termination): f = g for f, g : A→ I.

By TraceBiacc we shall mean the set of traced monoidal category axioms extended
by Acc and Term.

Notice that imposing the axioms Acc and Term prompts the addition of con-
stants 0A : I → A and 0A : A → I to the traced monoidal language. These
constants must then satisfy the following further monoidal axioms:

0A ◦ f = 0B for f : A→ B,

0A ⊗ 0B = 0A⊗B,

(0A ⊗ 1A) ◦ cA,A = 1A ⊗ 0A,

and the dual counterparts of these axioms for 0A. See [1, 13]. Regarding schemes
as morphisms in the corresponding free category SchBiacc(Σ), one must lift the
condition that for each input port of a box (or output channel) there exists an
edge arriving at that port, and dually, there need not exist an edge going out
from any particular output port. (The ignored ports do not cease to exist, though,
they just become idle.) All schemes must be biaccessible, however. Recall from
[1, 8, 9] that a Σ-scheme S is accessible if each box (i.e. not necessarily the output
channels) can be reached from at least one input channel through a directed path
in S. Dually, S is terminating if from each box there exists a path to at least one
output channel. Scheme S is biaccessible if it is both accessible and terminating.
The axiomatization statement for SchBiacc(Σ) as a free category follows from the
yet more general axiomatization presented in [1].

5 The completeness result

In this section we take a closer look at the definition of a given monoidal category be-
ing complete for the traced monoidal category axioms extended by the axioms Acc
and Term. We also show that already the initial single-sorted monoidal category
satisfying the axioms TraceBiacc, the category (PinN,+) of finite partial injections
over the objects N as a subcategory of (RelN,+) is complete for TraceBiacc.

The reader might have the impression that this statement is trivial, since
(PinN,+), being initial (with or without the additional constants 01 : 1 → 0
and 01 : 0 → 1), is present in the category of biaccessible schemes as a subcate-
gory. While this is certainly true, it does not imply that (PinN,+) is complete for
TraceBiacc. In general, there could be a lot of identities valid in the initial algebra
of an equational class that are not valid in the free algebras of that class generated

342 Miklós Bartha

by several variables. For example, the initial D-algebra in [1], as a monoidal cat-
egory, coincides with the initial algebraic theory, and it can be embedded in the
single sorted monoidal category of cycle-free schemes with junctions allowed. (Add
a constant d : 2 → 1 to the single-sorted monoidal language, or dA : A ⊗ A → A

in general, as the “diagonal”. See [1, 13].) This category is the free D-algebra
generated by its boxes, yet, it is very far from being an algebraic theory.

The motivation for our study is the observation made in [12] that the category
(FdVectK ,⊗) is complete for the traced monoidal axioms, whenever the field K
has an infinite characteristic (i.e. the elements 1, 1+1, . . . , 1+1+ . . .+1, . . . are all
distinct.) The authors of [12] rely on the following understanding of completeness.

If two networks (schemes) have the same value under all interpretations
over K, then they are isomorphic.

Our more formal understanding of interpretation and completeness is the following.
Consider the doubly ranked alphabet Σ = (O,M, r) (fixed for the rest of the paper)
in which O is a countably infinite set and M(p, q) is also countably infinite for each
p, q ∈ O∗. In other words, we have as many object and morphism variables in Σ
as we want in order to use them for labeling schemes. Then a traced monoidal
identity is a pair (p,q) of Σ-schemes u→ v for some u, v ∈ O∗. As usual, we write
p = q for the pair (p,q). Accordingly, by a TraceBiacc identity we mean a pair of
biaccessible schemes.

Definition 2. A TraceBiacc identity p = q is valid in a traced monoidal category
C if for every alphabet mapping φ : Σ → AC,

(Gφ)p = (Gφ)q.

Recall that G : Alph → TraMon is the left adjoint of the forgetful functor A.
In the present case of biaccessible identities, take G to be the left adjoint of the
appropriate counterpart of A.

Definition 3. A traced monoidal category C satisfying the additional axioms Acc
and Term is complete for the traced monoidal axioms TraceBiacc if for every valid
identity p = q in C, the biaccessible schemes p and q are isomorphic.

There is a slight problem with Definitions 2 and 3, which is highlighted by the
following example.

Example Let Bi denote the axiom

Bi : f = g for f, g : I → I,

and add it to the the traced monoidal ones to obtain the system TraceBi. Consider
the obvious single-sorted traced monoidal category (Bi,+) of bijections n → n as
a subcategory of (Relfin,+). Is it complete for TraceBi? One could immediately
answer no, since e.g. Acc and Ter are valid in (Bi,+), yet they are not provable
from TraceBi. This answer is not fair, however, because the axioms Acc and Ter

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 343

are just partially meaningful in (Bi,+), and when they are, they are equivalent to
Bi.

The anomaly arises from the fact that categories are not simply multi-sorted
algebras. Their hom-sets could be empty. Since we defined the alphabet Σ very
generously, we must assign a morphism |φp| → |φq| to each morphism variable
(box) f : p → q in Σ in order to create an alphabet mapping φ : Σ → A(Bi,+).
There will not be any, however, unless all object variables are mapped into I = 0
by φ. Indeed, if A 6= I was mapped into say 1 (i.e. φA = 1), then – since the empty
string I = ǫ goes automatically to 0 – the morphism variables ǫ→ A could not be
mapped anywhere, for Bi(0, 1) = ∅. One could (and must) get around this problem
by including a “dummy” morphism in each hom-set of (Bi,+) and define the traced
monoidal operations on these morphisms e.g. in the strict way (always resulting in
the dummy morphism if either of the arguments is dummy). One may even extend
(Bi,+) to the traced monoidal category of partial injections. The extension will
not make the problem go away, though, because the axioms Acc and Ter would still
remain valid in the extended categories but not in the quotient of Sch(Σ) by Bi.
This fact is already justifiable, however, since “bases are loaded” in the extended
categories.

The above discussion shows that the anomaly of the Example is rooted in the
polymorphic nature of the categorical language used to specify equational axioms
(identities), and more analysis is required to provide a satisfactory explanation. For
the moment, however, we shall rely on the straightforward solution of introducing
the dummy morphisms if necessary, so at least we escape the contradiction arising
from possibly empty hom-sets. Thus, the category (Bi,+) is presently not complete
for TraceBi.

Theorem 1. The category (Pinfin,+) is complete for the axioms TraceBiacc.

Proof. Let S,R : u → v be two biaccessible Σ-schemes. We must find an inter-
pretation φ of the alphabet Σ in (Pinfin,+) that distinguishes these two schemes,
provided that they are not isomorphic. Obviously, we can assume that both u

and v are different from I = ǫ. We can also assume, without loss of generality,
that there exists an input-output path in at least one of S and R passing through
at least one box. Indeed, otherwise it is trivial to separate S and R directly in
(Pinfin,+) by interpreting each object variable A as φA = 1 and each morphism
variable f : p→ q as φf = 0φ(p) + 0φ(q), i.e., the totally undefined injection.

First let us assume that each box in S and R is labelled by the same morphism
variable f : p → q in M . Since the schemes are biaccessible, p 6= ǫ and q 6= ǫ. Let
us spell out the trajectory of an input-output path in Σ-schemes. As in standard
graph theory, it is an alternating sequence

q0, e1, (p1, q1), e2, . . . , (pn, qn), en, pn+1 (3)

of vertices and edges, starting from and ending at a vertex (port), such that each
edge ei in the sequence is incident with the vertex (output port qi−1) immediately
preceding it and with the vertex (input port pi) immediately following it. Remem-
ber that each port is numbered, and it is also labelled by an object variable in O.

344 Miklós Bartha

For simplicity, the number assigned to the port of an input/output channel is the
serial number of that channel.

For a path α of the form (3), ψ(α) will denote the “trace” of α:

(l0, B0), ((m1, A1), (l1, B1)), . . . , ((mn, An), (ln, Bn)), (mn+1, An+1).

In this sequence, 1 ≤ l0 ≤ length(u) and 1 ≤ mn+1 ≤ length(v) identify the serial
number of the input channel the output port of which is q0 and that of the output
channel identified by port pn+1. The pair (mi, Ai) ((li, Bi)) consists of the serial
number and object variable corresponding to the input port pi (respectively, output
port qi). By definition, Bi = Ai+1 for every 0 ≤ i ≤ n.

Now we turn to defining the separating interpretation φ. For all object variables
A ∈ O, let φ(A) = k, where k is a sufficiently large integer, the magnitude of which
will be specified later. In this way we can think of a morphism variable f : p → q

as a single-sorted one fk : k ·m→ k · l, where m > 0 and l > 0 are the length of p
and q, respectively. The morphism φf : k ·m → k · l will be the partial injection
by which

(mi − 1) · k + i 7→ (li − 1) · k + i+ 1 (4)

for every 1 ≤ i < k and appropriately chosen numbers 1 ≤ mi ≤ m, 1 ≤ li ≤ l.

It is easy to visualize the partial injection (Gφ)S for scheme S using the Hun-
garian method discussed in Section 3. Every edge e in S counts as k parallel edges
in the corresponding single-sorted scheme Sk, where each port is “multiplied” by k.
Let M be the set of all edges in Sk. The set M becomes a matching if we consider
Sk as a bipartite graph on the ports as vertices rather than one on the boxes. Add
φf to Sk as edges inside the boxes, and let Sk(φ) denote the resulting bipartite
graph. Intuitively, whenever the control reaches a box at input port mi in “dimen-
sion” i < k, it will leave at output port li in dimension i+ 1. Thus, (Gφ)S can be
obtained by looking for “dual” augmenting paths in Sk(φ) with respect to matching
M , that is, alternating paths starting and ending with M -positive edges incident
with the set of leaves of Sk(φ) consisting of the input-output channels (ports). If
such a path exists between input channel l in dimension i and output channel m
in dimension j, then (l, i) = (l − 1) · k + i is mapped to (m, j) = (m − 1) · k + j

according to (Gφ)S. (Mind that an input channel is in fact an output port and an
output channel counts as an input port.)

Observe that the procedure of calculating (Gφ)S by the Hungarian method
would be exactly the same if we were to interpret S under relations, rather than
partial injections.

What we need in order to finish the proof is an understanding of schemes S
and R being isomorphic. It is a standard graph theory argument that S and R

are isomorphic iff, for each input-output channel pair (l,m), whenever there exists
a path α connecting l with m in the one scheme (say S), then there exists such a
path β in R, too, so that ψ(α) = ψ(β). (Remember that ψ denotes the trace of
a path.) Indeed, the numbered ports, together with the biaccessibility restriction,
make the graph isomorphism test for S and R straightforward.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 345

Now let us assume that S and R are not isomorphic. Then there exists an
input-output path α in say S such that its trace ψ(α) is missing from the traces of
paths in R. Clearly, the length of α remains under a fixed number that depends
on the size of S and R only. Choose α to be shortest among such paths, and let
N denote the length of α. For k > N , set the numbers mi and li in (4) according
to the parameters of α up to dimension N , and arbitrarily for N ≤ i ≤ k. It is
clear that this choice of φf will distinguish S and R, since only (Gφ)S will take the
input channel l0 in dimension 1 to output channel mN in dimension N + 1.

If there are several morphism variables assigned as labels to the boxes of S and
R, then the proof can be augmented by adding a distinctive “preamble” injection
to the interpretation of each morphism variable in each dimension, and driving the
control through this preamble. Details are straightforward and left to the reader.
The proof is now complete.

Corollary 1. The traced monoidal category (Relfin,+) is complete for TraceBiacc.

Proof. Indeed, (Pinfin,+) can be embedded in (Relfin,+) as a subcategory. More-
over, bases are loaded in both categories, that is, no hom-set is empty. Therefore
any valid identity p = q in (Relfin,+) is valid in (Pinfin,+) as well. Consequently,
by Theorem 1, p and q are isomorphic as biaccessible schemes.

6 Conclusion

We have shown that the traced monoidal category (Pinfin,+) of finite partial
injections is complete for the extension of the traced monoidal axioms by two iden-
tities that reflect the biaccesible property of schemes as morphisms in the category
freely generated by a given monoidal signature. The proof was a classical separa-
tion argument, showing that if two biaccessible schemes are not isomorphic, then
there exists an interpretation in terms of finite partial injections which distinguishes
them. Since (Pinfin,+) is the initial single-sorted traced monoidal category sat-
isfying the given axioms, our result holds for every traced monoidal category into
which (Pinfin,+) can be embedded as a sub-monoidal category, and in which the
identities Acc and Ter are valid.

References

[1] Bartha, M. A finite axiomatization of flowchart schemes. Acta Cybernetica,
8(2):203–217, 1987.

[2] Bartha, M. An equational axiomatization of systolic systems. Theoret. Com-
put. Sci., 55:265–289, 1987.

[3] Bartha, M. An algebraic model of synchronous systems. Information and
Computation, 97:97–131, 1992.

346 Miklós Bartha

[4] Bartha, M. Simulation equivalence of automata and circuits. In: Csuhaj-
Varjú, E. and Ésik, Z. editors, 12th International Conference on Automata
and Formal Languages, Balatonfüred, Hungary, Local Proceedings, pages 86–
99, 2008.

[5] Bartha, M. Equivalence relations of Mealy automata. In: Bordihn, H., Fre-
und, R., Holzer, M., Kutrib, M., and Otto, F. editors, First Workshop on
Non-Classical Models of Automata and Applications, Wroclaw, Poland, Pro-
ceedings: books@ocg.at 256, Austrian Computer Society, pages 31–45, 2009.

[6] Bartha, M. The monoidal structure of Turing machines. Mathematical Struc-
tures in Computer Science, 23(2):204–246, 2013.

[7] Bartha, M. (2011) Quantum Turing automata. In Löwe, B. and Winskel, G.
editors, 8th International Workshop on Developments in Theoretical Computer
Science (DCM 2012), pages 17–31, Electronic Proceedings in Theoretical Com-
puter Science, 2014.

[8] Bloom, S.L. and Ésik, Z. Axiomatizing schemes and their behaviors. J. Com-
put. System Sci. 31:375–393, 1985.

[9] Bloom, S.L. and Ésik, Z. Iteration Theories: The Equational Logic of Iterative
Processes. Springer-Verlag, Berlin, 1993.

[10] Căzănescu, V.E. and Ştefănescu, Gh. Towards a new algebraic foundation of
flowchart scheme theory. Fundamenta Informaticae, 13:171–210, 1990.

[11] Ésik, Z. Identities in iterative and rational theories. Computational Linguistics
and Computer Languages, 14:183–207, 1980.

[12] Hasegawa, M., Hofmann, M. and Plotkin, G. Finite dimensional vector spaces
are complete for traced symmetric monoidal categories. In Pillars of Computer
Science: Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, Springer LNCS 4800, pages 367-385, February 2008.

[13] Hasegawa, M. Bialgebras in Rel. In 26th Conference on the Mathematical
Foundations of Programming Semantics (MFPS XXVI), May 2010, Ottawa.
Electronic Notes in Theoretical Computer Science 265, pages 337-359, 2010.

[14] Joyal, A. and Street, R. The geometry of tensor calculus I. Advances in
Mathematics, 88(1):55–112, 1991.

[15] Joyal, A., Street, R. and Verity, D. Traced monoidal categories. Math. Proc.
Camb. Phil. Soc., 119:447–468, 1996.

[16] Katis, P., Sabadini, N. and Walters, R.F.C. Feedback, trace, and fixed-point
semantics. Theoret. Informatics Appl., 36:181–194, 2002.

[17] Kelly, G.M. and Laplaza, M. L. Coherence for compact closed categories. J.
Pure Appl. Algebra, 19:193–213, 1980.

On the Completeness of the Traced Monoidal Category Axioms in (Rel,+) 347

[18] Lovász, L. and Plummer, M.D. Matching Theory. North Holland, 1986.

[19] Mac Lane, S. Categories for the Working Mathematician. Springer-Verlag,
1971.

[20] Mac Lane, S. and Paré, R. Coherence for bicategories and indexed categories.
J. Pure and Appl. Algebra, 37:59–80, 1985.

[21] Malherbe, O., Scott, P.J., and Selinger, P. Partially traced categories. Journal
of Pure and Applied Algebra, 216(12):2563–2585, 2011.

[22] Selinger, P. A note on Bainbridge’s power set construction. Manuscript 10
pages, 1998.

[23] Selinger, P. Towards a quantum programming language. Mathematical Struc-
tures in Computer Science 14:527–586, 2004

[24] Selinger, P. A survey of graphical languages for monoidal categories. In Coecke
(editor), New Structures for Physics, Lecture Notes in Physics 183, Springer-
Verlag, Berlin, 2009.

[25] Ştefănescu, Gh. Network Algebra. Series in Discrete Mathematics and Theo-
retical Computer Science, Springer, Heidelberg, 2000.

Acta Cybernetica 23 (2017) 349–369.

Regular Expressions for

Muller Context-Free Languages∗

Kitti Gellea and Szabolcs Ivána

Abstract

Muller context-free languages (MCFLs) are languages of countable words,
that is, labeled countable linear orders, generated by Muller context-free
grammars. Equivalently, they are the frontier languages of (nondeterministic
Muller-)regular languages of infinite trees.

In this article we survey the known results regarding MCFLs, and show
that a language is an MCFL if and only if it can be generated by a so-called
µη-regular expression.

Keywords: Muller context-free languages, well-ordered induction, regular
expressions

1 Introduction

A word, also called “arrangement” in [9], is the isomorphism type of a labeled linear
order. Thus, this notion is a generalization of finite and ω-words, permitting e.g.
labelings of the integers of the rationals.

Finite automata on ω-words have by now a vast literature, see [21] for a com-
prehensive treatment. Finite automata acting on well-ordered words longer than ω
have been investigated in [1, 6, 7, 24, 25], to mention a few references. Recently,
the theory of automata on well-ordered words has been extended to automata on
all countable words, including scattered and dense words. In [2, 5, 4], both oper-
ational and logical characterizations of the class of languages of countable words
recognized by finite automata were obtained.

Context-free grammars generating ω-words were introduced in [8] and subse-
quently studied in [3, 19]. Context-free grammars generating arbitrary countable
words were defined in [10, 11]. Actually, two types of grammars were defined,
context-free grammars with Büchi acceptance condition (BCFG), and context-free
grammars with Muller acceptance condition (MCFG). These grammars generate
the Büchi and the Muller context-free languages of countable words, abbreviated
as BCFLs and MCFLs. Every BCFL is clearly an MCFL, but there exists an

∗This work was supported by NKFI grant no. 108448.
aUniversity of Szeged, Hungary, E-mail: {kgelle,szabivan}@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.1.2017.19

350 Kitti Gelle and Szabolcs Iván

MCFL of well-ordered words that is not a BCFL, for example the set of all count-
able well-ordered words over some alphabet. In fact, it was shown in [10] that for
every BCFL L of well-ordered words there is an integer n such that the order type
of the underlying linear order of every word in L is bounded by ωn.

In this paper we survey the results on Muller context-free languages, and we
give an operational (“regular-expression-like”) characterization of this class.

2 Notation

2.1 Linear orderings

A (strict) linear ordering is a pair (I,<) where < is a strict total ordering on I, that
is, an irreflexive, transitive and trichotomous relation. Set-theoretical properties of
the domain set I, such as finiteness, membership and cardinality are lifted to the
ordering (I,<) thus we can say e.g. that a linear ordering is countable, finite etc.
In order to ease notation, we will omit the ordering < from the pair and identify
the ordering (I,<) with its domain I, if the ordering relation is not important or
is clear from the context. In this paper we will (unless stated otherwise) only deal
with countable orderings. A good reference for linear orderings is [23].

An embedding of a linear ordering (I,<) into a linear ordering (J,≺) is a (nec-
essarily) injective mapping h : I → J preserving the ordering, i.e. x < y implying
h(x) ≺ h(y). We write (I,<) ≤ (J,≺) if I can be embedded into J . Clearly, this
≤ relation is a preorder (a reflexive and transitive relation) between orderings. A
surjective embedding is called an isomorphism between the orderings I and J ; if
there exists an isomorphism between I and J , then they are called isomorphic.
Isomorphism of linear orderings is an equivalence relation, the classes of which are
called order types. Well-known isomorphism types are the order type ω of the natu-
ral numbers N, the type −ω of the negative integers, the type ζ of integers and the
type η of rationals. Since isomorphism is compatible with embeddability, we can
say that an order type α can be embedded into an order type β, written as α ≤ β.
Note that this relation is not antisymmetric in general as the orderings (0, 1) and
[0, 1] can be embedded into each other but they are not isomorphic as the latter
one has a least element while the former one does not.

The ordering (I,<) is a sub-ordering of (J,≺) if I ⊆ J and < is the restriction
of ≺ onto I. An ordering is a well-ordering if it has no sub-ordering of type −ω, is
scattered if it has no sub-ordering of type η, quasi-dense if it is not scattered and
dense if it has at least two elements and for any x < y there exists some z with
x < z < y. All dense countable orderings have the type η, possibly enriched with
either a least or a greatest element (or both). Order types of well-orderings are
called ordinals. Amongst the class of ordinals, the embeddability relation itself is a
well-ordering, moreover, each ordinal α is either a successor ordinal α = β + 1 for
some ordinal β, in which case there is no other ordinal between α and β, or is a limit
ordinal with α =

∨
β<α

β, i.e. is the least upper bound of the set of ordinals strictly

smaller than α with respect to the embeddability relation <. Note that although

Regular Expressions for Muller Context-Free Languages 351

the ordinals themselves form a proper class, whenever α is an ordinal, then the class
of ordinals smaller than β is a set and whenever X is a set of ordinals, then their
least upper bound

∨
X exists and is an ordinal. Moreover, the class of countable

ordinals is the least class which contains the order types 0 and 1 and is closed under
taking ω-sums, that is, taking suprema of ω-chains.

When (I,≺) is some linearly ordered index set and for each i ∈ I, (Ji, <i) is
a linear order, then their ordered sum (J,<) =

∑
i∈I

(Ji, <i) has the disjoint union

J = {(i, j) : i ∈ I, j ∈ Ji} as domain with (i, j) < (i′, j′) if either i ≺ i′ or i = i′ and
j <i j

′. In particular, (J1, <1) + (J2, <2) denotes the sum
∑

i∈{1,2}
(Ji, <i). It is clear

that a well-ordered sum of well-ordered orderings is well-ordered, and a scattered
sum of scattered orderings is scattered. The sum operation is also compatible with
the isomorphism, thus it can be extended to order types. For example, −ω+ω = ζ
and η + η = η + 1 + η = η where 1 is the order type of the singleton orderings; in
general, n is the order type of the n-element orderings for n ∈ N0 = {0, 1, . . .}. If α
is the order type of I and β is the order type of each Ji, i ∈ I, then β×α stands for
the order type of the sum

∑
i∈I

Ji. Hence, product of ordinals is an ordinal. Ordinals

are also equipped with an exponentation operator but we will only use finite powers
of the form αn, with n being an integer, that is, α0 = 1 and αn+1 = αn × α.

Hausdorff classified the scattered order types into an infinite hierarchy. We
make use of the following variant [17] of this hierarchy: let V D0 be the class of all
finite order types, and when α is some ordinal, then let V Dα consist of the class
of all order types that can be written as

∑
i∈ζ

Ii where each Ii is a member of V Dβi

for some ordinal βi < α. Hausdorff’s theorem states that a (countable) order type
is scattered if and only if it is contained in V Dα for some (countable) ordinal α.
The Hausdorff-rank rank(o) of a scattered order type o is the least ordinal α with
o ∈ V Dα.

2.2 Words, tree domains, trees

An alphabet is a finite nonempty set of symbols, or letters. Alphabets are usually
denoted Σ,Γ in this paper, and letters are denoted by a, b, c, A Σ-labeled linear
ordering is a tuple w = (dom(w), `w) where dom(w) = (I,<) is some linear ordering
and `w : I → Σ is the labeling function of w. We usually identify w with `w and
write w(i) for `w(i), i ∈ dom(w). Two words u and v are isomorphic if there is
an isomorphism h : dom(u) → dom(v) which preserves also the labels, that is,
u(i) = v(h(i)) for each i ∈ dom(u). A word over Σ is an isomorphism class of
countable Σ-labeled linear orderings. For convenience, when u is a word, we take a
representant of u and use the notation dom(u), `u referring the domain and labeling
of the representant. Order theoretic properties are lifted to words. The set of all
countable, ω- and finite words over Σ are respectively denoted Σ#, Σω and Σ∗. In
particular, ε denotes the empty word (having the empty set as domain). Note that
as for any Σ, there is a unique η-word u such that for any x < y ∈ dom(u) and

352 Kitti Gelle and Szabolcs Iván

letter a ∈ Σ there is some z ∈ dom(u) with x < z < y and u(z) = a, this u being
called the perfect shuffle of Σ, and every countable Σ-word v is a subword of thus
u (that is, dom(v) is a sub-ordering of dom(u) and `v is the restriction of `u to
dom(v)), thus Σ# is indeed a set. A language over Σ is an arbitrary subset of Σ#.
Languages will usually be denoted by K,L,

When (I,<) is a linear ordering and for each i ∈ I, wi is a Σ-word, then their
product or (con)catenation is the word w =

∏
i∈I

wi with domain
∑
i∈I

dom(wi) and

the labeling of `w being the source tupling of the labelings `wi , that is, for (i, j),
i ∈ I, j ∈ dom(wi) let w(i, j) be wi(j). Product is extended to languages in the
expected way: when (I,<) is the indexing ordering and to each i ∈ I, Li ⊆ Σ# is
a language, then

∏
i∈I

Li consists of those words
∏
i∈I

wi where wi ∈ Li for each i ∈ I.

Binary products are simply written as u · v or K · L, or simply uv and KL. When
α is some order type, then Lα is the language

∏
i∈α

L, and L∗ stands for the union

of the languages Ln, n being a natural number. Also, L+ stands for
⋃
n>0

Ln.

A tree domain is a prefix closed nonempty (but possibly infinite) subset T of
N∗. That is, whenever x · i is in T for x ∈ N∗ and i ∈ N, then so is x, in which case
x is the parent of x · i and x · i is a child of x. Members of T are also called nodes
of T . If x · y ∈ T for x, y ∈ N∗, then x is called an ancestor of x · y and x · y is a
descendant of x, denoted x � x · y. If y is nonempty, then we talk about proper
ancestor / descendant, denoted x ≺ x · y. Nodes of T having no child are called
leaves of T , the other nodes are called inner nodes of T . Clearly, ε is a member of
every tree domain.

Subsets of a tree domain T which are tree domains themselves are called prefixes
of T . A path π of T is a prefix in which every node has at most one child. Clearly,
to every path π there exists a unique word uπ in N≤ω = N∗ ∪ Nω such that π =
{x ∈ N∗ : x � uπ}. We will use π and uπ interchargably.

When T is a tree domain and x ∈ T , then the sub-tree domain of T is T |x =
{y ∈ N∗ : xy ∈ T}. It is clear that T |x is also a tree domain, and is a path if so is
T .

A (Σ-)tree over some alphabet Σ is a labeled tree domain t, that is, a pair
(dom(t), `t) where dom(t) is a tree domain and `t : dom(t) → Σ is a labeling
function. Similarly to the case of words, we often identify t with `t and write t(x)
in place of `t(x) for x ∈ dom(t). Notions of tree domains (nodes, paths, sub-tree
domains etc.) are lifted to trees; the subtree of t rooted at some node x ∈ dom(t)
has the domain dom(t)|x and labeling y 7→ t(xy). When X ⊆ dom(t) is a set of
nodes of t, then labels(t,X) = {t(x) : x ∈ X} is the set of labels occurring on the
nodes belonging to X, and infLabels(t,X) is the set of labels occurring infinitely
many times. In particular, if π is a path of t, then a letter a ∈ Σ belongs to
infLabels(t, π) if and only if for each x ∈ π there exists some descendant y ∈ π of
x with t(y) = a. When t is clear from the context, we just write labels(X) and
infLabels(X), respectively. For any infinite path π, there exists a �-minimal node
x of π with infLabels(π|x) = labels(π|x), this node x is denoted head(π). Clearly,

Regular Expressions for Muller Context-Free Languages 353

infLabels(π) = infLabels(π|x) ⊆ labels(π|x) ⊆ labels(π) for every path π and node
x ∈ π.

2.3 Muller context-free grammars and languages

A Muller context-free grammar or MCFG for short, is a tuple G = (N,Σ, P, S,F)
where N and Σ are the disjoint alphabets of nonterminals (or variables) and ter-
minals, respectively, S ∈ N is the start symbol, P is the finite set of productions
(or rules) of the form A→ α with A ∈ N and α ∈ (N ∪Σ)+, and F ⊆ P (N) is the
Muller acceptance condition. Here P (N) = {N ′ ⊆ N} is the power set of N .

Observe that we explicitly disallow rules of the form A → ε here; this makes
the treatment of leaf labels more uniform, and as it turns out, such rules can be
mimicked by introducing a fresh nonterminal I, rules A→ I and I → I and adding
{I} to the acceptance condition. Nevertheless, in our examples we will make use
of rules A→ ε in order to help readability.

An (N ∪ Σ)-tree t is locally consistent (with G) if it satisfies the following
condition: each inner node x of t is labeled by some nonterminal A and the set of
children of x is {x·1, . . . , x·n} for some integer n > 0 with A→ t(x·1)t(x·2) . . . t(x·n)
being a production in P . A locally consistent tree is complete if its leaves are labeled
in Σ. The leaves of any tree domain are linearly ordered by the lexicographic
ordering <`, that is, u <` v if and only if u = u1 · i · u2 and v = u1 · j · u3 for
some words u1, u2, u3 ∈ N∗ and integers i < j. The frontier word of a tree t is
the word fr(t) having the set of leaves as domain, ordered lexicographically, and
labeling inherited from t. That is, dom(fr(t)) = {x ∈ dom(t) : x is a leaf of t} and
fr(t)(x) = t(x) for each leaf x.

A locally consistent tree t is a derivation tree of G if for each infinite path π
of t the set infLabels(π) belongs to the acceptance condition F . Given a symbol
X ∈ N ∪ Σ, we let ∆(G,X) denote the set of all complete derivation trees t of G
whose root symbol t(ε) is X. We write A ⇒∞G α for a symbol A ∈ N ∪ Σ and a
word α ∈ (N ∪ Σ)# if α is the frontier word of some derivation tree of G having
root symbol A. The language generated by G is L(G) = {w ∈ Σ# : S ⇒∞G w}.

A language L ⊆ Σ# of Σ-words is a Muller context-free language, or MCFL for
short, if L = L(G) for some MCFG G. In fact, Muller context-free languages are
precisely the frontier languages of (nondeterministic Muller-)regular languages of
infinite trees.

Example 1. If G = ({S, I},Σ, P, S, {{I}}), with

P = {S → a : a ∈ Σ} ∪ {S → ε, S → I, I → SI},

then L(G) consists of all the well-ordered words over Σ.

Indeed, assume t1, t2, . . . are derivation trees. Then so is the tree t depicted in
Figure 1a with frontier word fr(t1)fr(t2) Thus, L(G) contains the empty word
(by S → ε), the words of length 1 (by S → a and S → b), and is closed under
taking ω-products. Since the least class of order types which contains 0, 1 and which

354 Kitti Gelle and Szabolcs Iván

S

I

I

I

. . .t3

t2

t1

(a) Tree for Example 1

S

S I

S I

S . . . S

S

S

(b) Tree for Example 2

Figure 1: Derivation trees corresponding to Examples 1 and 2

is closed under ω-sums is the class of all countable ordinals (see e.g. [23]), L(G)
contains all the well-ordered words over {a, b}. For the other direction, assume t
is a derivation tree having a frontier word containing an infinite descending chain
. . . <` u2 <` u1. Then let us define the path v0, v1, . . . in t: v0 = ε and vi+1 is
vi · 1 if this node is an ancestor of infinitely many uj and vi · 2 otherwise (which
happens if vi corresponds to the production I → SI and the node vi · 1 (which is
labeled S) has no descendant of the form uj at all). Note that for each uj there
exists a unique vij such that vij is an ancestor of uj and vij+1 is not, since the
length of the words vi grows without a bound. Now these nodes vij correspond
to the production I → SI and vij+1 = vij · 1, so that the successor of vij along
the path is labeled by S. Hence v0, v1, . . . , is a path π in t such that infLabels(π)
contains S, which is a contradiction since the only accepting set is {I}.

Example 2. If G = ({S, I},Σ, P, S, {{I}}), with

P = {S → a : a ∈ Σ} ∪ {S → ε, S → I, S → SIS},

then L(G) consists of all the scattered words over Σ.

Indeed, the derivation tree depicted on Figure 1b shows that L(G) is closed
under ω + (−ω)-products of words. Since ε ∈ L(G), the language is thus closed
under ω-products and −ω-products as well, thus closed under ζ-products. Since
the one-letter words belong to L(G), we get by Hausdorff’s Theorem that L(G)
consists of all the scattered Σ-words.

We note that if instead of the Muller condition we define a Büchi-type accep-
tance condition, then we get a weaker device: the resulting class of “Büchi context-
free languages” is strictly contained within the class of MCFLs, see [11, 10].

3 MSO-definable properties are decidable

The logic usually arising when dealing with “regular” structures is that of monadic
second-order logic, or MSO. In [13] the following general decidability theorem was

Regular Expressions for Muller Context-Free Languages 355

proved:

Theorem 1. The following problem is decidable: given an MCFG G generating
Σ-words and an MSO formula ϕ evaluated Σ-words, does it hold that w |= ϕ for
every w ∈ L(G)?

Thus in particular, it is decidable whether G generates scattered, or well-
ordered, or dense words only.

We sketch the outline of the proof. First, to each MCFG G = (N,Σ, P, S,F)
we associate the grammar G′ = (N ∪ P,Σ, P ′, S) where P ′ contains the following
set of productions:

• For each nonterminal A ∈ N , there is a production A → (A → α1)(A →
α2) . . . (A→ αn) in P ′ where A→ α1, . . . , A→ αn are the productions in P
having A on their left-hand side, in some fixed order.

• For each production A→ X1 . . . Xn, there is a production (A→ X1 . . . Xn)→
X1 . . . Xn in P ′.

That is, we can rewrite a nonterminal to the sequence of its alternatives, and
rewrite a production to its right-hand side. Thus, each nonterminal of G′ has
exactly one alternative (it is assumed that for each nonterminal A there is at least
one production having left-hand side A), thus there is exactly one locally consistent
tree of G′ having root symbol S. We call this unique tree tG the grammar tree of
G.

Example 3. For the MCFG of Example 1, this tree tG is depicted in Figure 2.

S

S → I

I

I → SI

I

I → SI

. . .

S

S → I

I

. . .

S → ε

ε

S → b

b

S → a

a

S → ε

ε

S → b

b

S → a

a

Figure 2: Grammar tree of the MCFG of Example 1

356 Kitti Gelle and Szabolcs Iván

The cruical fact is that the grammar tree is a regular tree, having finitely many
(more precisely, at most |Σ| + |N | + |P |) subtrees. By [22], the MSO theory of a
regular tree is decidable, that is, given a regular tree t (which is tG in our case) and
an MSO formula ψ, it is decidable whether t � ψ holds. As tG can be effectively
constructed from G, it remains to construct a formula ψ from G and ϕ such that
tG � ψ holds if and only if for each w ∈ L(G) we have w � ϕ.

Informally, the formula ψ constructed in [13] has the semantics “whenever T is a
derivation tree of G, its frontier word satisfies ϕ”. Now derivation trees are encoded
as subsets of dom(tG) as follows: a subset X ⊆ dom(tG) encodes a derivation tree
of G if the following conditions all hold:

• X contains the root node.

• If some x ∈ X is labeled by some nonterminal A ∈ N , then exactly one child
of x belongs to X.

• If some x ∈ X is labeled by some production A→ α, then all the children of
x belong to X.

• On each infinite path π ⊆ X, the set of symbols from N occurring infinitely
many times belongs to F .

These properties can be expressed in MSO and such a set encodes a derivation tree
in the obvious way.

Example 4. Figure 3 shows a (part of a) derivation tree t of the grammar of
Example 1 and the corresponding subset T of dom(tG) (as nodes in boldface).

Then, given a set X of nodes of tG, we can define the subset Y ⊆ X of the leaves
in X and the lexicographic ordering over this Y is also MSO-definable. Hence the
formula “whenever X is a subset of dom(tG) encoding a derivation tree, and Y is the
set of leaves withinX, then the word corresponding to Y satisfies ϕ” is expressible in
MSO (moreover, is effectively computable from G and ϕ), thus proving Theorem 1.

4 A normal form

The general decidability theorem of the previous section does not give us an ex-
act complexity result as model checking MSO is decidable, but nonelementary in
general. In this section we give complexity results for several decision problems
(and several undecidability results as well) regarding MCFLs, surveying the results
of [11]. The decidable properties surveyed here are MSO-definable, thus their de-
cidability is immediate from Theorem 1. For example, L(G) is empty if and only
if every member w of L(G) satisfies the false formula ↓. (On the other hand, uni-
versality is not definable this way – and indeed, universality of MFCGs is already
undecidable for singleton alphabets.)

(A slightly modified variant of) the normal form of MCFGs introduced in [11]
is the following:

Regular Expressions for Muller Context-Free Languages 357

S

I

I

. . .

S

a

S

S → I

I

I → SI

I

I → SI

. . .

S

S → I

I

. . .

S → ε

ε

S → b

b

S → a

a

S → ε

ε

S → b

b

S → a

a

Figure 3: A part of a derivation tree t of Example 1 and the corresponding subset
T of tG

Definition 1. An MCFG G = (N,Σ, P, S,F) is in normal form if either P is
empty, or P consists of the single production S → ε, or for each A ∈ N there exists
a nonempty word w with A⇒∞G w and words u, v with S ⇒∞G uAv.

Moreover, to each F ∈ F there exists a path π of some derivation tree t with
infLabels(π) = F .

In the terminology of [11], each nonterminal has to be +-productive and reach-
able, and each accepting set has to be viable.

Such a normal form of any MCFG is computable:

Theorem 2 ([11]). For any MFCG G, an equivalent MCFG G′ in normal form
can be computed in PSPACE. The resulting grammar G′ has a size polynomially
bounded by the size of G.

We sketch the algorithm here. The straightforward modification of the corre-
sponding algorithms for ordinary context-free grammars works: first we check for
each symbol X whether X is productive (is there a complete derivation tree with
root symbol X at all). However, the complexity of this problem is PSPACE-
complete due to the fact that the emptiness problem of Muller regular tree lan-
guages, given by a nondeterministic Muller tree automaton, is PSPACE-complete.
Since there is a polynomial-time transformation from an MCFG to a corresponding
Muller tree automaton and vice versa, we gain PSPACE-completeness for deciding
productiveness of individual nonterminals, and emptiness of MCFLs as well:

Proposition 1. [11] Deciding whether L(G) = ∅ is PSPACE-complete.

Then, we can throw away all the non-productive nonterminals and get rid of
all the productions that have a non-productive nonterminal on either of its sides.

358 Kitti Gelle and Szabolcs Iván

After that, this set is further reduced to the set of reachable nonterminals, which
can be done by the usual fixed-point construction for CFGs, as for each reachable
nonterminal A there is a finite (not necessarily complete) derivation tree with root
symbol S and A occurring as a leaf label. Then we can throw away all the non-
reachable nonterminals. This can be done in polynomial time.

In the next step, a nonterminal generates A a nonempty word if and only if
there is a finite (not necessarily complete) derivation tree rooted A that has some
letter a ∈ Σ occurring as a leaf label. This can also be decided in polynomial time
by solving a reachability problem. Then, we can simply erase all the symbols from
the right-hand sides from which only the empty word can be generated (and if the
right-hand side of a rule becomes empty, then erase the rule itself as well), arriving
to a grammar in the required normal form, apart from viability of each F ∈ F .
(This way we might lose the word ε from L(G) – if we need the nonempty word,
we can allow the production S → ε to be present, but in that case S should not
appear on the right-hand side of any rule, as in the classical case.)

The normal form can be generated in PSPACE. Then, L(G) contains a
nonempty word if and only if there are still productions in G.

Proposition 2 ([11]). It can be decided in PSPACE whether L(G) contains a
nonempty word.

Now for retaining only the “viable” accepting sets, the following associated
graph ΓG is handy:

Definition 2. Given an MCFG G = (N,Σ, P, S,F), we define the following edge-
labeled multigraph ΓG: the vertices of ΓG are the nonterminals, and there is an
edge from A to B labeled (α, β) for α, β ∈ (N ∪Σ)∗ if A→ αBβ is a production of
G.

Now if G already contains only productive and reachable nonterminals, then a
set F ∈ F is viable if and only if the subgraph of ΓG induced by F is strongly
connected, which is efficiently decidable, finishing the construction of the normal
form.

However, language universality (and thus language inclusion and equivalence)
is undecidable already for singleton alphabets (contrary to the case of context-free
grammars, where undecidability holds only for alphabets of size at least two):

Proposition 3 ([10]). It is undecidable whether L(G) = Σ# for an MCFG G, even
when Σ is a singleton alphabet.

In fact, the problem is undecidable already for Büchi context-free grammars.
The key for proving this is a reduction from the universality problem of context-free
languages of finite words over the binary alphabet {a, b}: first we encode a by aω and
b by a−ω. Then, the language L of those words in a# not belonging to {aω, a−ω}∗
is a MCFG and thus, as MCFLs are effectively closed under homomorphisms and
finite unions, we get that L(G) = {a, b}∗ for the CFG G if and only if L(G′) = a#

for some MCFG G′ effectively constructed from G.

Regular Expressions for Muller Context-Free Languages 359

4.1 Languages of finite words

Given an MCFG G = (N,Σ, P, S,F) in normal form, one can decide in (low-degree)
polynomial time whether L(G) consists of finite words only. (Note that decidability
is clear as the property of being scattered is MSO-definable.)

The key observation here is that L(G) contains an infinite word if and only if

there is some F ∈ F and an edge A
α,β−→B in ΓG with αβ 6= ε and A,B ∈ F which

can be verified efficiently.
Also, it is quite straightforward to see that a language L ⊆ Σ∗ is context-free

if and only if it is an MCFL: for one direction we only have to set F = ∅. For the
other direction somewhat more care is needed since the frontier word of an infinite
tree can be empty. However, it can be decided in PSPACE whether A⇒∞G ε holds
for a nonterminal A: we only have to remove the productions from G having some
terminal symbol occurring on the right-hand side (that is, we retain the productions
of the form X → α with α ∈ N∗), and apply an emptyness check for the generated
language. Then, for each A generating ε we can include the production A→ ε and
the resulting (classical) context-free grammar will generate L(G) ∩ Σ∗ if G is in
normal form.

Thus,

Proposition 4 ([11]). A language L ⊆ Σ∗ is context-free if and only if it is Muller
context-free.

Also, since emptiness of CFGs is efficiently decidable, we have:

Proposition 5 ([11]). It is decidable in PSPACE whether an MCFG generates
at least one finite word.

4.2 Languages of well-ordered words

Given an MCFG G = (N,Σ, P, S,F) in normal form, one can decide in (low-
degree) polynomial time whether L(G) consists of well-ordered words only. Again,
decidability itself is already clear, since the property is MSO-definable.

Proposition 6 ([11]). For an MFCG G in normal form, L(G) contains a word
which is not well-ordered if there is some set F ∈ F , nonterminals A,B ∈ F and

an edge A
α,β−→B in ΓG with β 6= ε.

To see this, suppose there is a derivation tree t of G with a frontier word
not having a well-ordered domain. Then there exists an infinite descending chain
. . . < x3 < x2 < x1 < x0 of leaves of t. Starting from the root, one can then build
up an infinite path π = y0, y1, . . . such that for each node u of π, an infinite number
of these leaves xi are descendants of u. (This property holds for the root, and at
each step we set yi+1 to be the first child of yi which is an ancestor of some xj .)
Then, as each such leaf xi has some finite depth, there exists an yj for each xi such
that yj is an ancestor of xi but yj+1 is not; it is easy to see that in this case xi is
“on the right side” of π.

360 Kitti Gelle and Szabolcs Iván

Hence, for this π it holds that F = infLabels(π) is contained within a nontrivial

strongly connected component of ΓG, moreover, there is an edge A
α,β−→B with

A,B ∈ F and β 6= ε, the other direction being also straightforward, simply by
following a closed path in F visiting each edge at least once, iterating ω times and
complete the resulting derivation tree (which already has an infinite descending
chain among its leaves due to β 6= ε).

Now if L(G) contains well-ordered words only, one can compute an interval of
ordinals containing all the order types of L(G):

Proposition 7 ([16]). If the MCFG G generates well-ordered words only, then both
the minimum and the supremum of the order types of the members of L(G) are
effectively computable ordinals.

For the minimum, first we note that to each nonterminal A, if there is a finite
word w with A⇒∞G w, then the length n of the shortest such word is computable.
Then we can replace each occurrence of these nonterminals by an: the minimum
order types for the nonterminals in the resulting grammar will coincide with those
of G.

Let us fix for each symbol X a complete derivation tree tX with root symbol
X, minimizing the order type of fr(tX). It turns out that the members of N can
be partially ordered by some properties of these trees tX and that these trees tX
can be chosen in a way that each subtree of tX is some tY for Y ∈ N ∪ Σ.

The key construction to see this is the following. When a t is a complete
derivation tree of such an MCFG G, then we call t simple if it is either finite or has
some infinite path π with infLabels(π) = labels(π) and moreover, each production
corresponding to the nodes of π occur infinitely many times on π. As A→ uBv ∈ P
for some A,B ∈ F ∈ F implies v = ε, this path π has to be the rightmost path
of t. Then, the order type of fr(t) is the ω-sum of the order types of the frontiers
of the subtrees of t being adjacent to π (that is, rooted at some node x not on π
whose parent is on π). As each left-hand side occurs infinitely many times, we get
that each nonterminal adjacent to π has a strictly smaller minimum. Thus, if tX
is simple, then we can define tX after being defined each tY where the minimum
order type of Y is strictly smaller than that of X, and the order type of its frontier
is computable.

Now if tX is not simple, then the order type of its frontier is the sum of the
order types corresponding to its direct children. Now all these order types but
the last have to be smaller then the order type of fr(tX) and the last child has to
have one level “closer” for being simple (and this level is finite), establishing the
inductive case. Thus, a standard iterative algorithm recomputing the minima from
the current estimations eventually terminates and produces the minimum ordinals
(in Cantor normal form, say).

For the supremum, the case analysis is slightly more involved. First, one seeks
for reproductive nonterminals: A is called reproductive if A ⇒∞G α for some α in
which A occurs infinite times. It turns out that A is reproductive if and only if
there is a production A→ X1 . . . XnB and an accepting set F ∈ F with A,B ∈ F
and Xi ⇒∞G uAv for some i ∈ [n] and u, v ∈ Σ∞, which is decidable.

Regular Expressions for Muller Context-Free Languages 361

Then, if A is reproductive, then it is easy to see that arbitrarily large countable
ordinals can be generated from A, thus in that case, the supremum in question is
ω1, the smallest uncountable ordinal. Also, if A ⇒∞G uBv for some reproductive
nonterminal B, then the same holds for A as well.

Otherwse, to each production of the above form, the nonterminals Xi belong to
a strongly connected component strictly below the component of A, again setting a
straightforward induction argument: the reader is referred to [16] for the technical
details.

As ω-languages are also well-ordered, we note that and a language of ω-words
is context-free in the sense of Cohen and Gold [8] if and only if it is an MCFL [11],
and moreover, it is decidable whether an MCFG generates only well-ordered words
having order type at most ω.

4.3 Languages of scattered words

Analogously for the case of well-ordered words, it is decidable whether an MCFG
G generates scattered words only, as this property is also MSO-definable.

Proposition 8 ([11]). It is decidable in polynomial time whether an MCFG G in
normal form generates scattered words only.

The key observation is the following: L(G) contains a quasi-dense word if and
only if there exists a finite derivation tree t, two leaves x and y of t and a viable
accepting set F ∈ F such that labels(πx) = labels(πy) = F and t(x) = t(y) = t(ε)
where πx and πy respectively denote the paths from the root to x and y. As this
property is further equivalent to the existence of some production A → αBβCγ
with A,B,C ∈ F for a viable F ∈ F , we have an efficient decision procedure.

For languages of scattered words, the main ingredient of many proofs is that
of the Hausdorff-rank. Basically, given a derivation tree t, we can tag each node
x of t by the rank of fr(t|x). Then, consider the subset D of the nodes tagged by
the same ordinal as the root. As an infinite sum of scattered orderings of the same
rank α has a rank strictly greater than α, this subset D cannot contain an infinite
antichain, yielding that D is a finite union of paths. Then, one can partially order
the set of derivation trees primarily by the rank of their frontier, secondary by the
number of paths covering their respective sets D, and third, by the depth of the first
node of D having at least two children in D. The defined ordering becomes then a
well-ordering of the derivation trees, allowing us to apply well-founded induction.

The first such application is the following “gap theorem” of MCFLs of scattered
words:

Proposition 9 ([11]). The supremum of the Hausdorff-rank of the members of
L(G) is computable when G generates scattered words only.

Moreover, this supremum is either ω1 or some natural number.

The key observation for this result is again that reproductive nonterminals, and
only those, can produce words of arbitrarily large (countable) rank, and for the
others, a simple induction works over the strongly connected components of ΓG.

362 Kitti Gelle and Szabolcs Iván

Interestingly, it is also known [14] that an MCFL consisting only of scatterred
words is a BCFL if and only if the second case applies, i.e. if it has a finite upper
bound n on the Hausdorff-rank of its members.

In order to define the regular expression-like expressions capturing these MCFLs,
we will also consider pairs of words over an alphabet Σ, equipped with a finite con-
catenation and an ω-product operation. For pairs (u, v), (u′, v′) in Σ# × Σ#, we
define the product (u, v) · (u′, v′) to be the pair (uu′, v′v), and when for each i ∈ ω,
(ui, vi) is in Σ# × Σ#, then we let

∏
i∈ω

(ui, vi) be the word
(∏
i∈ω

ui
)(∏
i∈−ω

vi
)
. Let

P (Σ# × Σ#) denote the set of all subsets of Σ# × Σ#. Then P (Σ# × Σ#) is
equipped with the operations of set union, concatenation L · L′ = {(u, v) · (u′, v′) :
(u, v) ∈ L, (u′, v′) ∈ L′} and Kleene star L∗ = {ε} ∪ L ∪ L2 ∪ · · · . We also define
an ω-power operation P (Σ# ×Σ#)→ P (Σ#) by Lω consisting of the words of the
form

∏
i∈ω

(ui, vi) with (ui, vi) ∈ L for each i ∈ ω.

The motivation behind this notion is the following. If t is a derivation tree with a
distinguished leaf x labeled by some nonterminal A, and frontier word fr(t) = uAv,
then this frontier word is represented by the pair (u, v). Now if we substitute
a tree s with root symbol A in place of the distinguished leaf, having frontier
word fr(s) = u′Bv′, yielding the tree t′, then we have fr(t′) = uu′Bv′v which is
(u, v) · (u′, v′) according to the product operation we defined on pairs. Similarly,
if the root of t is also labeled A, then we can iterate substituting t in place of
the distinguished leaf: if we iterate a finite number of times, then the Kleene star
contains the “pair representant” of the resulting tree; if we iterate ω times, then
the frontier is uωv−ω = (u, v)ω.

Then, let the set of µωTs-expressions over the alphabet Σ be defined by the
following grammar (with T being the initial nonterminal):

T ::= a | ε | x | T + T | T · T | µx.T | Pω

P ::= T × T | P + P | P · P | P ∗

Here, a ∈ Σ and x ∈ X for an infinite countable set of variables. An occurrence of
a variable is free if it is not in the scope of a µ-operation, and bound, if it is not
free. A closed expression does not have free variable occurrences. The semantics of
these expressions are defined as expected using the monotone functions over P (Σ#)
and P (Σ# × Σ#) introduced earlier.

The characterization theorem of [12] states that these notions correspond to
each other:

Theorem 3 ([12]). A language L is an MCFL of scattered words if and only if it
can be denoted by some closed µωTs-expression.

The direction that such expressions always denote MCFLs is done by a straight-
forward construction, while the converse direction is again done via the well-
ordering of the derivation trees we introduced earlier.

Regular Expressions for Muller Context-Free Languages 363

5 Operational characterization of general MCFLs

In this section we give an operational characterization of MCFLs in general, using
the operational characterization of Muller regular languages of infinite trees given
in [18, 20] which we reproved using slightly different methods in [15].

There, we introduced for each ranked alphabet Σ (that is, each symbol a ∈ Σ
has some arity n ≥ 0; the set of n-ary symbols of Σ is denoted Σn) the set of µη-
regular tree expressions (tree expressions for short) over Σ as the least set satisfying
all the following conditions:

• If a ∈ Σn, n ≥ 0 and E1, . . . , En are tree expressions over Σ, then a(E1, . . . , En)
is a tree expression over Σ. When n = 0, we write a in place of a().

• If E and F are tree expressions over Σ, then so is (E + F).

• If E is a tree expression over Σ ∪ {x} for the nullary symbol x, and F is a
tree expression over ∆, then (E ·x F) is a tree expression over Σ ∪∆.

• If E is a tree expression over Σ ∪ {x} for the nullary symbol x, then (µx.E)
and (ηx.E) are tree expressions over Σ.

In order to define the semantics of these expressions, we have to define the op-
erations of x-product, µx and ηx on tree languages, for which we use cuts and
decompositions of trees. So let Σ be an alphabet and let Σ̂ stand for the disjoint
copy {â : a ∈ Σ} of Σ. The hatted symbols are of arity zero. Given a tree t, and a

subset X ⊆ dom(t) of its nodes, the X-cut of t is the following Σ ∪ Σ̂-tree t/X: a
node x belongs to dom(t/X) if and only if x is a node of t which is not a proper
descendant of any non-root member of X, i.e. dom(t/X) = dom(t)−

⋃
u∈X−{ε}

{y ∈

dom(t) : u ≺ y}. The labeling of t/X is defined as follows: for a node x ∈ dom(t/X)

let (t/X)(x) be t(x) if x /∈ X − {ε} and t̂(x) if x ∈ X − {ε}. That is, we “cut” the
tree at the nodes of X and add a hat to the symbols occurring at the cut-points.

Example 5. Figure 4 shows a tree t with frontier aωb−ω. Choosing the set X to
contain all the inner nodes of t, all the trees of the form (t|x)/(X|x) are the same
(shown on the right hand side of the Figure). Figure 5 shows a (finite) tree t which
gets decomposed into a set of six trees.

Now when K is a language of Σ ∪ Σ̂-trees and L is a language of ∆-trees for
some alphabets Σ and ∆, then K[Σ̂/L] is the following language of Σ ∪ ∆-trees:

a tree t belongs to K[Σ̂/L] if there exists some subset X ⊆ dom(t) such that t/X
belongs to K and for each x ∈ X, t|x belongs to L. (Usually ∆ is either Σ or

Σ ∪ Σ̂). That is, if we can cut t such that the “retained part” of the tree belongs
to K and all the subtrees that are “cut down” belong to L. Observe that if there
exists such an X, then the subset X ′ of �-minimal elements of X is also fine (as
t/X = t/X ′ then, and the condition for the subtrees is also valid), thus in that case
we can assume that t is cut by some antichain of its nodes.

364 Kitti Gelle and Szabolcs Iván

A

a A

a A

a A

.

b

b

b

A

a Â b

Figure 4: A tree and t one of its possible decompositions.

Given a tree language L over Σ ∪ Σ̂, the function K 7→ L[Σ̂/K] is a monotone

function (with respect to language inclusion), which maps the poset of Σ ∪ Σ̂-tree
languages to itself, thus it has a least fixed point that can be reached by the Kleene
iteration L0 = ∅, Lα = L[Σ̂/Lβ] for successor ordinals α = β + 1 and Lα =

⋃
β<α

Lβ

for limit ordinals α, that is, there exists some (least) ordinal α such that Lα is
the least fixed point of this function. This least fixed point is denoted Lµ and is a
Σ-tree language. It is relatively easy to show that a Σ-tree t belongs to Lµ if and
only if there is some subset X ⊆ t of its nodes such that there is no infinite chain
x1 ≺ x2 ≺ . . . in X and for each x ∈ X, the tree (t|x)/(X|x) belongs to L.

The last operation on trees is the η-product. Given a Σ ∪ Σ̂-tree language L,
the language Lη is a language of Σ-trees: a tree t belongs to Lη if and only if there
is some X ⊆ dom(t) of its nodes such that for each x ∈ X, the tree (t|x)/(X|x)
belongs to L. That is, now an arbitrary set of cut-points in the domain.

Now if L is a language of Σ ∪ {x}-trees for a nullary symbol x, then µx.L and

ηx.L are the tree languages L̂µ and L̂η where L̂ is the following language of Σ∪ Σ̂-
trees: a tree t belongs to L̂ if and only if its projection defined by a 7→ a, â 7→ x
belongs to L. That is, the Σ ∪ {x}-tree t′ we get from t by relabeling each hatted
symbol to x. Similarly, if K is a language of Σ ∪ {x}-trees and L is some ∆-tree

language, then let K ·x L be the language K̂[Σ̂/L].

Example 6. When K consists of the tree single tree A(x, Â), then Kη contains

a single tree with root symbol A and frontier xω. Then, Kη ·x {Â} contains a

single tree with root symbol A and frontier Âω. Finally, the frontier language of
(Kη ·x {Â} ∪ {A(a), A(Â, Â)})µ contains all the nonempty well-ordered words over
the singleton alphabet {a}.

After these definitions we are ready to define the semantics of tree expressions
in the expected way. A tree expression E denotes a tree language |E|, a set of
Σ-trees defined as follows:

Regular Expressions for Muller Context-Free Languages 365

A

B

B

a B

A

a

B

b

A

B

a a

a

a A

B

a a

a A

B

a a

A

a

A

B

B̂ Â

a Â

B

a a

B

a B

A

a

B̂

B

b

A

B

a a

a

A

B

a a

a A

B̂ A

a

Figure 5: A decomposition of a finite tree.

• |a(E1, . . . , En)| consists of those Σ-trees t whose root symbol is labeled a, the
root have exactly the children 1, . . . , n and for each i ∈ [n], t|i ∈ |Ei|.

• |(E+F)| = |E|∪|F |, |E·xF | = |E|·x|F |, |µx.E| = µx.|E| and |ηx.E| = ηx.|E|.

Now using the terms of [15], a tree language is Muller-regular if and only if it can
be denoted by some µη-regular tree expression. Hence it is easy to derive µη-regular
word expressions for MCFLs as MCFLs are exactly the frontier languages of Muller-
regular tree languages. For this, we have to define operations corresponding to the
·x, µx and ηx-operations above. Informally, for ·x we can define the substitution
operation: K[x/L] contains those words we get from members of K in which we
replace each occurrence of x by some word in L; then, µx.L is the least fixed point
of the monotone function X 7→ L[x/X]; and, members of ηx.L are the Σ-words
which we get by starting from the word x, then replacing each occurrence of x by
some member of L, and repeat this process – the words occurring as “limits” of
this (possibly infinite) replacement sequence are members of ηx.L.

To treat the case of ηx.L formally, we introduce the class of generalized Σ-trees
as follows. A generalized tree domain is a modified tree domain where we do not
restrict the set of children of any node to be a finite linearly ordered set, but allow

366 Kitti Gelle and Szabolcs Iván

x

a x

. . . b b b b

a x

. . . b b b b

a . . .

Figure 6: An L-x-substitution tree.

arbitrary countable linear orders. Nevertheless, each node has to have a finite
depth.

More formally, given a partially ordered set P = (P,<), a P -tree domain is a
subset D of P ∗ satisfying the following conditions:

• D is nonempty and prefix-closed.

• For each node d ∈ D, the set {p ∈ P : d · p ∈ D} of the children of d is a
linearly ordered subset of P .

When an alphabet Σ is also given, then a P -Σ-tree is a mapping t : dom(t) → Σ
from a P -tree domain to Σ, that is, a Σ-labeled P -tree domain and the frontier
word of t is the Σ-word fr(t) whose domain is the set of the leaves of t (those nodes
having no children) equipped with the lexicographic ordering: p1 . . . pn <` p

′
1 . . . p

′
m

if and only if for some i ≤ m,n we have pi < p′i and for each j < i, pj = p′j . Observe
that this ordering is total on the leaves since for two different leaves u = p1 . . . pn
and v = p′1 . . . p

′
m neither of them can be a prefix of the other, hence there exists

a unique least index i ≤ m,n with pi 6= p′i; and as the set of the children of the
node p1 . . . pi−1 is linearly ordered, it has to be either the case pi < p′i or p′i < pi.
Observe also that if each node has a countable children set, the fr(t) is a countable
word.

Given a language L ⊆
(
Σ ∪ {x}

)#
, we define the languages µx.L and ηx.L

over Σ as follows. Let P =
⊎
u∈L

dom(u) be the disjoint union of the domains of

all the words belonging to L. Then, an L-x-substitition tree is a P -
(
Σ ∪ {x}

)
-tree

satisfying the following conditions: the root is not a leaf node, each inner node is
labeled by x, each leaf node is labeled in Σ and for each inner node u, the word
formed by the labels of the children of u belongs to L.

Example 7. Figure 6 depicts an L-x-substitution tree where L is the language
{b−ω, (ax)ω}.

Then, let ηx.L contain the frontier words of the L-x-substitution trees, and let
µx.L contain the frontier words of those L-x-substitution trees having no infinite
paths.

Example 8. Figure 7 depicts an L-x-substitution tree for L = {axb}. This tree
shows that aωb−ω is a member of ηx.L (but does not, in fact, belong to µx.L as

Regular Expressions for Muller Context-Free Languages 367

x

a x

a x

a x

.

b

b

b

Figure 7: The word aωb−ω belongs to ηx.{axb}.

it has an infinite path. For this language, µx.L = ∅. In contrast, µx.{axb, c} is
{ancbn : n ≥ 0} and ηx.{axb, c} is µx.{axb, c} ∪ {aωb−ω}.)

These operations µ and η on languages over words correspond to the operations
µ and η on tree languages in the sense fr(µx.L) = µx.fr(L) and fr(ηx.L) = ηx.fr(L)
for each tree language L. We also make use of the ·x product operation: when
K ⊆ (Σ ∪ {x})# and L ⊆ ∆# for the alphabets Σ and ∆, then K ·x L ⊆ (Σ ∪∆)#

contains those words one can get from a word u in K by replacing each occurrence
of x in u by some member of L. Or more technically, the frontier words of those
(K ∪L)-x-substitution trees of depth at most two in which the word formed by the
children of the root symbol belongs to K and each word formed by the children of
the depth-one inner nodes belongs to L. In particular, the tree depicted in Figure 6
shows its frontier (ab−ω)ω belongs to (ax)ω ·x b−ω.

Then also, fr(K ·x L) = fr(K) ·x fr(L) for arbitrary tree languages K and L.

By the characterization of Muller regular tree languages we get the following
characterization:

Theorem 4. A language L ⊆ Σ# is an MCFL if and only if it can be generated
from the singleton languages of one-letter words by a finite number of concatenation,
binary union, ·x-product, µx and ηx-operations.

References

[1] Bedon, Nicolas. Finite automata and ordinals. Theor. Comput. Sci., 156(1–
2):119–144, 1996.

[2] Bedon, Nicolas, Bès, Alexis, Carton, Olivier, and Rispal, Chloé. Logic and Ra-
tional Languages of Words Indexed by Linear Orderings, pages 76–85. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2008.

368 Kitti Gelle and Szabolcs Iván

[3] Boasson, Luc. Context-free sets of infinite words. In Weihrauch, Klaus, edi-
tor, Theoretical Computer Science, volume 67 of Lecture Notes in Computer
Science, pages 1–9. Springer, 1979.

[4] Bruyère, Véronique and Carton, Olivier. Automata on linear orderings. J.
Comput. Syst. Sci., 73(1):1–24, 2007.

[5] Bès, Alexis and Carton, Olivier. A Kleene theorem for languages of words
indexed by linear orderings. In de Felice, Clelia and Restivo, Antonio, editors,
Developments in Language Theory, volume 3572 of Lecture Notes in Computer
Science, pages 158–167. Springer, 2005.

[6] Büchi, J. Richard. The monadic second order theory of ω1, pages 1–127.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1973.

[7] Choueka, Yaacov. Finite automata, definable sets, and regular expressions
over ωn-tapes. Journal of Computer and System Sciences, 17(1):81 – 97, 1978.

[8] Cohen, Rina S. and Gold, Arie Y. Theory of ω-languages. I. Characterizations
of ω-context-free languages. J. Comput. Syst. Sci., 15(2):169–184, 1977.

[9] Courcelle, Bruno. Frontiers of infinite trees. ITA, 12(4), 1978.

[10] Ésik, Zoltán and Iván, Szabolcs. Büchi context-free languages. Theor. Comput.
Sci., 412(8-10):805–821, 2011.

[11] Ésik, Zoltán and Iván, Szabolcs. On Müller context-free grammars. Theor.
Comput. Sci., 416:17–32, 2012.

[12] Ésik, Zoltán and Iván, Szabolcs. Operational characterization of scattered
MCFLs. In Béal, Marie-Pierre and Carton, Olivier, editors, Developments
in Language Theory - 17th International Conference, DLT 2013, Marne-la-
Vallée, France, June 18-21, 2013. Proceedings, volume 7907 of Lecture Notes
in Computer Science, pages 215–226. Springer, 2013.

[13] Ésik, Zoltán and Iván, Szabolcs. MSO-definable properties of Muller context-
free languages are decidable. In Câmpeanu, Cezar, Manea, Florin, and Shal-
lit, Jeffrey, editors, Descriptional Complexity of Formal Systems - 18th IFIP
WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8,
2016. Proceedings, volume 9777 of Lecture Notes in Computer Science, pages
87–97. Springer, 2016.

[14] Ésik, Zoltán and Okawa, Satoshi. On context-free languages of scattered words.
In Yen, Hsu-Chun and Ibarra, Oscar H., editors, Developments in Language
Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August
14-17, 2012. Proceedings, volume 7410 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2012.

[15] Gelle, Kitti and Iván, Szabolcs. Expressions for regular languages of infinite
trees. Manuscript, 2017.

Regular Expressions for Muller Context-Free Languages 369

[16] Iván, Szabolcs and Mészáros, Ágnes. Müller context-free grammars generating
well-ordered words. In Dömösi, Pál and Iván, Szabolcs, editors, Automata
and Formal Languages, 13th International Conference, AFL 2011, Debrecen,
Hungary, August 17-22, 2011, Proceedings., pages 225–240, 2011.

[17] Khoussainov, Bakhadyr, Rubin, Sasha, and Stephan, Frank. Automatic linear
orders and trees. ACM Trans. Comput. Logic, 6(4):675–700, October 2005.

[18] Mostowski, Andrzej Wlodzimierz. Regular expressions for infinite trees and
a standard form of automata. In Symposium on Computation Theory, pages
157–168, 1984.

[19] Nivat, Maurice. Sur les ensembles de mots infins engendrés par une grammaire
algébrique. ITA, 12(3), 1978.

[20] Niwinski, Damian. Fixed points vs. infinite generation. In Proceedings of the
Third Annual IEEE Symposium on Logic in Computer Science (LICS 1988),
pages 402–409. IEEE Computer Society Press, July 1988.

[21] Perrin, Dominique and Pin, Jean-Éric. Infinite words: automata, semigroups,
logic and games, 2004.

[22] Rabin, Michael O. Decidability of second-order theories and automata on
infinite trees. Bull. Amer. Math. Soc., 74(5):1025–1029, 09 1968.

[23] Rosenstein, Joseph G. Linear orderings. Academic Press New York, 1981.

[24] Wojciechowski, Jerzy. Classes of transfinite sequences accepted by finite au-
tomata. Fundamenta Informaticae, 7:191–223, 1984.

[25] Wojciechowski, Jerzy. Finite automata on transfinite sequences and regular
expressions. Fundamenta Informaticae, 8:379–396, 1985.

Acta Cybernetica 23 (2017) 371–378.

Statistical Analysis of DH1 Cryptosystem

Pál Dömösia, József Gállb, Géza Horváthb, and Norbert Tihanyic

In memory of Professor Zoltán Ésik

Abstract

In this paper we shall use some standard statistical methods to test the
avalanche effect of a previously introduced cryptosystem based on automata
compositions, called DH1 cryptosystem. We have generated sample data of
encryption and decryption. In our first set of analysis we simply estimated
the probabilities of the atoms of the discrete distribution separately in order
to compare them with those of the binomial test distribution. In the second
statistical analysis, we turned to a goodness-of-fit test. For this we used
the χ2-test. Thirdly, we assumed that the sample comes from a binomial
distribution and we calculated the maximum likelihood estimation of the two
parameters. Finally we discuss some well-known further tests on randomness
and related results. Our main conclusions based on the statistics all confirm
that the avalanche effect is fulfilled.

Keywords: automata network, block cypher, statistics, goodness-of-fit, MLE

1 Introduction

Modern block cyphers are symmetric cryptosystems operating on fixed-length
groups of bits, called blocks. These blocks contains at least 128 bits. The cryp-
tosystem transforms the plaintext blocks into cyphertext blocks one by one. In [1]
the authors introduced a novel block cypher based on abstract automata and Latin
cubes, which is called DH1 cryptosystem in [3]. Another type of cryptosystem based
on compositions of automata can be found in [2]. The basic idea of DH1 cryptosys-
tem is to use a giant size finite automaton and a pseudorandom generator. The set
of states of the automaton consists of all possible plaintext/cyphertext blocks, and
the input set of the automaton contains all possible pseudorandom blocks. The size
of the pseudorandom blocks are the same as the size of the plaintext/cyphertext
blocks: 128 bits. For each plaintext block the pseudorandom generator generates

aInstitute of Mathematics and Informatics, College of Nýıregyháza, H-4400 Nýıregyháza, Sóstói
út 36, Hungary, E-mail: domosi@nyf.hu

bFaculty of Informatics, University of Debrecen, H-4028 Debrecen, Kassai út 26, Hungary,
E-mail: {gall.jozsef,horvath.geza}@inf.unideb.hu

cFaculty of Informatics, Eötvös Loránd University, H-1117 Budapest, Pázmány Péter sétány
1/C, Hungary, E-mail: tihanyi.pgp@gmail.com

DOI: 10.14232/actacyb.23.1.2017.20

372 Pál Dömösi, József Gáll, Géza Horváth, and Norbert Tihanyi

the next pseudorandom block, and the automaton transforms the plaintext block
into a cyphertext block by the effect of the pseudorandom block. The key is the
transformation matrix of the automaton.

A = ({0, 1, ..., n− 1}, {0, 1, ..., n− 1}, δ)

δ 0 1 ... n− 1
0 c0,0 c0,1 ... c0,n−1

1 c1,0 c1,2 ... c1,n−1

...
...

...
. . .

...
n− 1 cn−1,1 cn−1,2 ... cn−1,n−1

• n = 2128

• the states (c0,0, ..., cn−1,n−1) are numbers between 0 and n− 1

• each row is a permutation of states (other case decryption is impossible)

• each column is a permutation of states (other case statistical attacks are
possible)

• input letters are pseudorandom numbers between 0 and n− 1

• the key is the transition function itself (+ an initial value: the seed of the
pseudorandom number generator (PRNG)).

The following example shows the encryption of a secret message which contains the
following 3 blocks: 12993,999833,22212211

• plaintext blocks: 12993,999833,22212211

• suppose the (secret) pseudorandom number blocks are: 2012200, 239993,178

• ciphertext blocks: c2012200,12993, c239993,999833, c178,22212211
(δ(2012200, 12993), δ(239993, 999833), δ(178, 22212211)).

The problem with this idea is the following. The size of the transition matrix of
the automaton is huge, namely 2128 × 2128 × 16 bytes, which is impossible to store
in the memory or on a hard disk. The solution is to use an automata network.
Automata network consists of smaller automata, and it is able to simulate the
work of a huge automaton [4]. In [1] the authors introduced a simple automata
network which consist of 16 automaton, each of them calculates only one byte of
the cyphertext block. Using this simple automata network makes possible simple
calculations, but the authors had to introduce an automata network which main
rounds contains 4 steps, and each step contains 2 sub steps to have an appropriate
avalanche effect. Avalanche effect is an important property for block cyphers,
meaning one bit change in the plaintext block should effect significant change in
the cyphertext block, and one bit change in the cyphertext block should effect

Statistical Analysis of DH1 Cryptosystem 373

significant change in the corresponding plaintext block. The experimental results
shows that 2 main rounds are enough for appropriate avalanche effect, but in this
paper we are going to show detailed statistical analysis based on our test data
samples.

2 Data and methodology

To test our system, we calculated the number of the identical bytes in two 16 bytes
long independent random strings. We have tested 1.000.000 pairs, and saved the
result. We also compared 1.000.000 ciphertext block pairs, where the corresponding
plaintext blocks had just 1 bit difference. Finally we compared 1.000.000 plaintext
block pairs, where the corresponding ciphertext blocks had just 1 bit difference.

Table 1 : Frequency table of the four samples

identical bytes EN1R DE1R EN2R DE2R
0 915924 916422 938843 939081
1 43064 42710 59403 59145
2 22670 22397 1717 1746
3 880 921 37 28
4 11050 11064 0 0
5 410 396 0 0
6 179 225 0 0
7 11 4 0 0
8 5574 5594 0 0
9 125 136 0 0
10 72 89 0 0
11 3 1 0 0
12 36 40 0 0
13 0 0 0 0
14 1 1 0 0
15 0 0 0 0
16 0 0 0 0

Basically we have generated this way 4 different samples: on the one hand we
had samples obtained after encyption (encoding, denoted by EN) and decryption
(decoding, denoted by DE), on the other hand after 1 round and 2 rounds (de-
noted by 1R and 2R) of encryption or decryption. Hence we shall refer to the 4
samples as EN1R, EN2R, DE1R, DE2R, respectively. (See Table 1, where we show
the frequencies of the possible values –i.e. the number of identical bytes– of the
distributions for all samples.)

Based on the generated samples we considered three different statistical ques-
tions to analyse the distribution of the number of different blocks in the pairs. But
the main aim behind all questions, of course, was to check wether the avalanche
effect can be confirmed in our case. Clearly, in an ideal situation – i.e. where we

374 Pál Dömösi, József Gáll, Géza Horváth, and Norbert Tihanyi

have an appropriate avalanche effect – one should get a binomial distribution with
parameters n = 16 and p = 1 − 1/256 for the generated data, since in that case
one can get no additional information from the data about the coding method.
Therefore in what follows we shall call the binomial distribution with the above
parameters simply the ’reference distribution’. With different ways we analyze
whether our data show significant difference from the reference distribution or not.

For what follows we shall denote the probabilities of the test (reference) dis-

tribution by p
(0)
i , for i = 0, 1, . . . , 16, whereas the probabilities of the real (true)

distribution will be denoted by p∗i , for i = 0, 1, . . . , 16.
In our first set of analysis we simply estimated the probabilities of the 16 atoms

of the discrete distribution separately. We calculated the point estimate of the
probabilities, furtherore, considering the interval estimate of the probabilities we
used confidence level α = 0, 999, i.e. 99,9% and calculated the maximum value of
the margin of errors, which has the form

∆ =
1

2
z1−α

2

√
1

n
,

where z1−α
2

is a quantile of the standard normal distribution of order 1− α
2 and n

is the sample size. It is well known that the margin of error takes its maximum for
probability 1/2. Since we have a large sample size we decided to fix the confidence
level at a very high value, so that small differences are indicated. This way one can
see the difference between the probabilities obtained from the reference binomial
distribution and the estimated probabilities from the sample.

In the second statistical analysis, we turned to a goodness-of-fit test. For this
we used the χ2-test of goodness of fit with the well-known test statistics

χ2 =

k∑
i=1

(fi − f∗i)2

f∗i
,

where fi and f∗i are the observed and the expected frequencies (the latter one being
based on the test distribution) for category (probability) i, i = 1, . . . , k, respectively.
The aim is of course to check if the null hypothesis can be confirmed according to
what the theoretical distribution of the population what the data is coming from
coinsides the reference binomial distribution, which is our test distribution.

In our third analysis, we assumed that the sample comes from a binomial distri-
bution (based on the results obtained to the previous questions) and we calculated
simply the maximum likelihood estimation of the two parameters of the distribution
and compared them to those of the reference distribution.

3 Statistical results

Before turning to the analysis it is worth to mention that one should check the
basic properties of the sample. In other words, since we will use some standard
statistical methods which are all based on independent and identically distributed

Statistical Analysis of DH1 Cryptosystem 375

sample (i.i.d. sample) one should verify these properties. Which concerns our case,
either after one round or two rounds and either in case of encryption or decryption
one can clearly see that the generation method of the data assures us that on the one
hand the data element show no independence on the other hand their (theoretical)
distribution is the same.

Table 2 : Difference of the point estimates and the theoretical values (i.e.

p̂i − p(0)i , i = 0, 1, . . . , 16)

EN1R DE1R EN2R DE2R
0 -2.337318e-02 -2.287610e-02 -4.551571e-04 -2.170959e-04
1 -1.587231e-02 -1.622635e-02 4.667083e-04 2.086489e-04
2 2.093660e-02 2.066358e-02 -1.642037e-05 1.257791e-05
3 8.482781e-04 8.892772e-04 5.277280e-06 -3.722757e-06
4 1.104961e-02 1.106360e-02 -4.043097e-07 -4.043097e-07
5 4.099966e-04 3.959962e-04 -3.805267e-09 -3.805267e-09
6 1.790002e-04 2.250000e-04 -2.735813e-11 -2.735813e-11
7 1.100001e-05 4.000000e-06 -1.532668e-13 -1.532668e-13
8 5.574006e-03 5.594000e-03 -6.761772e-16 -6.761772e-16
9 1.250001e-04 1.360000e-04 -2.357045e-18 -2.357045e-18
10 7.200007e-05 8.900000e-05 -6.470319e-21 -6.470319e-21
11 3.000003e-06 1.000000e-06 -1.384025e-23 -1.384025e-23
12 3.600004e-05 4.000000e-05 -2.261480e-26 -2.261480e-26
13 -2.728784e-29 -2.728784e-29 -2.728784e-29 -2.728784e-29
14 1.000001e-06 1.000000e-06 -2.293096e-32 -2.293096e-32
15 -1.199004e-35 -1.199004e-35 -1.199004e-35 -1.199004e-35
16 -2.938736e-39 -2.938736e-39 -2.938736e-39 -2.938736e-39

Which concerns the point estimations for the four samples, Table 2 contains the
results, namely: we show the difference of the point estimates and the theoretical

values (obtained from the test distribution). In other words we show p̂i − p
(0)
i

for all i = 0, 1, . . . , 16, where p̂i is clearly the point estimate (namely the relative
frequency) of p∗i . One can compare it with the maximum value of the margin of error
∆ descibed in the previous section. With α = 0, 999 we obtain ∆ = 0, 001545116.
We can see from the table that after 1 round some of the estimates have a relatively
large difference from the theoretical value, namely larger than 10−2 and hence
larger than ∆ both in case of encryption or decryption. However, after 2 rounds
the results are much better since the largest difference at issue is still clearly under
10−3. Thus we can conclude that after two rounds the generated data do not
show difference from the theoretical test distribution, with 99,9% of confidence one
could not differentiate between the test probabilities and the obtained empirical
probabilities. Thus after four rounds the cryptosystem in this way show to fulfill
the appropriate avalanche effect.

The results obtained from the χ2-test can be seen in Table 3. Note that due
to the large sample size we had the following concern. One cannot generally hope

376 Pál Dömösi, József Gáll, Géza Horváth, and Norbert Tihanyi

a clear confirmation of the null hypothesis, since very small differences of the dis-
tributions may lead to the rejection of the null hypothesis in such a case. (That
is why sometimes the P-values are used only as an indicator: choosing different
test distributions the one giving the largest P-value is accepted even if it does not
show perfect fit by the test.) However, the results gave a clear picture, namely
they lead to the same conclusions as in the previous analysis: after 2 rounds with
both samples we cannot reject the null hypothesis that the data comes from the
reference distribution. This again confirm that the cryptosystem seems to fulfill
the avalanche effect.

Table 3 : Results obtained from the χ2-test

EN1R DE1R EN2R DE2R
test stat. 4.366657e+19 4.367992e+19 5.357948e-06 1.725129e-06

P-values ≈0 (<10e-10) ≈0 (<10e-10) ≈ 1 ≈ 1

conclusion H1 H1 H0 H0

Finally, Table 4 shows the results obtained by the maximum likelihood estima-
tions of the two parameters of the binomial distribution (assuming that the data
is from the family of binomial distributions). For the test distribution we have
p = 1 − 1/256 ≈ 0, 9960938 and N = 16. The results after two rounds support
again the acceptence of the reference distribution as the real one, since the errors
in the estimates are less than 10−4, which is quite satisfactory.

Table 4 : Results obtained by the maximum likelihood estimations

EN1R DE1R EN2R DE2R
p 0.9569296 0.9566545 0.9960694 0.9960817
N 16.52644 16.53131 15.99994 15.99997

3.1 The Lempel-Ziv, Sárközy and Mauduit randomness tests

One of the criteria used to evaluate the AES candidate algorithms was their demon-
strated suitability as random number generators. That is, the evaluation of their
output utilizing statistical tests should not provide any means by which to dis-
tinguish them computationally from a truly random source. In order to test our
cryptosystem we performed some basic randomness testing such as the Lempel-Ziv
test and Sárközy and Mauduit methods. Data compression methods are very good
starting point for testing pseudo randomness of a finite binary string. Applying
the Lempel-Ziv test we were not able to distinguish the output of our cryptosystem
from true random sources. In order to fulfill further requirements we performed
the Sárközy and Mauduit methods [5, 6] so that to study the behaviour of pseu-
dorandom sequences generated by our cryptosystem. Let EN = {e1, e2, . . . , eN} ∈
{−1,+1}N represent a finite binary sequence. Let us define

U(EN ,M, a, b) =

M∑
j=1

ea+jb.

Statistical Analysis of DH1 Cryptosystem 377

The well-distribution measure of EN is defined by

W (EN) = max
a,b,t
|U(EN , t, a, b)| = max

a,b,t

∣∣∣∣∣∣
t∑

j=1

ea+jb

∣∣∣∣∣∣
where the maximum is taken over all a, b, t such that a ∈ Z, b, t ∈ N and 1 ≤ a+b ≤
a+ tb ≤ N . Furthermore let us define

V (EN ,M,D) =

M−1∑
n=0

en+d1 en+d2 . . . en+dk .

The correlation measure of order k of EN is defined by

Ck(EN) = max
M,D
|V (EN ,M,D)| = max

M,D

∣∣∣∣∣
M−1∑
n=0

en+d1 en+d2 . . . en+dk

∣∣∣∣∣
where the maximum is taken over all M and D = (d1, . . . , dk) such that 0 ≤
d1 ≤ · · · ≤ dk ≤ N −M . The goodness of a PRNG is determined by the order of
W (EN) and Ck(EN). Our first results on the issue showed that we were not able to
distinguish the output of our cryptosystem from true random sources by analyzing
the deviation of W (EN) and Ck(EN).

There are many different statistical methods for testing the pseudorandomness
of a binary string. For instance, The National Institute of Standards and Technol-
ogy (NIST) published a statistical package consisting of 15 statistical tests that were
developed to test the randomness of arbitrarily long binary sequences produced by
either hardware or software based cryptographic random or pseudorandom num-
ber generators. Our latest (positive) test results confirm that it is meaningful and
hopeful to run further tests on the cryptosystem in this direction. Note that ac-
cording to the first few test results the DH1 cryptosystem successfully passed the
criteria of NIST test so we would like to continue our research in this direction.

4 Conclusions

The results from the statistical estimations and tests show that the distributions of
the 3 samples are the same with the same parameters, their distribution coincides
with the theoretical binomial distribution, which means that the cryptosystem has
an appropriate (efficient, statistically significant) avalanche effect. The first few
statistical test results suggest that the output of the cryptosystem can not be
distinguished from true random sources by statistical tests.

References

[1] P. Dömösi, G. Horváth: A novel cryptosystem based on abstract au-
tomata and Latin cubes, Studia Scientiarum Mathematicarum Hungarica,
52(2)(2015):221–232.

378 Pál Dömösi, József Gáll, Géza Horváth, and Norbert Tihanyi

[2] P. Dömösi, G. Horváth: A novel cryptosystem based on Gluškov product of
automata, Acta Cybernetica, 22(2015):359–371.

[3] P. Dömösi, J. Gáll, G. Horváth, N. Tihanyi: Some remarks on the DH1 Cryp-
tosystem based on automata compositions, in preparation.

[4] P. Dömösi, C. L. Nehaniv: Algebraic theory of automata networks: An in-
troduction, ser. SIAM monographs on Discrete Mathematics and Applications,
vol. 11, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2005, doi 10.1137/1.9780898718492.

[5] C. Mauduit, A. Sárközy: On finite pseudorandom binary sequences I : Measure
of pseudorandomness, the Legendre symbol, Acta Arithmetica, 82(1997), 365-
377.

[6] C. Mauduit, A. Sárközy: On finite pseudorandom binary sequences II : The
Champernowne, Rubin-Saphiro, and Thue-Morse sequences, a further con-
struction, J. Number Theory 73(2) (1998), 256-276.

Acta Cybernetica 23 (2017) 379–401.

Minimization of Deterministic Top-down

Tree Automata∗

Zoltán Fülöpa and Sándor Vágvölgyia

To the memory of Zoltán Ésik.

Abstract

We consider offline sensing unranked top-down tree automata in which
the state transitions are computed by bimachines. We give a polynomial time
algorithm for minimizing such tree automata when they are state-separated.

Keywords: bimachines, top-down unranked tree automata, minimization

1 Introduction

Minimization algorithms are necessary for the practical application of tree au-
tomata. Over ranked trees, Björklund and Cleophas [1] presented a taxonomy
of algorithms for minimizing deterministic bottom-up tree automata, and Gécseg
and Steinby [5] minimized deterministic top-down tree automata.

XML data or XML documents can be adequately represented by finite labeled
unranked trees, where unranked means that nodes can have arbitrarily many chil-
dren. This XML setting motivated the development of a theory of unranked tree
automata, both bottom-up and top-down computing were studied [2, 10]. Bottom-
up and top-down unranked tree automata have the same recognizing power [3].
Researchers usually abstract XML schema languages as Extended Document Type
Definitions (EDTDs for short) instead of tree automata. Minimizing unranked tree
automata or EDTDs is of both theoretical and practical importance [7].

In the case of bottom-up computing, Martens and Niehren [7] compared several
notions of bottom-up determinism for unranked tree automata, minimized various
types of deterministic bottom-up unranked tree automata, and showed that the
minimization problem is NP-complete for bottom-up unranked tree automata in
which the string languages in the transition functions are represented by determin-
istic finite state automata. For the size of deterministic bottom-up unranked tree

∗The publication is supported by the the NKFI grant no K 108448.
aInstitute of Informatics, University of Szeged, E-mail: {fulop,vagvolgy}@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.1.2017.21

380 Zoltán Fülöp and Sándor Vágvölgyi

automata, Salomaa and Piao [11] presented upper and lower bounds for the union
and intersection operations, and an upper bound for tree concatenation. They [12]
presented a lower bound for the size blow-up of determinizing a nondeterministic
unranked tree automaton.

For deterministic top-down unranked tree automata a blind version and a sens-
ing version with two variants were introduced. The first variant is the online one,
the state of a child depends on the state and the label of its parent and the labels
of its left-siblings. Hence the child states are assigned when processing the child
string in one pass from left to right. Online deterministic top-down unranked tree
automata have been investigated in the context of XML schema languages, they
were called as restrained competition EDTDs [9]. The second variant is the offline
one, it first reads the complete child string and only then assigns states to all chil-
dren. The blind, online, and offline sensing deterministic top-down unranked tree
automata are increasingly more powerful, and all of them are less powerful than
nondeterministic top-down unranked tree automata [8].

Minimization runs in nondeterministic polynomial time for deterministic blind
top-down unranked tree automata, but the precise complexity is unknown, and
runs in polynomial time for deterministic online sensing top-down unranked tree
automata. Martens et al. [8] minimized deterministic offline sensing top-down
unranked tree automata, where an unambiguous nondeterministic finite state au-
tomaton, associated with the state of the parent, reads the complete child string
and assigns to each child the state it enters having read the child’s label. They [8]
reduced the minimization problem for unambiguous nondeterministic finite state
automata, shown to be NP-complete by Jiang and Ravikumar [6], into the mini-
mization for deterministic offline sensing top-down unranked tree automata, hence
the minimization is NP-complete for deterministic offline sensing top-down un-
ranked tree automata.

Cristau et al. [4] gave an equivalent formalism for deterministic offline sensing
top-down unranked tree automata in terms of bimachines, from now on we refer to
this notion simply as a deterministic top-down tree automaton (DTTA for short).
A bimachine associated with the state of the parent assigns states to all children
during the transition. Its two semi-automaton components read the child string
from left-to-right and right-to-left, respectively, and its output function computes
the state of a child depending on the label of the node and the states of the two
semi-automata. Cristau et al. [4] noted that restrained competition EDTDs can
be seen as a restricted version of the DTTAs. Martens and Niehren [7] minimized
single-type and restrained completion EDTDs in polynomial time.

We minimize the size of a DTTA by minimizing the number of its states and the
number of the states of the bimachines associated with its states. A state of a DTTA
is an ∅-state if it accepts the empty tree language. A DTTA is state-separated if
each transition yields a sequence of ∅-states or a sequence of non ∅-states. We show
that it is decidable if a DTTA is state-separated. As the main result of our paper,
we give a polynomial time minimizing algorithm for state-separated DTTAs. We
will measure time as the number of elementary steps, assuming that each such step
takes a constant time. The core of our algorithm is twofold. Following the ideas of

Minimization of Deterministic Top-down Tree Automata 381

[5], we compute the connected part of the DTTA, find the equivalent states, and
then collapse them into a single state, which is their equivalence class. Then we do
similar minimization steps for the semi-automaton components of the bimachines
associated with the DTTA states. We compute the connected parts of the semi-
automata, find the equivalent semi-automaton states, and then collapse them into
a single state, which is their equivalence class. Here two states of either of the
semi-automata are equivalent if they yield the same output along all computations
on any input word starting from them and any state of the other semi-automaton
of the bimachine.

In Section 2, we present a brief review of the notions and notations used in the
paper. In Section 3, we recall the concept of a bimachine, then study and minimize
bimachines. In Section 4, we recall the concept of a DTTA. Then we present our
minimization algorithm for state-separated DTTAs, and show the correctness of
our algorithm.

2 Preliminaries

We denote by N the set of positive integers.
The cardinality of a set A is written as |A|. The composition of two mappings

f : A→ B and g : B → C is the mapping f◦g : A→ C defined by f◦g(a) = g(f(a))
for every a ∈ A.

A (binary) relation ρ over a set A is a subset ρ ⊆ A × A. For (a, b) ∈ ρ we
write aρb. We denote the reflexive and transitive closure of ρ by ρ∗. Let ρ be an
equivalence relation (i.e., a reflexive, symmetric, and transitive relation) over A.
For every a ∈ A, we denote by a/ρ the equivalence class which contains a, i.e.,
a/ρ = {b ∈ A | aρb}. Moreover, for every B ⊆ A we define B/ρ = {a/ρ | a ∈ B}.
Hence A/ρ is the set of all equivalence classes determined by ρ.

For a set X we denote by X∗ the set of all finite words over X. The empty
word is denoted by ε. For every x ∈ Σ∗, we denote by |x| and x−1 the length and
the reversal of x, respectively, and define them in the usual way.

A tree domain is a non-empty, finite, and prefix-closed subset D of N∗ satisfying
the following condition: if xi ∈ D for x ∈ N∗ and i ∈ N, then xj ∈ D for all j with
1 ≤ j < i.

Let Σ be an alphabet, i.e., a finite and non-empty set of symbols. An unranked
tree over Σ (or just a tree) is a mapping ξ : dom(ξ) → Σ, where dom(ξ) is a tree
domain. The elements of dom(ξ) are called the nodes of ξ. For every x ∈ dom(ξ)
we call the element ξ(x) of Σ the label of the node x and the number rkξ(x) =
max{i ∈ N | xi ∈ dom(ξ)} the rank of the node x in ξ. The root of ξ is ξ(ε). If
xi ∈ dom(ξ) for some x ∈ dom(ξ) and i ∈ N, then we call xi the successor of x. As
usual, a node of ξ without successors is called a leaf of ξ. The height height(ξ) of
ξ is defined by height(ξ) = max{ |x| | x ∈ dom(ξ) }. We denote by TΣ the set of all
trees over Σ.

Furthermore, let ξ, ξ′ ∈ TΣ and x ∈ dom(ξ). The subtree ξ|x of ξ at position
x is defined by dom(ξ|x) = {y ∈ N∗ | xy ∈ dom(ξ)} and ξ|x(y) = ξ(xy) for all

382 Zoltán Fülöp and Sándor Vágvölgyi

y ∈ dom(ξ|x). Moreover, we denote by ξ[x← ξ′] the tree which is obtained from ξ
by “replacing ξ|x by ξ′”, i.e. defined by

dom(ξ[x← ξ′]) = (dom(ξ) \ {xy | y ∈ N∗}) ∪ {xy | y ∈ dom(ξ′)}

and

ξ[x← ξ′](z) =

{
ξ(z) if z ∈ (dom(ξ) \ {xy | y ∈ N∗})
ξ′(y) if z = xy for some y ∈ dom(ξ′)}.

If the root of ξ is labeled by a and the root has k successors at which the direct
subtrees ξ1, . . . , ξk are rooted, then we write ξ = a(ξ1 . . . ξk).

Throughout the paper Σ and Γ denote arbitrary alphabets.

3 Bimachines

In this section we recall the concept of a bimachine, and establish a pumping lemma
for bimachines and give a polynomial time algorithm for minimizing a bimachine.

3.1 General concepts

A semi-automaton is a quadruple S = (S,Σ, s0, δ), where S is a finite set (states),
Σ is an alphabet (input alphabet), s0 ∈ S (initial state), and δ : S × Σ → S is a
mapping (transition mapping). Let s ∈ S be a state and w = a1...ak ∈ Σ∗ an input
word. The s-run of S on w is the sequence t0 . . . tk of states such that t0 = s and
ti = δ(ti−1, ai) for all 1 ≤ i ≤ k. We denote the state tk also by swS or by sw if
S is clear from the context. The s0-run of S on w is called the run of S on w. A
state s ∈ S is reachable (in S) if there is a w ∈ Σ∗ such that s = s0w. The set
of all reachable states is Sc = {s0w | w ∈ Σ∗}. Moreover, the connected part of S
is the semi-automaton Sc = (Sc,Σ, s0, δ

c), where δc(s, a) = δ(s, a) for each s ∈ Sc
and a ∈ Σ. (Note that δ(s, a) ∈ Sc.) We call S connected if Sc = S. Obviously, Sc
is connected. The following result is well-known.

Proposition 1. There is a polynomial time algorithm which constructs Sc for a
given S.

Proof. The standard algorithm runs in O(|S|2|Σ|) time.

A congruence of S is an equivalence relation ρ over S such that sρt implies
δ(s, a)ρδ(t, a) for every s, t ∈ S and a ∈ Σ. The factor semi-automaton of S de-
termined by a congruence ρ is the semi-automaton S/ρ = (S/ρ,Σ, s0/ρ, δρ), where
δρ(s/ρ, a) = δ(s, a)/ρ for all s ∈ S and a ∈ Σ.

Let T = (T,Σ, t0, δ
′) be a semi-automaton. A mapping ϕ : S → T is a homo-

morphism from S to T if
• ϕ(s0) = t0 and,
• ϕ(δ(s, a)) = δ′(ϕ(s), a) for every s ∈ S and a ∈ Σ.

Minimization of Deterministic Top-down Tree Automata 383

t�k t�k−1 t�k−2
. . . t�1 t�0 = s�

a1 a2 . . . ak−1 ak

s� = t�0 t�1 . . . t�k−2 t�k−1 t�k

↓↓ ↓ . . . ↓

bkb1 b2 . . . bk−1

Figure 1: Visualization of the definition of the mapping ||B||(s�,s�)

For a homomorphism ϕ from S to T , we have ϕ(swS) = ϕ(s)wT . If ϕ is a surjective
homomorphism, then T is a homomorphic image of S. If, in addition, ϕ is a
bijection, then we say that S and T are isomorphic and write S ∼= T .

A bimachine is a system B = (Σ,Γ,S�,S�, f), where Σ and Γ are alpha-
bets (input and output), S� = (S�,Σ, s�

0 , δ
�) and S� = (S�,Σ, s�

0 , δ
�) are semi-

automata, and f : S� × Σ× S� → Γ is a mapping (output function).
For every s� ∈ S� and s� ∈ S�, we define the mapping

||B||(s�,s�) : Σ∗ → Γ∗

as follows. Let ||B||(s�,s�)(ε) = ε. For every k ≥ 1 and w = a1 . . . ak ∈ Σ∗, we let
||B||(s�,s�)(w) = b1 . . . bk, where b1, . . . , bk ∈ Γ are obtained as follows. Let
• t�0 t�1 . . . t�k−1t

�
k be the s�-run of S� on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k the s�-run of S� on the reversed input ak . . . a1, and

• let bi = f(t�i−1, ai, t
�
k−i) for 1 ≤ i ≤ k, see Fig. 1.

We call ||B||(s�
0 ,s

�
0) the mapping computed by B and denote it by ||B||.

Throughout the paper, B and B′ will denote the bimachines

• B = (Σ,Γ,S�,S�, f), with semi-automata S� = (S�,Σ, s�
0 , δ

�)
and S� = (S�,Σ, s�

0 , δ
�) and

• B′ = (Σ,Γ, T �, T �, f ′) with semi-automata T � = (T�,Σ, t�0 , γ
�)

and T � = (T�,Σ, t�0 , γ
�),

respectively.

The bimachines B and B′ are equivalent if ||B|| = ||B′||. Next we prove a pumping
lemma for bimachines.

Lemma 1. There is an integer N > 0 such that for every x ∈ Σ∗ with |x| > N
and ||B||(x) = y, there are x1, x2, x3 ∈ Σ∗ and y1, y2, y3 ∈ Γ∗ such that
• x = x1x2x3 and y = y1y2y3,
• |xi| = |yi| for 1 ≤ i ≤ 3,
• 0 < |x2| = |y2| ≤ N , and
• ||B||(x1x

n
2x3) = y1y

n
2 y3 for every n ≥ 0.

384 Zoltán Fülöp and Sándor Vágvölgyi

Proof. Let N = |S�||S�||Σ|. Moreover, let x = a1 . . . ak ∈ Σ∗ be an input string
with a1, . . . , ak ∈ Σ and k > N and ||B||(x) = y. Let
• s�

0 s
�
1 . . . s

�
k−1s

�
k be the run of S� on a1 . . . ak,

• s�
0 s

�
1 . . . s

�
k−1s

�
k the run of S� on ak . . . a1, and

• let bi = f(s�
i−1, ai, s

�
k−i) for 1 ≤ i ≤ k.

Then y = b1 . . . bk. Since k > N , there are 1 ≤ i < j ≤ k such that

(s�
i−1, ai, s

�
k−i) = (s�

j−1, aj , s
�
k−j).

We may assume w.l.o.g. that the triples in the sequence (s�
i , ai+1, s

�
k−i−1) . . .

(s�
j−1, aj , s

�
k−j) are pairwise different. Then we define

x1 = a1 . . . ai, x2 = ai+1 . . . aj , and x3 = aj+1 . . . ak,

and decompose y into y1, y2, and y3 accordingly. By standard arguments we can
show that these decompositions of x and y satisfy the requirements of the lemma.

Let s� ∈ S�, s� ∈ S�, and x, y ∈ Σ∗. It should be clear that

||B||(s�,s�)(xy) = ||B||(s�,s�y−1)(x)||B||(s�x,s�)(y).

We will use this fact later in the paper.
Let s� ∈ S� and s� ∈ S�. The pair (s�, s�) is reachable (in B) if there is a

string x = a1 . . . ak ∈ Σ∗ with runs
• s�

0 s
�
1 . . . s

�
k−1s

�
k of S� on a1 . . . ak and

• s�
0 s

�
1 . . . s

�
k−1s

�
k of S� on ak . . . a1

such that (s�, s�) = (s�
i−1, s

�
k−i) for some 1 ≤ i ≤ k. We note that (s�, s�) is

reachable in B if and only if s� is reachable in S� and s� is reachable in S�.
The connected part of B is the bimachine Bc = (Σ,Γ,S�c,S�c, f c), where:
• S�c and S�c are the connected parts of S� and S�, respectively,
• f c(s�, a, s�) = f(s�, a, s�) for every s� ∈ S�c, s� ∈ S�c, and a ∈ Σ.

It is obvious that Bc is equivalent to B. We call B connected if Bc = B. We note
that B is connected if both S� and S� are connected. Hence Bc is connected. By
Proposition 1 we have the following result.

Proposition 2. There is a polynomial time algorithm which constructs Bc for a
given B.

Proof. We compute S�c and S�c. Thus, by Proposition 1, the algorithm runs in
O((|S�|2 + |S�|2)|Σ|) time.

A congruence ρ of B is a pair (ρ�, ρ�), where
• ρ� and ρ� are congruences of the semi-automata S� and S�, respectively,

and
• for all s�, t� ∈ S�, s�, t� ∈ S�, and a ∈ Σ, if s�ρ�t� and s�ρ�t�, then

f(s�, a, s�) = f(t�, a, t�).

Minimization of Deterministic Top-down Tree Automata 385

For a congruence ρ = (ρ�, ρ�) of B, we define the factor bimachine of B determined
by ρ to be

B/ρ = (Σ,Γ,S�/ρ�,S�/ρ�, fρ),

where fρ(s
�/ρ�, a, s�/ρ�) = f(s�, a, s�) for all s� ∈ S�, s� ∈ S�, and a ∈ Σ.

A pair ϕ = (ϕ�, ϕ�) of mappings ϕ� : S� → T� and ϕ� : S� → T� is a
homomorphism from B to B′ if ϕ� and ϕ� are homomorphisms from S� to T �

and S� to T �, respectively, and in addition f(s�, a, s�) = f ′(ϕ�(s�), a, ϕ�(s�))
for every s� ∈ S�, s� ∈ S�, and a ∈ Σ. If ϕ is a homomorphism and both ϕ�

and ϕ� are surjective, then B′ is a homomorphic image of B. If both ϕ� and ϕ�

are bijections, then we say that B and B′ are isomorphic and write B ∼= B′.

Lemma 2. If there is a homomorphism ϕ = (ϕ�, ϕ�) from B to B′, then

||B||(s�,s�) = ||B′||(ϕ�(s�),ϕ�(s�))

for every s� ∈ S� and s� ∈ S�. In particular, ||B|| = ||B′||.

Proof. For every s� ∈ S� and s� ∈ S�, ||B||(s�,s�)(ε) = ε and
||B′||(ϕ�(s�),ϕ�(s�))(ε) = ε.

Let k ≥ 1 and w = a1 . . . ak ∈ Σ∗. Then ||B||(s�,s�)(w) = b1 . . . bk, where
b1, . . . , bk are obtained as follows. Let
• t�0 t�1 . . . t�k−1t

�
k be the s�-run of S� on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k be the s�-run of S� on the reversed input ak . . . a1, and

• bi = f(t�i−1, ai, t
�
k−i) for 1 ≤ i ≤ k, see Fig. 1.

Then
• ϕ�(t�0)ϕ�(t�1) . . . ϕ�(t�k−1)ϕ�(t�k) is the ϕ�(s�)-run of T � on a1 . . . ak, and
• ϕ�(t�0)ϕ�(t�1) . . . ϕ�(t�k−1)ϕ�(t�k) is the ϕ�(s�)-run of T � on the reversed

input ak . . . a1.
As ϕ is a homomorphism, bi = f ′(ϕ�(t�i−1), ai, ϕ

�(t�k−i)) for 1 ≤ i ≤ k. Hence
||B′||(ϕ�(s�),ϕ�(s�))(w) = b1 . . . bk.

By the corresponding definitions we have the following result.

Lemma 3. If there is a surjective homomorphism ϕ from B to B′, then |T�
q | ≤ |S�

q |
and |T�

q | ≤ |S�
q |.

Lemma 4. If ρ is a congruence of B, then B/ρ is a homomorphic image of B.

Proof. It is easy to check that the mapping ϕ� : S� → S�/ρ� defined by ϕ�(s�) =
s�/ρ� is a surjective homomorphism from S� to S�/ρ�. Also, the mapping
ϕ� : S� → S�/ρ� defined analogously is a surjective homomorphism from S�

to S�/ρ�.

Lemma 5. Let ρ = (ρ�, ρ�) be a congruence of the bimachine B. Then

||B||(s�,s�) = ||B/ρ||(s�/ρ�,s�/ρ�)

for all s� ∈ S� and s� ∈ S�. In particular, ||B|| = ||B/ρ||.

Proof. It follows from Lemmas 2 and 4.

386 Zoltán Fülöp and Sándor Vágvölgyi

3.2 Minimization of bimachines

The bimachine B is called minimal if |S�| ≤ |T�| and |S�| ≤ |T�| for any bima-
chine B′ which is equivalent to B.

We introduce the relation ρ�
B ⊆ S�×S� as follows: for all s�, t� ∈ S�, we have

s�ρ�
B t

� if ||B||(s�,s�) = ||B||(t�,s�) for all s� ∈ S�. Analogously, we define ρ�
B ⊆

S� × S� such that for all s�, t� ∈ S�, we have s�ρ�
B t

� if ||B||(s�,s�) = ||B||(s�,t�)

for all s� ∈ S�. Moreover, let ρB = (ρ�
B , ρ

�
B).

Lemma 6. The relations ρ�
B and ρ�

B are congruences of the semi-automata S� and
S�, respectively. Moreover, ρB is a congruence of B.

Proof. We show that ρ�
B is a congruence of S�. Obviously, ρ�

B is an equivalence re-
lation. Now let s�, t�, u�, v� ∈ S�, and a ∈ Σ such that s�ρ�

B t
�, u� = δ�(s�, a),

and v� = δ�(t�, a). Moreover, let w ∈ Σ∗ and s� ∈ S�. Then we have

||B||(s�,s�)(aw) = f(s�, a, t�)||B||(u�,s�)(w), and

||B||(t�,s�)(aw) = f(t�, a, t�)||B||(v�,s�)(w),

where t� = s�w−1 in S�. Since the left-hand side of both equalities are the same,
we obtain ||B||(u�,s�)(w) = ||B||(v�,s�)(w), which proves that u�ρ�

B v
�.

Analogously, we can show that ρ�
B is a congruence of the semi-automata S�.

Finally, let s�, t� ∈ S�, s�, t� ∈ S�, and a ∈ Σ such that s�ρ�
B t

� and s�ρ�
B t

�.
Then

||B||(s�,s�) = ||B||(t�,s�) = ||B||(t�,t�).

In particular, ||B||(s�,s�)(a) = ||B||(t�,t�)(a), i.e., f(s�, a, s�) = f(t�, a, t�). Hence,
ρB is a congruence of B.

Let us recall that B/ρB = (Σ,Γ,S�/ρ�
B ,S�/ρ�

B , fρB).
A bimachine B is called reduced if both ρ�

B and ρ�
B are the identity relation. It

is easy to check that B/ρB is reduced.

Lemma 7. Assume that B and B′ are connected and reduced. Then

||B|| = ||B′|| if and only if B ∼= B′.

Proof. Assume that ||B|| = ||B′||. Let us define the relation ϕ� ⊆ S�×T� as follows:

ϕ� = {(s�
0 x, t

�
0 x) | x ∈ Σ∗}.

The domain of ϕ� is S� because B is connected. First we show by contradic-
tion that ϕ� is a mapping. For this, we assume that there are x, y ∈ Σ∗ such
that s�

0 x = s�
0 y and t�0 x 6= t�0 y. Since B′ is reduced, there are u, z ∈ Σ∗

such that ||B′||(t�0 x,t�0 z)(u) 6= ||B′||(t�0 y,t�0 z)(u). Consequently, ||B′||(t�0 x,t�0)(uz
−1) 6=

||B′||(t�0 y,t�0)(uz
−1). On the other hand, by ||B|| = ||B′||,

||B||(s�
0 ,s

�
0)(xuz

−1) = ||B′||(t�0 ,t�0)(xuz
−1) and

||B||(s�
0 ,s

�
0)(yuz

−1) = ||B′||(t�0 ,t�0)(yuz
−1).

Minimization of Deterministic Top-down Tree Automata 387

Thus

||B||(s�
0 x,s

�
0)(uz

−1) = ||B′||(t�0 x,t�0)(uz
−1) and

||B||(s�
0 y,s

�
0)(uz

−1) = ||B′||(t�0 y,t�0)(uz
−1).

Hence ||B||(s�
0 x,s

�
0)(uz

−1) 6= ||B||(s�
0 y,s

�
0)(uz

−1), which is a contradiction by our as-
sumption s�

0 x = s�
0 y.

By interchanging the role of B and B′, we obtain that ϕ� is injective. Moreover,
it is obvious that ϕ� is surjective.

We can also show that ϕ� is a homomorphism. For this, let x ∈ Σ∗ and a ∈ Σ.
Then we have

ϕ�(δ�(s�
0 x, a)) = ϕ�(s�

0 xa) = t�0 xa = γ�(t�0 x, a) = γ�(ϕ�(s�
0 x), a).

Thus S� and T � are isomorphic.
Analogously, we can define the relation ϕ� and show that it is an isomorphism

between S� and T �. Finally, we show that the pair ϕ = (ϕ�, ϕ�) is an isomorphism
between B and B′. For this, let x, y ∈ Σ∗ and a ∈ Σ. Then

||B||(xay−1) = ||B′||(xay−1).

By the corresponding definition this means that f(s�
0 x, a, s

�
0 y) = f ′(t�0 x, a, t

�
0 y).

With this we have proved that B ∼= B′. The proof of the other implication is
trivial.

Lemma 8. Assume that B and B′ are connected. Then

||B|| = ||B′|| if and only if B/ρB ∼= B′/ρB′ .

Proof. If B/ρB ∼= B′/ρB′ , then by Lemma 5 we obtain ||B|| = ||B′||.
Next assume that ||B|| = ||B′||. Again, by Lemma 5 we obtain ||B/ρB|| = ||B′/ρB′ ||.

Moreover, both B/ρB and B′/ρB′ are connected and reduced. Hence, by Lemma 7,
B/ρB ∼= B′/ρB′ .

Theorem 1. If the bimachine B is connected, then B/ρB is minimal.

Proof. Let us assume that B is connected and that ||B|| = ||B′||. By Lemma 4,
B′/ρB′ is a homomorphic image of B′. By Lemma 8, B/ρB ∼= B′/ρB′ . Hence B/ρB
is also a homomorphic image of B′.

In the rest of this section we give an algorithm which computes ρB, i.e., ρ�
B and

ρ�
B . First we deal with ρ�

B .
For every i ≥ 1, we define the relation ρ�

i ⊆ S� × S�, by induction as follows.
For all s�, t� ∈ S�,

(i) let s�ρ�
1 t

� if for all a ∈ Σ and s� ∈ S�, we have f(s�, a, s�) = f(t�, a, s�),
and

388 Zoltán Fülöp and Sándor Vágvölgyi

(ii) for each i ≥ 1, let s�ρ�
i+1t

� if s�ρ�
i t

� and δ�(s�, a)ρ�
i δ

�(t�, a) for each
a ∈ Σ.

Obviously, we have
ρ�

1 ⊇ ρ�
2 ⊇ · · ·

and thus there is an integer i ≥ 1 such that ρ�
i = ρ�

i+1.

For the rest of this section, let i0 be the least integer such that ρ�
i0

=
ρ�
i0+1. We will show that ρ�

i0
= ρ�
B .

Claim 1. ρ�
i0+1 = ρ�

i0+2 = · · · .

Proof. We prove by contradiction that ρ�
i = ρ�

i+1 implies ρ�
i+1 = ρ�

i+2 for every
i ≥ 1. For this we assume that ρ�

i = ρ�
i+1 and ρ�

i+1 ⊃ ρ�
i+2 for some i ≥ 1. Then

there exist two states s�, t� ∈ S� such that s�ρ�
i+1t

� but s�ρ�
i+2t

� does not hold.
This means that there exists a symbol a ∈ Σ such that δ�(s�, a)ρ�

i+1δ
�(t�, a)

does not hold. As ρ�
i = ρ�

i+1, we obtain that δ�(s�, a)ρ�
i δ

�(t�, a) does not hold
either. Hence s�ρ�

i+1t
� does not hold either. This contradicts our assumption

ρ�
i = ρ�

i+1.

Claim 2. For all l ≥ 1, s�, t� ∈ S�, if s�ρ�
l t

�, then for each s� ∈ S� and w ∈ Σ∗

with |w| = l, we have ||B||(s�,s�)(w) = ||B||(t�,s�)(w).

Proof. We proceed by induction on l. If l = 1, then w = a for some a ∈ Σ and
hence ||B||(s�,s�)(w) = f(s�, a, s�) = f(t�, a, s�) = ||B||(t�,s�)(w).

Now assume that the claim holds for l ≥ 1. Let w = av ∈ Σ∗ such that |v| = l
(that is, |w| = l + 1). Then, by the definition of ρ�

l+1, we have f(s�, a, s�v−1) =
f(t�, a, s�v−1) and (s�a)ρ�

l (t�a). From this, by the induction hypothesis,
||B||(s�a,s�)(v) = ||B||(t�a,s�)(v) for all s� ∈ S�. Thus

||B||(s�,s�)(w) = f(s�, a, s�v−1)||B||(s�a,s�)(v) =

f(t�, a, s�v−1)||B||(t�a,s�)(v) = ||B||(t�,s�)(w)

for all s� ∈ S�.

Claim 3. ρ�
i0
⊆ ρ�
B .

Proof. Assume that s�ρ�
i0
t�. Observe that ||B||(s�,s�)(ε) = ε = ||B||(t�,s�)(ε). Let

w ∈ Σ∗ with |w| = l ≥ 1 be arbitrary. By the definition of i0 and Claim 1,
ρ�
i0
⊆ ρ�

l . Consequently, we also have s�ρ�
l t

�, from which we obtain by Claim 2
that ||B||(s�,s�)(w) = ||B||(t�,s�)(w). Hence s�ρ�

B t
�.

Claim 4. ρ�
i0
⊇ ρ�
B .

Proof. It suffices to show that, for all s�, t� ∈ S�, if for each s� ∈ S� we have
||B||(s�,s�) = ||B||(t�,s�), then s�ρ�

i t
� for all i ≥ 1.

We proceed by induction on i. Let i = 1 and a ∈ Σ. By our assumption,
f(s�, a, s�) = ||B||(s�,s�)(a) = ||B||(t�,s�)(a) = f(t�, a, s�). Consequently, s�ρ�

1 t
�.

Minimization of Deterministic Top-down Tree Automata 389

Now assume that the claim holds for i ≥ 1, i.e., s�ρit
�. Let s� ∈ S�, a ∈ Σ

and v ∈ Σ∗ be arbitrary. Then f(s�, a, s�v−1)||B||(s�a,s�)(v) = ||B||(s�,s�)(av) =
||B||(t�,s�)(av) = f(t�, a, s�v−1)||B||(s�a,s�)(v). Hence f(s�, a, s�v−1) =
f(t�, a, s�v−1) and ||B||(s�a,s�)(v) = ||B||(t�a,s�)(v). From the latter, we have
||B||(s�a,s�) = ||B||(t�a,s�), thus by the induction hypothesis, (s�a)ρ�

i (t�a). Then,
by the definition of ρ�

i+1, we obtain s�ρ�
i+1t

� holds as well.

Lemma 9. We have ρ�
i0

= ρ�
B .

Proof. It follows from Claims 3 and 4.

Analogously, we can define a decreasing sequence

ρ�
1 ⊇ ρ�

2 ⊇ · · ·

of relations over S� such that ρ�
B = ρ�

i0
for the least integer i0 with ρ�

i0
= ρ�

i0+1.
Hence we can conclude the following.

Proposition 3. There is a polynomial time algorithm which constructs the mini-
mal bimachine which is equivalent to B.

Proof. By Proposition 2 we compute the connected part Bc of B in polynomial
time. So assume that B is connected. We compute ρ�

B as follows. We compute ρ�
1

in O(|S�|2|Σ||S�|) time and, for every 1 < i ≤ i0, we compute ρ�
i in O(|S�|2|Σ|2)

time. Since i0 ≤ |S�|, we compute ρ�
i0

in O(|S�|3|Σ|2) time. Analogously, we
compute ρ�

B in polynomial time.

4 Deterministic top-down tree automata and their
minimization

In this section first we recall the concept of a deterministic top-down tree automaton
(DTTA for short) from [4]. Then we give a polynomial time algorithm minimizing a
state-separated DTTA. The size of a DTTA is the sum of the sizes of the bimachines
associated with its states, hence we minimize it by minimizing the number of its
states and the number of the states of the bimachines associated with its states.

4.1 Basic concepts

A deterministic top-down tree automaton (DTTA for short) is a system

A =
(
Q,Σ, fin, (Bq | q ∈ Q), F

)
,

where
• Q is a finite set (states),
• Σ is an alphabet (input alphabet),
• fin : Σ→ Q is the initial function,

390 Zoltán Fülöp and Sándor Vágvölgyi

• Bq = (Σ, Q,S�
q ,S�

q , fq) is a bimachine for every q ∈ Q with semi-automata
S�
q = (S�

q ,Σ, s
�
q,0, δ

�
q) and S�

q = (S�
q ,Σ, s

�
q,0, δ

�
q), and

• F ⊆ Q (final states).
Let ξ ∈ TΣ and q ∈ Q. A q-run of A on ξ is a mapping r : dom(ξ) → Q such

that r(ε) = q and for each node x ∈ dom(ξ) with k > 0 successors x1, x2, . . . , xk,
we have

r(x1)r(x2) · · · r(xk) = ||Br(x)||
(
ξ(x1) · · · ξ(xk)

)
.

Note that for each ξ ∈ TΣ and q ∈ Q, there is exactly one q-run of A on ξ. This
q-run r is accepting if it assigns to each leaf a final state, that is, r(x) ∈ F for every
x ∈ dom(ξ) which is a leaf. The tree language L(A, q) accepted by A in q consists
of all trees ξ such that the q-run of A on ξ is accepting. The fin(ξ(ε))-run of A on
ξ is called the run of A on ξ and the tree language L(A) accepted by A consists of
all trees ξ such that the run of A on ξ is accepting.

Two DTTA A and A′ are equivalent if L(A) = L(A′).

Remark 1. We note that the root ξ(ε) of ξ does not play any role in (accepting)
q-runs on ξ. Hence if ξ ∈ L(A, q), then ξ′ ∈ L(A, q) for each tree ξ′ obtained by
replacing the root of ξ with an arbitrary a ∈ Σ.

A state q ∈ Q is called a ∅-state if L(A, q) = ∅. We write Q = Q+ ∪Qe, where
Qe is the set of all ∅-states and Q+ = Q \Qe. Note that F ⊆ Q+.

Lemma 10. The set Q+ is effectively computable.

Proof. We define a sequence Q0, Q1, . . . of sets of states by the following algorithm:
(i) Let Q0 = F and i = 0.
(ii) Let Qi+1 = Qi ∪ {q ∈ Q | ∃(x ∈ Σ∗) : ||Bq||(x) ∈ Q∗i }.

(iii) If Qi+1 = Qi, then stop, otherwise i := i+ 1 and goto (ii).
First we note that for every i ≥ 0 and q ∈ Q we can decide whether there is an
x ∈ Σ∗ with ||Bq||(x) ∈ Q∗i . In fact, it suffices to check if ||Bq||(x) ∈ Q∗i for input
strings x with |x| ≤ Nq, where Nq is the number provided by Lemma 1 for the
bimachine Bq. Hence Qi+1 in step (ii) can be computed.

By standard arguments, we can prove the following statements:
• there is an i ≥ 0 such that Qi+1 = Qi,
• if Qi+1 = Qi, then Qi+j = Qi for every j ≥ 1, and
• if Qi+1 = Qi, then ∀(q ∈ Q) :

(
q ∈ Qi ⇐⇒ ∃(ξ ∈ TΣ) : ξ ∈ L(A, q)

)
.

Altogether we obtain that the algorithm terminates with Qi+1 = Qi and in this
case Q+ = Qi.

Next we introduce the concept of a connected DTTA. For this we define the
binary relation →A over Q as follows: for every q, q′ ∈ Q, we have q →A q′ if there
are k ≥ 1, a1 . . . ak ∈ Σ∗ such that ||Bq||(a1 . . . ak) = q1 . . . qk and q′ = qi for some
1 ≤ i ≤ k. For every q ∈ Q, we define

Tq = {q′ ∈ Q | q →∗A q′}.

The DTTA A is connected if, for every q ∈ Q, we have fin(a)→∗A q for some a ∈ Σ.

Minimization of Deterministic Top-down Tree Automata 391

Proposition 4. There is a polynomial time algorithm which computes Tq for a
given state q ∈ Q.

Proof. By Proposition 2 we may assume that Bp is connected for every p ∈ Q.
(i) Let T0 = {q} and i = 0.
(ii) Let

Ti+1 = Ti ∪ {fp(s�, a, s�) |
a ∈ Σ and ∃(p ∈ Ti) : s� ∈ S�

p , s
� ∈ S�

p }.

(iii) If Ti+1 = Ti, then stop, otherwise let i := i+ 1 and goto (ii).
It is an exercise to show that Ti+1 = Ti for some i ≥ 0 and for this i we have Tq = Ti.
The algorithm runs in O(|Q|N�|Σ|N�) time, where N� = max{|S�

p | | p ∈ Q} and
N� = max{|S�

p | | p ∈ Q}.

For A we define the DTTA Ac =
(
Qc,Σ, f cin, (Bq | q ∈ Qc), F c

)
called the

connected part of A as follows:
• Qc =

⋃
(Tq | q = fin(a) for some a ∈ Σ),

• f cin(a) = fin(a) for every a ∈ Σ, and
• F c = F ∩Qc.
The following statement is obvious.

Proposition 5. Ac is connected and is equivalent to A.

By the definition of Ac and Proposition 4, we have the following result.

Proposition 6. There is a polynomial time algorithm which constructs Ac.

A congruence of A is an equivalence relation τ ⊆ Q×Q satisfying the following
two conditions:

(i) for all states p, q ∈ Q, and nonempty word a1 . . . ak ∈ Σ∗, if pτq,
||Bp||(a1 . . . ak) = p1 . . . pk, and ||Bq||(a1 . . . ak) = q1 . . . qk, then piτqi for all
1 ≤ i ≤ k,

(ii) if pτq, then p ∈ F if and only if q ∈ F .

Let τ be an equivalence relation on Q. For every q ∈ Q, we introduce the
bimachine

Bq,τ = (Σ, Q/τ,S�
q ,S�

q , fq,τ),

where fq,τ (s�, a, s�) = fq(s
�, a, s�)/τ for all s� ∈ S�

q , s
� ∈ S�

q , and a ∈ Σ.
Then, for every a1 . . . ak ∈ Σ+, we have ||Bq,τ ||(a1 . . . ak) = p1/τ . . . pk/τ , where
||Bq||(a1 . . . ak) = p1 . . . pk.

Lemma 11. Let τ be a congruence on A and p, q ∈ Q such that pτq. Then
||Bp,τ || = ||Bq,τ ||.

392 Zoltán Fülöp and Sándor Vágvölgyi

Proof. By definition ||Bp,τ ||(ε) = ε = ||Bq,τ ||(ε).
Let k ≥ 1 and a1 . . . ak ∈ Σ+. Then we have ||Bp,τ ||(a1 . . . ak) = p1/τ . . . pk/τ ,

where ||Bp||(a1 . . . ak) = p1 . . . pk and ||Bq,τ ||(a1 . . . ak) = q1/τ . . . qk/τ , where
||Bq||(a1 . . . ak) = q1 . . . qk. By (i) in the definition of a congruence of a DTTA,
we have piτqi for all 1 ≤ i ≤ k. Hence p1/τ . . . pk/τ = q1/τ . . . qk/τ . Thus
||Bp,τ ||(a1 . . . ak) = ||Bq,τ ||(a1 . . . ak).

Given a congruence τ of A, we define the factor DTTA A/τ of A determined
by τ as A/τ =

(
Q/τ,Σ, fin,τ , (Bq/τ | q/τ ∈ Q/τ), F/τ

)
, where

• fin,τ (a) = (fin(a))/τ for every a ∈ Σ,

• Bq/τ = Bq,τ for every q ∈ Q.

We note that the definition of the bimachine Bq/τ and hence that of the DTTA
A/τ is syntactically ambiguous. Indeed, for p/τ = q/τ , the bimachines Bp,τ and
Bq,τ may be different syntactically and we can pick any of them. However, our
choice has no impact on ||A/τ || because, by Lemma 11, pτq implies ||Bp,τ || = ||Bq,τ ||.
In other words, ||A/τ || is well-defined.

Throughout the paper A and A′ will denote the DTTA

• A =
(
Q,Σ, fin, (Bq | q ∈ Q), F

)
with bimachines Bq = (Σ, Q,S�

q ,S�
q , fq)

and semi-automata S�
q = (S�

q ,Σ, s
�
q,0, δ

�
q) and S�

q = (S�
q ,Σ, s

�
q,0, δ

�
q)

for every q ∈ Q, and
• A′ =

(
Q′,Σ, f ′in, (B′q | q ∈ Q′), F ′

)
with bimachines

B′q = (Σ, Q′, T �
q , T �

q , f
′
q) and semi-automata T �

q = (T�
q ,Σ, t

�
q,0, γ

�
q)

and T �
q = (T�

q ,Σ, t
�
q,0, γ

�
q) for every q ∈ Q′,

respectively.

Furthermore, let ϕ : Q → Q′ be a mapping and ϕ∗ : Q∗ → Q′
∗

its unique
extension to a monoid homomorphism. The mapping ϕ is a homomorphism from
A to A′ if
• f ′in = fin ◦ ϕ,
• ||B′ϕ(q)|| = ||Bq|| ◦ ϕ

∗ for every q ∈ Q, and

• q ∈ F ⇐⇒ ϕ(q) ∈ F ′ for every q ∈ Q.
If ϕ is a surjective homomorphism, then A′ is a homomorphic image of A. If, in
addition, ϕ is a bijection, then we say that A and A′ are isomorphic and write
A ∼= A′.

Lemma 12. If there is a homomorphism ϕ from A to A′, then
(i) L(A, q) = L(A′, ϕ(q)) for every q ∈ Q, and
(ii) L(A) = L(A′).

Proof. Let ϕ be a homomorphism from A to A′. To show (i), we prove by induction
on height(ξ) that for any q ∈ Q and ξ ∈ TΣ, ξ ∈ L(A, q) if and only if ξ ∈
L(A′, ϕ(q)).

Minimization of Deterministic Top-down Tree Automata 393

Base of induction: height(ξ) = 0, i.e., ξ = a for some a ∈ Σ. Then ξ ∈ L(A, q)
if and only if ξ ∈ L(A′, ϕ(q)). Thus the statement holds obviously.

Induction step: height(ξ) = n > 0. Then ξ = a(ξ1, . . . , ξk) for some a ∈ Σ,
k ≥ 1, and ξ1, . . . , ξk ∈ TΣ. Let ai = ξ(i) for all 1 ≤ i ≤ k. Then we have

ξ ∈ L(A, q)
⇐⇒ ||Bq||(a1...ak) = q1 . . . qk and

ξi ∈ L(A, qi) for all 1 ≤ i ≤ k
⇐⇒ ||B′ϕ(q)||(a1...ak) = ϕ(q1) . . . ϕ(qk) and

ξi ∈ L(A′, ϕ(qi)) for all 1 ≤ i ≤ k
⇐⇒ ξ ∈ L(A′, ϕ(q)).

We now show (ii). Let ξ ∈ L(A), i.e., ξ ∈ L(A, fin(ξ(ε)). Then by (i), ξ ∈
L(A′, ϕ(fin(ξ(ε))). As ϕ is a homomorphism, f ′in(ξ(ε)) = ϕ(fin(ξ(ε))). Thus ξ ∈
L(A′, f ′in(ξ(ε)), which implies ξ ∈ L(A′).

Conversely, let ξ ∈ L(A′), i.e., let ξ ∈ L(A′, f ′in(ξ(ε)). As ϕ is a homomorphism,
ϕ(fin(ξ(ε))) = f ′in(ξ(ε)). Then by (i), ξ ∈ L(A, fin(ξ(ε)) which proves that ξ ∈
L(A).

Lemma 13. If τ is a congruence of A, then A/τ is a homomorphic image of A.

Proof. It is easy to check that the mapping ϕ : Q→ Q/τ defined by ϕ(q) = q/τ is
a surjective homomorphism from A to A/τ .

Lemma 14. If τ is a congruence of A, then L(A, q) = L(A/τ, q/τ) for every q ∈ Q.
Moreover, L(A) = L(A/τ).

Proof. It follows from Lemmas 12 and 13.

4.2 Minimization of DTTA

The DTTA A is called minimal if

|Q| ≤ |Q′|,
∑
q∈Q
|S�
q | ≤

∑
q∈Q′
|T�
q |, and

∑
q∈Q
|S�
q | ≤

∑
q∈Q′
|T�
q |

for any DTTA A′ which is equivalent to A. Moreover, A is state-separated if

• ||Bq||(x) ∈ Q∗+ ∪Q∗e for every q ∈ Q+ and
• ||Bq||(x) ∈ Q∗e for every q ∈ Qe

for every x ∈ Σ∗.

Lemma 15. For the DTTA A the following two statements are equivalent.

(i) A is state-separated.
(ii) If ||Bq||(x) ∈ Q∗QeQ∗, then ||Bq||(x) ∈ Q∗e for every q ∈ Q and x ∈ Σ∗.

394 Zoltán Fülöp and Sándor Vágvölgyi

Proof. It is clear that (i) implies (ii). Now assume that (ii) holds. Let x ∈ Σ∗ and
q ∈ Q. If q ∈ Qe, then obviously ||Bq||(x) ∈ Q∗QeQ∗. Hence by (ii), ||Bq||(x) ∈ Q∗e.
Now let q ∈ Q+. If ||Bq||(x) ∈ Q∗QeQ

∗, then by (ii), ||Bq||(x) ∈ Q∗e. Otherwise,
||Bq||(x) ∈ Q∗+. Hence (i) holds.

Lemma 16. The DTTA A is state-separated if and only if for all state q ∈ Q,
reachable states s� ∈ S�

q and s� ∈ S�
q , and a, b ∈ Σ,

fq(s
�, a, δ�

q (s�, b)) ∈ Qe if and only if fq(δ
�
q (s�, a), b, s�) ∈ Qe.

Proof. (⇒) Assume that A is state-separated and let q ∈ Q. Moreover, let s� ∈ S�
q

and s� ∈ S�
q be reachable states, and a, b ∈ Σ. Then there are j ≥ 0 and a1 . . . aj ∈

Σ∗ such that s�
q,0a1 . . . aj = s�, and there are k ≥ j + 3 and aj+3 . . . ak ∈ Σ∗ such

that s�
q,0ak . . . aj+3 = s�. Let aj+1 = a and aj+2 = b, and x = a1 . . . ak.

Then ||Bq||(s�
q,0,s

�
q,0)(x) = q1 . . . qk, where q1, . . . , qk are obtained as follows. Let

• t�0 t�1 . . . t�k−1t
�
k be the s�

q,0-run of S�
q on a1 . . . ak,

• t�0 t�1 . . . t�k−1t
�
k the s�

q,0-run of S�
q on the reversed input ak . . . a1, and

• let qi = fq(t
�
i−1, ai, t

�
k−i) for 1 ≤ i ≤ k.

Here t�j = s�, t�j+1 = δ�
q (s�, a), t�k−j−2 = s�, t�k−j−1 = δ�

q (s�, b),
fq(s

�, a, δ�
q (s�, b)) = qj , and fq(δ

�
q (s�, a), b, s�) = qj+1. If qj+1 ∈ Qe, then by

Lemma 15, ||Bq||(x) ∈ Q∗e. Therefore qj+2 ∈ Qe. Conversely, if qj+2 ∈ Qe, then by
Lemma 15, qj+1 ∈ Qe.

(⇐) By Lemma 15 it is sufficient to show that ||Bq||(x) ∈ Q∗QeQ
∗ implies

||Bq||(x) ∈ Q∗e for every q ∈ Q and x ∈ Σ∗.
Let x = a1 . . . ak, k ≥ 1, be arbitrary, and let ||Bq||(s�

q,0,s
�
q,0)(x) be as in the first

part of the proof. Assume that qi ∈ Qe for some 1 ≤ i ≤ k. If i < k, then by our
assumption, qi+1 = qe as well. Iterating this reasoning, we get that qj = qe for each
i ≤ j ≤ k. If i > 1, then by our assumption, qi−1 = qe as well. As before, we get
that qj = qe for each 1 ≤ j ≤ i. Hence qi = qe for each 1 ≤ i ≤ k.

Lemma 17. It is decidable whether A is state-separated or not.

Proof. The sets Q+ and Qe = Q \Q+ are effectively computable (cf. Lemma 10).
Then, by direct inspection of A, we can decide whether the condition of Lemma 16
holds.

In the rest of this section we assume that A and A′ are state-separated
with Q = Q+ ∪Qe and Q′ = Q′+ ∪Q′e, respectively. In fact, our mini-
mization algorithm works only for state-separated DTTA.

We introduce the equivalence relation τA ⊆ Q×Q as follows: for all p, q ∈ Q,

let pτAq if and only if L(A, p) = L(A, q).

The DTTA A is reduced if τA is the identity relation.

Lemma 18. Let q ∈ Q and q′ ∈ Q′ such that L(A, q) = L(A′, q′). Moreover,
let k ≥ 1, a1 . . . ak ∈ Σ∗, and let ||Bq||(a1 . . . ak) = q1 . . . qk and ||Bq′ ||(a1 . . . ak) =
q′1 . . . q

′
k. Then L(A, qi) = L(A′, q′i) for all i = 1, . . . , k.

Minimization of Deterministic Top-down Tree Automata 395

Proof. Since L(A, q) = L(A′, q′), we have either (1) q ∈ Qe and q′ ∈ Q′e or (2)
q ∈ Q+ and q′ ∈ Q′+. Let us recall that A and A′ are state-separated.

In case (1) we have q1 . . . qk ∈ Q∗e and q′1 . . . q
′
k ∈ Q′∗e , hence the statement holds.

In case (2) either (2a) q1 . . . qk ∈ Q∗e and q′1 . . . q
′
k ∈ Q′∗e or (2b) q1 . . . qk ∈ Q∗+

and q′1 . . . q
′
k ∈ Q′∗+. (The other two cases are excluded because L(A, q) = L(A′, q′).)

In case (2a) the statement again holds, so let us assume that (2b) holds. Ar-
guing by contradiction, assume that L(A, qi) 6= L(A′, q′i) for some 1 ≤ i ≤ k.
Then there exists a tree ξ ∈ (L(A, qi) \L(A′, q′i))∪ (L(A′, q′i) \ (L(A, qi)) and there
are trees ηj ∈ L(A, qj) and θj ∈ L(A′, q′j) for each j = 1, . . . , i−1, i+1, . . . k. Hence
a(η1, . . . , ηi−1, ξ, ηi+1, . . . , ηk) ∈ (L(A, q)\L(A′, q′)) or a(θ1, . . . , θi−1, ξ, θi+1, . . . , θk)
∈ (L(A′, q′) \ (L(A, q)). Thus L(A, q) 6= L(A′, q′), which is a contradiction.

Lemma 19. The relation τA is a congruence of A.

Proof. Let p, q ∈ Q such that pτAq. For showing property (i), let a1 . . . ak ∈ Σ∗

with ||Bp||(a1 . . . ak) = p1 . . . pk and ||Bq||(a1 . . . ak) = q1 . . . qk. Then by Lemma
18 with A = A′, we have L(A, pi) = L(A, qi) for all i = 1, . . . , k. Hence by the
definition of τA, piτAqi for every 1 ≤ i ≤ k.

Finally, we show that (ii) holds by contradiction as follows: if p ∈ F and q 6∈ F ,
then a ∈ (L(A, p) \ L(A, q)) for every a ∈ Σ which contradicts to pτAq.

Lemma 20. The DTTA A/τA is reduced.

Proof. Assume that L(A/τA, p/τA) = L(A/τA, q/τA) for some p, q ∈ Q. Then by
Lemma 14 and Lemma 19, L(A, p) = L(A/τA, p/τA) = L(A/τA, q/τA) = L(A, q).
Hence pτAq, i.e., p/τA = q/τA.

Theorem 2. Assume that A and A′ are connected and reduced. Then

L(A) = L(A′) if and only if A ∼= A′.

Proof. We prove the implication from left to right, because the proof of the other
direction is obvious. Assume that L(A) = L(A′). Let us define the relation ϕ ⊆
Q × Q′ as follows: ϕ = {(q, q′) | L(A, q) = L(A′, q′)}. For convenience, we divide
the proof in five steps.

(i) We show that for each q ∈ Q, there exists q′ ∈ Q′ such that (q, q′) ∈ ϕ, i.e.,
the domain of ϕ is Q. As A is connected, we have

fin(a)→A q1 →A · · · →A qn = q

for some a ∈ Σ, n ≥ 0, and q1, . . . , qn ∈ Q. If n = 0, then q = fin(a). Since
L(A) = L(A′), we have L(A, fin(a)) = L(A′, f ′in(a)), hence (q, f ′in(a)) ∈ ϕ. If
n ≥ 1, then by Lemma 18 there exists q′1, . . . , q

′
n ∈ Q′ such that

f ′in(a)→A′ q′1 →A′ · · · →A′ q′n

and L(A, qi) = L(A′, q′i) for each i = 1, . . . , n. Thus (q, q′n) ∈ ϕ.

396 Zoltán Fülöp and Sándor Vágvölgyi

(ii) We show that ϕ is a mapping. For any q ∈ Q and q′1, q
′
2 ∈ Q′, if (q, q′1) ∈ ϕ

and (q, q′2) ∈ ϕ, then L(A′, q′1) = L(A, q) = L(A′, q′2), and hence q′1 = q′2.
(iii) We show that ϕ is injective. For any q1, q2 ∈ Q and q′ ∈ Q′, if ϕ(q1) = q′

and ϕ(q2) = q′, then L(A, q1) = L(A, q′) = L(A, q2), and hence q1 = q2.
(iv) We show that ϕ is surjective. Repeating the argument used in (i) with the

roles of A and A′ reversed we see that for every q′ ∈ Q′ there exists a q ∈ Q such
that L(A, q) = L(A′, q′).

(v) We show that ϕ is a homomorphism.
First we show that f ′in = fin ◦ ϕ. As L(A) = L(A′), we have L(A, fin(a)) =

L(A′, f ′in(a)) for each a ∈ Σ. Hence, by the definition of ϕ, ϕ(fin(a)) = f ′in(a) for
each a ∈ Σ. Thus we have f ′in = fin ◦ ϕ.

Second, we show that ||B′ϕ(q)|| = ||Bq||◦ϕ
∗ for every q ∈ Q. Let q ∈ Q, q′ ∈ Q′ and

a1 . . . ak ∈ Σ∗, k ≥ 1, with ||Bq||(a1 . . . ak) = q1 . . . qk and ||Bq′ ||(a1 . . . ak) = q′1 . . . q
′
k.

Then by Lemma 18, ϕ(qi) = q′i for each i = 1, . . . , k. Hence ||B′ϕ(q)|| = ||Bq|| ◦ ϕ
∗ for

every q ∈ Q.
Third, we show that q ∈ F ⇐⇒ ϕ(q) ∈ F ′ for every q ∈ Q. We proceed by

contradiction. Assume that q ∈ F and ϕ(q) 6∈ F for some q ∈ Q. Then for each
a ∈ Σ, a ∈ L(A, q) and a 6∈ L(A, ϕ(q)). This is a contradiction. The case q 6∈ F
and ϕ(q) ∈ F is analogous to the previous case. Thus A and A′ are isomorphic.

By Theorem 2, we have the following result.

Corollary 1. Assume that A and A′ are connected. Then L(A) = L(A′) if and
only if A/τA ∼= A′/τA′ .

Proof. Assume that L(A) = L(A′). Then by Lemmas 14 and 19, we have L(A/τA) =
L(A) = L(A′) = L(A′/τA′). By Lemma 20, A/τA and A′/τA′ are connected and
reduced. Hence, by Theorem 2 we obtain A/τA ∼= A′/τA′ .

Conversely, assume that A/τA ∼= A′/τA′ . Then by Lemmas 14 and 19, we have
L(A) = L(A/τA) = L(A′/τA′) = L(A′).

Lemma 21. Let ϕ : Q → Q′ be a homomorphism from A to A′. Moreover,
assume that Bq is connected for each q ∈ Q and B′q′ is connected and reduced for
each q′ ∈ Q′. For every q ∈ Q and q′ ∈ Q′ with ϕ(q) = q′, the bimachine B′q′ is a
homomorphic image of Bq.

Proof. Let q ∈ Q and q′ ∈ Q′ with ϕ(q) = q′. First we show that T �
q′ is a

homomorphic image of S�
q . For this, let us define the relation ψ�

q,q′ ⊆ S�
q × T�

q′ by

ψ�
q,q′ = {(s�

q,0x, t
�
q′,0x) | x ∈ Σ∗}.

We note that the domain of ψ�
q,q′ is S�

q because Bq is connected. Next we show
by contradiction that ψ�

q,q′ is a mapping. For this, let us assume that there are
x, y ∈ Σ∗ such that s�

q,0x = s�
q,0y and t�q′,0x 6= t�q′,0y. Since B′q′ is reduced, there are

u, z ∈ Σ∗ such that ||B′q′ ||(t�q′,0x,t�q′,0z)(u) 6= ||B′q′ ||(t�q′,0y,t�q′,0z)(u), i.e.,

||B′q′ ||(t�
q′,0x,t

�
q′,0)(uz

−1) 6= ||B′q′ ||(t�
q′,0y,t

�
q′,0)(uz

−1).

Minimization of Deterministic Top-down Tree Automata 397

On the other hand, by ||Bq|| ◦ ϕ∗ = ||B′q′ ||, we have

ϕ∗(||Bq||(xuz−1)) = ||B′q′ ||(xuz−1) and ϕ∗(||Bq||(yuz−1)) = ||B′q′ ||(yuz−1).

Thus

ϕ∗(||Bq||(s�
q,0x,s

�
q,0)(uz

−1)) = ||B′q′ ||(t�
q′,0x,t

�
q′,0)(uz

−1) and

ϕ∗(||Bq||(s�
q,0y,s

�
q,0)(uz

−1)) = ||B′q′ ||(t�
q′,0y,t

�
q′,0)(uz

−1).

Hence ϕ∗(||Bq||(s�
q,0x,s

�
q,0)(uz

−1)) 6= ϕ∗(||Bq||(s�
q,0y,s

�
q,0)(uz

−1)) and thus

||Bq||(s�
q,0x,s

�
q,0)(uz

−1) 6= ||Bq||(s�
q,0y,s

�
q,0)(uz

−1). This is a contradiction by our as-
sumption s�

q,0x = s�
q,0y.

Since B′q′ is connected, the mapping ψ�
q,q′ is surjective. Finally we show that

ψ�
q,q′ is a homomorphism. Obviously, ψ�

q,q′(s
�
q,0) = t�q′,0. Moreover, for every x ∈ Σ∗

and a ∈ Σ, we have

ψ�
q,q′(δ

�
q,0(s�

q,0x, a)) = ψ�
q,q′(s

�
q,0xa) = t�q′,0xa = γ�

q′,0(t�q′,0x, a) = γ�
q′,0(ψ�

q,q′(s
�
q,0x), a).

Analogously, we can define the relation ψ�
q,q′ ⊆ S�

q × T�
q′ and show that it is a

homomorphism from S�
q onto T �

q′ . Hence B′q′ is a homomorphic image of Bq via
(ψ�
q,q′ , ψ

�
q,q′).

Lemma 22. Assume that A′ is a homomorphic image of A, that Bq is connected
for each q ∈ Q, and that B′q′ is connected and reduced for each q′ ∈ Q′. Then

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |.

Proof. Let ϕ : Q → Q′ be a surjective homomorphism from A to A′. By Lemma
21, for every q ∈ Q, the bimachine B′ϕ(q) is a homomorphic image of Bq. Thus, by

Lemma 3, |T�
ϕ(q)| ≤ |S

�
q | and |T�

ϕ(q)| ≤ |S
�
q | for every q ∈ Q. Consequently, as ϕ is

a surjective mapping, the statement of the lemma holds.

Lemma 23. Assume that A′ is a homomorphic image of A and that B′q′ is con-
nected and reduced for each q′ ∈ Q′. Then

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�
q |.

Proof. Let Bcq be the connected part of Bq for each q ∈ Q. As mentioned, the

bimachine Bcq is equivalent to Bq for each q ∈ Q. Hence the DTTA
(
Q,Σ, f, (Bcq |

q ∈ Q), F) is equivalent to A and, obviously,∑
q∈Q
|S�c
q | ≤

∑
q∈Q
|S�
q |, and

∑
q∈Q
|S�c
q | ≤

∑
q∈Q
|S�
q |.

398 Zoltán Fülöp and Sándor Vágvölgyi

Moreover, A′ is a homomorphic image of
(
Q,Σ, f, (Bcq | q ∈ Q), F). Hence by

Lemma 22,

|Q′| ≤ |Q|,
∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�c
q |, and

∑
q∈Q′
|T�
q | ≤

∑
q∈Q
|S�c
q |.

These and the above inequalities imply the lemma.

Lemma 24. Assume that A is connected and consider A/τA =
(
Q/τA,Σ, fin,τA ,

(Bq/τA | q/τA ∈ Q/τA), F/τA
)
. For each q/τA ∈ Q/τA, let Bcq/τA be the connected

part of Bq/τA and let

M =
(
Q/τA,Σ, fin,τA , (Bcq/τA/ρBcq/τA | q/τA ∈ Q/τA), F/τA

)
.

Then M is a minimal DTTA and equivalent to A.

Proof. Let L(A) = L(A′). By Propositions 4 and 5, we may assume that A′ is
connected. Then, by Corollary 1, A′/τA′ ∼= A/τA. Hence, by Lemmas 4 and 19,
there is a surjective homomorphism ϕ : Q′ → Q/τA from A′ to A/τA. Therefore,
ϕ is a surjective homomorphism from A′ to M. Consequently, by Lemma 23,
• |Q/τA| ≤ |Q′|,
•
∑
q/τA∈Q/τA |S

�c
q/τA

/ρBc
q/τA
| ≤

∑
q∈Q′ |T�

q |, and

•
∑
q/τA∈Q/τA |S

�c
q/τA

/ρBc
q/τA
| ≤

∑
q∈Q′ |T�

q |.
Therefore,M is a minimal DTTA. By Lemma 14, A/τA is equivalent to A. Hence,
by Lemma 5, M is equivalent to A as well.

In the rest of the paper we give an algorithm which computes the minimal
DTTA which is equivalent to A. For this we will need the concept of the direct
product of bimachines. The direct product of the semi-automata S and T is the
semi-automaton S×T = (S×T,Σ, (s0, t0), δ′′), where δ′′((s, t), a) = (δ(s, a), δ′(t, a))
for every (s, t) ∈ S × T and a ∈ Σ. The direct product of the bimachines B and B′
is the bimachine

B × B′ = (Σ,Γ× Γ,S� × T �,S� × T �, f ′′),

where f ′′((s�, t�), a, (s�, t�)) = (f(s�, a, s�), f ′(t�, a, t�)) for all (s�, t�) ∈ S� ×
T�, (s�, t�) ∈ S� × T�, and a ∈ Σ.

To give an algorithm which computes the minimal automaton equivalent to A,
we define the relation τn ⊆ Q×Q for every n ≥ 0, by induction on n.

Base of induction: For each p, q ∈ Q, let pτ0q if and only if (p ∈ F ⇐⇒ q ∈ F).

Induction step: Let n ≥ 0 and assume that we have defined τn. For each
p, q ∈ Q, let pτn+1q if and only if

• pτnq and

Minimization of Deterministic Top-down Tree Automata 399

• for the bimachine Bp×Bq = (Σ, Q×Q,S�
p ×S�

q ,S�
p ×S�

q , f(p,q)) and for any
reachable pair ((s�, t�), (s�, t�)) in Bp × Bq and a ∈ Σ, if
f(p,q)((s

�, t�), a, (s�, t�)) = (r1, r2), then we have r1τnr2.

Lemma 25. For each n ≥ 0, τn is an equivalence relation.

Proof. We proceed by induction on n.
Base of induction: n = 0. By definition, τ0 is an equivalence relation.
Induction step: We assume that the lemma holds for n ≥ 0, and show that it

also holds for n + 1. By definition and the induction hypothesis, τn+1 is reflexive
and symmetric. We will show that τn+1 is transitive. To this end, let p, q, r ∈ Q,
and assume that pτn+1q and qτn+1r. Since pτn+1q and qτn+1r, we have pτnq
and qτnr. By the induction hypothesis, pτnr. All is left to show is that for the
bimachine Bp×Br = (Σ, Q×Q,S�

p ×S�
r ,S�

p ×S�
r , f(p,r)) and for any reachable pair

((s�, t�), (s�, t�)) in Bp × Br and a ∈ Σ, if f(p,r)((s
�, t�), a, (s�, t�)) = (p′, r′),

then we have p′τnr
′. To this end, take a word w = a1 . . . ak ∈ Σ∗, k ≥ 1, such that

• (s�
0 , t

�
0)(s�

1 , t
�
1) . . . (s�

k−1, t
�
k−1)(s�

k , t
�
k) is the run of S�

p × S�
r on a1 . . . ak,

• (s�
0 , t

�
0)(s�

1 , t
�
1) . . . (s�

k−1, t
�
k−1)(s�

k , t
�
k) is the run of S�

p × S�
r on ak . . . a1,

• ((s�, t�), a, (s�, t�)) = ((s�
j−1, t

�
j−1), aj , (s

�
k−jt

�
k−j)) for some 1 ≤ j ≤ k and

• (pi, ri) = f(p,r)((s
�
i−1, t

�
i−1), ai, (s

�
k−i, t

�
k−i)) for 1 ≤ i ≤ k.

Then ||Bp × Br||(w) = (p1, r1) . . . (pk, rk) and (p′, r′) = (pj , rj).
Let y�

0 y
�
1 . . . y�

k−1y
�
k be the run of S�

q on a1 . . . ak, and y�
0 y

�
1 . . . y�

k−1y
�
k the run

of S�
q on the reversed input ak . . . a1, and let qi = f(y�

i−1, ai, y
�
k−i) for 1 ≤ i ≤ k.

Then ||Bq||(w) = q1 . . . qk and ||Bp×Bq||(w) = (p1, q1) . . . (pk, qk) and ||Bq×Br||(w) =
(q1, r1) . . . (qk, rk). Since pτn+1q and qτn+1r, we have pjτnqj and qjτnrj . By the
induction hypothesis, τn is an equivalence relation, hence pjτnrj . Since (p′, r′) =
(pj , rj), we have p′τnr

′. Therefore pτn+1r, and hence τn+1 is transitive.

Obviously, we have
τ0 ⊇ τ1 ⊇ τ2 ⊇ · · ·

and thus there is an integer n0 ≥ 0 such that τn0
= τn0+1. Moreover, we can prove

that τn0 = τn0+1 implies τn0+1 = τn0+2 = · · · for every n0 ≥ 0.

Lemma 26. For all n, l ≥ 0, p, q ∈ Q, ξ ∈ TΣ with height(ξ) ≥ l, x ∈ dom(ξ) with
|x| = l, p-run rp of A on ξ and q-run rq of A on ξ, if pτn+lq, then rp(x)τnrq(x).

Proof. We proceed by induction on l. If l = 0, then p = rp(x) and q = rq(x). By
our assumption pτn+0q, we have rp(x)τnrq(x).

Induction step: We assume that the lemma holds for l ≥ 0, and show that it
also holds for l+ 1. To this end, let ξ ∈ TΣ with ξ = a(ξ1 . . . ξk), height(ξ) ≥ l+ 1,
and let x = iy, where 0 ≤ i ≤ k, |x| = l + 1 and hence |y| = l, and assume that
pτn+l+1q. Consider an arbitrary p-run rp of A on ξ and an arbitrary q-run rq of A
on ξ. If rp(i) = p′ and rq(i) = q′, then by the definition of τn+l+1, p′τn+lq

′. Hence,
by the induction hypothesis, for the p′-run rp′ of A on ξi and for the q′-run rq′ of
A on ξi, we have rp′(y)τnrq′(y). Observe that rp′(y) = rp(x) and rq′(y) = rq(x).
Consequently, rp(x)τnrq(x).

400 Zoltán Fülöp and Sándor Vágvölgyi

Lemma 27. Let n0 be the least integer with τn0 = τn0+1. Then τn0 = τA.

Proof. First we show that τn0
⊆ τA. Let pτn0

q. Then pτn0+lq for each l ≥ 0, hence
by Lemma 26, for all l ≥ 0, ξ ∈ TΣ with height(ξ) ≥ l, x ∈ dom(ξ) with |x| = l,
p-run rp of A on ξ and q-run rq of A on ξ, we have rp(x)τnrq(x). By the inclusion
τ0 ⊇ τn0 , we have rp(x)τ0rq(x). Hence, by the definition of ρ0, we have (rp(x) ∈ F
if and only if rq(x) ∈ F). Since l ≥ 0, ξ ∈ TΣ, and x ∈ dom(ξ) are arbitrary,
L(A, p) = L(A, q).

We now show that τA ⊆ τn0
. To this end we show that for all p, q ∈ Q, n ≥ 0,

if (p, q) 6∈ τn, then (p, q) 6∈ τA. We proceed by induction on n.
Base of induction: n = 0. If (p, q) 6∈ τ0, then (p ∈ F if and only if q 6∈ F).

Hence L(A, p) 6= L(A, q) and thus pτAq does not hold.
Induction step. Assume that pτn+1q does not hold. Then pτnq does not hold or

pτnq and there is a word z ∈ Σ∗ such that ||Bp||(z) = p1 . . . pk and ||Bq||(z) = q1 . . . qk
and (pi, qi) 6∈ τn for some 1 ≤ i ≤ k. In the first case, by the induction hypothesis,
(p, q) 6∈ τA. In the second case, L(A, pi) \ L(A, qi) 6= ∅ or L(A, qi) \ L(A, pi) 6= ∅.
If L(A, pi) \ L(A, qi) 6= ∅, then let ξi ∈ (L(A, pi) \ L(A, qi)), otherwise let ξi ∈
L(A, pi). If L(A, qi) \L(A, pi) 6= ∅, then let ζi ∈ (L(A, qi) \L(A, pi)), otherwise let
ζi ∈ L(A, qi). For each 1 ≤ j ≤ k with j 6= i, let ξj ∈ L(A, pj) and ζj ∈ L(A, qj).
Then let ξ = a(ξ1 . . . ξk) and ζ = a(ζ1 . . . ζk). Consequently, ξ ∈ (L(A, p) \L(A, q))
or ζ ∈ (L(A, q) \ L(A, p)). Hence L(A, p) 6= L(A, q) and thus pτAq does not
hold.

Proposition 7. There is a polynomial time algorithm which constructs A/τA for
a given A.

Proof. We compute τ1 in O(|Q|2) time. For every 1 < n ≤ n0, the relation τn can
be computed in O(|Q|2(N�)2|Σ|(N�)2) time, where N� = max{|S�

p | | p ∈ Q} and
N� = max{|S�

p | | p ∈ Q}. Since there are at most |Q| steps, the relation τn0
can

be computed in O(|Q|3(N�)2|Σ|(N�)2) time.

Theorem 3. There is a polynomial time algorithm which constructs for A an
equivalent minimal DTTA.

Proof. By Propositions 6, 7, 2, and 3, respectively, we compute the following se-
quence of DTTAs in polynomial time.

1) The connected part Ac =
(
Qc,Σ, fcin, (Bq | q ∈ Qc), F c

)
of A.

2) The congruence τAc and the DTTA

Ac/τAc =
(
Qc/τAc ,Σ, f

c
in,τcA

, (Bq/τAc | q/τAc ∈ Q
c/τAc), F

c/τAc
)
.

3) For each q/τAc ∈ Qc/τAc , the connected part Bcq/τAc of Bq/τAc .

4) The DTTA(
Qc/τAc ,Σ, f

c
in,τAc

, (Bcq/τAc/ρBcq/τAc | q/τAc ∈ Q
c/τAc), F

c/τAc
)
.

By Lemma 24, the latter one is a minimal DTTA which is equivalent to A.

Minimization of Deterministic Top-down Tree Automata 401

References

[1] Björklund J. and Cleophas L. A Taxonomy of Minimisation Algorithms for
Deterministic Tree Automata. Journal of Universal Computer Science vol.
22(2): 180–196, 2016.

[2] Brüggemann-Klein A., Murata M., and Wood D., Regular tree and regular
hedge languages over unranked trees. Technical Report HKUST-TCSC-2001-0,
The Hong Kong University of Science and Technology, Hong Kong, China,
2001.

[3] Comon H., Dauchet M., Gilleron R., Löding C., Jacquemard F., Lugiez D.,
Tison S., and Tommasi M. Tree Automata Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata, 2007.

[4] Cristau J., Löding C., and Thomas W. Deterministic Automata on Unranked
Trees. In Liskiewicz M. and Reischuk R. editors, Fundamentals of Computation
Theory, 15th International Symposium, FCT 2005, Proceedings, Lecture Notes
in Computer Science 3623, pages 68–79. Springer-Verlag, Berlin, 2005.

[5] Gécseg F. and Steinby M. Minimal ascending tree automata. Acta Cybernetica
4(1): 37–44, 1978.

[6] Jiang T. and Ravikumar B. Minimal NFA problems are hard. SIAM Journal
on Computing 22(6): 1117–1141, 1993.

[7] Martens W. and Niehren J. On the minimization of XML Schemas and tree
automata for unranked trees. Journal of Computer and Systems Sciences 73(4):
550–583, 2007.

[8] Martens W., Neven F., and Schwentick T. Deterministic Top-down Tree Au-
tomata: Past, Present, and Future. In Flum J., Grädel E, and Wilke T. editors,
Logic and Automata – History and Perspectives, pages 505–530. Amsterdam
University Press, 2008.

[9] Martens W., Neven F., Schwentick T., and Bex G. J. Expressiveness and
complexity of XML Schema, Journal ACM Transactions on Database Systems
(TODS) 31(3): 770–813, 2006.

[10] Neven F. Automata theory for XML researchers. ACM Sigmod Record 31(3):
39–46, 2002.

[11] Piao X. and Salomaa K. Operational State Complexity of Deterministic Un-
ranked Tree Automata, In McQuillan I. and Pighizzini G. editors, Proceedings
Twelfth Annual Workshop on Descriptional Complexity of Formal Systems,
DCFS 2010, Electronic Proceedings in Theoretical Computer Science 31: 149–
158, 2010.

[12] Piao X. and Salomaa K. Lower bounds for the size of deterministic unranked
tree automata, Theoretical Computer Science 454: 231–239, 2012.

Acta Cybernetica 23 (2017) 403–410.

Curriculum Vitae of Zoltán Ésik

Education and Academic Degrees

1. Doctor of the Hungarian Academy of Science (DSc), 1996. Thesis: Iteration
Theories.

2. Habilitation in Computer Science: Attila József University, Szeged, 1995.
Thesis: Iteration Theories.

3. Candidate of Mathematical Sciences: Hungarian Academy of Sciences, 1985.
Thesis: Top-down tree transformations.

4. University Doctor (PhD): Attila József University, Szeged, 1979. Thesis:
Decidability results concerning tree transformations.

5. University Diploma (MSc) in Mathematics: Attila József University, Szeged,
1974.

Employment and related activities

1. 2003–2016 : Head of the Department of Foundations of Computer Science.

2. 1997–2016 : Full Professor, Department of Foundations of Computer Sci-
ence, Institute of Informatics, University of Szeged (formerly: Attila József
University), Hungary.

3. 1996–1997: Part-time Associate Professor, Institute of Mathematics and In-
formatics, Lajos Kossuth University, Debrecen.

4. 1990–1996: Associate Professor, Department of Foundations of Computer
Science, Institute of Informatics, Attila József University, Szeged, Hungary.

5. 1987–1989: Associate Professor, Department of Computer Science, Institute
of Mathematics, Attila József University, Szeged, Hungary.

6. 1979–1986: Assistant Professor, Department of Computer Science, Institute
of Mathematics, Attila József University, Szeged, Hungary.

7. 1974–1978: Assistant Lecturer, Department of Computer Science, Institute
of Mathematics, Attila József University, Szeged, Hungary.

DOI: 10.14232/actacyb.23.1.2017.22

404

Visiting Positions and Fellowships

1. Visiting Scientist, Kyoto Sangyo University, Kyoto, Japan: September 2008,
September 2007, October 2006, June 2005, August 2003, September 2002,
January 2001 and March 2000.

2. Visiting Professor, University of Bordeaux, France: May 2003.

3. Visiting Professor, TU Dresden, Germany: June–July 2002.

4. Visiting Professor, LIAFA, Denis Diderot University, Paris: May 2002.

5. Visiting Professor, University of Aalborg, Denmark: May 2001–April 2002.

6. Visiting Professor, University of Waterloo, Canada: June 2000.

7. Visiting Professor, University of Aizu, Japan: January–June 1999.

8. Fulbright Research Fellow, Stevens Institute of Technology, Hoboken, USA:
June–September 1997.

9. JSPS Research Fellow, Kyoto Sangyo University, Japan: February – April,
1997.

10. Visiting Professor, LIAFA, Université Paris 6 and 7, France: May 1997.

11. Alexander von Humboldt Research Fellow, Institute of Informatics, University
of Stuttgart, Germany: September–November 1994.

12. COST Research Fellow, LFCS, Department of Computer Science, The Uni-
versity of Edinburgh, UK: September–November 1993.

13. Visiting Professor, Department of Computer Science, Stevens Institute of
Technology, New Jersey, USA: September–November 1990.

14. Alexander von Humboldt Research Fellow, Institute of Informatics, TU Mu-
nich, Germany: 1988–1989.

15. Visiting Professor, Department of Pure and Applied Mathematics, Stevens
Institute of Technology, New Jersey, USA: September 1983–August 1984.

Courses Conducted

Mathematical foundations of logic and functional programming. Process algebra.
Finite transition systems. Finite model theory. Logic in computer science. Foun-
dations of computer science. Category theory in computer science. Universal al-
gebra in computer science. Complexity theory. Computability theory. Iteration
theories. Automata and formal languages. Introduction to analysis. Linear alge-
bra. Automata and formal logic. Compilers. Mathematical logic. Algebraic and

Curriculum Vitae of Zoltán Ésik 405

graph theoretic properties of block schemes. Formal semantics. Algorithm theory.
Mathematical foundations of software. Mathematical foundations of programming.
System programming.

Research Interest

Automata and formal language theory. Algebra, categories and logic in computer
science. Fixed point theory. Iteration theories. Temporal logics. Concurrency.
Semantics.

Publications

Two books, four book chapters, 32 edited volumes, approx. 250 research articles.

Editorial Work

Member of the Editorial Board of: Journal of Automata, Languages and Combi-
natorics (2016), Journal of Mathematics and Computer Science (2009–2016), Al-
kalmazott Matematikai Lapok (Journal of Applied Mathematics, in Hungarian,
2004–2016), Theoretical Computer Science (1999–2015), Theoretical Informatics
and Applications (1998–2016), Discrete Mathematics and Theoretical Computer
Science (1996–2001), Acta Cybernetica (1987–2016), Acta Scientiarium Mathemat-
ica (1986–2000), Algebra (Hindawi Publishers).

Membership in International Learned Bodies and Professional Associa-
tions

1. Fellow of the EATCS, 2016.

2. Member of the Presburger Award Committee, 2015–2016.

3. Member of the Academia Europaea, 2010–2016.

4. Member of the Steering Committee of the FICS workshop series, 2009–2012.

5. Member of the Steering Committee of the Algebraic Informatics conference
series, 2007–2016.

6. Member of the Board of the European Association for Computer Science
Logic, 2005–2016.

7. Member of the WG 1.8 (Concurrency) of IFIP TC1.

8. Member of the Council of the European Association for Theoretical Computer
Science (EATCS), 2004–2016.

406

9. Member of the IFIP Technical Committee 1 (Theoretical Computer Science),
2001–2016. (Hungarian representative)

10. Member of the Steering Committee of the Fundamentals of Computation
Science conferences, 1998–2016.

11. Member of the EATCS, 1985–2016.

Membership in Learned Bodies, Professional Associations and Commit-
tees in Hungary

1. Member of the Scientific and Habilitation Committee, University of Debrecen,
Faculty of Informatics, 2010–2016.

2. Member of the Board of Experts, National Fellowship Committee of Hungary,
2008–2016.

3. Member of the Mathematics Committee of the János Bolyai Fellowship Award,
Hungarian Academy of Sciences, 2006–2015.

4. Member of the Computer Science Committee of the Hungarian Academy of
Science, 2005–2007, 2002–2004, 1994–1996.

5. Member of the Board for Natural Sciences and Mathematics, National Foun-
dation for Scientific Research of Hungary, 2003–2005.

6. Leader of the PhD Program in Informatics of the University of Szeged, 2001–
2004.

7. Deputy director of the PhD School in Mathematics and Computer Science of
the University of Szeged, 2001–2004.

8. Member of the Computer Science Habilitation Committee, University of
Szeged, 1997–2016.

9. Member of the Doctoral Committee of the Faculty of Science of Lajos Kossuth
University, Debrecen, 1996–1998.

10. Member of the Mathematical Jury of the Hungarian National Foundation for
Scientific Research, 1995–1998.

11. Chairman of the Doctoral Committee of the Institute of Informatics of the
Faculty of Science of University of Szeged, 1993–2004.

12. Member of the Doctoral Committee of the Faculty of Science of University of
Szeged, 1992–2004.

Curriculum Vitae of Zoltán Ésik 407

Invited Lectures at Conferences, Workshops and Summer Schools

Trends in Tree Automata and Tree Transducers, Seoul, 2016. Mathematical Foun-
dations of Computer Science, Milan, 2015. Automata, Logic, Formal languages
and Algebra, Bordeaux, 2015. The Role of Theory in Computer Science, Waterloo,
2015. Semigroups, Languages and Algebras, Akita, 2014. Weighted Automata:
Theory and Applications, Leipzig, 2014. Automata, Logic, Formal languages and
Algebra, Stellenbosch, 2013. Mathematics and Informatics, Targu Mures, 2013.
Weighted Automata: Theory and Applications, Dresden, 2012. Lattices and Re-
lations, Amsterdam, 2012. Algebras, Languages, Algorithms and Computation,
Kyoto, 2011. Highlights of AUTOMATHA, Vienna, 2010. Weighted Automata:
Theory and Applications, Leipzig, 2010. Dagstuhl seminar on Quantitative Models,
2010. AUTOMATHA, Liege, 2009. Summer School on Algebraic Theory of Au-
tomata, Lisbon, 2008. Developments in Language Theory, Kyoto, 2008. Weighted
Automata: Theory and Applications, Dresden, 2008. Algebraic Informatics, Thes-
saloniki, 2005. Mathematical Foundations of Computer Science, Palics, 2005. Novi
Sad Algebraic Conference, 2005. International Ph. D. School of Formal Language
Theory and Applications, Tarragona, 2004. Joint Mathematics Meeting, ASM
Special Session on Fixed Points, Phoenix, 2004. Weighted Automata: Theory and
Applications, Dresden, 2004. Categorical Methods in Computer Science, Warsaw,
2003. International School of Formal Language Theory, Tarragona, 2003. Devel-
opments in Language Theory, Kyoto, 2002. Weighted Automata and Applications,
Dresden, 2002. Int. Conf. Discrete Mathematics and Applications, Blagoevgrad,
2001. Dagstuhl seminar on Applications of Kleene Algebra, 2001. Expressiveness
in Concurrency, Aalborg, 2001. Workshop on Max-Plus Algebras, Prague, 2001.
Fixed Points in Computer Science, Florence, 2001. Developments in Language
Theory, Vienna, 2001. Dagstuhl Seminar on Logic, Algebra, and Formal Verifica-
tion, 2000. Category Theory, Como, 2000. Words, Languages and Combinatorics,
Kyoto, 2000. Algebraic Engineering, Aizu, 1997. Logic in Computer Science, Novi
Sad, 1995. Mathematical Foundations of Computer Science, Kosice, 1994. IMYCS,
Smolenice, 1988.

Other conference and seminar presentations

Talks at cca. 80 international conferences and workshops. Seminar and/or col-
loquium presentations at the following universities and research centers (several
talks at some places): University of Aalborg, BRICS, Aarhus, University of Aizu,
CWI, Amsterdam, Autonomous University of Barcelona, LaBRI, University of Bor-
deaux, University of Bremen, University of Brno, University of Edinburgh, Uni-
versity of Florence, University of Hamburg, University of Hanover, University of
Kassel, RIMS, Kyoto, Kyoto Sangyo University, Unversity of Leipzig, University of
Linz, University of Magdeburg, University of Matsue, University of Metz, Technical
University of Munich, City University of New York, LIAFA, University of Paris 6
and 7, University of Pisa, University of Reykjavik, University of Rome, University

408

of Saarbrücken, University of Sao Paulo, Stanford University, Sydney Category
Seminar, UCLA, Shimane University, University of Stuttgart, Stevens Institute of
Technology, University of Tarragona, University of Tsukuba, University of Turku,
TU Vienna, University of Waterloo.

Other Professional Activities

Member of the Program Committee of DCFS 2016, Bucharest, Highlights of Logic,
Games and Automata 2015, Prague, CAI 2015, Stuttgart, AutoMathA 2015, Leipzig,
ICALP 2015, Kyoto, Highlights of Logic, Games and Automata 2014, Paris, MFCS
2014, Budapest (co-chair), AFL 2014, Szeged (co-chair), CSR 2014, Moscow, DLT
2013, Paris, MFCS 2013, Wien, CAI 2013, Marseilles, FICS 2012, Tallinn, FSTTCS
2011, Mumbai, DLT 2011, Milan, ICALP 2011, Zurich, AFL 2011, Debrecen, DCFS
2011, Giessen, FSTTCS 2010, Chennai, FICS 2010, Brno, FICS 2009, Coimbra,
MEMICS 2009, Brno, DLT 2009, Stuttgart, QUANTLOG 2009, Rhodes (chair),
STACS 2009, Freiburg, MEMICS 2008, Brno, LATA 2008, Tarragona, AFL 2008,
Balatonfüred (co-chair), DLT 2008, Kyoto, FOSSACS 2008, Budapest, FCT 2007,
Budapest (co-chair), LATA 2007, Tarragona, MEMICS 2007, Brno, CAI 2007,
Thessaloniki, Algebraic Theory of Automata and Logic, 2006, Szeged, Logic, Mod-
els and Computer Science, 2006, Camerino, DLT 2006, Santa Barbara, RELMICS
/AKA 2006, Manchester, CSL 2006, Szeged (chair), FOSSACS 2006, Vienna, CSL
2005, Oxford, ICALP 2005, Lisboa, AFL 2005, Dobogókő (co-chair), DLT 2005,
Palermo, DLT 2004, Auckland, Process Algebra: Open Problems and Future Di-
rections, Bertinoro, 2003, EXPRESS 2003, Marseilles, FCT 2003, Malmö, FICS
2003, Warsaw (co-chair), DLT 2003, Szeged (co-chair), AFL 2002, Debrecen, FICS
2002, Copenhagen (co-chair), FICS 2000, Paris, AFL 1999, Vasszécsény, FICS 1998,
Brno (chair), FOSSACS 1998, Lisbon, Universal Machines and Computations 1998,
Metz, FCT 1997, Krakow, Logic in Computer Science LIRA 1997, Novi Sad, AFL
1996, Salgótarján, FCT 1995, Dresden, STACS 1995, Munich, FCT 1993, Szeged
(chair).

Professional Awards

1. Master teacher, Ministry of Education of Hungary, 2005.

2. Széchenyi Professor Award, 1997.

3. Winner of the Gyula Farkas Research Award, János Bolyai Mathematical
Society, 1980.

4. Winner of the Kató Rényi Research Award, János Bolyai Mathematical So-
ciety, 1974.

Curriculum Vitae of Zoltán Ésik 409

Research Grants

1. 2014–2016: Extensions of the Theory of Automata and Languages, National
Foundation of Hungary for Scientific Research, NKFI K 108448, principal
investigator.

2. 2014–2016: Algebraic Structures and Fixed Point Operations in Computer
Science, National Foundation of Hungary for Scientific Research, NKFI K
110883, principal investigator.

3. 2012–2014: Extensions and Applications of Fixed Point Theory for Non-
Monotonic Formalisms. TÉT Greek-Hungarian Bilateral Cooperation.
TÉT10-1-2011-0548 (Greek partner: Panos Rondogiannis).

4. 2010: Automata, Languages and Fixed Points. Austrian-Hungarian Action
Foundation, 77öu9 (Austrian partner: Werner Kuich).

5. 2008–2012: Automata, Fixed Points, and Logic, National Foundation of Hun-
gary for Scientific Research, OTKA K 75249, principal investigator.

6. 2005–2010: Member of the Executive Board and Steering Committee of the
ESF project AUTOMATHA.

7. 2007–2009: Algebraic Theory of Automata, Hungarian Academy of Science
and CNRS, principal co-investigator (French partner: Jean-Eric Pin).

8. 2006–2008: Automata and Formal Languages, Hungarian Academy of Science
and Japan Society for the Promotion of Science, MTA-JSPS 101, principal
co-investigator. (Japanese partner: Masami Ito).

9. 2001–2004: Iteration theories, Principal Investigator, National Foundation of
Hungary for Scientific Research, OTKA T35163.

10. 2001–2002: Algebraic Structures in Automata and Language Theory, Austrian-
Hungarian Action Foundation, 47öu1.

11. 2000–2001: Fixed Points in Language Theory, Principal Investigator, Austrian-
Hungarian cooperative research grant, A-4/1999.

12. 1999–2002: Concurrent Processes and Formal Languages, Principal Investiga-
tor, National Foundation of Hungary for Scientific Research, OTKA, T30511.

13. 1999–2000: Fixed Points in Computer Science, Principal Investigator, Min-
istry of Education of Hungary, FKFP 247/1999.

14. 1997: The Shuffle Operation on Languages and Posets, Japan Society for the
Promotion of Science, principal co-investigator. (Japanese partner: Masami
Ito).

410

15. 1997–2000: Compositions of Tree Automata and Varieties of Tree Languages,
Ministry of Education of Hungary, FKFP 704.

16. 1997–99, Algebraic Structures in the Theory of Automata and Formal Lan-
guages, Principal Investigator, Austrian-Hungarian Action Foundation.

17. 1997–99, Algebraic Aspects of Automata and Formal Languages, Principal
Investigator, French–Hungarian Joint Project, BALATON F28/96.

18. 1997–2000: Iteration Theories, Principal Investigator, Hungarian National
Foundation for Scientific Research, T22423.

19. 1996–97: Iteration Theories, Principal Investigator, Ministry of Education of
Hungary, 7/1996.

20. 1996–97: Computational Models for Trees, Ministry of Education of Hungary,
665/96.

21. 1995–97: Iteration Theories, Principal Investigator, US-Hungarian Joint Fund,
J.F.No. 351.

22. 1995–97: Iteration Theories, Principal Investigator, Hungarian National Foun-
dation for Scientific Research, T16344.

23. 1993: Iteration Theories and Concurrency, Commission of the European Com-
munity, CIPA 3511CT920168.

24. 1993–1996: Structural Theory of Automata, Principal Investigator, Hungar-
ian National Foundation for Scientific Research, T7383.

25. 1991–1994: Iteration Theories, Principal Investigator, Hungarian National
Foundation for Scientific Research, 2037.

26. 1991–1993: Applications of Iteration Theories, Joint grant with Stephen L.
Bloom, Hungarian Academy of Sciences and NSF (USA), INT-90 16123.

27. 1986–1990: Structural Theory of Automata, Principal Investigator, Hungar-
ian National Foundation for Scientific Research, 1144.

Doctoral Students

László Bernátsky, 2000, Szabolcs Iván, 2008, Zoltán L. Németh, 2008, Tamás Haj-
gató, 2014.

Acta Cybernetica 23 (2017) 411–435.

Publication List of Zoltán Ésik

Books

[1] Zoltán Ésik. Modern Automata Theory, Russian translation: Covremennaja
Teoria Avtomatovm Kaliningrad. Technische Universität Wien, 2007.

[2] Stephen L. Bloom and Zoltán Ésik. Iteration Theories - The Equational Logic
of Iterative Processes. EATCS Monographs on Theoretical Computer Science.
Springer, 1993.

Book chapters

[1] Equational theories for automata. In Handbook of Automata. EMS Publishing
House, to appear.

[2] Zoltán Ésik. Fixed point theory. In Handbook of Weighted Automata, pages
29–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[3] Zoltán Ésik and Werner Kuich. Finite automata. In Handbook of Weighted
Automata, pages 69–104. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[4] Zoltán Ésik. Automata theory. In Encyclopedia of Computer Science and Tech-
nology, pages 9–36. Marcel Dekker Inc., New York, 1991.

Edited volumes

[1] Zoltán Ésik and Martin Dietzfelbinger, editors. Mathematical Foundations
of Computer Science 2014, Special Issue, Information and Computation, to
appear.

[2] Zoltán Ésik and Zoltán Fülöp, editors. Automata and Formal Languages:
Special Issue AFL 2014, volume 26(8) of International Journal of Foundations
of Computer Science. World Scientific, 2015.

DOI: 10.14232/actacyb.23.1.2017.23

412

[3] Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors. Math-
ematical Foundations of Computer Science 2014 - 39th International Sympo-
sium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part
I, volume 8634 of Lecture Notes in Computer Science. Springer, 2014.

[4] Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors. Math-
ematical Foundations of Computer Science 2014 - 39th International Sympo-
sium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part
II, volume 8635 of Lecture Notes in Computer Science. Springer, 2014.

[5] Zoltán Ésik and Zoltán Fülöp, editors. Proceedings 14th International Confer-
ence on Automata and Formal Languages, AFL 2014, Szeged, Hungary, May
27-29, 2014, volume 151 of EPTCS, 2014.

[6] Dale Miller and Zoltán Ésik, editors. Proceedings 8th Workshop on Fixed
Points in Computer Science, FICS 2012, Tallinn, Estonia, 24th March 2012,
volume 77 of EPTCS, 2012.

[7] Pál Dömösi and Zoltán Ésik, editors. Proceedings 13th International Confer-
ence on Automata and Formal Languages, AFL 2011, volume 23 of Int. J.
Found. Comput. Sci., 2012.

[8] Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors. Fundamentals of Computation
Theory. Special issue devoted to papers presented at FCT 07, volume 411 of
Theor. Comput. Sci., 2010.

[9] Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors. Automata and Formal Lan-
guages: Special Issue AFL 2008, volume 21 of Int. J. Found. Comput. Sci.,
2010.

[10] Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors. Automata and Formal Lan-
guages, volume 19 of Acta Cybern., 2009.

[11] Zoltán Ésik and Zoltán Fülöp, editors. Automata, Formal Languages, and Re-
lated Topics - Dedicated to Ferenc Gécseg on the occasion of his 70th birthday.
Institute of Informatics, University of Szeged, Hungary, 2009.

[12] Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors. Automata and Formal Lan-
guages, 12th International Conference, AFL 2008, Balatonfüred, Hungary,
May 27-30, 2008, Proceedings, 2008.

[13] Erzsébet Csuhaj-Varjú and Zoltán Ésik, editors. Fundamentals of Computa-
tion Theory, 16th International Symposium, FCT 2007, Budapest, Hungary,
August 27-30, 2007, Proceedings, volume 4639 of Lecture Notes in Computer
Science. Springer, 2007.

[14] Zoltán Ésik and R. Ramanujam, editors. Selected Papers of the Conference
”Computer Science Logic 2006”, number 4 in LMCS, 2006.

Publication List of Zoltán Ésik 413

[15] Zoltán Ésik, editor. Automata and Formal Languages: Special Issue of AFL
2005, volume 17(4) of Acta Cybern., 2006.

[16] Zoltán Ésik, editor. Automata and Formal Languages: Special Issue of AFL
2005, volume 366(3) of Theor. Comput. Sci., 2006.

[17] Zoltán Ésik, editor. Computer Science Logic, 20th International Workshop,
CSL 2006, 15th Annual Conference of the EACSL, Szeged, Hungary, Septem-
ber 25-29, 2006, Proceedings, volume 4207 of Lecture Notes in Computer Sci-
ence. Springer, 2006.

[18] Zoltán Ésik, Carlos Mart́ın-Vide, and Victor Mitrana, editors. Recent Advances
in Formal Languages and Applications, volume 25 of Studies in Computational
Intelligence. Springer, 2006.

[19] Alberto Bertoni, Zoltán Ésik, and Juhani Karhumäki, editors. The art of
rationality: In honour of Professor Christian Choffrut on the occasion of his
60th birthday. Theor. Comput. Sci. Elsevier, 2006.

[20] Zoltán Ésik, editor. Automata and Formal Languages (AFL ’05). Acta Cybern.
University of Szeged, 2006.

[21] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Zoltán Ésik, editors. Pro-
cess Algebra, Special Issue, volume 335(2-3) of Theor. Comput. Sci., 2005.

[22] Zoltán Ésik and Zoltán Fülöp, editors. Automata and Formal Languages: 11th
International Conference, AFL 2005. University of Szeged, 2005.

[23] Zoltán Ésik and Igor Walukiewicz, editors. Fixed Points in Computer Science
03, Warsaw, Special issue, volume 38(4) of ITA, 2004.

[24] Luca Aceto, Wan Fokkink, Anna Ingólfsdóttir, and Zoltán Ésik, editors. Work-
shop on Process Algebra: Open Problems and Future Directions, PA ’03,
(Bologna, Italy, 21-25 July, 2003), volume NS 03-3 of BRICS Notes Series,
2003.

[25] Zoltán Ésik and Anna Ingólfsdóttir, editors. Fixed Points in Computer Science
02, Copenhagen, Special issue, volume 37 of ITA, 2003.

[26] Zoltán Ésik and Zoltán Fülöp, editors. Developments in Language Theory,
7th International Conference, DLT 2003, Szeged, Hungary, July 7-11, 2003,
Proceedings, volume 2710 of Lecture Notes in Computer Science. Springer,
2003.

[27] Zoltán Ésik and Anna Ingólfsdóttir, editors. Fixed Points in Computer Science,
FICS 2002, Copenhagen, Denmark, 20-21 July 2002, Preliminary Proceedings,
volume NS-02-2 of BRICS Notes Series. University of Aarhus, 2002.

414

[28] János Csirik, Zoltán Ésik, Zoltán Fülöp, and Balázs Imreh, editors. Special
issue dedicated to the 60th birthday of Prof. Ferenc Gecseg, volume 14 of Acta
Cybern., 1999.

[29] Zoltán Ésik, editor. Proceedings Workshop on Fixed Points in Computer Sci-
ence, FICS, volume 33 of Theoretical Infomatics and Applications, 1999.

[30] Zoltán Ésik (editor). Számı́tási bonyolultság. Novadat, 1999.

[31] Zoltán Ésik, editor. Fundamentals of Computation Theory, 9th International
Symposium, FCT ’93, Szeged, Hungary, August 23-27, 1993, Proceedings, vol-
ume 710 of Lecture Notes in Computer Science. Springer, 1993.

[32] Zoltán Ésik (editor). Számok valóson innen és túl. Gondolat, Budapest, 1987.

Refereed journal articles

[1] Zoltán Ésik. Equational axioms associated with finite automata for fixed point
operations in Cartesian categories. Mathematical Structures in Computer
Science, 27(1):54–69, 2017.

[2] Arnaud Carayol and Zoltán Ésik. An analysis of the equational properties of
the well-founded fixed point. J. Log. Algebr. Meth. Program., 86(1):308–318,
2017.

[3] Zoltán Ésik. Residuated Park theories. J. Log. Comput., 25(2):453–471, 2015.

[4] Zoltán Ésik and Panos Rondogiannis. A fixed point theorem for non-
monotonic functions. Theor. Comput. Sci., 574:18–38, 2015.

[5] Manfred Droste, Zoltán Ésik, and Werner Kuich. Conway and iteration hemir-
ings Part 1. IJAC, 24(4):461–482, 2014.

[6] Manfred Droste, Zoltán Ésik, and Werner Kuich. Conway and iteration hemir-
ings Part 2. IJAC, 24(4):483–514, 2014.

[7] Zoltán Ésik and Szabolcs Iván. Operational characterization of scattered
MCFLs. Int. J. Found. Comput. Sci., 25(8):1001–1016, 2014.

[8] Zoltán Ésik and Tamás Hajgató. On the structure of free iteration semirings.
Journal of Automata, Languages and Combinatorics, 19(1-4):57–66, 2014.

[9] Zoltán Ésik. Axiomatizing weighted synchronization trees and weighted
bisimilarity. Theor. Comput. Sci., 534:2–23, 2014.

[10] Angelos Charalambidis, Zoltán Ésik, and Panos Rondogiannis. Minimum
model semantics for extensional higher-order logic programming with nega-
tion. TPLP, 14(4-5):725–737, 2014.

Publication List of Zoltán Ésik 415

[11] Zoltán Ésik and Satoshi Okawa. On context-free languages of scattered words.
Int. J. Found. Comput. Sci., 24(7):1029–1048, 2013.

[12] Arnaud Carayol and Zoltán Ésik. The FC-rank of a context-free language.
Inf. Process. Lett., 113(8):285–287, 2013.

[13] Zoltán Ésik and Werner Kuich. Free inductiveK-semialgebras. J. Log. Algebr.
Program., 82(3-4):111–122, 2013.

[14] Zoltán Ésik. Ordinal automata and Cantor normal form. Int. J. Found.
Comput. Sci., 23(1):87–98, 2012.

[15] Zoltán Ésik and Szabolcs Iván. On Müller context-free grammars. Theor.
Comput. Sci., 416:17–32, 2012.

[16] Zoltán Ésik and Werner Kuich. Free iterative and iteration K-semialgebras.
Algebra Universalis, 67:141–162, 2012.

[17] Stephen L. Bloom and Zoltán Ésik. Algebraic linear orderings. Int. J. Found.
Comput. Sci., 22(2):491–515, 2011.

[18] Zoltán Ésik and Andreas Maletti. The category of simulations for weighted
tree automata. Int. J. Found. Comput. Sci., 22(8):1845–1859, 2011.

[19] Zoltán Ésik. An undecidable property of context-free linear orders. Inf.
Process. Lett., 111(3):107–109, 2011.

[20] Zoltán Ésik and Tamás Hajgató. Dagger extension theorem. Mathematical
Structures in Computer Science, 21(5):1035–1066, 2011.

[21] Zoltán Ésik and Szabolcs Iván. Büchi context-free languages. Theor. Comput.
Sci., 412(8-10):805–821, 2011.

[22] Stephen L. Bloom and Zoltán Ésik. Algebraic ordinals. Fundam. Inform.,
99(4):383–407, 2010.

[23] Zoltán Ésik and Pascal Weil. Algebraic characterization of logically defined
tree languages. IJAC, 20(2):195–239, 2010.

[24] Zoltán Ésik. Axiomatizing the equational theory of regular tree languages.
J. Log. Algebr. Program., 79(2):189–213, 2010.

[25] Stephen L. Bloom and Zoltán Ésik. A Mezei-Wright theorem for categorical
algebras. Theor. Comput. Sci., 411(2):341–359, 2010.

[26] Zoltán Ésik and Szabolcs Iván. A family of temporal logics on finite trees.
Publ. Math. Debrecen, 77(3–4):277–297, 2010.

[27] Stephen L. Bloom and Zoltán Ésik. Axiomatizing rational power series over
natural numbers. Inf. Comput., 207(7):793–811, 2009.

416

[28] Zoltán Ésik, Yuan Gao, Guangwu Liu, and Sheng Yu. Estimation of state
complexity of combined operations. Theor. Comput. Sci., 410(35):3272–3280,
2009.

[29] Zoltán Ésik and Szabolcs Iván. Products of tree automata with an application
to temporal logic. Fundam. Inform., 82(1-2):61–78, 2008.

[30] Zoltán Ésik and Szabolcs Iván. Some varieties of finite tree automata related
to restricted temporal logics. Fundam. Inform., 82(1-2):79–103, 2008.

[31] Stephen L. Bloom, Zoltán Ésik, and Werner Kuich. Partial Conway and
iteration semirings. Fundam. Inform., 86(1-2):19–40, 2008.

[32] Zoltán Ésik and Guangwu Liu. Fuzzy tree automata. Fuzzy Sets and Systems,
158(13):1450–1460, 2007.

[33] Zoltán Ésik and Werner Kuich. Boolean fuzzy sets. Int. J. Found. Comput.
Sci., 18(6):1197–1207, 2007.

[34] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of
transducers and abstract ω-families of power series. Journal of Automata,
Languages and Combinatorics, 12(4):435–454, 2007.

[35] Zoltán Ésik and Werner Kuich. On iteration semiring-semimodule pairs.
Semigroup Forum, 75:129–159, 2007.

[36] Zoltán Ésik. Characterizing CTL-like logics on finite trees. Theor. Comput.
Sci., 356(1-2):136–152, 2006.

[37] Zoltán Ésik and Hans Leiß. Algebraically complete semirings and Greibach
normal form. Ann. Pure Appl. Logic, 133(1-3):173–203, 2005.

[38] Stephen L. Bloom and Zoltán Ésik. The equational theory of regular words.
Inf. Comput., 197(1-2):55–89, 2005.

[39] Zoltán Ésik and Zoltán L. Németh. Algebraic and graph-theoretic properties
of infinite n-posets. ITA, 39(1):305–322, 2005.

[40] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-
regular languages I. Journal of Automata, Languages and Combinatorics,
10(2/3):203–242, 2005.

[41] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-
regular languages II. Journal of Automata, Languages and Combinatorics,
10(2/3):243–264, 2005.

[42] Zoltán Ésik and Pascal Weil. Algebraic recognizability of regular tree lan-
guages. Theor. Comput. Sci., 340(1):291–321, 2005.

[43] Stephen L. Bloom and Zoltán Ésik. Axiomatizing ω and ω-op powers of
words. ITA, 38(1):3–17, 2004.

Publication List of Zoltán Ésik 417

[44] Zoltán Ésik and Zoltán L. Németh. Higher dimensional automata. Journal
of Automata, Languages and Combinatorics, 9(1):3–29, 2004.

[45] Zoltán Ésik and Werner Kuich. Inductive star-semirings. Theor. Comput.
Sci., 324(1):3–33, 2004.

[46] Zoltán Ésik and Masami Ito. Temporal logic with cyclic counting and the
degree of aperiodicity of finite automata. Acta Cybern., 16(1):1–28, 2003.

[47] Janusz A. Brzozowski and Zoltán Ésik. Hazard algebras. Formal Methods in
System Design, 23(3):223–256, 2003.

[48] Stephen L. Bloom and Zoltán Ésik. Deciding whether the frontier of a regular
tree is scattered. Fundam. Inform., 55(1):1–21, 2003.

[49] Zoltán Ésik and Kim Guldstrand Larsen. Regular languages definable by
Lindström quantifiers. ITA, 37(3):179–241, 2003.

[50] Stephen L. Bloom and Zoltán Ésik. An extension theorem with an application
to formal tree series. Journal of Automata, Languages and Combinatorics,
8(2):145–185, 2003.

[51] Zoltán Ésik and Werner Kuich. Formal tree series. Journal of Automata,
Languages and Combinatorics, 8(2):219–285, 2003.

[52] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational theories of
tropical semirings. Theor. Comput. Sci., 3(298):417–469, 2003.

[53] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. The max-plus algebra of
the natural numbers has no finite equational basis. Theor. Comput. Sci.,
293(1):169–188, 2003.

[54] Zoltán Ésik. Free De Morgan bisemigroups and bisemilattices. Algebra Col-
loquium, 10:23–32, 2003.

[55] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. A fully equational proof of
Parikh’s theorem. ITA, 36(2):129–153, 2002.

[56] Zoltán Ésik and Werner Kuich. Rationally additive semirings. J. UCS,
8(2):173–183, 2002.

[57] Zoltán Ésik. Continuous additive algebras and injective simulations of syn-
chronization trees. J. Log. Comput., 12(2):271–300, 2002.

[58] Zoltán Ésik. Axiomatizing the subsumption and subword preorders on finite
and infinite partial words. Theor. Comput. Sci., 273(1-2):225–248, 2002.

[59] Z. Ésik and W. Kuich. Locally closed semirings. Monatshefte für Mathematik,
137(1):21–29, 2002.

418

[60] Pál Dömösi and Zoltán Ésik. A note on completeness of the ν3-product. Publ.
Math. Debrecen, 60:539–550, 2002.

[61] Stephen L. Bloom, Zoltán Ésik, Anna Labella, and Ernest G. Manes. Iteration
2-theories. Applied Categorical Structures, 9(2):173–216, 2001.

[62] Sinisa Crvenkovic, Igor Dolinka, and Zoltán Ésik. On equations for union-free
regular languages. Inf. Comput., 164(1):152–172, 2001.

[63] Pál Dömösi and Zoltán Ésik. Homomorphic simulation and Letichevsky’s
criterion. Journal of Automata, Languages and Combinatorics, 6(4):427–436,
2001.

[64] Zoltán Ésik and Werner Kuich. A Kleene theorem for Lindenmayerian al-
gebraic power series. Journal of Automata, Languages and Combinatorics,
5(2):109–122, 2000.

[65] Sinisa Crvenkovic, Igor Dolinka, and Zoltán Ésik. The variety of Kleene
algebras with conversion is not finitely based. Theor. Comput. Sci., 230(1-
2):235–245, 2000.

[66] Zoltán Ésik. A proof of the Krohn-Rhodes decomposition theorem. Theor.
Comput. Sci., 234(1-2):287–300, 2000.

[67] Zoltán Ésik. The power of the group-identities for iteration. IJAC, 10(3):349–
374, 2000.

[68] Zoltán Ésik. Axiomatizing iteration categories. Acta Cybern., 14(1):65–82,
1999.

[69] Zoltán Ésik. Group axioms for iteration. Inf. Comput., 148(2):131–180, 1999.

[70] Sinisa Crvenkovic, Igor Dolinka, and Zoltán Ésik. A note on equations for
commutative regular languages. Inf. Process. Lett., 70(6):265–267, 1999.

[71] Zoltán Ésik. A variety theorem for trees and theories. Publ. Math. Debrecen,
54:711–762, 1999.

[72] Zoltán Ésik and Michael Bertol. Nonfinite axiomatizability of the equational
theory of shuffle. Acta Inf., 35(6):505–539, 1998.

[73] Zoltán Ésik. A Cayley theorem for ternary algebras. IJAC, 8(3):311–316,
1998.

[74] László Bernátsky and Zoltán Ésik. Semantics on flowchart programs and the
free Conway theories. ITA, 32(1-3):35–78, 1998.

[75] Zoltán Ésik and Anna Labella. Equational properties of iteration in alge-
braically complete categories. Theor. Comput. Sci., 195(1):61–89, 1998.

Publication List of Zoltán Ésik 419

[76] Stephen L. Bloom and Zoltán Ésik. Shuffle binoids. RAIRO - Theoretical
Informatics and Applications - Informatique Théorique et Applications, 32(4-
6):175–198, 1998.

[77] Zoltán Ésik and Imre Simon. Modeling literal morphisms by shuffle. Semi-
group Forum, 56(2):225–227, 1998.

[78] Stephen L. Bloom and Zoltán Ésik. Axiomatizing shuffle and concatenation
in languages. Inf. Comput., 139(1):62–91, 1997.

[79] Stephen L. Bloom and Zoltán Ésik. Varieties generated by languages with
poset operations. Mathematical Structures in Computer Science, 7(6):701–
713, 1997.

[80] Zoltán Ésik. Completeness of Park induction. Theor. Comput. Sci.,
177(1):217–283, 1997.

[81] Stephen L. Bloom and Zoltán Ésik. The equational logic of fixed points
(tutorial). Theor. Comput. Sci., 179(1-2):1–60, 1997.

[82] Stephen L. Bloom and Zoltán Ésik. Fixed-point operations on CCC’s. part
I. Theor. Comput. Sci., 155(1):1–38, 1996.

[83] Stephen L. Bloom and Zoltán Ésik. Free shuffle algebras in language varieties.
Theor. Comput. Sci., 163(1&2):55–98, 1996.

[84] Zoltán Ésik. Definite tree automata and their cascade compositions. Publ.
Math. Debrecen, 48:243–261, 1996.

[85] Stephen L. Bloom and Zoltán Ésik. Some equational laws of initiality in
2CCC’s. Int. J. Found. Comput. Sci., 6(2):95–118, 1995.

[86] Zoltán Ésik and László Bernátsky. Equational properties of Kleene algebras
of relations with conversion. Theor. Comput. Sci., 137(2):237–251, 1995.

[87] Stephen L. Bloom, Zoltán Ésik, and Gheorghe Stefanescu. Notes on equa-
tional theories of relations. Algebra Universalis, 33(1):98–126, 1995.

[88] Stephen L. Bloom, Zoltán Ésik, and Dirk Taubner. Iteration theories of
synchronization trees. Inf. Comput., 102(1):1–55, 1993.

[89] Stephen L. Bloom and Zoltán Ésik. Erratum: Iteration algebras. Int. J.
Found. Comput. Sci., 4(1):99, 1993.

[90] Stephen L. Bloom and Zoltán Ésik. Matrix and matricial iteration theories,
part I. J. Comput. Syst. Sci., 46(3):381–408, 1993.

[91] Stephen L. Bloom and Zoltán Ésik. Matrix and matricial iteration theories,
part II. J. Comput. Syst. Sci., 46(3):409–439, 1993.

420

[92] Stephen L. Bloom and Zoltán Ésik. Equational axioms for regular sets. Math-
ematical Structures in Computer Science, 3(1):1–24, 1993.

[93] Stephen L. Bloom and Zoltán Ésik. Iteration algebras. Int. J. Found. Comput.
Sci., 3(3):245–302, 1992.

[94] Zoltán Ésik. Varieties of automata and transformation semigroups. Acta
Math. Hung., 59:59–74, 1992.

[95] Zoltán Ésik. A note on isomorphic simulation of automata by networks of
two-state automata. Discrete Applied Mathematics, 30(1):77–82, 1991.

[96] Stephen L. Bloom and Zoltán Ésik. Floyd-Hoare logic in iteration theories.
J. ACM, 38(4):887–934, 1991.

[97] Zoltán Ésik. Results on homomorphic realization of automata by α0-products.
Theor. Comput. Sci., 87(2):229–249, 1991.

[98] Pál Dömösi and Zoltán Ésik. Product hierarchies of automata and homomor-
phic simulation. Acta Cybern., 9(4):371–373, 1990.

[99] Zoltán Ésik. A note on the axiomatization of iteration theories. Acta Cybern.,
9(4):375–384, 1990.

[100] Stephen L. Bloom, Zoltán Ésik, and Ernest G. Manes. A Cayley theorem
for Boolean algebras. The American Mathematical Monthly, 97(9):831–833,
1990.

[101] Stephen L. Bloom and Zoltán Ésik. Equational logic of circular data type
specification. Theor. Comput. Sci., 63(3):303–331, 1989.

[102] Zoltán Ésik and Ferenc Gécseg. A decidability result for homomorphic repre-
sentation of automata by α0-products. Acta Math. Hung., 53(1–2):205–212,
1989.

[103] Zoltán Ésik and Ferenc Gécseg. On αλ1 -products of automata. Acta Sci.
Math. Szeged, 53:245–253, 1989.

[104] Pál Dömösi and Zoltán Ésik. On the hierarchy of νi-product. Acta Cybern.,
8(3):253–257, 1988.

[105] Pál Dömösi and Zoltán Ésik. On homomorphic simulation of automata by
α0-products. Acta Cybern., 8(4):315–323, 1988.

[106] Zoltán Ésik. Independence of the equational axioms for iteration theories. J.
Comput. Syst. Sci., 36(1):66–76, 1988.

[107] Stephen L. Bloom and Zoltán Ésik. Varieties of iteration theories. SIAM J.
Comput., 17(5):939–966, 1988.

Publication List of Zoltán Ésik 421

[108] Pál Dömösi and Zoltán Ésik. Critical classes for the α0-product. Theor.
Comput. Sci., 61:17–24, 1988.

[109] Zoltán Ésik. On cycles of directed graphs. Periodica Math. Hung., 19:19–23,
1988.

[110] Zoltán Ésik and J. Virágh. A note on α∗
0-products of aperiodic automata.

Acta Cybern., 8(1):41–43, 1987.

[111] Zoltán Ésik. Loop products and loop-free products. Acta Cybern., 8(1):45–48,
1987.

[112] Zoltán Ésik. On isomorphic realization of automata with α0-products. Acta
Cybern., 8(2):119–127, 1987.

[113] Zoltán Ésik and Ferenc Gécseg. On a representation of tree automata. Theor.
Comput. Sci., 53:243–255, 1987.

[114] Pál Dömösi and Zoltán Ésik. On homomorphic simulation of automata by
ν1-products. Papers on Automata Theory, IX:91–112, 1987.

[115] Zoltán Ésik. Varieties and general products of top-down algebras. Acta
Cybern., 7(3):293–298, 1986.

[116] Zoltán Ésik and J. Virágh. On products of automata with identity. Acta
Cybern., 7(3):299–311, 1986.

[117] Zoltán Ésik and Pál Dömösi. Complete classes of automata for the α0-
product. Theor. Comput. Sci., 47(3):1–14, 1986.

[118] Zoltán Ésik and Ferenc Gécseg. On α0-products and α2-products. Theor.
Comput. Sci., 48(3):1–8, 1986.

[119] Zoltán Ésik. Complete classes of automata for the αi-product. Found. Control
Engrg., 11:95–107, 1986.

[120] Pál Dömösi and Zoltán Ésik. On homomorphic realization of automata with
α0-products. Papers on Automata Theory, 8:63–97, 1986.

[121] Zoltán Ésik and Ferenc Gécseg. Type independent varieties and metric equiv-
alence of tree automata. Fundam. Inform., 9:205–216, 1986.

[122] Zoltán Ésik. On the weak equivalence of Elgot’s flow-chart schemata. Acta
Cybern., 7(2):147–154, 1985.

[123] Stephen L. Bloom and Zoltán Ésik. Axiomatizing schemes and their behav-
iors. J. Comput. Syst. Sci., 31(3):375–393, 1985.

[124] Zoltán Ésik. Homomorphically complete classes of automata with respect to
the α2-product. Acta Sci. Math. Szeged, 48:135–141, 1985.

422

[125] Zoltán Ésik and Gyula Horváth. Pseudo varieties and α0-products. Papers
on Automata Theory, 6:47–76, 1984.

[126] Zoltán Ésik. A note on kernel languages of programs (in hungarian). Alka-
lmazott Matematikai Lapok, 10:61–63, 1984.

[127] Zoltán Ésik and Ferenc Gécseg. General products and equational classes of
automata. Acta Cybern., 6(3):281–284, 1983.

[128] Zoltán Ésik. On identities preserved by general products of algebras,. Acta
Cybern., 6:285–289, 1983.

[129] Zoltán Ésik. Decidability results concerning tree transducers II. Acta Cybern.,
6(3):303–314, 1983.

[130] Zoltán Ésik. Algebras of iteration theories. J. Comput. Syst. Sci., 27(2):291–
303, 1983.

[131] Zoltán Ésik and Gyula Horváth. The α2-product is homomorphically general.
Papers on Automata Theory, 5:49–62, 1983.

[132] Zoltán Ésik. On homomorphic realization of monotone automata. Papers on
Automata Theory, 5:63–76, 1983.

[133] Zoltán Ésik. On generalized iterative algebraic theories. Computational Lin-
guistics and Computer Languages, 15:95–110, 1982.

[134] Zoltán Ésik and Balázs Imreh. Remarks on finite commutative automata.
Acta Cybern., 5(2):143–146, 1981.

[135] Zoltán Ésik and Balázs Imreh. Subdirectly irreducible commutative au-
tomata. Acta Cybern., 5(3):251–260, 1981.

[136] Zoltán Ésik. Decidability results concerning tree transducers I. Acta Cybern.,
5(1):1–20, 1980.

[137] Zoltán Ésik. Identities in iterative and rational algebraic theories. Computa-
tional Linguistics and Computer Languages, 14:183–207, 1980.

[138] Zoltán Ésik. On two problems of A. Salomaa. Acta Cybern., 2(4):299–306,
1976.

Refereed conference articles

[1] Arnaud Carayol and Zoltán Ésik. An analysis of the equational properties
of the well-founded fixed point. In Chitta Baral, James P. Delgrande, and
Frank Wolter, editors, Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifteenth International Conference, KR 2016, Cape Town,
South Africa, April 25-29, 2016., pages 533–536. AAAI Press, 2016.

Publication List of Zoltán Ésik 423

[2] Zoltán Ésik. Ternary equational languages. In Yo-Sub Han and Kai Salo-
maa, editors, Implementation and Application of Automata - 21st Interna-
tional Conference, CIAA 2016, Seoul, South Korea, July 19-22, 2016, Pro-
ceedings, volume 9705 of Lecture Notes in Computer Science, pages 77–88.
Springer, 2016.

[3] Zoltán Ésik and Szabolcs Iván. MSO-definable properties of Muller context-
free languages are decidable. In Cezar Câmpeanu, Florin Manea, and Jef-
frey Shallit, editors, Descriptional Complexity of Formal Systems - 18th IFIP
WG 1.2 International Conference, DCFS 2016, Bucharest, Romania, July 5-8,
2016. Proceedings, volume 9777 of Lecture Notes in Computer Science, pages
87–97. Springer, 2016.

[4] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. *-continuous Kleene ω-algebras.
In Igor Potapov, editor, Developments in Language Theory - 19th International
Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings., volume
9168 of Lecture Notes in Computer Science, pages 240–251. Springer, 2015.

[5] Zoltán Ésik. Equational properties of fixed point operations in Cartesian cat-
egories: An overview. In Giuseppe F. Italiano, Giovanni Pighizzini, and Don-
ald Sannella, editors, Mathematical Foundations of Computer Science 2015 -
40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015,
Proceedings, Part I, volume 9234 of Lecture Notes in Computer Science, pages
18–37. Springer, 2015.

[6] Zoltán Ésik. Equational properties of stratified least fixed points (extended
abstract). In Valeria de Paiva, Ruy J. G. B. de Queiroz, Lawrence S. Moss,
Daniel Leivant, and Anjolina Grisi de Oliveira, editors, Logic, Language, In-
formation, and Computation - 22nd International Workshop, WoLLIC 2015,
Bloomington, IN, USA, July 20-23, 2015, Proceedings, volume 9160 of Lecture
Notes in Computer Science, pages 174–188. Springer, 2015.

[7] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. *-continuous Kleene ω-algebras
for energy problems. In Ralph Matthes and Matteo Mio, editors, Proceedings
Tenth International Workshop on Fixed Points in Computer Science, FICS
2015, Berlin, Germany, September 11-12, 2015., volume 191 of EPTCS, pages
48–59, 2015.

[8] Zoltán Ésik. A representation theorem for stratified complete lattices. In 11th
Tbilisi Symp. Language, Logic and Computation, 21–26 Sept. 2015, pages 56–
58. Georgian Academy of Science, 2015.

[9] Zoltán Ésik and Panos Rondogiannis. Theorems on pre-fixed points of non-
monotonic functions with applications in logic programming and formal gram-
mars. In Ulrich Kohlenbach, Pablo Barceló, and Ruy J. G. B. de Queiroz,
editors, Logic, Language, Information, and Computation - 21st International

424

Workshop, WoLLIC 2014, Valparáıso, Chile, September 1-4, 2014. Proceed-
ings, volume 8652 of Lecture Notes in Computer Science, pages 166–180.
Springer, 2014.

[10] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. Kleene alge-
bras and semimodules for energy problems. In Dang Van Hung and Mizuhito
Ogawa, editors, Automated Technology for Verification and Analysis - 11th In-
ternational Symposium, ATVA 2013, Hanoi, Vietnam, October 15-18, 2013.
Proceedings, volume 8172 of Lecture Notes in Computer Science, pages 102–
117. Springer, 2013.

[11] Zoltán Ésik and Szabolcs Iván. Operational characterization of scattered
MCFLs. In Marie-Pierre Béal and Olivier Carton, editors, Developments
in Language Theory - 17th International Conference, DLT 2013, Marne-la-
Vallée, France, June 18-21, 2013. Proceedings, volume 7907 of Lecture Notes
in Computer Science, pages 215–226. Springer, 2013.

[12] Zoltán Ésik and Panos Rondogiannis. A fixed-point theorem for non-monotonic
functions. In Panhellenic Logic - 9th Symposium, Athens, Greece, July 15-18,
2013. Proceedings, pages 43–48, 2013.

[13] Zoltán Ésik. On a connection between concurrency and formal languages. In
Mathematical Foundation of Programming Semantics, MFPS29, New Orleans,
2013, volume 298 of ENTCS, page 143–164, 2013.

[14] Zoltán Ésik and Satoshi Okawa. On context-free languages of scattered words.
In Hsu-Chun Yen and Oscar H. Ibarra, editors, Developments in Language
Theory - 16th International Conference, DLT 2012, Taipei, Taiwan, August
14-17, 2012. Proceedings, volume 7410 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2012.

[15] Luca Aceto, Arnaud Carayol, Zoltán Ésik, and Anna Ingólfsdóttir. Algebraic
synchronization trees and processes. In Artur Czumaj, Kurt Mehlhorn, An-
drew M. Pitts, and Roger Wattenhofer, editors, Automata, Languages, and
Programming - 39th International Colloquium, ICALP 2012, Warwick, UK,
July 9-13, 2012, Proceedings, Part II, volume 7392 of Lecture Notes in Com-
puter Science, pages 30–41. Springer, 2012.

[16] Arnaud Carayol and Zoltán Ésik. A context-free linear ordering with an un-
decidable first-order theory. In Jos C. M. Baeten, Thomas Ball, and Frank S.
de Boer, editors, Theoretical Computer Science - 7th IFIP TC 1/WG 2.2 In-
ternational Conference, TCS 2012, Amsterdam, The Netherlands, September
26-28, 2012. Proceedings, volume 7604 of Lecture Notes in Computer Science,
pages 104–118. Springer, 2012.

[17] Zoltán Ésik and Szabolcs Iván. Hausdorff rank of scattered context-free linear
orders. In David Fernández-Baca, editor, LATIN 2012: Theoretical Informat-
ics - 10th Latin American Symposium, Arequipa, Peru, April 16-20, 2012.

Publication List of Zoltán Ésik 425

Proceedings, volume 7256 of Lecture Notes in Computer Science, pages 291–
302. Springer, 2012.

[18] Zoltán Ésik. Scattered context-free linear orderings. In Giancarlo Mauri and
Alberto Leporati, editors, Developments in Language Theory - 15th Interna-
tional Conference, DLT 2011, Milan, Italy, July 19-22, 2011. Proceedings,
volume 6795 of Lecture Notes in Computer Science, pages 216–227. Springer,
2011.

[19] Zoltán Ésik. Multi-linear iterative K-Σ-semialgebras. In Proceedings 27th
Int. Conference on Mathematical Foundations of Programming Semantics,
Carnegie Mellon University, May 2011, volume 276 of Electr. Notes Theor.
Comput. Sci., pages 159–170, 2011.

[20] Zoltán Ésik. Residuated Park theories. In Proceedings of the Fifth Interna-
tional Conference on Topology, Algebra and Categories in Logic, Marseille,
France, pages 37–40, 2011.

[21] Zoltán Ésik and Andreas Maletti. Simulations of weighted tree automata.
In Proceedings of the 15th International Conference on Implementation and
Application of Automata. Winnipeg, Canada, volume 6482 of Lecture Notes in
Computer Science, pages 321–330. Springer, 2011.

[22] Zoltán Ésik and Werner Kuich. Axiomatizing rational series. In Proceedings
of the 8th Panhellenic Logic Symposium. Ioannina, Greece, pages 30–34, 2011.

[23] Zoltán Ésik and Szabolcs Iván. On Müller context-free grammars. In Yuan
Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu, editors, Developments in
Language Theory, 14th International Conference, DLT 2010, London, ON,
Canada, August 17-20, 2010. Proceedings, volume 6224 of Lecture Notes in
Computer Science, pages 173–184. Springer, 2010.

[24] Zoltán Ésik and Andreas Maletti. Simulation vs. equivalence. In Hamid R.
Arabnia, George A. Gravvanis, and Ashu M. G. Solo, editors, Proceedings of
the 2010 International Conference on Foundations of Computer Science, FCS
2010, July 12-15, 2010, Las Vegas, Nevada, USA, pages 119–124. CSREA
Press, 2010.

[25] Zoltán Ésik and Andreas Maletti. Simulations of weighted tree automata. In
Michael Domaratzki and Kai Salomaa, editors, Implementation and Applica-
tion of Automata - 15th International Conference, CIAA 2010, Winnipeg, MB,
Canada, August 12-15, 2010. Revised Selected Papers, volume 6482 of Lecture
Notes in Computer Science, pages 321–330. Springer, 2010.

[26] Zoltán Ésik and Szabolcs Iván. Extended temporal logics on finite trees. In
Masami Ito, Yuji Kobayashi, Kunitaka Shoji (eds.) Automata, Formal Lan-
guages, and Algebraic Systems. Kyoto, Japan, pages 47–62. World Scientific,
2010.

426

[27] Zoltán Ésik. Representing small ordinals by finite automata. In Ian McQuillan
and Giovanni Pighizzini, editors, Proceedings Twelfth Annual Workshop on
Descriptional Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada,
8-10th August 2010., volume 31 of EPTCS, pages 78–87, 2010.

[28] Zoltán Ésik, Werner Kuich, and Masami Ito. Linear languages of finite and in-
finite words. In Masami Ito, Yuji Kobayashi, Kunitaka Shoji (eds.) Automata,
Formal Languages, and Algebraic Systems. Kyoto, Japan, pages 33–46. World
Scientific, 2010.

[29] Stephen L. Bloom, Zoltán Ésik, and Werner Kuich. Cycle-free finite automata
in partial iterative semirings. In Symeon Bozapalidis and George Rahonis, edi-
tors, Algebraic Informatics, Third International Conference, CAI 2009, Thes-
saloniki, Greece, May 19-22, 2009, Proceedings, volume 5725 of Lecture Notes
in Computer Science, pages 1–12. Springer, 2009.

[30] Zoltán Ésik and Tamás Hajgató. Iteration Grove theories with applications.
In Symeon Bozapalidis and George Rahonis, editors, Algebraic Informatics,
Third International Conference, CAI 2009, Thessaloniki, Greece, May 19-22,
2009, Proceedings, volume 5725 of Lecture Notes in Computer Science, pages
227–249. Springer, 2009.

[31] Zoltán Ésik and Szabolcs Iván. Context-free languages of countable words. In
Martin Leucker and Carroll Morgan, editors, Theoretical Aspects of Comput-
ing - ICTAC 2009, 6th International Colloquium, Kuala Lumpur, Malaysia,
August 16-20, 2009. Proceedings, volume 5684 of Lecture Notes in Computer
Science, pages 185–199. Springer, 2009.

[32] Stephen L. Bloom and Zoltán Ésik. Scattered algebraic linear orderings. In
Ralph Matthes and Tarmo Uustalu, editors, 6th Workshop on Fixed Points in
Computer Science: FICS 2009, pages 25–30, 2009.

[33] Zoltán Ésik, Yuan Gao, Guangwu Liu, and Sheng Yu. Estimation of state com-
plexity of combined operations. In Cezar Câmpeanu and Giovanni Pighizzini,
editors, 10th International Workshop on Descriptional Complexity of Formal
Systems, DCFS 2008, Charlottetown, Prince Edward Island, Canada, July 16-
18, 2008., pages 168–181. University of Prince Edward Island, 2008.

[34] Zoltán Ésik. Iteration semirings. In Masami Ito and Masafumi Toyama, edi-
tors, Developments in Language Theory, 12th International Conference, DLT
2008, Kyoto, Japan, September 16-19, 2008. Proceedings, volume 5257 of Lec-
ture Notes in Computer Science, pages 1–20. Springer, 2008.

[35] Zoltán Ésik and Szabolcs Iván. Games for temporal logics on trees. In Os-
car H. Ibarra and Bala Ravikumar, editors, Implementation and Applications
of Automata, 13th International Conference, CIAA 2008, San Francisco, Cal-
ifornia, USA, July 21-24, 2008. Proceedings, volume 5148 of Lecture Notes in
Computer Science, pages 191–200. Springer, 2008.

Publication List of Zoltán Ésik 427

[36] Zoltán Ésik and Szabolcs Iván. Aperiodicity in tree automata. In Symeon
Bozapalidis and George Rahonis, editors, Algebraic Informatics, Second In-
ternational Conference, CAI 2007, Thessaloniki, Greece, May 21-25, 2007,
Revised Selected and Invited Papers, volume 4728 of Lecture Notes in Com-
puter Science, pages 189–207. Springer, 2007.

[37] Stephen L. Bloom and Zoltán Ésik. Regular and algebraic words and or-
dinals. In Till Mossakowski, Ugo Montanari, and Magne Haveraaen, editors,
Algebra and Coalgebra in Computer Science, Second International Conference,
CALCO 2007, Bergen, Norway, August 20-24, 2007, Proceedings, volume 4624
of Lecture Notes in Computer Science, pages 1–15. Springer, 2007.

[38] Zoltán Ésik and Gabriela Mart́ın. An algebraic characterization of Wolper’s
logic. In Hamid R. Arabnia and Pei Li Zhou, editors, Proceedings of the 2007
International Conference on Foundations of Computer Science, FCS 2007,
June 25-28, 2007, Las Vegas, Nevada, USA, pages 139–143. CSREA Press,
2007.

[39] Zoltán Ésik and Werner Kuich. Fixed points in semiring theory. In Michael
Kunc and Alexander Okhotin, editors, Theory and Applications of Language
Equations: Proceedings of the 1st International Workshop, pages 5–13, 2007.

[40] Stephen L. Bloom and Zoltán Ésik. Completing categorical algebras. In
Gonzalo Navarro, Leopoldo E. Bertossi, and Yoshiharu Kohayakawa, editors,
Fourth IFIP International Conference on Theoretical Computer Science (TCS
2006), IFIP 19th World Computer Congress, TC-1 Foundations of Computer
Science, August 23-24, 2006, Santiago, Chile, volume 209 of IFIP, pages 231–
249. Springer, 2006.

[41] Zoltán Ésik. Cascade products and temporal logics on finite trees. In Proceed-
ings of the Workshop on Algebraic Process Calculi: The First Twenty Five
Years and Beyond, volume 162 of Electr. Notes Theor. Comput. Sci., pages
163–166, 2006.

[42] Zoltán Ésik. An algebraic characterization of the expressive power of temporal
logics on finite trees, Part 1. In 1st International Conference on Algebraic
Informatics, pages 53–78, 2005.

[43] Zoltán Ésik. An algebraic characterization of the expressive power of temporal
logics on finite trees, Part 2. In 1st International Conference on Algebraic
Informatics, pages 79–100, 2005.

[44] Zoltán Ésik. An algebraic characterization of the expressive power of temporal
logics on finite trees, Part 3. In 1st International Conference on Algebraic
Informatics, pages 101–110, 2005.

[45] Zoltán Ésik and Gabriela Martin. A note on Wolper’s logic. In Workshop on
Semigroups and Automata, volume 3580 of Lecture Notes in Computer Science,
pages 61–68, 2005.

428

[46] Zoltán Ésik and Werner Kuich. An algebraic generalization of ω-regular lan-
guages. In Jiŕı Fiala, Václav Koubek, and Jan Kratochv́ıl, editors, Mathemat-
ical Foundations of Computer Science 2004, 29th International Symposium,
MFCS 2004, Prague, Czech Republic, August 22-27, 2004, Proceedings, vol-
ume 3153 of Lecture Notes in Computer Science, pages 648–659. Springer,
2004.

[47] Stephen L. Bloom and Zoltán Ésik. Axioms for regular words: Extended
abstract. In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST
TCS 2003: Foundations of Software Technology and Theoretical Computer
Science, 23rd Conference, Mumbai, India, December 15-17, 2003, Proceedings,
volume 2914 of Lecture Notes in Computer Science, pages 50–61. Springer,
2003.

[48] Zoltán Ésik and Pascal Weil. On logically defined recognizable tree languages.
In Paritosh K. Pandya and Jaikumar Radhakrishnan, editors, FST TCS 2003:
Foundations of Software Technology and Theoretical Computer Science, 23rd
Conference, Mumbai, India, December 15-17, 2003, Proceedings, volume 2914
of Lecture Notes in Computer Science, pages 195–207. Springer, 2003.

[49] Zoltán Ésik. Extended temporal logic on finite words and wreath products of
monoids with distinguished generators. In Masami Ito and Masafumi Toyama,
editors, Developments in Language Theory, 6th International Conference, DLT
2002, volume 2450 of Lecture Notes in Computer Science, pages 43–58, 2003.

[50] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational axioms for prob-
abilistic bisimilarity. In Hélène Kirchner and Christophe Ringeissen, editors,
Algebraic Methodology and Software Technology, 9th International Conference,
AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France, September 9-
13, 2002, Proceedings, volume 2422 of Lecture Notes in Computer Science,
pages 239–253. Springer, 2002.

[51] Zoltán Ésik and Hans Leiß. Greibach normal form in algebraically complete
semirings. In Julian C. Bradfield, editor, Computer Science Logic, 16th In-
ternational Workshop, CSL 2002, 11th Annual Conference of the EACSL,
Edinburgh, Scotland, UK, September 22-25, 2002, Proceedings, volume 2471
of Lecture Notes in Computer Science, pages 135–150. Springer, 2002.

[52] Zoltán Ésik. Extended temporal logic on finite words and wreath product of
monoids with distinguished generators. In Masami Ito and Masafumi Toyama,
editors, Developments in Language Theory, 6th International Conference, DLT
2002, Kyoto, Japan, September 18-21, 2002, Revised Papers, volume 2450 of
Lecture Notes in Computer Science, pages 43–58. Springer, 2002.

[53] Z. Ésik. The equational theory of fixed points with applications to generalized
language theory. In Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa, ed-
itors, Developments in Language Theory: 5th International Conference, DLT

Publication List of Zoltán Ésik 429

2001 Wien, Austria, July 16–21, 2001 Revised Papers, pages 21–36, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[54] Stephen L. Bloom and Zoltán Ésik. Unique, guarded fixed points in an additive
setting (extended abstract). In Proceedings Category Theory and Computer
Science, CTCS 2002, Ottawa, volume 69 of Electr. Notes Theor. Comput.
Sci., pages 47–61, 2002.

[55] Zoltán Ésik and Werner Kuich. Conway-halbringe als grundlage für eine
mathematische automatentheorie. In Ju.I. Schevtschenko S.I. Aleschnikov,
S.Ju. Piljugin, editor, Doklady meschdunarodnogo matematitscheskogo semi-
nara k 140-letiju sodnja roschdenija Davida Gilberta iz Kenigsberga i 25-letiju
matematitscheskogo fakulteta (Vorträge des internationalen mathematischen
Seminars zum 140. Geburtstag David Hilberts aus Königsberg und zum 25 -
jährigen Jubiläum der mathematischen Fakultät, pages 240–246. Universität in
Königsberg, 2002.

[56] Zoltán Ésik. The equational theory of fixed points with applications to gen-
eralized language theory. In Werner Kuich, Grzegorz Rozenberg, and Arto
Salomaa, editors, Developments in Language Theory, 5th International Con-
ference, DLT 2001, Vienna, Austria, July 16-21, 2001, Revised Papers, volume
2295 of Lecture Notes in Computer Science, pages 21–36. Springer, 2001.

[57] Zoltán Ésik and Zoltán L. Németh. Automata on series-parallel biposets. In
Werner Kuich, Grzegorz Rozenberg, and Arto Salomaa, editors, Developments
in Language Theory, 5th International Conference, DLT 2001, Vienna, Aus-
tria, July 16-21, 2001, Revised Papers, volume 2295 of Lecture Notes in Com-
puter Science, pages 217–227. Springer, 2001.

[58] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Axiomatizing tropical semir-
ings. In Furio Honsell and Marino Miculan, editors, Foundations of Software
Science and Computation Structures, 4th International Conference, FOSSACS
2001 Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume
2030 of Lecture Notes in Computer Science, pages 42–56. Springer, 2001.

[59] Janusz A. Brzozowski, Zoltán Ésik, and Y. Iland. Algebras for hazard de-
tection. In 31st IEEE International Symposium on Multiple-Valued Logic,
ISMVL 2001, Warsaw, Poland, May 22-24, 2001, Proceedings, pages 3–14.
IEEE Computer Society, 2001.

[60] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdottir. Nonfinitely based tropi-
cal semirings. In Gaubert, S. : Loiseau, J. J. (eds.), editor, Proceedings of the
Workshop on Max-Plus Algebra and Their Applications to Discrete-Event Sys-
tems : Theoretical Computer Science, and Optimization, August 27-29 2001,
Prague, Czech Republic, pages 29–34. Elsevier Science, 2001.

430

[61] Zoltán Ésik. Axiomatizing the least fixed point operation and binary supre-
mum. In Peter Clote and Helmut Schwichtenberg, editors, Computer Science
Logic, 14th Annual Conference of the EACSL, Fischbachau, Germany, August
21-26, 2000, Proceedings, volume 1862 of Lecture Notes in Computer Science,
pages 302–316. Springer, 2000.

[62] Janusz A. Brzozowski and Zoltán Ésik. Hazard algebras (extended abstract).
In Arto Salomaa, Derick Wood, and Sheng Yu, editors, A Half-Century of
Automata Theory: Celebration and Inspiration, pages 1–19. World Scientific,
2000.

[63] Stephen L. Bloom and Zoltán Ésik. Iteration algebras are not finitely ax-
iomatizable (extended abstract). In Gaston H. Gonnet, Daniel Panario, and
Alfredo Viola, editors, LATIN 2000: Theoretical Informatics, 4th Latin Amer-
ican Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 367–376. Springer,
2000.

[64] Zoltán Ésik. Iteration theories of Boolean functions. In Mogens Nielsen
and Branislav Rovan, editors, Mathematical Foundations of Computer Sci-
ence 2000, 25th International Symposium, MFCS 2000, Bratislava, Slovakia,
August 28 - September 1, 2000, Proceedings, volume 1893 of Lecture Notes in
Computer Science, pages 343–352. Springer, 2000.

[65] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. On the two-variable frag-
ment of the equational theory of the max-sum algebra of the natural numbers.
In Horst Reichel and Sophie Tison, editors, STACS 2000, 17th Annual Sym-
posium on Theoretical Aspects of Computer Science, Lille, France, February
2000, Proceedings, volume 1770 of Lecture Notes in Computer Science, pages
267–278. Springer, 2000.

[66] Zoltán Ésik. Free algebras for generalized automata and language theory. In
Proceedings of Algebraic Systems : Formal Languages and Computation, RIMS
Kokyuroku 1166, Kyoto University, 2000, pages 52–58, 2000.

[67] Stephen L. Bloom and Zoltán Ésik. There is no finite axiomatization of iter-
ation theories. In Proceedings LATIN 2000, Punta del Este, Uruguay, volume
1776 of Lecture Notes in Computer Science, page 367–376. Springer-Verlag,
2000.

[68] Zoltán Ésik and Satoshi Okawa. Series and parallel operations on pomsets. In
C. Pandu Rangan, Venkatesh Raman, and Ramaswamy Ramanujam, editors,
Foundations of Software Technology and Theoretical Computer Science, 19th
Conference, Chennai, India, December 13-15, 1999, Proceedings, volume 1738
of Lecture Notes in Computer Science, pages 316–328. Springer, 1999.

[69] Zoltán Ésik, Masami Ito, and Masashi Katsura. The equational theory of
reversal. In Gaubert, S. : Loiseau, J. J. (eds.), editor, Proceedings of the

Publication List of Zoltán Ésik 431

International Workshop on Formal Languages and Computer Systems, Kyoto,
March 18 – 21 1997 and the First International Conference on Semigroups
and Algebraic Engineering, Aizu, 24 – 28 March 1997, pages 502–521. World
Scientific, 1999.

[70] Zoltán Ésik. Axiomatizing the equational theory of regular tree languages
(extended abstract). In Michel Morvan, Christoph Meinel, and Daniel Krob,
editors, STACS 98, 15th Annual Symposium on Theoretical Aspects of Com-
puter Science, Paris, France, February 25-27, 1998, Proceedings, volume 1373
of Lecture Notes in Computer Science, pages 455–465. Springer, 1998.

[71] Stephen L. Bloom, Anna Labella, Zoltán Ésik, and Ernest G. Manes. Iter-
ation 2-theories: Extended abstract. In Michael Johnson, editor, Algebraic
Methodology and Software Technology, 6th International Conference, AMAST
’97, Sydney, Australia, December 13-17, 1997, Proceedings, volume 1349 of
Lecture Notes in Computer Science, pages 30–44. Springer, 1997.

[72] Stephen L. Bloom and Zoltán Ésik. Research project, axiomatizing shuffle.
In Trabajos seleccionados WAIT ’97, Buenos Aires, pages 47–54. Sociedad
Argentina de Informatica e Investogacion Operativa, 1997.

[73] Zoltán Ésik and Anna Labella. Equational properties of iteration in alge-
braically complete categories. In Wojciech Penczek and Andrzej Szalas, edi-
tors, Mathematical Foundations of Computer Science 1996, 21st International
Symposium, MFCS’96, Cracow, Poland, September 2-6, 1996, Proceedings,
volume 1113 of Lecture Notes in Computer Science, pages 336–347. Springer,
1996.

[74] Zoltán Ésik and Michael Bertol. Nonfinite axiomatizability of the equational
theory of shuffle. In Zoltán Fülöp and Ferenc Gécseg, editors, Automata, Lan-
guages and Programming, 22nd International Colloquium, ICALP95, Szeged,
Hungary, July 10-14, 1995, Proceedings, volume 944 of Lecture Notes in Com-
puter Science, pages 27–38. Springer, 1995.

[75] Stephen L. Bloom and Zoltán Ésik. Free shuffle algebras in language va-
rieties (extended abstract). In Ricardo A. Baeza-Yates, Eric Goles Ch., and
Patricio V. Poblete, editors, LATIN ’95: Theoretical Informatics, Second Latin
American Symposium, Valparáıso, Chile, April 3-7, 1995, Proceedings, volume
911 of Lecture Notes in Computer Science, pages 99–111. Springer, 1995.

[76] Stephen L. Bloom and Zoltán Ésik. Nonfinite axiomatizability of shuffle in-
equalities. In Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach,
editors, TAPSOFT’95: Theory and Practice of Software Development, 6th
International Joint Conference CAAP/FASE, Aarhus, Denmark, May 22-26,
1995, Proceedings, volume 915 of Lecture Notes in Computer Science, pages
318–333. Springer, 1995.

432

[77] Zoltán Ésik and László Bernátsky. Scott induction and equational proofs.
In Mathematical Foundations of Programming Semantics ’95, New Orleans,
volume 1 of Electr. Notes Theor. Comput. Sci., pages 154–181, 1995.

[78] Stephen L. Bloom and Zoltán Ésik. Solving polynomial fixed point equations.
In Igor Pŕıvara, Branislav Rovan, and Peter Ruzicka, editors, Mathemati-
cal Foundations of Computer Science 1994, 19th International Symposium,
MFCS’94, Kosice, Slovakia, August 22 - 26, 1994, Proceedings, volume 841 of
Lecture Notes in Computer Science, pages 52–67. Springer, 1994.

[79] László Bernátsky, Stephen L. Bloom, Zoltán Ésik, and Gheorghe Stefanescu.
Equational theories of relations and regular sets. In Masami Ito and Hel-
mut Jürgensen, editor, Proceedings of the International Conference on Words,
Languages and Combinatorics, II., pages 40–48. World Scientific, 1994.

[80] Stephen L. Bloom and Zoltán Ésik. Some quasi-varieties of iteration theories.
In Stephen D. Brookes, Michael G. Main, Austin Melton, Michael W. Mislove,
and David A. Schmidt, editors, Mathematical Foundations of Programming
Semantics, 9th International Conference, New Orleans, LA, USA, April 7-10,
1993, Proceedings, volume 802 of Lecture Notes in Computer Science, pages
378–409. Springer, 1993.

[81] Stephen L. Bloom and Zoltán Ésik. Program correctness and matricial it-
eration theories. In Stephen D. Brookes, Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt, editors, Mathematical Founda-
tions of Programming Semantics, 7th International Conference, Pittsburgh,
PA, USA, March 25-28, 1991, Proceedings, volume 598 of Lecture Notes in
Computer Science, pages 457–476. Springer, 1991.

[82] Stephen L. Bloom and Zoltán Ésik. Iteration algebras (extended abstract). In
Samson Abramsky and T. S. E. Maibaum, editors, TAPSOFT’91: Proceedings
of the International Joint Conference on Theory and Practice of Software De-
velopment, Brighton, UK, April 8-12, 1991, Volume 1: Colloquium on Trees in
Algebra and Programming (CAAP’91), volume 493 of Lecture Notes in Com-
puter Science, pages 264–274. Springer, 1991.

[83] Stephen L. Bloom, Zoltán Ésik, and Dirk Taubner. Iteration theories of syn-
chronization trees. In Semantics for Concurrency: Proceedings of the Inter-
national BCS-FACS Workshop, Sponsored by Logic for IT (S.E.R.C.), 23–25
July 1990, University of Leicester, UK, pages 96–115, London, 1990. Springer
London.

[84] Pál Dömösi, Zoltán Ésik, and Balázs Imreh. On product hierarchies of au-
tomata. In János Csirik, János Demetrovics, and Ferenc Gécseg, editors, Fun-
damentals of Computation Theory, International Conference FCT’89, Szeged,
Hungary, August 21-25, 1989, Proceedings, volume 380 of Lecture Notes in
Computer Science, pages 137–144. Springer, 1989.

Publication List of Zoltán Ésik 433

[85] Zoltán Ésik. An extension of the Krohn-Rhodes decomposition of automata. In
Jürgen Dassow and Jozef Kelemen, editors, Machines, Languages, and Com-
plexity, 5th International Meeting of Young Computer Scientists, Smolenice,
Czechoslovakia, November 14-18, 1988, Proceedings, volume 381 of Lecture
Notes in Computer Science, pages 66–71. Springer, 1988.

[86] Pál Dömösi and Zoltán Ésik. On homomorphic realization and homomor-
phic simulation of automata by α0-products. In Proceedings Conference on
Automata, Languages and Programming Systems, Salgótarján, pages 89–98,
1988.

[87] Zoltán Ésik, Pál Dömösi, Ferenc Gécseg, and J. Virágh. Homomorphic realiza-
tions of automata with compositions. In Jozef Gruska, Branislav Rovan, and
Juraj Wiedermann, editors, Mathematical Foundations of Computer Science
1986, Bratislava, Czechoslovakia, August 25-29, 1996, Proceedings, volume 233
of Lecture Notes in Computer Science, pages 299–307. Springer, 1986.

[88] Zoltán Ésik. Completeness results in automata theory. In Proceedings Confer-
ence on Automata, Languages and Programming Systems, Salgótarján, pages
110–122. Karl Marx Univ. of Economics, 1986.

[89] Zoltán Ésik and János Virágh. On λ-products of automata. In Proceedings 4th
Hungarian Computer Sci. Conf, pages 79–89. Akadémiai Kiadó, 1986.

[90] Zoltán Ésik. On Elgot’s flowchart schemes. In System Theoretical Aspects in
Computer Science, Salgótarján, pages 99–102, 1982.

[91] Zoltán Ésik. An axiomatization of regular forests in the language of algebraic
theories with iteration. In Ferenc Gécseg, editor, Fundamentals of Computa-
tion Theory, FCT’81, Proceedings of the 1981 International FCT-Conference,
Szeged, Hungary, August 24-28, 1981, volume 117 of Lecture Notes in Com-
puter Science, pages 130–136. Springer, 1981.

[92] Zoltán Ésik. On functional tree transducers. In Fundamentals of Computation
Theory, pages 121–127, 1979.

[93] Zoltán Ésik. On decidability of injectivity of tree transformations. In Les
arbres en algebre et en programmation, Lille, pages 107–133, 1978.

Refereed articles in other edited volumes

[1] Zoltán Ésik and Werner Kuich. On power series over a graded monoid. In
Cristian S. Calude, Rusins Freivalds, and Kazuo Iwama, editors, Computing
with New Resources - Essays Dedicated to Jozef Gruska on the Occasion of His
80th Birthday, volume 8808 of Lecture Notes in Computer Science, pages 49–55.
Springer, 2014.

434

[2] Zoltán Ésik. Partial Conway and iteration semiring-semimodule pairs. In
Werner Kuich and George Rahonis, editors, Algebraic Foundations in Com-
puter Science - Essays Dedicated to Symeon Bozapalidis on the Occasion of His
Retirement, volume 7020 of Lecture Notes in Computer Science, pages 56–71.
Springer, 2011.

[3] Zoltán Ésik and Tamás Hajgató. Kleene theorem in partial Conway theories
with applications. In Werner Kuich and George Rahonis, editors, Algebraic
Foundations in Computer Science - Essays Dedicated to Symeon Bozapalidis
on the Occasion of His Retirement, volume 7020 of Lecture Notes in Computer
Science, pages 72–93. Springer, 2011.

[4] Zoltán Ésik and Werner Kuich. A unifying Kleene theorem for weighted finite
automata. In Cristian S. Calude, Grzegorz Rozenberg, and Arto Salomaa,
editors, Rainbow of Computer Science - Dedicated to Hermann Maurer on the
Occasion of His 70th Birthday, volume 6570 of Lecture Notes in Computer
Science, pages 76–89. Springer, 2011.

[5] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of ω-
context-free languages. In Juhani Karhumäki, Hermann A. Maurer, Gheorghe
Paun, and Grzegorz Rozenberg, editors, Theory Is Forever, Essays Dedicated
to Arto Salomaa on the Occasion of His 70th Birthday, volume 3113 of Lecture
Notes in Computer Science, pages 68–80. Springer, 2004.

[6] Zoltán Ésik and Werner Kuich. Equational axioms for a theory of automata.
In Carlos Martin-Vide, Victor Mitrana, and Gheorge Paun, editors, Formal
Languages and Applications. (Studies in Fuzziness And Soft Computing 148),
pages 183–196, 2004.

[7] Zoltán Ésik and Werner Kuich. A generation of Kozen’s axiomatization of the
equational theory of the regular sets. In Masami Ito, Gheorghe Paun, and Sheng
Yu, editors, Words, Semigroups, and Transductions - Festschrift in Honor of
Gabriel Thierrin, pages 99–114. World Scientific, 2001.

Other scientific papers

[1] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal languages
and automata VII: Formal tree series, Part 2. VESTNIK KALININGRAD-
SKOGO GOSUDARSTVENNOGO UNIVERSITETA, 10:7–49, 2012.

[2] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal languages
and automata VII: Formal tree series, Part 1. VESTNIK KALININGRAD-
SKOGO GOSUDARSTVENNOGO UNIVERSITETA, pages 5–32, 2012.

[3] Zoltán Ésik and Klaus Sutner. Stephen L. Bloom 1940-2010. Fundam. Inform.,
109(4):369–381, 2011.

Publication List of Zoltán Ésik 435

[4] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal lan-
guages and automata VI: ω-algebraic systems and transducers. VESTNIK
KALININGRADSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 10:8–
32, 2010.

[5] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal lan-
guages and automata V: Conway semiring-semimodule pairs and finite au-
tomata. VESTNIK KALININGRADSKOGO GOSUDARSTVENNOGO UNI-
VERSITETA, pages 6–41, 2009.

[6] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formaljnyje
jasyki i avtomaty IV: Transduktory i abstraktnyje semejstva. VESTNIK
KALININGRADSKOGO GOSUDARSTVENNOGO UNIVERSITETA, pages
6–23, 2008.

[7] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formalnyje jasyki
i avtomaty III.: Magazinnyje avtomaty i formalnyje stepennyje rjady. VEST-
NIK KALININGRADSKOGO GOSUDARSTVENNOGO UNIVERSITETA,
pages 8–27, 2006.

[8] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal languages
and automata, part II: Continuous semirings and algebraic systems. VESTNIK
KALININGRADSKOGO GOSUDARSTVENNOGO UNIVERSITETA, pages
19–45, 2004.

[9] S. Aleshnikov, J. Boltnev, Z. Ésik, S. Ishanov, and W. Kuich. Formal lan-
guages and automata I: Conway semirings and finite automata. VESTNIK
KALININGRADSKOGO GOSUDARSTVENNOGO UNIVERSITETA, pages
7–38, 2003.

[10] Stephen L. Bloom and Zoltán Ésik. Two axiomatizations of a star semiring
quasi-variety. Bulletin of the EATCS, 59, 1996.

[11] Stephen L. Bloom and Zoltán Ésik. Cayley iff Stone. Bulletin of the EATCS,
43:159–161, 1991.

[12] Stephen L. Bloom and Zoltán Ésik. Some varieties of iteration theories. Bul-
letin of the EATCS, 24:53–65, 1984.

Contents continued from outside back cover

Kitti Gelle and Szabolcs Iván: Regular Expressions for Muller Context-Free
Languages . 349

Pál Dömösi, József Gáll, Géza Horváth, and Norbert Tihanyi: Statistical
Analysis of DH1 Cryptosystem . 371

Zoltán Fülöp and Sándor Vágvölgyi: Minimization of Deterministic Top-down
Tree Automata . 379

Curriculum Vitae of Zoltán Ésik . 403
Publication List of Zoltán Ésik . 411

ISSN 0324—721 X

Felelős szerkesztő és kiadó: Csirik János

CONTENTS

In Memoriam Zoltán Ésik . 3
Janusz A. Brzozowski and Corwin Sinnamon: Complexity of Right-Ideal,

Prefix-Closed, and Prefix-Free Regular Languages 9
Manfred Droste and Werner Kuich: A Kleene Theorem for Weighted ω-

Pushdown Automata . 43
Zoltán Ésik and Werner Kuich: Continuous Semiring-Semimodule Pairs and

Mixed Algebraic Systems . 61
Luca Aceto, David de Frutos Escrig, and Anna Ingólfsdóttir: Trace Simula-

tion Semantics is not Finitely Based over BCCSP 81
Jorge Almeida, Zoltán Ésik, and Jean-Éric Pin: Commutative Positive Vari-

eties of Languages . 91
Symeon Bozapalidis and Antonios Kalampakas: Varieties of Graphoids and

Birkoff’s Theorem for Graphs . 113
Yo-Sub Han, Arto Salomaa, and Kai Salomaa: Ambiguity, Nondeterminism

and State Complexity of Finite Automata 141
Magnus Steinby: On DR Tree Automata, Unary Algebras and Syntactic Path

Monoids . 159
Juhani Karhumäki, Aleksi Saarela, and Luca Q. Zamboni: Variations of the

Morse-Hedlund Theorem for k-Abelian Equivalence 175
Anna Labella and Rocco De Nicola: Initial Algebra for a System of Right-

Linear Functors . 191
Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas: An Algebraic

Approach to Energy Problems I ∗-Continuous Kleene ω-Algebras 203
Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas: An Algebraic

Approach to Energy Problems II The Algebra of Energy Functions . . . 229
Andreas Maletti: Synchronous Forest Substitution Grammars 269
Maria Pittou and George Rahonis: Weighted Recognizability over Infinite

Alphabets . 283
Angelos Charalambidis and Panos Rondogiannis: Overview of an Abstract

Fixed Point Theory for Non-Monotonic Functions and its Applications to
Logic Programming . 319

Miklós Bartha: On the Completeness of the Traced Monoidal Category Ax-
ioms in (Rel,+) . 327

Contents continued on inside back cover

