Pittou Maria and Rahonis George: Weighted recognizability over infinite alphabets. In: Acta cybernetica, (23) 1. pp. 283-317. (2017)
Preview |
Cikk, tanulmány, mű
actacyb_23_1_2017_16.pdf Download (509kB) | Preview |
Abstract
We introduce weighted variable automata over infinite alphabets and commutative semirings. We prove that the class of their behaviors is closed under sum, and under scalar, Hadamard, Cauchy, and shuffle products, as well as star operation. Furthermore, we consider rational series over infinite alphabets and we state a Kleene-Schützenberger theorem. We introduce a weighted monadic second order logic and a weighted linear dynamic logic over infinite alphabets and investigate their relation to weighted variable automata. An application of our theory, to series over the Boolean semiring, concludes to new results for the class of languages accepted by variable automata.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 2017 |
Volume: | 23 |
Number: | 1 |
ISSN: | 0324-721X |
Page Range: | pp. 283-317 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/50021/ |
DOI: | 10.14232/actacyb.23.1.2017.16 |
Uncontrolled Keywords: | Automaták elmélete - véges, Algebra, Véges automaták, Matematikai logika, Matematikai nyelvészet - számítógépes nyelvészet |
Additional Information: | Bibliogr. : p. 315-317. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2018. Feb. 12. 14:33 |
Last Modified: | 2022. Jun. 20. 15:34 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/50074 |
Actions (login required)
![]() |
View Item |