
Acta Cybernetica 23 (2017) 229–268.

An Algebraic Approach to Energy Problems II

The Algebra of Energy Functions∗

Zoltán Ésika, Uli Fahrenbergb, Axel Legayc, and Karin Quaasd

Abstract

Energy and resource management problems are important in areas such
as embedded systems or autonomous systems. They are concerned with the
question whether a given system admits infinite schedules during which cer-
tain tasks can be repeatedly accomplished and the system never runs out of
energy (or other resources). In order to develop a general theory of energy
problems, we introduce energy automata: finite automata whose transitions
are labeled with energy functions which specify how energy values change
from one system state to another.

We show that energy functions form a ∗-continuous Kleene ω-algebra,
as an application of a general result that finitely additive, locally ∗-closed
and >-continuous functions on complete lattices form ∗-continuous Kleene
ω-algebras. This permits to solve energy problems in energy automata in a
generic, algebraic way. In order to put our work in context, we also review
extensions of energy problems to higher dimensions and to games.

Keywords: Energy problem, Kleene algebra, ∗-continuity, ∗-continuous Kleene
ω-algebra

1 Introduction

Energy and resource management problems are important in areas such as em-
bedded systems or autonomous systems. They are concerned with the question
whether a given system admits infinite schedules during which (1) certain tasks
can be repeatedly accomplished and (2) the system never runs out of energy (or

∗This research was supported by grant no. K 108448 from the National Foundation of Hun-
gary for Scientific Research (OTKA), by ANR MALTHY, grant no. ANR-13-INSE-0003 from the
French National Research Foundation, and by Deutsche Forschungsgemeinschaft (DFG), projects
QU 316/1-1 and QU 316/1-2.

aUniversity of Szeged, Hungary (deceased)
bÉcole polytechnique, Palaiseau, France. Most of this work was carried out while this author

was still employed at Inria Rennes.
cInria Rennes, France
dUniversität Leipzig, Germany

DOI: 10.14232/actacyb.23.1.2017.14

230 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

other specified resources). Starting with [11], formal modeling and analysis of such
problems has recently attracted some attention [10,12,15,19,22,33,39,46,48].

As an example, Fig. 1 shows a simple model of an electric car, modeled as a
weighted timed automaton [4,5]. In the working state W, energy is consumed at a
rate of 10 energy units per time unit; in the two recharging states R1 and R2, the
battery is charged at a rate of 20, respectively 10, energy units per time unit. As
the clock c is reset (c← 0) when entering state W and has guard c ≥ 1 on outgoing
transitions, we ensure that the car always has to be in state W for at least one time
unit. Similarly, the system can only transition back from states R1, R2 to W if it
has spent at most one time unit in these states.

Passing from state W to R2 (and back) requires 2 energy units, whereas passing
from W to R1 requires 6 energy units and passing back from R1 to W requires 4
energy units. Passing from R2 to R1 requires 5 energy units, and passing from R1

to R2 requires 1 energy unit.

W
−10

R1

+20

R2

+10

c ≥ 1, c
← 0,−6

c ≤ 1, c
← 0,−4

c ≥ 1, c← 0,−2

c ≤ 1, c← 0,−2

−5 −1

Figure 1: Simple model of an electric
car as a weighted timed automaton.

Altogether, this is intended to model
the fact that there are two recharge sta-
tions available, one close to work but less
powerful, and a more powerful one further
away and located uphill, so that moving
upwards costs more energy than moving
downwards. Now assume that the initial
state W is entered with a given initial en-
ergy x0, then the energy problem of this
model is as follows: Does there exist an infi-
nite trace which (1) visits W infinitely often
and (2) never has an energy level below 0?

In order to develop a general theory
which can be applied to the above and other
types of energy problems, we have in [27,36]
introduced energy automata. These are fi-
nite automata whose transitions are labeled with energy functions which specify
how energy values change from one system state to another. Using the theory of
semiring-weighted automata [24], we have shown in [27] that energy problems in
such automata can be solved in a simple static way which only involves manipula-
tions of energy functions.

In order to put the work of [27] on a more solid theoretical footing and with an
eye to future generalizations, we have recently introduced a new algebraic structure
of ∗-continuous Kleene ω-algebras [25, 26].

In this paper, we are concerned with conditions under which functions on com-
plete lattices form ∗-continuous Kleene ω-algebras. We show that sets of functions
which are finitely additive, locally ∗-closed and >-continuous, all natural conditions
which we will introduce later, form ∗-continuous Kleene ω-algebras. We then show
that energy functions are an example of such functions.

Using general results concerning coverability and Büchi acceptance in automata
with transition weights in ∗-continuous Kleene ω-algebras, we are then able to solve

An Algebraic Approach to Energy Problems II 231

energy problems in energy automata in a generic, algebraic way.

In order to put our work in context, we also review extensions of energy problems
to higher dimensions and to games. We show that even though our algebraic
setting does not apply here, coverability for multi-dimensional energy automata is
decidable. Energy games, on the other hand, are shown to be undecidable from
dimension two.

Structure of the Paper This is the second in a series of two papers which
are concerned with energy problems and their algebraic foundation. In the first
paper of the series [28], we have introduced continuous and ∗-continuous Kleene
ω-algebras and exposed some of their algebraic properties. We have shown that
every ∗-continuous Kleene ω-algebra is an iteration semiring-semimodule pair.

In this paper, we continue our work by showing how to compute Büchi accep-
tance in Section 3. Note that our two papers can be read independently, as we have
taken care to recall the relevant results obtained in [28].

We then turn our attention to ∗-continuous Kleene ω-algebras of functions.
In Section 4 we introduce the properties of finite additivity, ∗-closedness and >-
continuity and show that any set S of finitely additive, ∗-closed and >-continuous
functions on a complete lattice L form ∗-continuous Kleene algebras.

In Section 5 we extend this result and show that if (S, V) is such that S is
a ∗-continuous Kleene algebra of functions L → L, V consists of finitely additive
and >-continuous functions L → 2, where 2 denotes the Boolean lattice, then
(S, V) forms a ∗-continuous Kleene ω-algebra. We then apply this result to energy
automata in Section 6.

In Section 7 we take a more detailed look on two important subclasses of (com-
putable) energy functions and obtain some complexity results. Section 8 reviews
a reduction from energy problems on weighted timed automata to our energy au-
tomata, in order to further motivate our notions of energy function and energy
automaton.

The final Section 9 is concerned with extensions of energy problems to higher
dimensions and to games. Using an extension of the Rackoff technique for affine
Petri nets, we show that coverability for multi-dimensional energy automata is
decidable in exponential time. On the other hand, for a slightly relaxed version of
energy function, coverability becomes undecidable from dimension four. Likewise,
reachability games on two-dimensional energy automata and on one-dimensional
relaxed energy automata are undecidable.

Related Work A simple class of energy automata is the one of integer-weighted
automata, where all energy functions are updates of the form x 7→ x + k for some
(positive or negative) integer k. Energy problems on these automata, and their ex-
tensions to multiple weights (also called vector addition systems with states (VASS))
and to games, have been considered for example in [11, 14, 17–20, 33]. The exact
complexity of the reachability problem for VASS is one of the most challenging
open problems in theoretical computer science; plenty of very recent results aim

232 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

to get more insight into this problem [7, 38, 42, 43]. Our energy automata may be
considered as a generalization of one-dimensional VASS to arbitrary updates; in the
final section of this paper we will also be concerned with multi-dimensional energy
automata and games.

Energy problems on timed automata [2] have been considered in [10–12,46]. Here
timed automata are enriched with integer weights in locations and on transitions
(the weighted timed automata of [4, 5], cf. Fig. 1), with the semantics that the
weight of a delay in a location is computed by multiplying the length of the delay
by the location weight. In [11] it is shown that energy problems for one-clock
weighted timed automata without updates on transitions (hence only with weights
in locations) can be reduced to energy problems on integer-weighted automata with
additive updates.

For one-clock weighted timed automata with transition updates, energy prob-
lems are shown decidable in [10], using a reduction to energy automata as we use
them here. Intuitively, each path in the timed automaton in which the clock is
not reset is converted to an edge in an energy automaton, labeled with a piecewise
affine energy function. We review the reduction from [10] in Section 8 of the present
paper. In a recent paper [16], this class of real-time energy problems is treated di-
rectly, in the setting of ∗-continuous Kleene ω-algebras, without a reduction to the
untimed setting.

Also another class of energy problems on weighted timed automata is considered
in [10], in which weights during delays are increasing exponentially rather than
linearly. These are shown decidable using a reduction to energy automata with
piecewise polynomial energy functions; again our present framework applies.

Acknowledgment We are deeply indebted to our colleague and friend Zoltán
Ésik with whom we started this research and who has led us along the way. Unfortu-
nately Zoltán could not see this work completed, so any errors are the responsibility
of the last three authors.

The second author also acknowledges interesting discussions with Patricia Bou-
yer, Kim G. Larsen and Nicolas Markey which led to [10] and eventually to Section 8
of this paper.

2 Energy Automata

We recall the energy automata introduced in [28] and the decision problems we
are interested in. Let [0,∞]⊥ = {⊥} ∪ [0,∞] denote the complete lattice of non-
negative real numbers together with extra elements ⊥ and ∞, with the standard
order on R≥0 extended by ⊥ < x <∞ for all x ∈ R≥0. Also, ⊥+ x = ⊥− x = ⊥
for all x ∈ R≥0 ∪ {∞} and ∞+ x =∞− x =∞ for all x ∈ R≥0.

Definition 1. An (extended) energy function is a mapping f : [0,∞]⊥ → [0,∞]⊥,
for which ⊥f = ⊥ and

yf ≥ xf + y − x (∗)

An Algebraic Approach to Energy Problems II 233

for all x ≤ y. Moreover, ∞f =∞, unless xf = ⊥ for all x ∈ [0,∞]⊥. The class of
all extended energy functions is denoted E.

We write function composition and application in diagrammatical order, from
left to right. Hence we write f ; g, or simply fg, for the composition g ◦ f and x; f
or xf for function application f(x). This is because we will be concerned with
algebras of functions, in which function composition is multiplication, and where it
is customary to write multiplication in diagrammatical order.

We define a partial order on E , by f ≤ g iff xf ≤ xg for all x ∈ [0,∞]⊥. We
will need three special energy functions, ⊥⊥, id and >>; these are given by x⊥⊥ = ⊥,
x; id = x for x ∈ [0,∞]⊥, and ⊥>> = ⊥, x>> =∞ for x ∈ [0,∞].

Lemma 1 ([28]). With the ordering ≤, E is a complete lattice with bottom ele-
ment ⊥⊥ and top element >>. The supremum on E is pointwise, i.e., x(supi∈I fi) =
supi∈I xfi for any set I, all fi ∈ E and x ∈ [0,∞]⊥. Also, h(supi∈I fi) =
supi∈I(hfi) for all h ∈ E.

We denote binary suprema using the symbol ∨; hence f ∨ g, for f, g ∈ E , is the
function x(f ∨ g) = max(xf, xg). For a subset E ′ ⊆ E , we write 〈E ′〉 for the set of
all finite suprema a1 ∨ · · · ∨ am with ai ∈ E ′ for each i = 1, . . . ,m.

Definition 2. Let E ′ ⊆ E and n ≥ 1. An E ′-automaton of dimension n is a
structure (α,M, k), were α ∈ {⊥⊥, id}n is the initial vector, M ∈ 〈E ′〉n×n is the
transition matrix, and k is an integer 0 ≤ k ≤ n.

Combinatorially, this may be represented as a transition system whose set of
states is {1, . . . , n}. For any pair of states i, j, the transitions from i to j are
determined by the entry Mi,j of the transition matrix: if Mi,j = f1 ∨ · · · ∨ fm, then
there are m transitions from i to j, respectively labeled f1, . . . , fm. The states i
with αi = id are initial, and the states {1, . . . , k} are accepting.

Recall that an idempotent semiring [6,37] S = (S,∨, ·,⊥, 1) consists of a commu-
tative idempotent monoid (S,∨,⊥) and a monoid (S, ·, 1) such that the distributive
laws

x(y ∨ z) = xy ∨ xz
(y ∨ z)x = yx ∨ zx

and the zero laws
⊥ · x = ⊥ = x · ⊥

hold for all x, y, z ∈ S. It follows that the product operation distributes over all
finite sums.

Each idempotent semiring S is partially ordered by its natural order relation
x ≤ y iff x ∨ y = y, and then sum and product preserve the partial order and ⊥ is
the least element. Moreover, for all x, y ∈ S, x ∨ y is the least upper bound of the
set {x, y}.

Lemma 2 ([28]). (E ,∨, ◦,⊥⊥, id) is an idempotent semiring with natural order ≤.

234 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

An energy automaton is hence a weighted automaton over the semiring E , in
the sense of [24]. We recall the decision problems which we are interested in. As
the input to a decision problem must be in some way finitely representable, we will
state them for subsets E ′ ⊆ E of computable energy functions. Note that we give
no technical meaning to the term “computable” here; we simply need to take care
that the input can be finitely represented.

Problem 1 (State reachability). Given an E ′-automaton (α,M, k) of dimension
n ≥ 1 and a computable initial energy x0 ∈ R≥0: does there exist a finite
sequence (k0, . . . , km) of indices 1 ≤ ki ≤ n such that αk0 = id, km ≤ k, and
x0Mk0,k1 · · ·Mkm−1,km 6= ⊥?

Using the representation of A = (α,M, k) as a transition system, we see that
the above problem amounts to asking whether there exists a finite path in A, with
transition labels Mk0,k1 , . . . ,Mkm−1,km , such that the path starts in an initial state,
ends in an accepting state, and x0Mk0,k1 · · ·Mkm−1,km 6= ⊥.

Problem 2 (Coverability). Given an E ′-automaton (α,M, k) of dimension n ≥ 1,
a computable initial energy x0 ∈ R≥0 and a computable function z : {1, . . . , k} →
R≥0: does there exist a sequence (k0, . . . , km) of indices 1 ≤ ki ≤ n such that
αk0 = id, km ≤ k, and x0Mk0,k1 · · ·Mkm−1,km ≥ kmz?

In the transition system representation of A = (α,M, k), this amounts to asking
whether there exists a finite path in A as above, starting in an initial state and
ending in an accepting state km, and such that x0Mk0,k1 · · ·Mkm−1,km ≥ kmz.
Using the function z with iz = 0 for all i = 1, . . . , k, coverability reduces to state
reachability.

Problem 3 (Büchi acceptance). Given an E ′-automaton (α,M, k) of dimension
n ≥ 1 and a computable initial energy x0 ∈ R≥0: does there exist an infinite
sequence (k0, k1, . . .) of indices 1 ≤ ki ≤ n such that αk0 = id, ki ≤ k for infinitely
many indices i, and x0Mk0,k1 · · ·Mkm−1,km 6= ⊥ for all m ≥ 1?

Again using the representation of A = (α,M, k) as a transition system, we
see that this last problem amounts to asking whether there exists an infinite
path in A, with transition labels Mk0,k1 ,Mk1,k2 , . . . , such that the path starts
in an initial state, visits an accepting state infinitely often, and all finite prefixes
x0Mk0,k1 · · ·Mkm−1,km 6= ⊥.

We let ReachE′ denote the function which maps an E ′-automaton together with
an initial energy to the Boolean values ff or tt depending on whether the answer to
the concrete state reachability problem is negative or positive. CoverE′ and BüchiE′
denote the similar mappings for the coverability and Büchi acceptance problems.

3 Büchi Automata in ∗-Continuous Kleene
ω-Algebras

We recall the notion of ∗-continuous Kleene ω-algebra introduced in [28]. First, a
∗-continuous Kleene algebra is an idempotent semiring (S,∨, ·,⊥, 1) in which the

An Algebraic Approach to Energy Problems II 235

infinite suprema
∨
{xn | n ≥ 0} exist for all x ∈ S and product preserves such

suprema:

y
(∨
n≥0

xn
)

=
∨
n≥0

yxn and
(∨
n≥0

xn
)
y =

∨
n≥0

xny

for all x, y ∈ S. One then defines x∗ =
∨
{xn | n ≥ 0} for every x ∈ S.

A ∗-continuous Kleene algebra is continuous if all suprema
∨
X, X ⊆ S, exist

and are preserved by products. ∗-continuous Kleene algebras are hence a general-
ization of continuous Kleene algebras. There are interesting Kleene algebras which
are ∗-continuous but not continuous, for example the Kleene algebra of all regular
languages over some alphabet, see [28].

Recall that an idempotent semiring-semimodule pair [8, 31] (S, V) consists of
an idempotent semiring S = (S,∨, ·,⊥, 1) and a commutative idempotent monoid
V = (V,∨,⊥) which is equipped with a left S-action S × V → V , (x, v) 7→ xv,
satisfying

(x ∨ x′)v = xv ∨ x′v x(v ∨ v′) = xv ∨ xv′

(xx′)v = x(x′v) ⊥v = ⊥
x⊥ = ⊥ 1v = v

for all x, x′ ∈ S and v ∈ V . In that case, we also call V a (left) S-semimodule.
A generalized ∗-continuous Kleene algebra [28] is a semiring-semimodule pair

(S, V) where S = (S,∨, ·,∗ ,⊥, 1) is a ∗-continuous Kleene algebra such that

xy∗v =
∨
n≥0

xynv

for all x, y ∈ S and v ∈ V .
A ∗-continuous Kleene ω-algebra [28] consists of a generalized ∗-continuous

Kleene algebra (S, V) together with an infinite product operation Sω → V which
maps every infinite sequence x0, x1, . . . in S to an element

∏
n≥0 xn of V . The

infinite product is subject to the following conditions:

Ax1: For all x0, x1, . . . ∈ S,
∏
n≥0 xn = x0

∏
n≥0 xn+1.

Ax2: Let x0, x1, . . . ∈ S and 0 = n0 ≤ n1 · · · be a sequence which increases without
a bound. Let yk = xnk

· · ·xnk+1−1 for all k ≥ 0. Then
∏
n≥0 xn =

∏
k≥0 yk.

Ax3: For all x0, x1, . . . and y, z in S,
∏
n≥0(xn(y ∨ z)) =

∨
x′n∈{y,z}

∏
n≥0 xnx

′
n.

Ax4: For all x, y0, y1, . . . ∈ S,
∏
n≥0 x

∗yn =
∨
kn≥0

∏
n≥0 x

knyn.

A continuous Kleene ω-algebra [31] is a semiring-semimodule pair (S, V) in
which S is a continuous Kleene algebra, V is a complete lattice, and the S-action
on V preserves all suprema in either argument, together with an infinite product
as above which satisfies conditions Ax1 and Ax2 above and preserves all suprema.
∗-continuous Kleene ω-algebras are hence a generalization of continuous Kleene
ω-algebras.

236 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

For any idempotent semiring S and n ≥ 1, we can form the matrix semiring
Sn×n whose elements are n × n-matrices of elements of S and whose sum and
product are given as the usual matrix sum and product. It is known [41] that
when S is a ∗-continuous Kleene algebra, then Sn×n is also a ∗-continuous Kleene
algebra, with the ∗-operation defined by

M∗i,j =
∨
m≥0

∨
1≤k1,...,km≤n

Mi,k1Mk1,k2 · · ·Mkm,j

for all M ∈ Sn×n and 1 ≤ i, j ≤ n. The above infinite supremum exists, as it is
taken over a regular set, see [28]. Also, if n ≥ 2 and M =

(
a b
c d

)
, where a and d are

square matrices of dimension less than n, then

M∗ =

(
(a ∨ bd∗c)∗ (a ∨ bd∗c)∗bd∗

(d ∨ ca∗b)∗ca∗ (d ∨ ca∗b)∗
)
. (1)

For any semiring-semimodule pair (S, V) and n ≥ 1, we can form the matrix
semiring-semimodule pair (Sn×n, V n) whose elements are n×n-matrices of elements
of S and n-dimensional (column) vectors of elements of V , with the action of Sn×n

on V n given by the usual matrix-vector product.
When (S, V) is a ∗-continuous Kleene ω-algebra, then (Sn×n, V n) is a general-

ized ∗-continuous Kleene algebra. By [28, Lemma 14], there is an ω-operation on
Sn×n defined by

Mω
i =

∨
1≤k1,k2,...≤n

Mi,k1Mk1,k2 · · ·

for all M ∈ Sn×n and 1 ≤ i ≤ n. Also, if n ≥ 2 and M =
(
a b
c d

)
, where a and d are

square matrices of dimension less than n, then

Mω =

(
(a ∨ bd∗c)ω ∨ (a ∨ bd∗c)∗bdω
(d ∨ ca∗b)ω ∨ (d ∨ ca∗b)∗caω

)
. (2)

Note [28] that it is not generally the case that (Sn×n, V n) is again a ∗-continuous
Kleene ω-algebra, as the infinite product may not exist.

Let (S, V) be a ∗-continuous Kleene ω-algebra and A ⊆ S a subset. We write
〈A〉 for the set of all finite suprema a1 ∨ · · · ∨ am with ai ∈ A for each i = 1, . . . ,m.

A weighted automaton [32] over A of dimension n ≥ 1 is a tuple (α,M, k), where
α ∈ {⊥, 1}n is the initial vector, M ∈ 〈A〉n×n is the transition matrix, and k is an
integer 0 ≤ k ≤ n. Combinatorially, this may be represented as a transition system
whose set of states is {1, . . . , n}. For any pair of states i, j, the transitions from i to
j are determined by the entry Mi,j of the transition matrix: if Mi,j = a1∨· · ·∨am,
then there are m transitions from i to j, respectively labeled a1, . . . , an. The states
i with αi = 1 are initial, and the states {1, . . . , k} are accepting.

The finite behavior of a weighted automaton A = (α,M, k) is defined to be

|A| = αM∗κ ,

An Algebraic Approach to Energy Problems II 237

where κ ∈ {⊥, 1}n is the vector given by κi = 1 for i ≤ k and κi = ⊥ for i > k.
(Note that α has to be used as a row vector for this multiplication to make sense.)
It is clear by (1) that |A| is the supremum of the products of the transition labels
along all paths in A from any initial to any accepting state.

The Büchi behavior of a weighted automaton A = (α,M, k) is defined to be

‖A‖ = α

(
(a ∨ bd∗c)ω

d∗c(a ∨ bd∗c)ω
)
,

where a ∈ 〈A〉k×k, b ∈ 〈A〉k×(n−k), c ∈ 〈A〉(n−k)×n and d ∈ 〈A〉(n−k)×(n−k) are such
that M =

(
a b
c d

)
. By (2), ‖A‖ is the supremum of the products of the transition

labels along all infinite paths in A from any initial state which infinitely often visit
an accepting state.

For completeness we also mention a Kleene theorem for the Büchi automata
introduced above, which is a direct consequence of the Kleene theorem for Conway
semiring-semimodule pairs, cf. [29, 32].

Theorem 1. An element of V is the Büchi behavior weighted automaton over A
iff it is rational over A, i.e., when it can be generated from the elements of A
by the semiring and semimodule operations, the action, and the star and omega
operations.

It is a routine matter to show that an element of V is rational over A iff it can
be written as

∨n
i=1 xiy

ω
i , where each xi and yi can be generated from A by ∨, ·,

and ∗.

4 Generalized ∗-Continuous Kleene Algebras of
Functions

In the following two sections our aim is to establish properties which ensure that
semiring-semimodule pairs of functions form ∗-continuous Kleene ω-algebras. We
will use these properties in Section 6 to show that energy functions form a ∗-
continuous Kleene ω-algebra.

Let L and L′ be complete lattices with bottom and top elements ⊥ and >. Then
a function f : L→ L′ is said to be finitely additive if ⊥f = ⊥ and (x∨y)f = xf∨yf
for all x, y ∈ L. (Recall that we write function application and composition in the
diagrammatic order, from left to right.) When f : L→ L′ is finitely additive, then
(
∨
X)f =

∨
Xf for all finite sets X ⊆ L.

Consider the collection FinAddL,L′ of all finitely additive functions f : L→ L′,
ordered pointwise. Since the (pointwise) supremum of any set of finitely additive
functions is finitely additive, FinAddL,L′ is also a complete lattice, in which the
supremum of any set of functions can be constructed pointwise. The least and
greatest elements are the functions ⊥⊥ and >> given by x⊥⊥ = ⊥ for x ∈ L, ⊥>> = ⊥,
and x>> = > for x ∈ \{⊥}.

238 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Definition 3. A function f ∈ FinAddL,L′ is said to be >-continuous if f = ⊥⊥ or
for all X ⊆ L with

∨
X = >, also

∨
Xf = >.

Note that if f 6= ⊥⊥ is >-continuous, then >f = >. The functions id and ⊥⊥ are
>-continuous. Also, the (pointwise) supremum of any set of >-continuous functions
is again >-continuous.

We will first be concerned with functions in FinAddL,L, which we just denote
FinAddL. Since the composition of finitely additive functions is finitely additive
and the identity function id over L is finitely additive, and since composition of
finitely additive functions distributes over finite suprema, FinAddL, equipped with
the operation ∨ (binary supremum), ; (composition), and the constant function ⊥⊥
and the identity function id as 1, is an idempotent semiring. It follows that when
f is finitely additive, then so is f∗ =

∨
n≥0 f

n. Moreover, f ≤ f∗ and f∗ ≤ g∗

whenever f ≤ g.

Lemma 3. Let S be any subsemiring of FinAddL closed under the ∗-operation.
Then S is a ∗-continuous Kleene algebra iff for all g, h ∈ S, g∗h =

∨
n≥0 g

nh.

Proof. Suppose that the precondition of the lemma holds. We need to show that
f(
∨
n≥0 g

n)h =
∨
n≥0 fg

nh for all f, g, h ∈ S. But f(
∨
n≥0 g

n)h = f(
∨
n≥0 g

nh) by
assumption, and we conclude that f(

∨
n≥0 g

nh) =
∨
n≥0 fg

nh since the supremum
is pointwise.

Compositions of >-continuous functions in FinAddL are again >-continuous, so
that the collection of all >-continuous functions in FinAddL is itself an idempotent
semiring.

Definition 4. A function f ∈ FinAddL is said to be locally ∗-closed if for each
x ∈ L, either xf∗ = > or there exists N ≥ 0 such that xf∗ = x ∨ · · · ∨ xfN .

The functions id and ⊥⊥ are locally ∗-closed. As the next example demonstrates,
compositions of locally ∗-closed (and >-continuous) functions are not necessarily
locally ∗-closed.

Example 1. Let L be the following complete lattice (the linear sum of three infinite
chains):

⊥ < x0 < x1 < · · · < y0 < y1 < · · · < z0 < z1 < · · · < >

Since L is a chain, a function L → L is finitely additive iff it is monotone and
preserves ⊥.

Let f, g : L → L be the following functions. First, ⊥f = ⊥g = ⊥ and >f =
>g = >. Moreover, xif = yi, yif = zig = > and xig = ⊥, yig = xi+1, and zig = >
for all i. Then f, g are monotone, uf∗ = u ∨ uf ∨ uf2 and ug∗ = u ∨ ug for all
u ∈ L. Also, f and g are >-continuous, since if

∨
X = > then either > ∈ X or

X∩{z0, z1, . . . } is infinite, but then
∨
Xf =

∨
Xg = >. However, fg is not locally

∗-closed, since x0(fg)∗ = x0 ∨ x0(fg) ∨ x0(fg)2 · · · = x0 ∨ x1 ∨ · · · = y0.

Lemma 4. Let f ∈ FinAddL be locally ∗-closed. Then also f∗ is locally ∗-closed.
If f is additionally >-continuous, then so is f∗.

An Algebraic Approach to Energy Problems II 239

Proof. We prove that xf∗∗ = x ∨ xf∗ = xf∗ for all x ∈ L. Indeed, this is clear
when xf∗ = >, since f∗ ≤ f∗∗. Otherwise xf∗ =

∨
k≤n xf

k for some n ≥ 0.

By finite additivity, it follows that xf∗f∗ =
∨
k≤n xf

kf∗. But for each k,

xfkf∗ = xfk ∨ xfk+1 ∨ · · · ≤ xf∗, thus xf∗ = xf∗f∗ and xf∗ = xf∗∗. It follows
that f∗ is locally ∗-closed.

Suppose now that f is additionally >-continuous. We need to show that f∗ is
also >-continuous. To this end, let X ⊆ L with

∨
X = >. Since x ≤ xf∗ for all

x ∈ X, it holds that
∨
Xf∗ ≥

∨
X = >. Thus

∨
Xf∗ = >.

Proposition 1. Let S be any subsemiring of FinAddL closed under the ∗-operation.
If each f ∈ S is locally ∗-closed and >-continuous, then S is a ∗-continuous Kleene
algebra.

Proof. Let g, h ∈ S. By Lemma 3, it suffices to show that g∗h =
∨
n≥0 g

nh. Since
this is clear when h = ⊥⊥, assume that h 6= ⊥⊥. As gnh ≤ g∗h for all n ≥ 0, it
holds that

∨
n≥0 g

nh ≤ g∗h. To prove the opposite inequality, suppose that x ∈ L.
If xg∗ = >, then

∨
n≥0 xg

n = >, so
∨
n≥0 xg

nh = > by >-continuity. Thus,
xg∗h = > =

∨
n≥0 xg

nh.

Suppose that xg∗ 6= >. Then there is m ≥ 0 with

xg∗h = (x ∨ · · · ∨ xgm)h = xh ∨ · · · ∨ xgmh ≤
∨
n≥0

xgnh = x(
∨
n≥0

gnh) .

The proof is complete.

Now define a left action of FinAddL on FinAddL,L′ by fv = f ; v, for all f ∈
FinAddL and v ∈ FinAddL,L′ . It is a routine matter to check that FinAddL,L′ ,
equipped with the above action, the binary supremum operation ∨ and the constant
⊥⊥ is an (idempotent) left FinAddL-semimodule, that is, (FinAddL,FinAddL,L′) is a
semiring-semimodule pair.

Lemma 5. Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆ FinAddL,L′
an S-semimodule. Then (S, V) is a generalized ∗-continuous Kleene algebra iff for
all f ∈ S and v ∈ V , f∗v =

∨
n≥0 f

nv.

Proof. Similar to the proof of Lemma 3.

Proposition 2. Let S ⊆ FinAddL be a ∗-continuous Kleene algebra and V ⊆
FinAddL,L′ an S-semimodule. If each f ∈ S is locally ∗-closed and >-continuous
and each v ∈ V is >-continuous, then (S, V) is a generalized ∗-continuous Kleene
algebra.

Proof. Similar to the proof of Proposition 1.

240 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

5 ∗-Continuous Kleene ω-Algebras of Functions

In this section, let L be an arbitrary complete lattice and L′ = 2, the two-element
lattice {⊥,>}. We define an infinite product FinAddωL → FinAddL,2. Let f0, f1, . . . ∈
FinAddL be an infinite sequence and define v =

∏
n≥0 fn : L→ 2 by

xv =

{
⊥ if there is n ≥ 0 such that xf0 · · · fn = ⊥,
> otherwise

for all x ∈ L. We will write
∏
n≥k fn, for k ≥ 0, as a shorthand for

∏
n≥0 fn+k.

It is easy to see that
∏
n≥0 fn is finitely additive. Indeed, ⊥

∏
n≥0 fn = ⊥

clearly holds, and for all x ≤ y ∈ L, x
∏
n≥0 fn ≤ y

∏
n≥0 fn. Thus, to prove that

(x ∨ y)
∏
n≥0 fn = x

∏
n≥0 fn ∨ y

∏
n≥0 fn for all x, y ∈ L, it suffices to show that

if x
∏
n≥0 fn = y

∏
n≥0 fn = ⊥, then (x ∨ y)

∏
n≥0 fn = ⊥. But if x

∏
n≥0 fn =

y
∏
n≥0 fn = ⊥, then there exist m, k ≥ 0 such that xf0 · · · fm = yf0 · · · fk = ⊥.

Let n = max{m, k}. We have (x ∨ y)f0 · · · fn = xf0 · · · fn ∨ yf0 · · · fn = ⊥, and
thus (x ∨ y)

∏
n≥0 fn = ⊥.

It is clear that this infinite product satisfies conditions Ax1 and Ax2 in the
definition of ∗-continuous Kleene ω-algebra. Below we show that also Ax3 and Ax4
hold.

Lemma 6. For all f0, f1, . . . , g0, g1, . . . ∈ FinAddL,∏
n≥0

(fn ∨ gn) =
∨

hn∈{fn,gn}

∏
n≥0

hn .

Note that this implies Ax3.

Proof. Since infinite product is monotone, the term on the right-hand side of the
equation is less than or equal to the term on the left-hand side. To prove that
equality holds, let x ∈ L and suppose that x

∏
n≥0(fn∨gn) = >. It suffices to show

that there is a choice of the functions hn ∈ {fn, gn} such that x
∏
n≥0 hn = >.

Consider the infinite ordered binary tree where each node at level n ≥ 0 is the
source of an edge labeled fn and an edge labeled gn, ordered as indicated. We can
assign to each node u the composition hu of the functions that occur as the labels
of the edges along the unique path from the root to that node.

Let us mark a node u if xhu 6= ⊥. As x
∏
n≥0(fn ∨ gn) = >, each level contains

a marked node. Moreover, whenever a node is marked and has a predecessor, its
predecessor is also marked. By König’s lemma [40] there is an infinite path going
through marked nodes. This infinite path gives rise to the sequence h0, h1, . . . with
x
∏
n≥0 hn = >.

Lemma 7. Let f ∈ FinAddL and v ∈ FinAddL,2 such that f is locally ∗-closed and
v is >-continuous. If xf∗v = >, then there exists k ≥ 0 such that xfkv = >.

Proof. If xf∗ =
∨N
n=0 xf

n for some N ≥ 0, then xf∗v =
∨N
n=0 xf

nv = > im-
plies the claim of the lemma. If xf∗ = >, then >-continuity of v implies that∨
n≥0 xf

nv = >, which again implies the claim.

An Algebraic Approach to Energy Problems II 241

Lemma 8. Let f, g0, g1, . . . ∈ FinAddL be locally ∗-closed and >-continuous such
that for each m ≥ 0, gm

∏
n≥m+1 f

∗gn ∈ FinAddL,2 is >-continuous. Then∏
n≥0

f∗gn =
∨

k0,k1,...≥0

∏
n≥0

fkngn .

Proof. As infinite product is monotone, the term on the right-hand side of the
equation is less than or equal to the term on the left-hand side. To prove that
equality holds, let x ∈ L and suppose that x

∏
n≥0 f

∗gn = >. We want to show

that there exist integers k0, k1, . . . ≥ 0 such that x
∏
n≥0 f

kngn = >.
Let x0 = x. By Lemma 7, x

∏
n≥0 f

∗gn = x0f
∗g0
∏
n≥1 f

∗gn = > implies that

there is k0 ≥ 0 for which x0f
k0g0

∏
n≥1 f

∗gn = >. We finish the proof by induction.

Assume that we have k0, . . . , km ≥ 0 such that xfk0g0 · · · fkmgm
∏
n≥m+1 f

∗gn =

> and let xm+1 = xfk0g0 · · · fkmgm. Then xm+1f
∗gm+1

∏
n≥m+2 f

∗gn = > im-
plies, using Lemma 7, that there exists an exponent km+1 ≥ 0 for which
xm+1f

km+1gm+1

∏
n≥m+2 f

∗gn = >.

Proposition 3. Let S ⊆ FinAddL and V ⊆ FinAddL,2 such that (S, V) is a gen-
eralized ∗-continuous Kleene algebra of locally ∗-closed and >-continuous functions
L → L and >-continuous functions L → 2. If

∏
n≥0 fn ∈ V for all sequences

f0, f1, . . . of functions in S, then (S, V) is a ∗-continuous Kleene ω-algebra.

Proof. This is clear from Lemmas 6 and 8.

We finish the section by a lemma which exhibits a condition on the lattice L
which ensures that infinite products of locally ∗-closed and >-continuous functions
are again >-continuous.

Lemma 9. Assume that L has the property that whenever
∨
X = > for some X ⊆

L, then for all x < > in L there is y ∈ X with x ≤ y. If f0, f1, . . . ∈ FinAddL is a
sequence of locally ∗-closed and >-continuous functions, then

∏
n≥0 fn ∈ FinAddL,2

is >-continuous.

Proof. Let v =
∏
n≥0 fn. We already know that v is finitely additive. We need to

show that v is >-continuous. But if v 6= ⊥⊥, then there is some x < > with xv = >,
i.e., such that xf0 · · · fn > ⊥ for all n. By assumption, there is some y ∈ X with
x ≤ y. It follows that yf0 · · · fn ≥ xf0 · · · fn > ⊥ for all n and thus

∨
Xv = >.

6 State Reachability, Coverability and Büchi Ac-
ceptance in Energy Automata

We now show how the setting developed in the last sections can be applied to solve
the energy problems of Section 2. Recall that L = [0,∞]⊥ denotes the complete
lattice of nonnegative real numbers together with ∞ and an extra bottom element
⊥, and that E denotes the idempotent semiring of energy functions L → L. Note
that L satisfies the precondition of Lemma 9.

242 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Lemma 10. Energy functions are finitely additive and >-continuous, hence E ⊆
FinAddL.

Proof. Finite additivity follows from monotonicity. For >-continuity, let X ⊆ L
such that

∨
X = ∞ and f ∈ E , f 6= ⊥⊥. By

∨
X = ∞, we know that for every

n ∈ N, there exists xn ∈ X with xn ≥ n. Choose such a sequence (xn) and let
yn = xnf for all n.

If yn = ⊥ for all n ≥ 0, then also nf = ⊥ for all n ≥ 0 (as xn ≥ n), hence f = ⊥⊥.
We must thus have an index N for which yN > ⊥. But then yN+k ≥ yN + k ≥ k
for all k ≥ 0, hence

∨
Xf =∞.

Lemma 11. For f ∈ E, f∗ is given by xf∗ = x if xf ≤ x and xf∗ =∞ if xf > x.
Hence f is locally ∗-closed and f∗ ∈ E.

Proof. We have ⊥f∗ = ⊥ and ∞f∗ =∞. Let x 6= ⊥,∞. If xf ≤ x, then xfn ≤ x
for all n ≥ 0, so that x ≤

∨
n≥0 xf

n ≤ x, whence xf∗ = x. If xf > x, then let
a = xf − x > 0. We have xf ≥ x+ a, hence by (∗), xfn ≥ x+ na for all n ≥ 0, so
that xf∗ =

∨
n≥0 xf

n =∞.

Not all locally ∗-closed functions f : L → L are energy functions: the function
f defined by xf = 1 for x < 1 and xf = x for x ≥ 1 is locally ∗-closed, but f /∈ E .

Corollary 1. E is a ∗-continuous Kleene algebra.

Proof. This is clear by Proposition 1.

Remark 1. It is not true that E is a continuous Kleene algebra: Let fn, g ∈ E be
defined by xfn = x + 1 − 1

n+1 for x ≥ 0, n ≥ 0 and xg = x for x ≥ 1, xg = ⊥
for x < 1. Then 0(

∨
n≥0 fn)g = (

∨
n≥0 0fn)g = 1g = 1, whereas 0

∨
n≥0(fng) =∨

n≥0(0fng) =
∨
n≥0((1− 1

n+1)g) = ⊥.

Lemma 12. For any g ∈ E, there exists f ∈ E such that g = f∗ iff there is
k ∈ [0,∞]⊥ such that xg = x for all x < k, xg = ∞ for all x > k, and kg = k or
kg =∞.

Proof. We first note that if g ∈ E is such that there is k for which xg = x for x < k
and xg = ∞ for x > k, then xg∗ = xg for x 6= k, and if kg = k or kg = ∞, then
also kg∗ = kg.

Now let g ∈ E . If there is f ∈ E with g = f∗, then we set k = sup{x | xf ≤ x}.
Then xf > x and hence xg =∞ for all x > k, and whenever x < k, then there is y
with x ≤ y ≤ k and yf ≤ y, hence by (∗), xf ≤ x, so that xg = x. If kf ≤ k, then
kg = k, otherwise kg =∞ as claimed.

Let V denote the E-semimodule of all >-continuous functions L → 2. For
f0, f1, . . . ∈ E , define the infinite product f =

∏
n≥0 fn : L→ 2 by xf = ⊥ if there

is an index n for which xf0 · · · fn = ⊥ and xf = > otherwise, like in Section 5. By
Lemma 9,

∏
n≥0 fn is >-continuous, i.e.,

∏
n≥0 fn ∈ V.

By Proposition 2, (E ,V) is a generalized ∗-continuous Kleene algebra.

An Algebraic Approach to Energy Problems II 243

Corollary 2. (E ,V) is a ∗-continuous Kleene ω-algebra.

Proof. This is clear by Proposition 3.

Remark 2. As E is not a continuous Kleene algebra, it also holds that (E ,V) is not
a continuous Kleene ω-algebra; in fact it is clear that there is no E-semimodule V ′
for which (E ,V ′) would be a continuous Kleene ω-algebra. The initial motivation
for the work in [25, 26, 28] and the present paper was to generalize the theory of
continuous Kleene ω-algebras so that it would be applicable to energy functions.

Lemma 13. For f ∈ E, fω is given by ⊥fω = ⊥, and for x 6= ⊥, xfω = ⊥ if
xf < x and xfω = > if xf ≥ x.

Proof. The claim that ⊥fω = ⊥ is clear, and so is the lemma for f = ⊥⊥. For f 6= ⊥⊥
and x =∞, xfn =∞ for all n ≥ 0, hence∞fω = >. Now let x 6= ⊥,∞. If xf ≥ x,
then xfn ≥ x for all n ≥ 0, hence xfω = >. If xf < x, then let a = x − xf > 0.
We have xf ≤ x − a, hence by (∗), xfn ≤ x − na for all n ≥ 0, so that there is
N ≥ 0 for which xfN = ⊥, whence xfω = ⊥.

We can now solve the state reachability, coverability, and Büchi problems for
energy automata. We say that E ′ ⊆ E is fixed-point decidable if it is decidable, for
any f ∈ E ′ and x ∈ L, whether xf < x, xf = x or xf > x.

Theorem 2. Let A = (α,M, k) be an energy automaton of dimension n ≥ 1,
x0 ∈ R≥0, and z : {1, . . . , k} → R≥0. Then

• ReachE′(A, x0) = tt iff x0|A| 6= ⊥;

• CoverE′(A, x0, z) = tt iff there exists i ≤ k such that (x0αM
∗)i ≥ iz;

• BüchiE′(A, x0) = tt iff x0‖A‖ = >.

Proof. For state reachability and Büchi acceptance the claims are clear. For cov-
erability, we note that

(x0αM
∗)i =

∨
m≥0

∨
1≤k1,...,km≤n

x0αk1Mk1,k2 · · ·Mkm,i,

and the claim follows.

Corollary 3. For fixed-point decidable subalgebras E ′ ⊆ E, Problems 1, 2, and 3
are decidable. For an energy automaton of dimension n, the decision procedures
use O(n3), O(n3), respectively O(n4), algebra operations.

Proof. If E ′ is fixed-point decidable, then Lemmas 11 and 13 imply that the ∗ and
ω operations are computable in E ′, and the matrix operations in Theorem 2 can be
reduced to compositions, binary suprema, and these two operations. The complex-
ity results follow from the fact that computation of M∗ uses O(n3) operations and
computation of Mω uses O(n4) operations, cf. [30].

244 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

7 Some Complexity Results

We proceed to identify two important subclasses of computable energy functions,
which cover most of the related work mentioned in the introduction, and to give
complexity results on their reachability and Büchi acceptance problems.

The integer update functions in E are the functions fk, for k ∈ Z, given by

xfk =

{
x+ k if x ≥ max(0,−k),
⊥ otherwise,

together with f−∞ := ⊥⊥ and f∞ := >>. These are the update functions usually
considered in integer-weighted automata and VASS [11, 14, 17–20, 33]. We have
fkf` = fk+`, fk ∨ f` = fmax(k,`), and

f∗k =

{
f0 for k ≤ 0,

f∞ for k > 0,
fωk =

{
f−∞ for k < 0,

f∞ for k ≥ 0,

whence the class Eint of integer update functions forms a subalgebra of E . A function
fk ∈ Eint can be represented by the (extended) integer k, and algebra operations
can then be performed in constant time. Also, Eint is trivially fixed-point decidable,
so that Corollary 3 implies the following result.

Theorem 3. For Eint-automata, Problems 1, 2 and 3 are decidable in PTIME.

Remark 3. This means that state reachability, coverability and Büchi acceptance
for one-dimensional VASS are decidable in PTIME, which seems not to have been
noted before. (But see the recent [38], where reachability for one-dimensional
branching VASS is shown decidable in PTIME. In [7] it is claimed that coverability
for one-dimensional VASS is NP-complete.)

Next we turn our attention to piecewise affine functions.

Definition 5. A function f ∈ E is said to be (rational) piecewise affine if there
exist 0 ≤ x0 < x1 < · · · < xk ∈ Q ∪ {∞} such that

• xf = ⊥ for x < x0 and xf =∞ for x > xk,

• xjf ∈ Q ∪ {⊥,∞} for all j, and

• all restrictions f�]xj ,xj+1[are affine functions x 7→ ajx + bj with aj , bj ∈ Q,
aj ≥ 1.

Let Epw ⊆ E denote the class of piecewise affine energy functions. The notion
of integer piecewise affine functions, Epwi, is defined similarly, with all occurrences
of Q above replaced by Z. Clearly Eint ⊆ Epwi ⊆ Epw.

Note that the definition does not make any assertion about continuity at the xj ,
but (∗) implies that limx↗xj xf ≤ xjf ≤ limx↘xj xf . A piecewise affine function
as above can be represented by its break points x0, . . . , xk, the values x0f, . . . , xkf ,

An Algebraic Approach to Energy Problems II 245

1 2 3 4 5

1

2

3

4

5

xf =

⊥ for x < 2

.5 for x = 2

1.5x− 2.5 for 2 < x < 3

2.3 for x = 3

x− .3 for 3 < x < 4.5

4.5 for x = 4.5

2x− 4.5 for x > 4.5

Figure 2: A piecewise affine energy function

and the numbers a0, b0, . . . , ak, bk. These functions arise in the reduction used
in [10] to show decidability of energy problems for one-clock timed automata with
transition updates, see Section 8. Fig. 2 shows an example of a piecewise affine
energy function.

The class of piecewise affine energy functions forms a subsemiring of E : if f, g ∈
Epw with break points x0, . . . , xk and y0, . . . , y`, respectively, then f ∨g is piecewise
affine with break points obtained from the break points of f and g together with
intersection points of lines (which are rational), and fg is piecewise affine with break
points a subset of {x0, . . . , xk, y0f−1, . . . , y`f−1} (which are all rational). Hence
maxima and compositions of piecewise affine energy functions are computable, but
may increase the size of their representation.

Now let, for any p ∈ Q with p ≥ 0, g−p , g
+
p ∈ Epw be the functions defined by

xg−p =

{
x for x < p ,
∞ for x ≥ p , xg+p =

{
x for x ≤ p ,
∞ for x > p .

Proposition 4. Epw is a ∗-continuous Kleene algebra.

Proof. In lieu of Proposition 1, we need to show that Epw is closed under the ∗-
operation. Let f ∈ Epw, then by Lemma 12, there is a p ∈ Q such that f∗ = g−p or
f∗ = g+p .

Remark that, unlike Epw, the class Epwi of integer piecewise affine functions does
not form a subsemiring of E , as composites of Epwi-functions are not necessarily
integer piecewise affine. As an example, for the functions f, g ∈ Epwi given by

xf = 2x , xg =

{
x+ 1 for x < 3 ,

x+ 2 for x ≥ 3 ,

we have

xfg =

{
2x+ 1 for x < 1.5 ,

2x+ 2 for x ≥ 1.5 ,

246 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

which is not integer piecewise affine. The semiring generated by Epwi is the sub-
semiring of Epw of functions with rational break points x0, . . . , xk, but integer values
a0, b0, . . . , ak, bk.

Similarly, the class of rational affine functions x 7→ ax + b, a, b ∈ Q, a ≥ 1
(without break points) is not closed under maximum, and it can be seen that Epw
is the semiring generated by rational affine functions.

Lemma 14. Epw is fixed-point decidable.

Proof. Let f ∈ Epw, with representation (x0, . . . , xk, x0f, . . . , xkf, a0, . . . , ak,
b0, . . . , bk). Let x ∈ R≥0 be computable; we need to decide whether xf < x,
xf = x or xf > x. If x < x0, then xf = ⊥. If x = xj for some j, we can simply
compare xj with xjf .

Assume now that x ∈]xj , xj+1[for some j. If ajxj + bj < xj and ajxj+1 + bj ≤
xj+1, then xf < x by (∗). If ajxj + bj = xj and ajxj+1 + bj = xj+1, then also
xf = x, and if ajxj + bj ≥ xj and ajxj+1 + bj > xj+1, then xf > x. The cases
ajxj + bj > xj , ajxj+1 + bj ≤ xj+1 and ajxj + bj ≥ xj , ajxj+1 + bj < xj+1 cannot
occur because of (∗).

The last case to consider is ajxj + bj < xj and ajxj+1 + bj > xj+1. Then we

must have aj > 1, and then xf < x if x <
bj

1−aj , xf = x if x =
bj

1−aj , and xf > x if

x >
bj

1−aj .

Theorem 4. For Epw-automata, Problems 1, 2 and 3 are decidable in EXPTIME.

Proof. Decidability follows from Corollary 3 and Lemma 14. For the complexity
claim, we note that all algebra operations in Epw can be performed in time linear
in the size of the representations of the involved functions. However, the maxi-
mum and composition operations may triple the size of the representations, hence
our procedure may take time O(3n

3

p) for state reachability and coverability, and

O(3n
4

p) for Büchi acceptance, for an Epw-automaton of dimension n and energy
functions of representation length at most p.

We believe that the above complexity bound of EXPTIME can be considerably
sharpened, but we leave this for future work.

8 Reduction from Weighted Timed Automata

To further motivate the introduction of our notion of energy automata, we review
here how the treatment of lower-bound energy problems for one-clock weighted
timed automata in [10, 11] naturally leads to our energy functions and energy au-
tomata. In this section, and this section only, function application and composition
will be written in the standard right-to-left order.

A weighted timed automaton A = (L, l0, C, I, E, r) consists of a finite set of
locations L with initial location l0, a finite set of clocks C, location invariants

An Algebraic Approach to Energy Problems II 247

+2 +4
−3

c = 1, c← 0
0

0
1 2 3 4

1

2

3

4

(a)
0

0
1 2 3 4

1

2

3

4

(b)

Figure 3: One-clock weighted timed automaton with discrete updates. Any region-
stable scheduler (i.e., with switches at integer times) is doomed (a), but there exists
a feasible schedule with switches at half-integer times (b).

I : L→ Φ(C), weighted edges E ⊆ L×Φ(C)×2C×Z×L and location weight rates
r : L→ Z. Here the set Φ(C) of clock constraints φ is defined by the grammar

φ ::= c ./ k | φ1 ∧ φ2 (c ∈ C, k ∈ Z, ./ ∈ {≤, <,≥, >,=}).

A clock valuation is a mapping C → R≥0. For a clock valuation v : C → R≥0
and a clock constraint φ ∈ Φ(C), we write v |= φ to indicate that v satisfies φ. We
denote by v0 : C → R≥0 the clock valuation given by v0(c) = 0 for all c ∈ C. For
a clock valuation v : C → R≥0, d ∈ R≥0, and R ⊆ C, we denote by v + d and
v[R ← 0] the clock valuations given by (v + d)(c) = v(c) + d for all c ∈ C and
v[R← 0](c) = 0 for c ∈ R, v[R← 0](c) = v(c) for c /∈ R.

The semantics of a weighted timed automaton A = (L, l0, C, I, E, r) is given by
an infinite weighted automaton JAK = (SA, s0, TA) with states SA = {(l, v) | v |=
I(l)} ⊆ L ×RC≥0, initial state s0 = (l0, v0), and transitions TA ⊆ SA ×R × SA of
two types:

• delay transitions (l, v)
r(l)d−−−→ (l, v + d) for all d ∈ R≥0 such that v + d′ |= I(l)

for all d′ ∈ [0, d];

• switch transitions (l, v)
p−→ (l′, v′), where e = (l, φ,R, p, l′) ∈ E is a transition

of A, v |= φ and v′ = v[R← 0].

We refer to [34] for a thorough survey on timed automata and weighted timed
automata.

The lower-bound energy problem for a weighted timed automaton A as above
is, given an initial energy x0 ∈ R≥0, to decide whether there exist an infinite path

(l0, v0)
p0−→ (l1, v1)

p1−→ (l2, v2)
p2−→ · · ·

of delay and switch transitions in JAK for which x0 +
∑n
i=0 pi ≥ 0 for all n ∈ N.

We hence want to decide whether there is a run in A where the accumulated energy
x0 +

∑n
i=0 pi never drops below zero. We shall say that such a run is feasible.

Figure 1 in the introduction shows an example of such an energy problem.
For one-clock weighted timed automata without discrete updates, i.e., with C =

{c} a singleton and p = 0 for all (l, φ,R, p, l′) ∈ E, it was shown in [11] that
this problem can be decided via a simple reduction to a refinement of the region

248 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

W
−10

l′

0

R1

+20

R2

+10

c ≥ 1, c
← 0,−6

c ≤ 1, c
← 0,−4

c ≥ 1, c← 0,−2

c ≤ 1, c← 0,−2

−5 −1

c = 3, c← 0, 0

c = 2, 0

Figure 4: Conversion of the weighted timed automaton of Fig. 1 to a 3-bounded
weighted timed automaton. To simplify the example, we assume that the invariant
of R1 and R2 in the automaton of Fig. 1 (and thus here) is c ≤ 1. The invariant of
location W is c ≤ 3, and the invariant of the new location l′ is c ≤ 2.

graph [2] of A. Figure 3, taken from [10], however, shows that a similar region-stable
reduction is not available for one-clock weighted timed automata with discrete
updates. In the rest of this section we review the substantially more complicated
reduction from [10]. For simplicity of presentation we assume the input timed
automaton to be closed, i.e., only using closed clock constraints c ≤ k, c ≥ k, c = k
and their conjunctions.

Let A = (L, l0, {c}, I, E, r) be a closed one-clock weighted timed automaton.
First, we make sure that A is bounded, i.e., that the value of c never exceeds a
constant M during any run of A. The construction, based on [5], works essentially
by resetting the clock whenever it reaches value M . Formally, let m be the greatest
integer constant which appears in any invariant I(l), l ∈ L and any constraint φ
in (l, φ,R, p, l′) ∈ E and set M = m + 2. Now for each location l ∈ L, add an
invariant c ≤ M to I(l) and a new location l′ to L, with I(l′) = (c ≤ M − 1) and
r(l′) = 0, and edges (l, (c = M), {c}, 0, l′), (l′, (c = M − 1), ∅, 0, l). Figure 4 shows
an example of the construction for the weighted timed automaton in Fig. 1 for
M = 3. It can be shown [5,10] that the so-constructed bounded automaton admits
the same infinite lower-bounded runs for the same initial energies as the old one.

Second, we make sure that the bound M = 1. This is done, like in [13], by
splitting A into stages, one for every integer k ∈ {0, . . . ,M − 1}; the intuition
is that a state ((l, k), ν) at stage k corresponds to a state (l, ν′) with old clock
value ν′ = k + ν. Figure 5 shows an example of the construction. Third, we
also eliminate edges (l, (c′ ≤ 1), {c′}, p, l′) by introducing new locations l′′ with
r(l′′) = 0, I(l′′) = c ≤ 1, and edges (l, (c′ ≤ 1), ∅, 0, l′′), (l′′, (c′ = 1), {c′}, p, l′), see
Figure 6. It can again be shown [10] that this construction does not affect energy
properties.

Next, noticing that A now only has three types of edges: reset-free edges with
constraint c′ ≤ 1 and resetting edges with constraint c′ = 0 or c′ = 1, we split the

An Algebraic Approach to Energy Problems II 249

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0

c
≤

1
,−

5

c
≤

1
,−

1

c
=

0
,−

5

c
=

0
,−

1

c ≤ 1, c
← 0,−6

c ≤ 1, c← 0,−6

c ≤ 1, c← 0,−2
c ≤ 1, c← 0,−2

c ≤
1, c
← 0,−

4

c = 0,−4

c ≤
1, c←

0,−2

c = 0,−2

Figure 5: Conversion of the 3-bounded weighted timed automaton of Fig. 4 to a
1-bounded weighted timed automaton.

locations of A so that each location l either has only incoming reset-free edges or
only incoming resetting edges. Possibly adding a new initial location, we also make
sure that l0 has no incoming edges. Fig. 7 shows the complete conversion of the
weighted timed automaton of Fig. 1.

Let S be the set of locations without incoming reset-free edges, then l0 ∈ S.
For each pair l, l′ ∈ S, let P (l, l′) be the (finite) set of paths in A from l to l′ which

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

1
0

c
≤

1,
0

c ≤
1, 0

c = 1, , c
← 0,−6

2
0

c ≤
1,

0

c
=

1,
c
←

0,
−4

3
0

c ≤
1, 0

c ≤
1, 0

c = 1, , c← 0,−2

4
0

c ≤
1, 0

c
=

1, c←
0,−

2

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0

c
≤

1
,−

5

c
≤

1
,−

1

c
=

0
,−

5

c
=

0
,−

1

c =
0,−

4

c =
0,−2

Figure 6: The 1-bounded weighted timed automaton obtained by eliminating reset-
ting edges with clock constraint c ≤ 1 from the 1-bounded weighted timed automa-
ton in Fig. 5. We eliminate, for instance, the edge (〈W, 2〉, (c ≤ 1), {c},−6, 〈R1, 0〉)
by introducing an auxiliary location 1 with invariant c ≤ 1 and rate 0, and edges
(〈W, 2〉, (c ≤ 1), ∅, 0, 1) and (1, c = 1, {c},−6, 〈R1, 0, 〉). Note that in the resulting
automaton all edges with constraint c ≤ 1 are reset-free, and all resetting edges
have constraint c = 1 or c = 0.

250 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

W, 0
−10

W, 1
−10

W, 2
−10

l′, 0
0

l′, 1
0

R1, 0
+20

R1, 1
+20

R2, 0
+10

R2, 1
+10

1
0

c
≤

1,
0

c ≤
1, 0

c = 1, , c
← 0,−6

2
0

c ≤
1,

0

c
=

1,
c
←

0,
−4

3
0

c ≤
1, 0

c ≤
1, 0

c = 1, , c← 0,−2

4
0

c ≤
1, 0

c
=

1, c←
0,−

2

5
+20

6
+10

c = 1, c← 0, 0c = 1, c← 0, 0

c =
1, c←

0, 0

c
=

1
,c
←

0
,0

c =
1,
c←

0,
0

c = 1, c← 0, 0

c = 1, c← 0, 0
c
≤

1
,−

5

c
≤

1
,−

1

c
≤

1
,−

5

c
≤

1
,−

1

c ≤
1, 0

c ≤
1, 0

c
=

0
,−

5

c
=

0
,−

1

c =
0,−

4

c =
0,−2

Figure 7: Conversion of the weighted timed automaton in Fig. 6 to one with loca-
tions partitioned into locations with only reset-free incoming edges with constraint
c ≤ 1 and locations with only resetting edges and constraint c = 1 or c = 0 (we
omit resets at edges with constraint c = 0). Note that in Fig. 6 locations (R1, 0)
and (R2, 0) have both resetting and reset-free incoming edges. We introduce two
auxiliary locations 5 and 6 and redirect edges accordingly.

only go through locations in L \ S, and which contain at most two copies of any
simple cycle. (It is shown in [10] that paths which contain more than two copies of
a simple cycle can be reduced to paths in P (l, l′) by collecting all delays in the first
two copies.) For each such path π ∈ P (l, l′), let fπ : R≥0 → R≥0 be the function
mapping input energy in l to maximal achievable output energy in l′ and define
T = {(l, fπ, l′) | π ∈ P (l, l′)}. Let B = (S, l0, T, S); we will show below that B is
an energy automaton.

It is clear that any infinite run in A which traverses resetting edges infinitely
often will translate to an infinite path in B. We need, however, to take special care
of infinite runs in A which are eventually reset-free. To do so, it is shown in [10]
that we can compute, in EXPTIME, a mapping z : L → R≥0 such that there is a
feasible infinite reset-free run from a state (l, v) in JAK iff v ≥ z(l). For the proof of
this, one observes that any such run can be converted, by eliminating all delays in
locations with nonpositive rates and collecting all delays in locations with positive
rates in their first occurrences, into one where, after a finite prefix, no more time
elapses. Also, the length of these prefixes is at most |L|(|L| + 1), so z(l) can be
computed in finite time.

It can now be shown [10, Lemma 17] that, for any x0 ∈ R≥0, there is a feasible
infinite run from (l0, x0) in A iff (1) there is an accepting infinite run in B with
initial energy x0, or (2) a state l ∈ S is reachable in B, with initial energy x0, such
that the energy in l is at least z(l). Hence the lower-bound energy problem for A

An Algebraic Approach to Energy Problems II 251

l1 l2 l3 l4 l5 l6 l7 l8

R2, 0
+10

5
+20

6
+10

5
+20

6
+10

5
+20

2
+0

W, 0
−10c′← 0

−5

≥ 5

−1

≥ 1

−5

≥ 5

−1

≥ 1

−5

≥ 5

+0

≥ 0

−4

≥ 4

R2, 0
+10

5
+20

5
+20

6
+10

5
+20

2
+0

W, 0
−10c′← 0

−5

≥ 5

−6

≥ 6

−1

≥ 1

−5

≥ 5

+0

≥ 0

−4

≥ 4

R2, 0
+10

5
+20

W, 0
−10c′← 0

−5

≥ 5

−16

≥ 16

Figure 8: Reset-free path with annotations (top) and after repeated application of
the first normalization operation.

from x0 reduces to Büchi(B)(x0) and Cover(B)(x0, z).
We miss to show that B = (S, l0, T, S) is an energy automaton. Let l, l′ ∈ S

and π = (l = l1, e1, l2, . . . , en, ln+1 = l′) ∈ P (l, l′); note that en is the only resetting
edge. If the constraint on en is c′ = 0, then no time elapses during π, and, letting
pi denote the weight of ei = (li, φ, ∅, pi, li+1) (where φ = (c′ ≤ 1)), we have

fπ(x) =

{
undefined if x+

∑k
i=1 pi < 0 for some k ∈ {1, . . . , n} ,

x+
∑n
i=1 pi otherwise .

If, on the other hand, the last constraint in π is φn = (c′ = 1), then we face the
task of distributing one time unit of delay optimally through the locations along π.
In order to do so, we first annotate the edges along π with lower-bound constraints.
Hence each ei is now of the form ei = (li, φ, ∅, pi, bi, li+1), with bi = −pi initially
and the semantics that the edge ei is enabled for input energy x ≥ bi.

We modify π by removing locations in which an optimal path (i.e., with max-
imal energy output) will not delay. To ease the presentation, we assume that the
maximal rate along π is positive, i.e., max{r(li) | i = 1, . . . , n} > 0. The construc-
tions are similar in the other case; see [10] for details. Figure 8 shows as an example
a path from (R2, 0) to (W, 0) in the weighted timed automaton of Fig. 7.

First we note that if r(li) ≥ r(li+1) for some i ∈ {1, . . . , n− 1}, then any delay
spent in li+1 could just as well (or better) have been spent in li. (This is the case
for i = 2 (location 6 with rate +10) in the example.) Hence we can remove li+1 and
update π with an edge (li, φ, ∅, pi + pi+1,max(bi, bi+1 − pi), li+2). The new lower-
bound constraint max(bi, bi+1 − pi) is chosen so that the new edge can be taken
precisely when the sequence of the old edges could be taken without intermediate
delay.

This modified path π has the property that r(li) < r(lj) for all 1 ≤ i < j ≤ n.
Next, we see that if there is i ∈ {1, . . . , n− 1} for which bi + pi ≥ bi+1, then there
is no need to spend any delay in li+1, as we can go directly to li+2 which has a
higher rate. (In our example, this case does not occur.) Hence we modify π once
again, removing li+1 and adding a new edge (li, φ, ∅, pi + pi+1, bi, li+2). The result

252 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

x

fπ(x)

0 3 5
0

4

Figure 9: The energy function associated with the path of Fig. 8.

of these two kinds of modifications is a reset-free path in so-called normal form, see
again Fig. 8.

As the last step, we show by example how to compute the energy function of a
path in normal form; we refer to [10] for the general algorithm. Let π be the path
at the bottom of Fig. 8; we want to compute the partial function fπ : R≥0 ⇀ R≥0
which maps the input energy x, entering the first location of π, to the maximum
available output energy fπ(x) when leaving π.

First we notice that if x < 3, then we need to spend a delay of d1 ≥ 5−x
10 > 1

5 in
l1 to meet its output constraint of x ≥ 5. The energy value when entering l2 is then
x+ 10d1 − 5, which is equal to 0, so that after l2, the value is 20d2 ≤ 20(1− d1) =
20 − 20d1 < 16. Hence we cannot match the output constraint x ≥ 16 on l2, so
that fπ(x) is undefined for x < 3. On the other hand, when x = 3 at the start of
π, then we can delay 1

5 time units in l1, then delay 4
5 time units in l2, and finally

achieve fπ(3) = 0.

It can be shown [10] that the general strategy for maximizing the output energy,
given a path in normal form such as the one in the bottom of Fig. 8, is to delay
in every location precisely the time necessary for meeting its output constraint,
and then to spend any remaining time in the last location. Hence when x is
between 3 and 5, we can let d1 = 5−x

10 and then d2 = 1− d1. This gives a value of
fπ(4) = 4 + 1

10 · 10− 5 + 9
10 · 20− 16 = 2. For x ≥ 5, we need not delay in l1 at all,

so in this case, fπ(x) = x− 1. See Fig. 9 for a graph of the function thus obtained.

Given this general strategy for maximizing output energy, it can be shown
that the energy function fπ associated with a path in normal form, or indeed
with a general reset-free path π, is a continuous piecewise affine function which
satisfies (∗), cf. Definition 5. Now when the input timed automaton is not closed,
then the definition interval of fπ ([1,∞[in the example) may be left-open, and
taking maxima of such functions may introduce discontinuities, so that in the end,
B = (S, l0, T, S) is an automaton which has transition weights from the general
class Epw of piecewise-affine energy functions.

The results of Section 7 thus apply and allow us to compute Büchi(B)(x0) and
Cover(B)(x0, z) in exponential time. As the reduction from A to B shown here
may incur an exponential blow-up, our overall procedure for solving lower-bound

An Algebraic Approach to Energy Problems II 253

(−1, 1)

(0,−2)

Figure 10: A simple two-dimensional VASS

energy problems in weighted timed automata has double exponential complexity.

9 Multi-dimensional Energy Automata and Games

We turn our attention to several variants of energy automata. We will first be
concerned with multi-dimensional energy automata and show that their coverability
problem is EXPSPACE-complete. Then we will show that this does not apply to
flat energy functions, which are not required to satisfy (∗); for such functions,
coverability is undecidable from dimension four. Finally, we show that reachability
games on two-dimensional energy automata and on one-dimensional flat energy
automata are undecidable.

An n-dimensional energy automaton, or En-automaton for short, (S, T), for
n ≥ 1, consists of finite sets S of states and T ⊆ S × En × S of transitions.
By restricting transition labelings, we can define subclasses of Enpw-automata, Enpwi-
automata, and Enint-automata.

A global state in such an automaton is a pair (s,x) ∈ S ×Rn≥0, and transitions
are of the form (s,x)

f−→ (s′,x′) such that (s,f , s′) ∈ T and x′(i) = x(i)f(i) for
each i ∈ {1, . . . , n}. Here, u(i) denotes the ith element of the vector u.

A run of an En-automaton (S, T) from (s,x) to (s′,x′) is a finite sequence
(s0,x0), . . . , (sk,xk) of global states such that (s0,x0) = (s,x), (sk,xk) = (s′,x′),
and for all i ∈ {1, . . . , n} there exists fi ∈ En such that (si−1,xi−1)

fi−→ (si,xi).
We say that such a run has length k.

We define an ordering ≤ on global states by (s,x) ≤ (s′,x′) if, and only if,
s = s′ and x(i) ≤ x′(i) for each i = 1, . . . , n. We restate the coverability problem
and the state reachability problem: Given an En-automaton, an initial global state
(s,x), where x ∈ Rn≥0 is a computable initial energy, and some global state (s′,x′),
the coverability problem is to decide whether there exists a run from (s,x) to
(s′,x′′) such that x′ ≤ x′′. The state reachability problem is a special case of the
coverability problem for x′ = 0.

For reachability in En-automata with n ≥ 2, our algebraic results do not apply.
To see this, we refer to the state reachability problem in Fig. 10: with initial energy
(1, 1), the loop needs to be taken precisely once, but with initial energy (2, 0), one
needs to loop twice. To make this argument precise, let f denote the function
corresponding to the (−1, 1) loop and g the function on the (0,−2) edge. Then we
should have (1, 1)f∗g = (1, 1)fg and (2, 0)f∗g = (2, 0)f2g. Hence our framework
of computing with energy functions will not apply.

254 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

9.1 Enpw-automata

Recall that n-dimensional VASS form a subclass of our Enpw-automata. The cov-
erability problem for VASS is EXPSPACE-complete [44, 47]. In this subsection
we aim to show the same complexity for the coverability and the state reachabil-
ity problem for Enpw-automata. For EXPSPACE-membership, we extend Rackoff’s
proof for VASS [47].

The proof is inspired by a proof for EXPSPACE-completeness for the class of
strongly increasing affine nets [9]. Affine nets are extensions of classical Petri nets.
Recall that in Petri nets the current placement of tokens in the places (called mark-
ing) changes according to the transition rules, which simply add or subtract tokens
from a place. In affine nets, the transition rules are affine functions of the form
AM +B, where A ∈ Nn×Nn, B ∈ Nn, and M is a marking of the n-dimensional
net. Such a function is strongly increasing if A is greater than or equal to the iden-
tity matrix, cf. condition (∗) for energy functions. Note that strongly increasing
affine nets operate on vectors over N, while Enpw-automata operate on vectors over
R≥0. However, we remark that even Enpwi-automata and strongly increasing affine
nets are incomparable in expressiveness: affine nets do not allow for piecewise affine
functions, and in Enpwi-automata the value of an energy variables cannot influence
the value of another energy variable as it is the case in affine nets. That is, in
Enpwi-automata all A matrices are diagonal.

Before we prove EXPSPACE-completeness of the coverability problem for Enpw-
automata, we introduce some helpful notions and prove some lemmas.

Recall that every 1-dimensional integer piecewise affine energy function f ∈ Epw
can be represented by its breakpoints x0, . . . , xm ∈ Q, the values x0f, . . . , xmf ∈ Q,
and the numbers a0, b0, a1, b1, . . . , am, bm ∈ Z, where aj ≥ 1 for all 0 ≤ j ≤ m. We
use xminf = x0 to denote the minimal break point of f . For simplicity we assume
that xf is defined iff x ≥ xminf , but our arguments also apply to the case where the
definition interval of f is open. For n-dimensional integer piecewise affine energy
functions f ∈ Enpw, we define xminf ∈ Qn to be the n-dimensional vector defined
by xminf (i) = xminf(i) for all i ∈ {1, . . . , n}.

Fix some Enpw-automaton (S, T). We use bmax to denote the maximum of the
absolute values of all negative constants smaller than or equal to −1 and occurring
in the representation of any energy function in (S, T), or 1 if there is no such
constant. We further use xminmax to denote the maximum of 1 and the minimal
break points of all energy functions occurring in (S, T). (Hence xminmax ≥ 1.)

The next lemma states the easy fact that the decrease in the value of an energy
variable during a run is bounded.

Lemma 15. For every run from (s,x) to (s′,x′) of length k, x′(i) ≥ x(i)− k bmax.

On the other hand, the value of an energy variable can grow quickly even in
very short runs. However, for deciding the coverability problem, already for VASS,
it is not necessary to store the exact concrete value of an energy variable once it has
exceeded a certain high value. Instead, we will represent high values symbolically
by ω. The energy variables in the global states of our algorithm will hence take

An Algebraic Approach to Energy Problems II 255

values in Rω := R≥0 ∪{ω}. Define for every y ∈ Rω, ω+ y = ω− y = ω, y ·ω = ω,
and y ≤ ω. Using this, we can extend the definition of f ∈ Epw to a function
f : Rω → Rω in a natural way. We further extend these definitions to the n-
dimensional case. In the following, we will use x to denote vectors in Rn, and y to
denote vectors in (Rω)n.

Let y ∈ (Rω)n and assume y(i) ∈ R≥0. We explain when to replace the concrete
value y(i) by ω. The crucial point here is that there is not a single threshold value
t ∈ R≥0 such that y(i) is replaced by ω whenever y(i) ≥ t. Instead, y(i) is replaced
by ω whenever y(i) ≥ t(r), where r is the number of indices j for which y(j) ∈ R≥0,
and t is a mapping t : {0, . . . , n} → R≥0. To make this formal, we define

omega(y) = {i ∈ {1, . . . , n} | y(i) = ω},
real(y) = {i ∈ {1, . . . , n} | y(i) ∈ R≥0}.

For a finite set λ we use |λ| to denote its cardinality. Let t : {0, 1, . . . , n} → R≥0
be a mapping. We define the vector yt ∈ (Rω)n by

yt(i) =

{
y(i) if y(i) < t(|real(y)|),
ω if y(i) ≥ t(|real(y)|).

Thus, in yt all entries which are greater than or equal to the value t(|real(y)|) are
replaced by ω; other entries do not change.

Next, we define the abstract t-semantics of (S, T). For this, let t : {0, 1, . . . , n} →
R≥0 be a mapping. A global t-state of (S, T) is a pair (s,y) ∈ S × (Rω)n. We
define a t-transition relation over the set of global t-states by (s,y)

f−→t (s′,y′) iff
(s,f , s′) ∈ T , yf is defined, and y′ = (yf)t. A t-run of (S, T) from (s,y) to
(s′,y′) is a finite sequence (s0,y0), (s1,y1), . . . , (sk,yk) of global t-states such that

(s0,y0) = (s,y), (sk,yk) = (s′,y′), and (si−1,yi−1)
fi−→t (si,yi) for some fi ∈ Enpw,

for all i ∈ {1, . . . , k}. We say that such a t-run has length k.
The following observation can be easily proved.

Lemma 16. If y(i) = ω and (s,y)
f−→t (s′,y′), then y′(i) = ω, hence omega(y) ⊆

omega(y′).

The following lemma will be needed to prove the completeness of our algorithm.
The proof is simple and left to the reader.

Lemma 17. If there is a run from (s1,x1) to (s2,x2) of length k, then there is for
every x′

1 ≥ x1 a t-run from (s1,x
′
1) to (s2,y2) of length k and such that y2 ≥ x2.

For proving the soundness of our algorithm, we need to be able to reverse the
process of abstracting concrete data values. Given y ∈ (Rω)n with y(i) = ω for
some i ∈ {1, . . . , n}, we define the vector ytrev ∈ Rn≥0 by

ytrev(i) =

{
y(i) if y(i) ∈ R≥0,
t(|real(y)|+ 1) if y(i) = ω.

(3)

The following lemma will be crucial for proving the soundness of our algorithm.

256 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

Lemma 18. For every P ∈ R≥0, if there is a t-run from (s,y) to (s′,y′) of length
k, |real(y)| = |real(y′)|, and t(|real(y)| + 1) ≥ k bmax + xminmax + P , then there
exists a run from (s,ytrev) to some global state (s′,x′) of length at most k, where
x′(i) = y′(i) for all i ∈ real(y′) and x′(i) ≥ xminmax + P for all i ∈ omega(y′).

Proof. Note that |real(y)| = |real(y′)| implies that in the t-run from (s,y) to (s′,y′)
no ω-abstraction took place. We prove the lemma by induction on k.

For the induction base, let k = 0. Hence (s′,y′) = (s,y). Then we have
ytrev(i) = t(|real(y)| + 1) ≥ xminmax + P for all i ∈ omega(y), where the first
equality holds by (3), and the inequality holds by assumption.

For the induction step, assume k > 0. Hence there exists (s′′,y′′) such that
(s,y)

f−→t (s′′,y′′), and there exists a t-run from (s′′,y′′) to (s′,y′) of length k − 1.
Note that by assumption |omega(y)| = |omega(y′)|, and by Lemma 16 the global

t-states occurring in the t-run have ω-entries in the same dimensions.
We first argue that we can execute the transition labeled with f on the global

state (s,ytrev), i.e., ytrev(i)f(i) is defined for all i ∈ {1, . . . , n}. For i ∈ real(y) this
is clear. So let i ∈ omega(y). By assumption,

ytrev(i) = t(|real(y)|+ 1) ≥ k bmax + xminmax + P. (4)

It follows by xminmax ≥ xminf(i) that ytrev(i)f(i) is defined.
Let (s′′,x′′) be the global state that results from applying f to (s,ytrev), i.e.,

(s,ytrev)
f−→ (s′′,x′′).

By (4) and Lemma 15, we have for all i ∈ omega(y′′), and x′′(i) = y′′(i) for all
i ∈ real(y′′).

Define the mapping t1 : {0, 1, . . . , n} → R≥0 by

t1(j) =

{
t(j) if j 6= |real(y′′)|+ 1,

t(|real(y′′)|+ 1)− bmax otherwise.

Note that

t1(|real(y′′)|+ 1) = t(|real(y′′)|+ 1)− bmax

= t(|real(y)|+ 1)− bmax

≥ (k − 1)bmax + xminmax + P,

where the first equation holds by definition of t1, the second equation holds by
|real(y′′)| = |real(y)|, and the inequality holds by assumption. We can thus apply
the induction hypothesis on the t1-run from (s′′,y′′) to (s′,y′) of length k − 1.
Hence there exists a run from (s′′,y′′

trev1
) to (s′, x′) of length at most k− 1 and such

that x′(i) = y′(i) for all i ∈ real(y′), and x′(i) ≥ xminmax+P for all i ∈ omega(y′).
Observe that x′′ ≥ y′′

trev1
: x′′(i) = y′′

trev1
(i) for all i ∈ real(y′′), and x′′(i) ≥

t(real(y)) − bmax and y′′
trev1

(i) = t(real(y)) − bmax for all i ∈ omega(y′′). We can

thus conclude that there is a run from (s′′,x′′) to some global state (s′,x′
1) of length

at most k − 1 and with x′
1 ≥ x′, which yields the statement of the lemma.

An Algebraic Approach to Energy Problems II 257

We are finally ready to state the main result of this subsection.

Theorem 5. State reachability and coverability are EXPSPACE-complete for Enpw-
automata for n ≥ 3.

Proof. The lower bound follows from EXPSPACE-hardness for VASS [44]. For the
upper bound, let (S, T) be an Enpw-automaton, let (s,x) and (s′,x′), respectively,
be the initial global state and the global state to be covered, respectively. We use
cmax = max{bmax,maxi x

′(i)} to denote the maximum of bmax and the maximum
entry in x′; note that cmax ≥ 1. Define thd : {0, 1, . . . , n} → Q≥0 by

thd(0) = 0, thd(i) = bmax · len(i− 1) + xminmax + cmax

for every i ∈ {1, . . . , n}, where len : {0, . . . , n} → Q≥0 is defined inductively by

len(0) = |S|, len(i) = (thd(i))i |S|+ len(i− 1)

for every i ∈ {1, . . . , n}.
The correctness of our algorithm is based on the following two claims.

Soundness Claim. If there exists a thd-run from (s,y) to (s′,y′) of length k
and such that y′ ≥ x′, then there exists a run from (s,ythdrev) to (s′,x′′) of length
at most k and such that x′′ ≥ x′.

Completeness Claim. If there exists a run from (s0,x0) to (s′,x′′) for some
x′′ ≥ x′, then there is also a thd-run from (s0,x0) to (s′,y′) of length k ≤ len(n)
and such that y′ ≥ x′.

By these two claims, there is a run from (s,x) to (s′,x′′) for some x′′ ≥ x′

if, and only if, there is a thd-run from (s,x) to (s′,y′) such that y′ ≥ x′ and of
length bounded by len(n). The existence of such a thd-run can thus be verified
by a non-deterministic Turing machine that keeps in memory one global thd-state
as well as one counter counting up to len(n). Every entry in (Rω)n occurring in
the analysis is either ω or less than thd(n) = bmax · len(n) + xminmax + cmax. By
the Length Claim below, the memory space needed by the algorithm is O((n +
1)!(log(bmax) + log(cmax) + log(xminmax)) + log(|S|)) = O(2cn logn(log(cmax) +
log(xminmax) + log(|S|))), which is in NEXPSPACE.

Length Claim. For all i ∈ N, len(i) ≤ (6 bmax · cmax · xminmax)(i+1)! |S|.
In the remainder of this subsection, we prove the three claims stated above.

Proof of the Soundness Claim. The proof is by induction on |real(y)|.
For the induction base, assume |real(y)| = 0, i.e., we have y(i) = ω for all

i ∈ {1, . . . , n}. By definition, for every i ∈ {1, . . . , n} we have

ythdrev(i) = thd(|real(y)|+ 1) = thd(1)

= bmax · len(0) + xminmax + cmax

= bmax |S|+ xminmax + cmax. (5)

258 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

For defining the sequence of transitions that leads (s,ythdrev) to some (s′,x′′) in at
most k transition steps and such that x′′ ≥ x′, we distinguish two cases. First,
assume that the length k of the thd-run from (s,y) to (s′,y′) satisfies k > |S|. There
must exist a (syntactical) cycle-free path from s to s′ in (S, T) of length bounded by
|S|. By (5) and Lemma 15, there is a run corresponding to this path from (s,ythdrev)
to (s′,x′′), where x′′ satisfies x′′(i) ≥ xminmax + cmax for all i ∈ {1, . . . , n}. By
definition of cmax, we can conclude x′′ ≥ x′.

Second, assume that the length k of the thd-run from (s,y) to (s′,y′) satisfies
k ≤ |S|. By (5) and Lemma 15, we can argue that starting from (s,ythdrev) we can
use the same sequence of transitions as in the thd-run, yielding a run of length k,
and reaching a global state (s′,x′′) for some x′′ ≥ x′. This finishes the induction
base.

For the induction step assume |real(y)| = i+ 1. We consider two cases.
(i) First assume |real(y)| = |real(y′)|. By definition of the thd-semantics, every

global thd-state (s1,y1) that occurs in the thd-run ρ from (s,y) to (s′,y′) satisfies

• |real(y1)| = i+ 1,

• y1(j) < thd(|real(y1)|) = thd(i+ 1) for all j ∈ real(y1).

Let ρ′ be the run from (s,y) to (s′,y′) that is obtained from ρ by removing all
cycles between identical global thd-states. The length k′ of ρ′ is bounded by

k′ ≤ (thd(i+ 1))i+1 |S| .

Next we prove that there is a corresponding run from (s,ythdrev). For this, note that

thd(|real(y)|+ 1) = thd((i+ 1) + 1)

= bmax · len(i+ 1) + xminmax + cmax

= bmax ((thd(i+ 1))i+1 |S|+ len(i)) + xminmax + cmax

≥ bmax ((thd(i+ 1))i+1 |S|) + xminmax + cmax

≥ bmax · k′ + xminmax + cmax.

By Lemma 18 (for P = cmax), there exists a run from (s,ythdrev) to (s′,x′′) of
length at most k′ and such that x′′(j) = y′(j) for all j ∈ real(y′), and x′′(j) ≥
xminmax + cmax for all j ∈ omega(y′). Then x′′ ≥ x′ follows by cmax ≥ x′(j) for
all j ∈ {1, . . . , n}.

(ii) Now assume |real(y)| > |real(y′)|. In the thd-run ρ from (s,y) to (s′,y′),
let (s1,y1) be the last global thd-state with |real(y1)| = i + 1. Partition ρ into
three parts: A thd-run ρ1 of length k1 from (s,y) to (s1,y1), a thd-transition
(s1,y1)

f−→thd (s2,y2) (where real(y2) ≤ i), and a thd-run ρ2 of length k2 from
(s2,y2) to (s′,y′). Hence k = k1 + k2 + 1. Note that ρ1 may be empty, in case
(s1,y1) = (s,y); in that case, k1 = 0 and k = k2 + 1.

As in case (i), we can show that there is a run ρ′1 from (s,y) to (s1,y1) of length
k′1 ≤ (thd(i+ 1))i+1 |S|. Using similar arguments as above, we obtain

thd(|real(y)|+ 1) ≥ bmax · k′1 + bmax · len(i) + xminmax + cmax.

An Algebraic Approach to Energy Problems II 259

By Lemma 18 (with P = bmax · len(i) + cmax) there exists a run from (s,ythdrev)
to (s1,x1) of length at most k′1 and such that x1(j) = y1(j) for all j ∈ real(y1),
and x1(j) ≥ bmax · len(i) + xminmax + cmax for all j ∈ omega(y1). Note that
x1 ≥ y1thdrev . Hence we also have (s1,x1)

f−→ (s2,x2) for some x2 ≥ y2thdrev .
By induction hypothesis, there exists a run from (s2,y2thdrev) to (s′,x′′) for some
x′′ ≥ x′ and of length at most k2. But by x2 ≥ y2thdrev there also exists such
a run from (s,x2). This completes the induction step and thus the proof of the
soundness claim.

Proof of the Completeness Claim. Assume that there exists a run from (s,x)
to (s′,x′′) for some x′′ ≥ x′. By Lemma 17 there exists a thd-run ρ from (s,x) to
(s′,y) for some y ≥ x′′. Let ρ′ be the thd-run from (s,x) to (s′,y) that is obtained
from ρ by removing all cycles between identical global thd-states. We prove that
|ρ′| ≤ len(n). For all i ∈ {|real(y)|, . . . , n}, let (si,yi) be the first global thd-state
occurring in ρ′ such that |real(yi)| ≤ i, and let ρ′i be the suffix of ρ′ that starts in
(si,yi). We prove by induction on i that |ρ′i| ≤ len(i).

For the base case, let i = |real(y)|. By definition of the thd-semantics, every
global thd-state (s′,y′) occurring in ρ′i satisfies y′(j) < thd(i) for every j ∈ real(y′).
Since there are exactly i entries that take values in {0, . . . , thd(i) − 1}, the length
|ρ′i| of ρ′i is bounded by thd(i)i ·|S|. This and the definition of len yields |ρ′i| ≤ len(i).

For the induction step, let ρi+1 be the prefix of ρ′i+1 that starts in (si+1,yi+1)
and ends in (si,yi). Every global thd-state (s′,y′) that occurs in ρi+1 (except
for (si,yi)) satisfies y′(j) < thd(i + 1) for all j ∈ real(y′) = real(yi+1). Hence
|ρi+1| ≤ (thd(i + 1))i+1 |S|. By induction hypothesis, |ρ′i| ≤ len(i). Altogether, we
obtain

|ρ′i+1| = |ρi+1|+ |ρ′i| ≤ (thd(i+ 1))i+1 |S|+ len(i) ≤ len(i+ 1).

This completes the induction step and the proof of the completeness claim.

Proof of the Length Claim. The claim is proved by induction on i. The base
case, i = 0, trivially holds. So let us assume that the claim holds for i. Then

len(i+ 1) = (bmax · len(i) + xminmax + cmax)i+1 |S|+ len(i)

≤ (2 bmax · cmax · xminmax ·max(len(i), 1))i+1 |S|+ len(i)

≤ 3(2 bmax · cmax · xminmax ·max(len(i), 1))i+1 |S|
≤ 3i+1(2 bmax · cmax · xminmax)i+1(max(len(i), 1))i+1 |S|
≤ (6 bmax · cmax · xminmax)i+1((6 bmax · cmax · xminmax)(i+1)!)i+1 |S|
≤ (6 bmax · cmax · xminmax)(i+1)!(6 bmax · cmax · xminmax)(i+1)(i+1)! |S|
= (6 bmax · cmax · xminmax)(i+2)(i+1)! |S|
= (6 bmax · cmax · xminmax)(i+2)! |S|.

With the proves of these three lemmas, the proof of Theorem 5 is complete.

260 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

9.2 Flat Enpw-automata

Next we show that if the requirement (∗) on energy functions, that yf ≥ xf +y−x
for each x ≤ y, is lifted, then reachability becomes undecidable from dimension 4.
We call such functions flat energy functions; remark that we still require them to
be strictly increasing, but the derivative, where it exists, may be less than 1. The
class of all flat energy functions is denoted Ē and its restrictions by Ēpw and Ēpwi.

Theorem 6. State reachability, coverability, and Büchi acceptance are undecidable
for Ē4pw-automata.

Proof. The proof is a reduction from the halting problem (respectively, the recur-
rent state problem) for two-counter machines. A two-counter machine M is a finite
sequence (Ij)nj=1 of instructions operating on two counters denoted by C1 and C2,
where Ij is one of the following instructions (with i ∈ {1, 2} and j, k,m ∈ {1, ..., n}):

increment Ij :Ci := Ci + 1; go to Ik
zero test/dec Ij : if Ci = 0 then goto Ik else Ci :=Ci − 1; goto Im
halt Ij : halt

A configuration of such a two-counter machine M is a triple γ = (J, c, d) ∈
{I1, . . . , In} ×N ×N, where J indicates the current instruction, and c and d are
the current values of the counters C1 and C2, respectively. A computation ofM is
a finite or infinite sequence (γi)i≥0 of configurations, such that γ0 = (I1, 0, 0) and
γi+1 is the result of executing the instruction Ii on γi for each i ≥ 0. Without
loss of generality, we assume that In is the only instruction of the form halt. The
halting problem for two-counter machines asks, given a two-counter machine M,
whether the (unique) computation ofM reaches a configuration with instruction In,
i.e., the halting instruction. This problem is Σ0

1-complete [45]. The recurrent state
problem for two-counter machines asks, given a two-counter machine M, whether
the (unique) computation ofM visits instruction I1 infinitely often. This problem
is Σ1

1-complete [3].
Given a two-counter machine M, we construct an Ē4pw-automaton AM with

state set S ⊆ {I1, . . . , In} such that M halts (visits instruction I1 infinitely of-
ten, respectively) if, and only if, AM reaches state In (visits I1 infinitely often,
respectively).

We use two variables x and y to store the values of the counters C1 and C2

by requiring that x = 1/(2c13c2) and y = 2c13c2 . Two other variables z and z′

are used for storing temporary information needed for encoding zero tests and
decrementation operations of the 2-counter machine. The initial value of all energy
variables is 1.

For encoding the instructions of the 2-counter machine, we first define the fol-
lowing flat energy functions: dec2 multiplies the current values of x and z′ with 3,
and divides the current values of y and z by 3; inc2 turns these operations back,
i.e., it divides the current values of x and z′ by 3 and multiplies the values of y
and z with 3. Functions dec1 and inc1 are defined analogously by replacing 3 by
2. Finally, function dec′1 behaves like dec1 but does not change the values of z

An Algebraic Approach to Energy Problems II 261

Ij

Ik

Im

dec2

id, x
≥ 1, y ≥

1

inc2

id, z ≥ 1, z′ ≥ 1

dec ′1

dec1

id, x ≥ 1, y ≥ 1

inc1, inc2

id, z ≥ 1, z′ ≥ 1

Figure 11: Module for encoding zero test/decrement instructions of a 2-counter
machine

and z′; likewise for inc′1. An increment instruction for counter C1 is then encoded
by a simple transition from state Ij to state Ik labeled by inc′1; analogously for
an increment of counter C2. The encoding zero test/decrement instructions for
counter C1 can be done as shown in Fig. 11. Here, the additional inequalities for
the definition intervals of the energy functions are crucial for the correctness of the
construction.

9.3 Reachability games on Enpw-automata

Next we extend our energy automata formalism to (turn based) reachability games.
Let (S, T) be an n-dimensional energy automaton such that S = SA ∪ SB forms a
partition of S and T ⊆ (SA × Enpw × SB) ∪ (SB × Enpw × SA). Then (S, SA, SB , T)
induces an n-dimensional energy game G. The intuition of the reachability game
is that the two players A and B take turns to move along the game graph (S, T),
updating energy values at each turn. The goal of player A is to reach a state in F ,
the goal of player B is to prevent this from happening.

The reachability game is a game on a well-structured transition system as in [1].
In general, the reachability game on well-structured transition systems is undecid-
able; in particular, the game on 2-dimensional vector addition systems with states
is undecidable [1]. It is hence clear that it is undecidable whether player A wins
the reachability game in 2-dimensional Eint-automata.

Theorem 7. Whether player A wins the reachability game in E2int-automata is
undecidable.

As a corollary, we can show that for flat energy functions, already one-dimen-
sional reachability games are undecidable.

Theorem 8. It is undecidable for Ēpw-automata whether player A wins the reach-
ability game.

Proof. We show a reduction from reachability games on 2-dimensional Eint-automata
to reachability games on 1-dimensional Ēpw-automata. Let (S, T) be a 2-dimensional

262 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

s s1 s′

s2

s3s4 s5

x 7→ 2f(log2 x);x ≥ 2lf

x 7→ x
3 ;x ≥ 3 · 2lf x 7→ x

2 ;x ≥ 2 · 2lf

x 7→ x;x ≥ 2lfx 7→ x;x > 2lf

s s1 s′

s2

s3s4 s5

x 7→ 3f(log3 x);x ≥ 3lf

x 7→ x
3 ;x ≥ 3 · 3lf x 7→ x

2 ;x ≥ 2 · 3lf

x 7→ x;x ≥ 3lfx 7→ x;x > 3lf

Figure 12: Conversion of two types of edges in (S, T). Top: an edge (s, (f, id), s′)
from a player-A state s; bottom: an edge (s, (id, f), s′) from a player-B state s.
Player-A states are depicted using squares, player-B states are diamonds. Accept-
ing states have a gray background color. The ownership of state s′ is unchanged.

Eint-automaton. By inserting extra states (and transitions) if necessary, we can as-
sume that for any (s, (f, g), s′) ∈ T , either f = id with lf = 0, or g = id with lg = 0.
We build an energy automaton (S′, T ′).

Let (s, (f, id), s′) ∈ T be a player-A transition (i.e., s ∈ SA) in (S, T) (with lower
bound lf as usual), then we model this in (S′, T ′) using s, s′ and the following new
states and transitions; see Figure 12 for a pictorial description.

• player-A states: s2, s4, s5 (accepting); player-B states: s1, s3

• transitions:

– (s, [x 7→ x;x ≥ 0], s1); (s1, [x 7→ 2f(log2 x);x ≥ 2lf], s′)

– (s1, [x 7→ x;x ≥ 0], s2)

An Algebraic Approach to Energy Problems II 263

– (s2, [x 7→ x
3 ;x ≥ 3 · 2lf], s2); (s2, [x 7→ x

2 ;x ≥ 2 · 2lf], s2)

– (s2, [x 7→ x;x ≥ 0], s3)

– (s3, [x 7→ x;x > 2lf], s4); (s3, [x 7→ x;x ≥ 2lf], s5)

Note that s4 is a deadlock state, hence player A loses the reachability game if s4 is
reached. Similarly, she wins if s5 is reached.

The intuition is that the new energy variable x encodes the two old ones as
x = 2x13x2 . If player A wants to bring (S′, T ′) from s to s′, and commits to this
by taking the transition s → s1, she may be interrupted by player B taking the
s1 → s2 transition. Here player A has to prove that x1 was really ≥ lf , by using the
loops at s2 to bring x to the precise value 2lf . If she manages this, then player B
has only the s3 → s5 transition available in s3, hence player A wins. Otherwise,
player B wins.

The conversions of other types of transitions are similar. One can easily see
that player A can reach a state in F in the original energy automaton (S, T) if, and
only if, she can reach a state in F , or one of the new accepting states, in the new
automaton (S′, T ′).

We miss to argue that all energy functions in (S′, T ′) are piecewise affine. Look-
ing at the defined modules, we see that this is the case except perhaps for the func-
tions defined as g2(x) = 2f(log2 x) and g3(x) = 3f(log3 x). However, f is an integer
update function, so that f(x) = x + k for some k ∈ Z; hence g2(x) = 2kx and
g3(x) = 3kx, which are indeed piecewise affine.

10 Conclusion

We have in this paper introduced a functional framework for modeling and ana-
lyzing energy problems, and we have seen that our framework encompasses most
existing formal approaches to energy problems. In the first paper of this series [28],
we have developed a theory of ∗-continuous Kleene ω-algebras in order to analyze
energy problems algebraically.

We have seen here that the algebraic setting of ∗-continuous Kleene ω-algebras
applies to energy functions and that it allows to solve reachability and Büchi ac-
ceptance problems in energy automata in a generic way. For the important class
of piecewise affine energy functions, we have shown that reachability and Büchi
acceptance are decidable in EXPTIME.

In the last part of this paper, we have seen that one quickly comes into trouble
with undecidability if the class of energy functions is extended or if two-player
games are considered. This may be remedied by considering approximate solutions
instead, using notions of distances for energy automata akin to the ones in [35] to
provide quantitative measures for similar energy behavior; this is future work.

In the two papers of this series, we have seen that ∗-continuous Kleene ω-algebras
provide a natural generalization of continuous Kleene ω-algebras, much in the same
way in which ∗-continuous Kleene algebras are a natural generalization of contin-
uous Kleene algebras. We have left open a few algebraic problems, in particular a

264 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

characterization of the free (non-finitary) ∗-continuous Kleene ω-algebras. We have
seen that ∗-continuous Kleene ω-algebras find a natural application in energy func-
tions and energy problems, but we are confident that they will find numerous other
applications. In honor of the late Zoltán Ésik, we propose to rename ∗-continuous
Kleene ω-algebras to “Ésik algebras”.

References

[1] Parosh Aziz Abdulla, Ahmed Bouajjani, and Julien d’Orso. Monotonic and
downward closed games. J. Log. Comput., 18(1):153–169, 2008.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput.
Sci., 126(2):183–235, 1994.

[3] Rajeev Alur and Thomas A. Henzinger. A really temporal logic. J. ACM,
41(1):181–204, 1994.

[4] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in
weighted timed automata. In Di Benedetto and Sangiovanni-Vincentelli [23],
pages 49–62.

[5] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pet-
tersson, Judi Romijn, and Frits W. Vaandrager. Minimum-cost reachability
for priced timed automata. In Di Benedetto and Sangiovanni-Vincentelli [23],
pages 147–161.

[6] Jean Berstel and Christophe Reutenauer. Noncommutative Rational Series
With Applications. Cambridge Univ. Press, 2010.

[7] Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre
McKenzie. Reachability in two-dimensional vector addition systems with states
is PSPACE-complete. In LICS, pages 32–43. IEEE, 2015.

[8] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The Equational Logic
of Iterative Processes. EATCS monographs on theoretical computer science.
Springer-Verlag, 1993.

[9] Rémi Bonnet, Alain Finkel, and M. Praveen. Extending the Rackoff tech-
nique to affine nets. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar
Radhakrishnan, editors, FSTTCS, volume 18 of Leibniz Int. Proc. Inf., pages
301–312. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

[10] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, and Nicolas Markey. Timed
automata with observers under energy constraints. In Karl Henrik Johansson
and Wang Yi, editors, HSCC, pages 61–70. ACM, 2010.

An Algebraic Approach to Energy Problems II 265

[11] Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jǐŕı
Srba. Infinite runs in weighted timed automata with energy constraints. In
Franck Cassez and Claude Jard, editors, FORMATS, volume 5215 of Lect.
Notes Comput. Sci., pages 33–47. Springer-Verlag, 2008.

[12] Patricia Bouyer, Kim G. Larsen, and Nicolas Markey. Lower-bound-
constrained runs in weighted timed automata. Perform. Eval., 73:91–109,
2014.

[13] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen.
Almost optimal strategies in one clock priced timed games. In S. Arun-Kumar
and Naveen Garg, editors, FSTTCS, volume 4337 of Lect. Notes Comput. Sci.,
pages 345–356. Springer-Verlag, 2006.

[14] Tomáš Brázdil, Petr Jančar, and Antońın Kučera. Reachability games on
extended vector addition systems with states. In Samson Abramsky, Cyril
Gavoille, Claude Kirchner, Friedhelm Meyer auf der Heide, and Paul G. Spi-
rakis, editors, ICALP, volume 6199 of Lect. Notes Comput. Sci., pages 478–
489. Springer-Verlag, 2010.

[15] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and
mean-payoff timed games. In Martin Fränzle and John Lygeros, editors, HSCC,
pages 283–292. ACM, 2014.

[16] David Cachera, Uli Fahrenberg, and Axel Legay. An omega-algebra for real-
time energy problems. In Prahladh Harsha and G. Ramalingam, editors,
FSTTCS, volume 45 of Leibniz Int. Proc. Inf., pages 394–407. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

[17] Jakub Chaloupka. Z-reachability problem for games on 2-dimensional vector
addition systems with states is in P. In Antońın Kučera and Igor Potapov,
editors, RP, volume 6227 of Lect. Notes Comput. Sci., pages 104–119. Springer-
Verlag, 2010.

[18] Tat-hung Chan. The boundedness problem for three-dimensional vector addi-
tion systems with states. Inf. Proc. Letters, 26(6):287–289, 1988.

[19] Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor.
Comput. Sci., 458:49–60, 2012.

[20] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-
François Raskin. Generalized mean-payoff and energy games. In Kamal Lodaya
and Meena Mahajan, editors, FSTTCS, volume 8 of Leibniz Int. Proc. Inf.,
pages 505–516, 2010.

[21] Adrian Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide, editors. Lan-
guage and Automata Theory and Applications - 5th International Conference,
LATA 2011, Tarragona, Spain, May 26-31, 2011. Proceedings, volume 6638 of
Lect. Notes Comput. Sci. Springer-Verlag, 2011.

266 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

[22] Aldric Degorre, Laurent Doyen, Raffaella Gentilini, Jean-François Raskin, and
Szymon Toruńczyk. Energy and mean-payoff games with imperfect informa-
tion. In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lect.
Notes Comput. Sci., pages 260–274. Springer-Verlag, 2010.

[23] Maria Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli, edi-
tors. Hybrid Systems: Computation and Control, 4th International Workshop,
HSCC 2001, Rome, Italy, March 28-30, 2001, Proceedings, volume 2034 of
Lect. Notes Comput. Sci. Springer-Verlag, 2001.

[24] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, 2009.

[25] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras.
In Igor Potapov, editor, DLT, volume 9168 of Lect. Notes Comput. Sci., pages
240–251. Springer-Verlag, 2015.

[26] Zoltán Ésik, Uli Fahrenberg, and Axel Legay. ∗-continuous Kleene ω-algebras
for energy problems. In Ralph Matthes and Matteo Mio, editors, FICS, volume
191 of Electr. Proc. Theor. Comput. Sci., pages 48–59, 2015.

[27] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. Kleene alge-
bras and semimodules for energy problems. In Dang Van Hung and Mizuhito
Ogawa, editors, ATVA, volume 8172 of Lect. Notes Comput. Sci., pages 102–
117. Springer-Verlag, 2013.

[28] Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas. An algebraic
approach to energy problems I: ∗-continuous Kleene ω-algebras. Acta Cyb.,
2017. In this issue.

[29] Zoltán Ésik and Werner Kuich. A semiring-semimodule generalization of
ω-regular languages, Parts 1 and 2. J. Aut. Lang. Comb., 10:203–264, 2005.

[30] Zoltán Ésik and Werner Kuich. Modern Automata Theory. 2007. http:

//dmg.tuwien.ac.at/kuich/mat.pdf.

[31] Zoltán Ésik and Werner Kuich. On iteration semiring-semimodule pairs. Semi-
group Forum, 75:129–159, 2007.

[32] Zoltán Ésik and Werner Kuich. Finite automata. In Handbook of Weighted
Automata [24], pages 69–104.

[33] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jǐŕı Srba. Energy games in
multiweighted automata. In Antonio Cerone and Pekka Pihlajasaari, editors,
ICTAC, volume 6916 of Lect. Notes Comput. Sci., pages 95–115. Springer-
Verlag, 2011.

An Algebraic Approach to Energy Problems II 267

[34] Uli Fahrenberg, Kim G. Larsen, and Axel Legay. Model-based verification,
optimization, synthesis and performance evaluation of real-time systems. In
Zhiming Liu, Jim Woodcock, and Huibiao Zhu, editors, ICTAC Training
School on Software Engineering, volume 8050 of Lect. Notes Comput. Sci.,
pages 67–108. Springer-Verlag, 2013.

[35] Uli Fahrenberg and Axel Legay. The quantitative linear-time–branching-time
spectrum. Theor. Comput. Sci., 538:54–69, 2014.

[36] Uli Fahrenberg, Axel Legay, and Karin Quaas. Büchi conditions for general-
ized energy automata. In Manfred Droste and Heiko Vogler, editors, WATA,
page 47, 2012.

[37] Jonathan S. Golan. Semirings and their Applications. Springer-Verlag, 1999.

[38] Stefan Göller, Christoph Haase, Ranko Lazić, and Patrick Totzke. A
polynomial-time algorithm for reachability in branching VASS in dimension
one. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and
Davide Sangiorgi, editors, ICALP, volume 55 of Leibniz Int. Proc. Inf., pages
105:1–105:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[39] Line Juhl, Kim G. Larsen, and Jean-François Raskin. Optimal bounds for mul-
tiweighted and parametrised energy games. In Zhiming Liu, Jim Woodcock,
and Huibiao Zhu, editors, Theories of Programming and Formal Methods, vol-
ume 8051 of Lect. Notes Comput. Sci., pages 244–255. Springer-Verlag, 2013.

[40] Dénes König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta
Sci. Math. (Szeged), 3(2-3):121–130, 1927.

[41] Dexter Kozen. On Kleene algebras and closed semirings. In Branislav Rovan,
editor, MFCS, volume 452 of Lect. Notes Comput. Sci., pages 26–47. Springer-
Verlag, 1990.

[42] Jérôme Leroux. The general vector addition system reachability problem by
Presburger inductive invariants. Logical Meth. Comput. Sci., 6(3), 2010.

[43] Jérôme Leroux. Vector addition system reachability problem: A short self-
contained proof. In Dediu et al. [21], pages 41–64.

[44] Richard J. Lipton. The reachability problem requires exponential space. Tech-
nical report, Department of Computer Science, Yale University, 1976.

[45] Marvin L. Minsky. Recursive unsolvability of Post’s problem of “Tag” and
other topics in theory of Turing machines. Annals Math., 74(3):437–455, 1961.

[46] Karin Quaas. On the interval-bound problem for weighted timed automata.
In Dediu et al. [21], pages 452–464.

[47] Charles Rackoff. The covering and boundedness problems for vector addition
systems. Theor. Comput. Sci., 6:223–231, 1978.

268 Zoltán Ésik, Uli Fahrenberg, Axel Legay, and Karin Quaas

[48] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger,
Alexander Moshe Rabinovich, and Jean-François Raskin. The complexity of
multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196, 2015.

