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Abstract

We introduce weighted variable automata over infinite alphabets and com-
mutative semirings. We prove that the class of their behaviors is closed under
sum, and under scalar, Hadamard, Cauchy, and shuffle products, as well as
star operation. Furthermore, we consider rational series over infinite alpha-
bets and we state a Kleene-Schützenberger theorem. We introduce a weighted
monadic second order logic and a weighted linear dynamic logic over infinite
alphabets and investigate their relation to weighted variable automata. An
application of our theory, to series over the Boolean semiring, concludes to
new results for the class of languages accepted by variable automata.

Keywords: infinite alphabets, semirings, weighted variable automata, weighted
MSO, weighted LDL

1 Introduction

The last two decades a large body of research has been devoted to the develop-
ment of models for infinite state systems which have finite control structure and
handle data from an unbounded domain. This research led to the concept of finite
automata over infinite alphabets. Motivating examples for such models consist, for
instance, XML schemas, software with integer parameters, and system specification
and verification. Later on, it came up that finite automata over infinite alphabets
can contribute also to a series of interesting topics namely, the problem of query
graph databases [33], reasoning about systems with resource generation capabilities
[10, 11], learning theories [30], and systems with freshness needed in object-oriented
languages and security protocols [6].

Several models of automata with data values, i.e., over infinite alphabets have
been investigated, namely register [24, 28, 29, 37], data [5], pebble [28, 36, 39],
nominal [10], variable [21, 22], and P automata [9]. All these models refer to
qualitative aspects of infinite state systems. Furthermore, rational [1, 25] and logic
definable languages [4, 36] have been studied over infinite alphabets.
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In this paper we intend to study automata models over infinite alphabets in the
quantitative setup. Our motivation origins from the fact that several applications
require a quantitative analysis of systems, for instance the resource usage control
where resource variables are mapped to infinite domains [10, 11]. It is well-known
that weighted automata is a reasonable tool for the description of quantitative fea-
tures of computing systems [14]. According to our best knowledge, a quantitative
counterpart for automata over infinite alphabets does not exist. In [8] the authors
considered quantitative infinite alphabets to model controlled variables for the con-
troller synthesis problem from incompatible situations. For our investigation, we
chose the concept of variable automata from [21, 22]. Variable automata are sim-
ple in their definition and implementation in contrast to other proposed models.
Despite their simplicity, variable automata and their extensions appeared to be
expressive enough for several applications. Indeed, in [2] the authors introduced
fresh variable automata to describe web services in which the agents exchange data
ranging over infinite domains. Furthermore, in [3], fresh variable automata were
equipped with guards consisting of equalities and disequalities. In [10] variable
automata were extended to consume data words, in order to express security poli-
cies (safety properties) for model checking programs that dynamically generate and
operate over resources. Very recently, variable automata have been also used for
querying graph databases [43]. In a similar approach, a variable LTL was has been
investigated in [23]. More precisely, the atomic propositions in that logic were pa-
rameterized with variables over some finite or infinite domain in order to express
specifications over large, possibly infinite domains. The model checking problem
has been also studied for that setting (cf. also [38]).

We consider our weighted variable automata over an infinite alphabet Σ and
a commutative semiring K, and provide a systematic study of the class of their
behaviors. Our framework builds upon the techniques which were developed in
[26, 27] for variable tree automata over infinite ranked alphabets. We prove that, if
in addition the semiring K is idempotent, then the class of series accepted by our
models is closed under sum, and scalar, Hadamard, Cauchy, and shuffle products,
as well as under star operation. As we indicate by a simple example, the proofs for
the aforementioned properties require new techniques than the well-known ones for
recognizable series [14]. We define rational series over infinite alphabets and state
a Kleene-Schützenberger type theorem. Furthermore, we introduce a weighted
monadic second order logic and a weighted linear dynamic logic over infinite al-
phabets. We show the expressive equivalence of the latter logic to our weighed au-
tomata, whereas the corresponding equivalence requires fragments on the weighted
monadic second order logic. Therefore, several well-known results from classical
weighted automata theory hold also for our weighted automata over infinite alpha-
bets. Moreover, by considering the Boolean semiring B, we derive as an application
of our theory new results for the class of variable automata of [21, 22]. This shows
the robustness of our theory and the theory of variable automata [21, 22].

Apart from this Introduction, the paper contains 7 sections. In Section 2 we
present some preliminary background. In Section 3 we introduce our weighted
variable automata and in Section 4 we establish the closure properties of the class
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of series accepted by our models. Then, in Section 5 we consider rational series over
infinite alphabets and state our Kleene-Schützenberger theorem. Sections 6 and 7,
respectively are devoted to weighted monadic second order logic and weighted linear
dynamic logic, and their relation to weighted variable automata. In Section 8 we
expose the new results on variable automata derived by our theory. Finally, in the
Conclusion, we present some ideas for future research.

A preliminary version of this paper appeared in [32] (cf. also [31]).

2 Preliminaries

Let Σ be an alphabet, i.e., a nonempty (potentially infinite) set. As usually, we
denote by Σ∗ the set of all finite words over Σ and Σ+ = Σ∗ \ {ε}, where ε is the
empty word. A subset L ⊆ Σ∗ is a language over Σ. A word w = σ0 . . . σn−1, where
σ0, . . . , σn−1 ∈ Σ (n ≥ 1), is written also as w = w(0) . . . w(n− 1) where w(i) = σi
for every 0 ≤ i ≤ n − 1. For every finite word w = w(0) . . . w(n − 1) and every
0 ≤ i ≤ n−1 we denote by w≥i the suffix w(i) . . . w(n−1). If S is a set, then P (S)
will denote the powerset of S, and the notation S′ ⊆fin S means that S′ is a finite
subset of S.

A semiring (K,+, ·, 0, 1) is an algebraic structure such that (K,+, 0) is a com-
mutative monoid, (K, ·, 1) is a monoid, 0 6= 1, · is both left- and right-distributive
over +, and 0 · k = k · 0 = 0 for every k ∈ K. If no confusion arises, we shall
denote the semiring simply by K and the · operation simply by concatenation. The
semiring K is called commutative if the monoid (K, ·, 1) is commutative. Moreover,
K is called additively idempotent (or simply idempotent), if k + k = k for every
k ∈ K. Finally, K is called locally finite if every finitely generated subsemiring is
finite. Interesting examples of semirings are the following:

- the semiring (N,+, ·, 0, 1) of natural numbers,

- the Boolean semiring B = ({0, 1},+, ·, 0, 1),

- the tropical or min-plus semiring (R+ ∪{∞},min,+,∞, 0) where R+ = {r ∈
R | r ≥ 0},

- the arctical or max-plus semiring (R+ ∪ {−∞},max,+,−∞, 0),

- the Viterbi semiring ( [0, 1] ,max, ·, 0, 1),

- every bounded distributive lattice with the operations supremum and infi-
mum, and especially the fuzzy semiring F = ([0, 1],max,min, 0, 1).

All the above semirings, except the first one, are idempotent.

Let Σ be an alphabet and K a semiring. A formal series (or simply series)
over Σ and K is a mapping s : Σ∗ → K. For every w ∈ Σ∗ we write (s, w) for
the value s(w) and refer to it as the coefficient of s on w. The support of s is
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the set supp(s) = {w ∈ Σ∗ | (s, w) 6= 0}. A series with finite support is called

a polynomial. The constant series k̃ (k ∈ K) is defined, for every w ∈ Σ∗, by(
k̃, w

)
= k. Moreover, for every w ∈ Σ∗, we denote by w the series determined,

for every u ∈ Σ∗, by (w, u) = 1 if u = w and 0, otherwise. The class of all series
over Σ and K is denoted as usual by K 〈〈Σ∗〉〉, and the class of polynomials over
Σ and K by K 〈Σ∗〉. The characteristic series 1L ∈ K 〈〈Σ∗〉〉 of a language L ⊆ Σ∗

is defined by (1L, w) = 1 if w ∈ L and (1L, w) = 0 otherwise.

Let s, r ∈ K 〈〈Σ∗〉〉 and k ∈ K. The sum s + r, the scalar products ks
and sk as well as the Hadamard product s � r are defined elementwise by (s +
r, w) = (s, w) + (r, w), (ks, w) = k · (s, w), (sk, w) = (s, w) · k, and (s � r, w) =
(s, w) · (r, w), respectively, for every w ∈ Σ∗. It is well-known that the structures(
K 〈〈Σ∗〉〉 ,+,�, 0̃, 1̃

)
and

(
K 〈Σ∗〉 ,+,�, 0̃, 1̃

)
are semirings, which moreover are

commutative (resp. idempotent) whenever K is commutative (resp. idempotent).

The Cauchy product of r and s is the series r · s ∈ K 〈〈Σ∗〉〉 defined for every
w ∈ Σ∗ by

(r · s, w) =
∑

u,v∈Σ∗

w=uv

((r, u) · (s, v)).

The nth-iteration rn ∈ K 〈〈Σ∗〉〉 (n ≥ 0) of a series r ∈ K 〈〈Σ∗〉〉 is defined
inductively by

r0 = ε and rn+1 = r · rn for n ≥ 0.

Then, we have (rn, w) =
∑

u1,...,un∈Σ∗

w=u1...un

((r, u1) · . . . · (r, un)) for every w ∈ Σ∗. A

series r ∈ K 〈〈Σ∗〉〉 is called proper whenever (r, ε) = 0. If r is proper, then for
every w ∈ Σ∗ and n > |w| we have (rn, w) = 0. The star r∗ ∈ K 〈〈Σ∗〉〉 of a proper
series r ∈ K 〈〈Σ∗〉〉 is defined by r∗ =

∑
n≥0

rn. Thus, for every w ∈ Σ∗ we have

(r∗, w) =
∑

0≤n≤|w|

(rn, w).

Finally, the shuffle product of r and s is the series r� s ∈ K 〈〈Σ∗〉〉 defined for
every w ∈ Σ∗ by

(r� s, w) =
∑

u,v∈Σ∗

w∈u�v

((r, u) · (s, v))

where u� v denotes the shuffle product of u and v.

Next we turn to weighted automata. For this we assume the alphabet Σ to be
finite. A weighted automaton over Σ and K is a quadruple A = (Q, in,wt, ter)
where Q is the finite state set, in : Q→ K is the initial distribution, wt : Q× Σ×
Q → K is a mapping assigning weights to the transitions of the automaton, and
ter : Q→ K is the final (or terminal) distribution.

Let w = w(0) . . . w(n−1) ∈ Σ∗. A path of A over w is a sequence of transitions
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Pw := ((qi, w(i), qi+1))0≤i≤n−1. The weight of Pw is given by the value

weight(Pw) = in(q0) ·
∏

0≤i≤n−1

wt ((qi, w(i), qi+1)) · ter(qn).

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are given by

(‖A‖ , w) =
∑
Pw

weight(Pw)

for every w ∈ Σ∗.
A series s ∈ K 〈〈Σ∗〉〉 is called recognizable if s = ‖A‖ for some weighted

automaton A over Σ and K. As usual we denote by Rec(K,Σ) the class of rec-
ognizable series over Σ and K. Two weighted automata A = (Q, in,wt, ter) and
A′ = (Q′, in′, wt′, ter′) over Σ and K are called equivalent if ‖A‖ = ‖A′‖.

Finally, a weighted automaton A = (Q, in,wt, ter) over Σ and K is called
normalized if there exist two states qin, qter ∈ Q, qin 6= qter, such that:

- in (q) = 1 if q = qin, and in (q) = 0 otherwise,

- ter (q) = 1 if q = qter, and ter (q) = 0 otherwise, and

- wt ((q, σ, qin)) = wt ((qter, σ, q)) = 0

for every q ∈ Q, σ ∈ Σ. We shall denote a normalized weighted automaton A =
(Q, in,wt, ter) simply by A = (Q, qin, wt, qter). The next result has been proved
by several authors, cf. for instance [18].

Proposition 1. Let A = (Q, in,wt, ter) be a weighted automaton over Σ and
K. We can effectively construct a normalized weighted automaton A′ such that
(‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

3 Weighted variable automata

In this section we introduce the notion of our weighted variable automata. We
show that the well-known constructions on weighted automata are not sufficient
to obtain the closure properties of the class of series recognized by our models.
Therefore, we provide some supplementary matter and we state Lemma 1 which
will be needed in the sequel in our constructions.

Let Σ, Σ′ be (infinite) alphabets. A relabeling from Σ to Σ′ is a mapping
h : Σ → P (Σ′). Next let Γ ⊆fin Σ, Z be a finite set whose elements are called
bounded variables and y an element which is called a free variable. We assume that
the sets Σ, Z, and {y} are pairwise disjoint. A relabeling h from Γ ∪ Z ∪ {y} to Σ
is called valid if

(i) it is the identity on Γ,1

1Abusing notation we identify {σ} with σ, for every σ ∈ Γ.
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(ii) card(h(z)) = 1 for every z ∈ Z,

(iii) h is injective on Z and Γ ∩ h(Z) = ∅, and

(iv) h(y) = Σ \ (Γ ∪ h(Z)).

The above definition means that the application of h on a word w over Γ∪Z ∪{y}
assigns to every occurrence of a symbol z ∈ Z in w the same symbol from Σ, but
it is possible to assign different symbols from Σ to different occurrences of y in w.
This justifies the names bounded and free for the set of variables Z and the variable
y, respectively. It should be clear that a valid relabeling from Γ ∪ Z ∪ {y} to Σ is
well-defined if it is defined only on Z satisfying conditions (ii) and (iii). We shall
denote by V R(Γ ∪ Z ∪ {y},Σ) the set of all valid relabelings from Γ ∪ Z ∪ {y} to
Σ, and simply by V R(Γ ∪ Z ∪ {y}) if the alphabet Σ is understood.

We set ∆ = Γ ∪ Z ∪ {y} and let w ∈ Σ∗. The preimage of w over ∆ is the set
preim∆(w) = {u ∈ ∆∗ | there exists h ∈ V R(∆) such that u ∈ h−1(w)}.

Now we are ready to introduce our weighted variable automata over the infinite
alphabet Σ and a semiring K.

Definition 1. A weighted variable automaton ( wva for short) over Σ and K is
a pair A = 〈Σ, A〉 where Σ is an infinite alphabet and A = (Q, in,wt, ter) is a
weighted automaton over ΓA and K. The input alphabet ΓA of A is defined by
ΓA = ΣA ∪Z ∪{y}, where ΣA ⊆fin Σ, Z is a finite alphabet of bounded variables,
and y is a free variable.

The behavior of A is the series ‖A‖ : Σ∗ → K whose coefficients are determined
by

(‖A‖ , w) =
∑

u∈preimΓA
(w)

(‖A‖ , u)

for every w ∈ Σ∗. Clearly, the above sum is finite and thus (‖A‖ , w) is well-defined
for every w ∈ Σ∗.

Two wva A and A′ over Σ and K are called equivalent whenever ‖A‖ = ‖A′‖.
A series r over Σ and K is called v-recognizable if there exists a wva A such that

r = ‖A‖. We shall denote by V Rec (K,Σ) the class of v-recognizable series over
Σ and K. It should be clear that every weighted automaton A over a subalphabet
Σ′ ⊆fin Σ and K can be considered as a wva such that its transitions labelled by
variables carry the weight 0. Therefore, we get the next result, where the strictness
of the inclusion trivially holds by the definition of wva.

Proposition 2.
⋃

Σ′⊆finΣ

Rec (K,Σ′) ( V Rec (K,Σ) .

Throughout the paper Σ will denote an infinite alphabet, Z a finite
set of bounded variables, y a free variable, and K a commutative semir-
ing. In addition, in the present and the next section, K will be assumed
to be idempotent.
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In the sequel, we will call a wva A = 〈Σ, A〉 over Σ and K, simply a wva.

Definition 2. A wva A = 〈Σ, A〉 is called normalized if A is normalized.

Proposition 3. Let A = 〈Σ, A〉 be a wva. We can effectively construct a normalized
wva A′ such that (‖A′‖ , w) = (‖A‖ , w) for every w ∈ Σ+ and (‖A′‖ , ε) = 0.

Proof. We immediately obtain our result by Proposition 1 and Definition 2.

In the sequel, we wish to investigate closure properties of the class V Rec (K,Σ).
For this, we cannot apply the well-known constructions from classical weighted au-
tomata theory. For instance, let A = 〈Σ, A〉 be a normalized wva, where A =
({qin, q, qter}, qin, wtA, qter), ΓA = {a} ∪ {z} ∪ {y} and transitions with non-zero
weights given by wtA((qin, a, q)) = wtA((q, z, qter)) = 1. Consider also the normal-
ized wva A′= 〈Σ, A′〉 where A′ = ({q′in, q′ter}, q′in, wtA′ , q′ter), ΓA′ = {a′}∪{z′}∪{y′}
and wtA′((q

′
in, a

′, q′ter)) = wtA′((q
′
in, y

′, q′ter)) = 1. Moreover, let us assume that
a 6= a′. Clearly, (‖A‖ , aa′) = 1 and (‖A′‖ , a′) = 1. Nevertheless, if we consider the
disjoint union of A and A′, say the weighted automaton B, then a, a′ ∈ ΓB which
implies that we cannot apply a valid relabeling assigning the letter a′ to z. This in
turn, implies that the word aa′ does not belong to the support of the wva derived
by the weighted automaton B. Furthermore, another problem of this construction
is the choice of the free variable among y and y′ which moreover causes new in-
consistencies. Similar, even more complex, situations arise for the constructions of
wva proving closure under further properties like Hadamard, Cauchy, and shuffle
product. Therefore, we state Lemma 1 below which will be of great importance
to our constructions for the closure properties of the class V Rec (K,Σ). We shall
need some preliminary matter.

Let A = 〈Σ, A〉 be a wva where A = (Q, in,wt, ter) with ΓA = ΣA ∪ Z ∪ {y},
and Σ′ ⊆fin Σ such that Σ′ \ ΣA 6= ∅. We define on V R (ΓA) the relation ≡Σ′

determined for every h1, h2 ∈ V R (ΓA) by

h1 ≡Σ′ h2 iff h1(σ) ∩ Σ′ = h2(σ) ∩ Σ′ for every σ ∈ Z ∪ {y}.

It should be clear that ≡Σ′ is an equivalence relation. Moreover, since Z ∪ {y}
and Σ′ are finite, the index of ≡Σ′ is finite. Let V be a set of representatives of
V R (ΓA) / ≡Σ′ . For every h ∈ V , we let Zh = {z ∈ Z | h(z) ∈ Σ′} and Γh = ΣA ∪
Σ′∪(Z\Zh)∪{y}, and we consider the weighted automatonAh = (Qh, inh, wth, terh)
over Γh and K, where Qh = {qh | q ∈ Q} is a copy of Q, inh(qh) = in(q) and
terh(qh) = ter(q) for every qh ∈ Qh. The weight assignment mapping wth is
defined as follows. For every qh, q

′
h ∈ Qh, σ ∈ Γh, we let

wth ((qh, σ, q
′
h)) =


wt ((q, σ, q′)) if σ ∈ ΣA ∪ (Z \ Zh) ∪ {y}
wt ((q, z, q′)) if σ = h(z) and z ∈ Zh

wt ((q, y, q′)) if σ ∈ h (y) ∩ Σ′

0 otherwise

.
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Without any loss, we assume that the sets Qh are pairwise disjoint. We let QV =⋃
h∈V

Qh, ΓV = ΣA ∪ Σ′ ∪ Z ∪ {y}, and consider the wva A(Σ′,V )=
〈
Σ, A(Σ′,V )

〉
over Σ and K, where A(Σ′,V ) = (QV , inV , wtV , terV ) is a weighted automaton
with input alphabet ΓV . Its initial and final distribution are defined, respectively,
by inV (q) = inh (q), terV (q) = terh (q) for every q ∈ Qh, h ∈ V . The weight
assignment mapping wtV : QV × ΓV ×QV → K is given by

wtV ((q, σ, q′)) =

{
wth ((q, σ, q′)) if q, q′ ∈ Qh for some h ∈ V
0 otherwise

for every q, q′ ∈ QV , σ ∈ ΓV .
Since the weighted automaton A(Σ′,V ) is the disjoint union of Ah, h ∈ V , we

get that
∥∥A(Σ′,V )

∥∥ =
∑
h∈V

‖Ah‖. Therefore, for every w ∈ Σ∗, we have

(∥∥A(Σ′,V )

∥∥ , w) =
∑

u∈preimΓV
(w)

(∥∥A(Σ′,V )

∥∥ , u) =
∑
h∈V

∑
u∈preimΓh

(w)

(‖Ah‖ , u) .

Lemma 1. ‖A‖ =
∥∥A(Σ′,V )

∥∥ .
Proof. Let w = w (0) . . . w (n− 1) ∈ Σ∗. Consider a word u = u (0) . . . u (n− 1) ∈
preimΓA

(w) and a valid relabeling h ∈ V R (ΓA) with w ∈ h (u). We define the
word u′ = u′ (0) . . . u′ (n− 1) ∈ Γ∗V as follows:

u′ (i) =

{
u (i) if (u (i) ∈ ΣA ∪ Z \ Zh) or (u (i) = y and w (i) /∈ Σ′ \ ΣA)
w (i) if (u (i) ∈ Zh) or (u (i) = y and w (i) ∈ Σ′ \ ΣA)

for every 0 ≤ i ≤ n− 1.
We consider the set of valid relabelings V ′ ⊆ V as follows: g ∈ V ′ implies that

g (z) = h (z) for every z ∈ Zh ∩ {u (i) | 0 ≤ i ≤ n− 1} and g (y) ∩ Σ′ = h (y) ∩ Σ′

whenever u (i) = y and w(i) ∈ Σ′ for some 0 ≤ i ≤ n − 1. Let P
(A)
u be a path

of A over u. Then, by construction of A(Σ′,V ), for every g ∈ V ′, there exists a

path P
(Ag)
u′ of Ag over u′ with weight

(
P

(Ag)
u′

)
= weight

(
P

(A)
u

)
. Clearly, there are

r = card(V ′) such paths and since K is idempotent, we get
∑
g∈V ′

weight
(
P

(Ag)
u′

)
=

weight
(
P

(A)
u

)
. On the other hand, for every g ∈ V \ V ′ and path P

(Ag)
u′ of Ag, we

have weight
(
P

(Ag)
u′

)
= 0. Therefore, we obtain

∑
P

(A)
u

weight
(
P (A)
u

)
=
∑
g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)
.

We define the valid relabeling h′ ∈ V R (ΓV ) as follows:
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- h′(z) = h(z) for every z ∈ Z \ Zh,

and we let, nondeterministically,

- h′(z) ∈ Σ \ (ΣA ∪ Σ′ ∪ h (Z \ Zh) ∪ {w (i) | 0 ≤ i ≤ n− 1 and w (i) ∈ h (y)})
for every z ∈ Zh.

Then we have w ∈ h′ (u′) which implies that u′ ∈ preimΓV
(w).

Conversely, let u′ = u′ (0) . . . u′ (n− 1) ∈ preimΓV
(w). Hence, there is a valid

relabeling h′ ∈ V R (ΓV ) such that w ∈ h′ (u′). By construction of A(Σ′,V ), there is
a valid relabeling h from ΓA to Σ and a word u = u (0) . . . u (n− 1) ∈ Γ∗A such that

u (i) =

 u′ (i) if u′ (i) ∈ ΣA ∪ Z \ Zh

z if u′ (i) = h(z) and z ∈ Zh

y if u′ (i) ∈ (h(y) ∩ Σ′) ∪ {y}

for every 0 ≤ i ≤ n − 1. Keeping the previous notations, for every g ∈ V ′,

there is a path P
(Ag)
u′ of the weighted automaton Ag over u′. By construction

of A(Σ′,V ), all such paths P
(Ag)
u′ (g ∈ V ′) have the same weight and there exist

r = card(V ′) such paths. Furthermore, for every g ∈ V ′ and P
(Ag)
u′ there is a

path P
(A)
u of A over u with weight

(
P

(A)
u

)
= weight

(
P

(Ag)
u′

)
, and since K is

idempotent we get weight
(
P

(A)
u

)
=
∑
g∈V ′

weight
(
P

(Ag)
u′

)
. On the other hand, for

every g ∈ V \V ′ and path P
(Ag)
u′ of Ag, we have that weight

(
P

(Ag)
u′

)
= 0. Therefore∑

g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)
=
∑
P

(A)
u

weight
(
P

(A)
u

)
. We consider the relabeling h′′

from ΓA to Σ defined in the following way. It is the identity on ΣA, h′′(z) =
h′(z) for every z ∈ Z \ Zh, h′′(z) = h(z) for every z ∈ Zh, and h′′(y) = h′(y) ∪
((h(y) ∩ Σ′) \ h (Zh)) (in fact (h(y) ∩ Σ′) ∩ h (Zh) = ∅ since h is a valid relabeling
on ΓA). Trivially h′′ is a valid relabeling and w ∈ h′′(u) which implies that u ∈
preimΓA

(w).
We conclude that for every w ∈ Σ∗ we have(∥∥A(Σ′,V )

∥∥ , w) =
∑

u′∈preimΓV
(w)

(∥∥A(Σ′,V )

∥∥ , u′) =
∑

u′∈preimΓV
(w)

∑
g∈V

(‖Ag‖ , u′)

=
∑

u′∈preimΓV
(w)

∑
g∈V

∑
P

(Ag)
u′

weight
(
P

(Ag)
u′

)

=
∑

u∈preimΓA
(w)

∑
P

(A)
u

weight
(
P (A)
u

)
=

∑
u∈preimΓA

(w)

(‖A‖ , u) = (‖A‖ , w)

and we are done.
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4 Closure properties of the class V Rec (K,Σ)

In this section, we investigate closure properties of the class of v-recognizable series
over the infinite alphabet Σ and the semiring K. More precisely, we show that the
class V Rec (K,Σ) is closed under sum, and under scalar, Hadamard, Cauchy and
shuffle products, as well as star operation.

Proposition 4. The class V Rec (K,Σ) is closed under sum.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. Then there exist two wva A(i) =〈
Σ, A(i)

〉
with A(i) =

(
Q(i), in(i), wt(i), ter(i)

)
and Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

, ac-

cepting r(i), for i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
with A

(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, in

(1)
V1
, wt

(1)
V1
, ter

(1)
V1

)
over Γ(1) ∪Σ(2) and K

and the wvaA(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
withA

(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, in

(2)
V2
, wt

(2)
V2
, ter

(2)
V2

)
over Γ(2) ∪ Σ(1) and K, determined by the procedure before Lemma 1. More-

over, without any loss, we assume that Q
(1)
V1
∩ Q(2)

V2
= ∅. By Lemma 1 we have∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ = r(1) and

∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ = r(2). Let Q = Q
(1)
V1
∪ Q(2)

V2
and Γ =

Σ(1) ∪ Σ(2) ∪ Z(1) ∪ Z(2) ∪ {y}, where y denotes a new free variable different from
y(1) and y(2). We consider the wva A = 〈Σ, A〉 with A = (Q, in,wt, ter) where in
and ter are defined, for every q ∈ Q, respectively by

in (q) =

{
in

(1)
V1

(q) if q ∈ Q(1)
V1

in
(2)
V2

(q) if q ∈ Q(2)
V2

and ter (q) =

{
ter

(1)
V1

(q) if q ∈ Q(1)
V1

ter
(2)
V2

(q) if q ∈ Q(2)
V2

.

The weight assignment mapping wt : Q× Γ×Q→ K is defined as follows:

wt ((q, σ, q′)) =



wt
(1)
V1

((q, σ, q′)) if q, q′ ∈ Q(1)
V1
, σ ∈ Γ \ {y}

wt
(2)
V2

((q, σ, q′)) if q, q′ ∈ Q(2)
V2
, σ ∈ Γ \ {y}

wt
(1)
V1

((
q, y(1), q′

))
if q, q′ ∈ Q(1)

V1
, σ = y

wt
(2)
V2

((
q, y(2), q′

))
if q, q′ ∈ Q(2)

V2
, σ = y

0 otherwise

for every q, q′ ∈ Q, σ ∈ Γ.
We show that ‖A‖ =

∥∥A(1)
∥∥ +

∥∥A(2)
∥∥. For this, let w ∈ Σ∗, u ∈ preimΓ (w),

and h ∈ V R (Γ) such that w ∈ h (u). Then, for every path P
(A)
u of A over u,

by construction of A, we point out the following cases. (i) There exists a path

Pu(1) of A
(1)

(Σ(2),V1)
over u(1) with weight (Pu(1)) = weight

(
P

(A)
u

)
, where u(1) is

obtained from u by replacing every occurrence of y with y(1). (ii) There exists a

path Pu(2) of A
(2)

(Σ(1),V2)
over u(2) with weight (Pu(2)) = weight

(
P

(A)
u

)
, where u(2)



Weighted Recognizability over Infinite Alphabets 293

is obtained from u by replacing every occurrence of y with y(2). Suppose firstly that
(i) holds. We consider the valid relabeling h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
such that h(1)

coincides with h on Σ(1) ∪ Σ(2) ∪ Z(1) and h(1)
(
y(1)

)
= h (y) ∪ h

(
Z(2)

)
. Trivially,

w ∈ h(1)
(
u(1)

)
which implies that u(1) ∈ preimΓ(1)∪Σ(2) (w). Similarly, in case (ii)

we get that u(2) ∈ preimΓ(2)∪Σ(1) (w).
Conversely, let w ∈ Σ∗, u(1) ∈ preimΓ(1)∪Σ(2) (w), and h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
such that w ∈ h(1)

(
u(1)

)
. Then, for every path Pu(1) of A

(1)

(Σ(2),V1)
over u(1), by

construction of A, there exists a path P
(A)
u of A over u with weight

(
P

(A)
u

)
=

weight (Pu(1)), where u is obtained from u(1) by replacing every occurrence of y(1)

with y. We define the valid relabeling h ∈ V R (Γ) which coincides with h(1) on
Σ(1) ∪ Σ(2) ∪ Z(1), h (z) ∈ Σ \ (Σ(1) ∪ Σ(2) ∪ h(1)

(
Z(1)

)
∪ (h(1)

(
y(1)

)
∩{w(i) | 0 ≤ i ≤ n − 1})) for z ∈ Z(2) and h (y) = h(1)

(
y(1)

)
\ {h(z) | z ∈ Z(2)}.

Trivially, w ∈ h (u) which implies that u ∈ preimΓ (w).
Next assume that u(2) ∈ preimΓ(2)∪Σ(1) (w) and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that

w ∈ h(2)
(
u(2)

)
. Then, for every path Pu(2) of A

(2)

(Σ(1),V2)
over u(2), by construction of

A, there exists a path PA
u′ of A over u′ with weight

(
P

(A)
u′

)
= weight (Pu(2)), where

u′ is obtained from u(2) by replacing every occurrence of y(2) with y. We define
the valid relabeling h′ ∈ V R (Γ) which coincides with h(2) on Σ(1) ∪ Σ(2) ∪ Z(2),
h′ (z) ∈ Σ \

(
Σ(1) ∪ Σ(2) ∪ h(2)

(
Z(2)

)
∪
(
h(2)

(
y(2)

)
∩ {w(i) | 0 ≤ i ≤ n− 1}

))
for

z ∈ Z(1) and h′ (y) = h(2)
(
y(2)

)
\ {h′(z) | z ∈ Z(1)}. Trivially, w ∈ h′ (u′) which

implies that u′ ∈ preimΓ (w).
We conclude that for every w ∈ Σ∗ we have

(‖A‖ , w) =
∑

u∈preimΓ(w)

(‖A‖ , u) =
∑

u∈preimΓ(w)

∑
P

(A)
u

weight
(
P (A)
u

)
=

∑
u(1)∈preim

Γ(1)∪Σ(2) (w)

∑
P

u(1)

weight (Pu(1))

+
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(2)

weight (Pu(2))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u(1)

)

+
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u(2)

)

=

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w)+

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=
(∥∥∥A(1)

∥∥∥ , w)+
(∥∥∥A(2)

∥∥∥ , w)
=
(∥∥∥A(1)

∥∥∥+
∥∥∥A(2)

∥∥∥ , w) =
(
r(1) + r(2), w

)
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where the sixth equality holds by Lemma 1, and we are done.

Proposition 5. The class V Rec (K,Σ) is closed under the scalar products.

Proof. Let r ∈ V Rec (K,Σ) and k ∈ K. Then there exists a wva A = 〈Σ, A〉
with A = (Q, in,wt, ter) accepting r. We consider the wva A′ = 〈Σ, A′〉 with
A′ = (Q, in′, wt, ter) where in′ (q) = k · in (q) for every q ∈ Q. Then, by standard
arguments we get ‖A′‖ = k ‖A‖, and we are done.

Proposition 6. The class V Rec (K,Σ) is closed under Hadamard product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. Then there exist two wva A(i) =〈
Σ, A(i)

〉
with A(i) =

(
Q(i), in(i), wt(i), ter(i)

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

,

accepting r(i) for i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
with A

(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, in

(1)
V1
, wt

(1)
V1
, ter

(1)
V1

)
over Γ(1) ∪ Σ(2) and

A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
with A

(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, in

(2)
V2
, wt

(2)
V2
, ter

(2)
V2

)
over Γ(2)∪

Σ(1) determined by the procedure described before Lemma 1. Moreover, without

any loss, we assume that Q
(1)
V1
∩Q(2)

V2
= ∅. By Lemma 1 we get

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ = r(1)

and

∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ = r(2).

We consider the set
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\{y} where y =

(
y(1), y(2)

)
,

and a maximal subset G ⊆
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y} satisfying the

next condition: every element of Z(1) (resp. of Z(2)) occurs in at most one pair in G
as a left (resp. as a right) coordinate. Assume that G1, . . . , Gm is an enumeration

of all such sets of pairs of variables. Moreover, we let Q = Q
(1)
V1
×Q(2)

V2
and ΓGj =

Σ(1) ∪ Σ(2) ∪ Gj ∪ {y} for every 1 ≤ j ≤ m, and we consider the wva AGj =〈
Σ, AGj

〉
with AGj

=
(
Q, inGj

, wtGj
, terGj

)
over ΓGj

. For every 1 ≤ j ≤ m,

the initial and terminal distribution are given respectively, by inGj

((
q(1), q(2)

))
=

in
(1)
V1

(
q(1)
)
· in(2)

V2

(
q(2)
)

and terGj

((
q(1), q(2)

))
= ter

(1)
V1

(
q(1)
)
· ter(2)

V2

(
q(2)
)
, and the

weight assignment mapping wtGj
: Q× ΓGj

×Q→ K is defined by

wtGj

((
q(1), q(2)

)
, σ,
(
q′(1), q′(2)

))
=

wt
(1)
V1

((
q(1), σ, q′(1)

))
· wt(2)

V2

((
q(2), σ, q′(2)

))
if σ ∈ Σ(1) ∪ Σ(2)

wt
(1)
V1

((
q(1), x(1), q′(1)

))
· wt(2)

V2

((
q(2), x(2), q′(2)

))
if σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every
(
q(1), q(2)

)
,
(
q′(1), q′(2)

)
∈ Q, σ ∈ ΓGj .
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By Proposition 4, the series
∑

1≤j≤m

∥∥AGj

∥∥ is recognizable. We will show that∥∥A(1)
∥∥� ∥∥A(2)

∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥.

To this end, let w = w (0) . . . w (n− 1) ∈ Σ∗, u(1) ∈ preimΓ(1)∪Σ(2) (w), u(2) ∈
preimΓ(2)∪Σ(1) (w), h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
, and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that

w ∈ h(1)
(
u(1)

)
∩ h(2)

(
u(2)

)
. For every w (t) ∈ Σ, 0 ≤ t ≤ n − 1, we have either

w (t) ∈ Σ(1) ∪ Σ(2) and hence u(1) (t) = u(2) (t) = w (t), or w (t) ∈ Σ \ Σ(1) ∪ Σ(2)

and one of the following cases holds.

• There exist bounded variables z(1) ∈ Z(1), z(2) ∈ Z(2) such that u(1) (t) = z(1),
u(2) (t) = z(2) and h(1)

(
u(1) (t)

)
= h(2)

(
u(2) (t)

)
= w (t).

• There exists a bounded variable z(1) ∈ Z(1) such that u(1) (t) = z(1), u(2) (t) =
y(2) and h(1)

(
u(1) (t)

)
= w (t) ∈ h(2)

(
u(2) (t)

)
.

• There exists a bounded variable z(2) ∈ Z(2) such that u(1) (t) = y(1), u(2) (t) =
z(2) and h(2)

(
u(2) (t)

)
= w (t) ∈ h(1)

(
u(1) (t)

)
.

• u(1) (t) = y(1), u(2) (t) = y(2), and w (t) ∈ h(1)
(
u(1) (t)

)
∩ h(2)

(
u(2) (t)

)
.

We consider the word u = u (0) . . . u (n− 1) by

u (t) =

{
w (t) if w (t) ∈ Σ(1) ∪ Σ(2)(
u(1) (t) , u(2) (t)

)
otherwise

for every 0 ≤ t ≤ n − 1. For every 1 ≤ j ≤ m, we define a valid relabel-
ing hj ∈ V R

(
ΓGj

)
such that hj (σ) = h(1)

(
x(1)

)
for every σ =

(
x(1), x(2)

)
∈(

Z(1) ×
(
Z(2) ∪

{
y(2)

}))
∩Gj , and hj (σ) = h(2)

(
x(2)

)
for every σ =

(
x(1), x(2)

)
∈({

y(1)
}
× Z(2)

)
∩Gj . Hence u ∈ preimΓGj

(w) for some 1 ≤ j ≤ m.

By the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m}, such that
for every path

Pu(1) :
(
q

(1)
0 , u(1) (0) , q

(1)
1

)
. . .
(
q

(1)
n−1, u

(1) (n− 1) , q
(1)
n

)
of A

(1)

(Σ(2),V1)
over u(1), and

Pu(2) :
(
q

(2)
0 , u(2) (0) , q

(2)
1

)
. . .
(
q

(2)
n−1, u

(2) (n− 1) , q
(2)
n

)
of A

(2)

(Σ(1),V2)
over u(2), there exists a path

P
(Gj)
u :

((
q

(1)
0 , q

(2)
0

)
, u (0) ,

(
q

(1)
1 , q

(2)
1

))
. . .
((
q

(1)
n−1, q

(2)
n−1

)
, u (n− 1) ,

(
q

(1)
n , q

(2)
n

))
of AGj over u, for every j ∈ J . Conversely, for every path P

(Gj)
u of AGj over u (j ∈

J) there are two paths Pu(1) of A
(1)

(Σ(2),V1)
over u(1) and Pu(2) of A

(2)

(Σ(1),V2)
over u(2)

respectively, obtained in the obvious way. Moreover, in case weight
(
P

(Gj)
u

)
6= 0,

for every j ∈ J , it holds
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weight
(
P (Gj)
u

)
= inGj

((
q

(1)
0 , q

(2)
0

))
·

∏
0≤t≤n−1

wtGj

(((
q

(1)
t , q

(2)
t

)
, u (t) ,

(
q

(1)
t+1, q

(2)
t+1

)))
· terGj

((
q(1)
n , q(2)

n

))
= in

(1)
V1

(
q

(1)
0

)
· in(2)

V2

(
q

(2)
0

)
·

∏
0≤t≤n−1

 wt
(1)
V1

((
q

(1)
t , u(1) (t) , q

(1)
t+1

))
·wt(2)

V2

((
q

(2)
t , u(2) (t) , q

(2)
t+1

)) 
· ter(1)

V1

(
q(1)
n

)
· ter(2)

V2

(
q(2)
n

)
= in

(1)
V1

(
q

(1)
0

)
·

∏
0≤t≤n−1

wt
(1)
V1

((
q

(1)
t , u(1) (t) , q

(1)
t+1

))
· ter(1)

V1

(
q(1)
n

)
· in(2)

V2

(
q

(2)
0

)
·

∏
0≤t≤n−1

wt
(2)
V2

((
q

(2)
t , u(2) (t) , q

(2)
t+1

))
· ter(2)

V2

(
q(2)
n

)
= weight (Pu(1)) · weight (Pu(2)) .

Conversely, if weight (Pu(1)) 6= 0, weight (Pu(2)) 6= 0, then by the consideration

of the list G1, . . . , Gm, there is at least one 1 ≤ j ≤ m with weight
(
P

(Gj)
u

)
=

weight (Pu(1)) · weight (Pu(2)). Therefore, and since K is idempotent, we obtain2

∑
1≤j≤m

∑
P

(Gj)
u

weight
(
P (Gj)
u

)
=

∑
P

u(1) ,Pu(2)

weight (Pu(1)) · weight (Pu(2)) .

We conclude ∑
1≤j≤m

∥∥AGj

∥∥ , w
 =

∑
1≤j≤m

(∥∥AGj

∥∥ , w) =
∑

1≤j≤m

∑
u∈preimΓGj

(w)

(∥∥AGj

∥∥ , u)
=

∑
1≤j≤m

∑
u∈preimΓGj

(w)

∑
P

(Gj)
u

weight
(
P (Gj)
u

)
=

∑
u(1)∈preim

Γ(1)∪Σ(2) (w)

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(1)

P
u(2)

(weight (Pu(1)) · weight (Pu(2)))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

∑
P

u(1)

weight (Pu(1))

2It should be clear that for j ∈ {1, . . . ,m}\J the paths P
(Gj)
u do not exist, hence by definition

weight
(
P

(Gj)
u

)
= 0.
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·
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

∑
P

u(2)

weight (Pu(2))

=
∑

u(1)∈preim
Γ(1)∪Σ(2) (w)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u(1)

)

·
∑

u(2)∈preim
Γ(2)∪Σ(1) (w)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u(2)

)

=

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w) · (∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
for every w ∈ Σ∗, which, by Lemma 1, implies

(∥∥∥A(1)
∥∥∥� ∥∥∥A(2)

∥∥∥ , w) =

 ∑
1≤j≤m

∥∥AGj

∥∥ , w


for every w ∈ Σ∗, i.e.,
∥∥A(1)

∥∥� ∥∥A(2)
∥∥ =

∑
1≤j≤m

∥∥AGj

∥∥, as required.

Proposition 7. The class V Rec (K,Σ) is closed under Cauchy product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. We consider the proper series r′(1), r′(2)

over Σ and K defined, for every w ∈ Σ∗, by

•
(
r′(1), w

)
=

{ (
r(1), w

)
if w ∈ Σ+

0 otherwise
, and

•
(
r′(2), w

)
=

{ (
r(2), w

)
if w ∈ Σ+

0 otherwise.

Then r(1) · r(2) = r′(1) · r′(2) +
(
r(1), ε

)
r(2) + r(1)

(
r(2), ε

)
+
(
r(1), ε

) (
r(2), ε

)
ε̄ and by

Propositions 2, 4, and 5, it suffices to show that r′(1)·r′(2) ∈ V Rec (K,Σ). By Propo-

sition 3, there are normalized wvaA(i) =
〈
Σ, A(i)

〉
withA(i) =

(
Q(i), q

(i)
in , wt

(i), q
(i)
ter

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

and K, accepting respectively r′(i), with i =

1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅ and
(
Z(1) ∪

{
y(1)

})
∩(

Z(2) ∪
{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=

〈
Σ, A

(1)

(Σ(2),V1)

〉
and

A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
determined by the procedure before Lemma 1. By

Proposition 3 and Lemma 1, A(1)

(Σ(2),V1)
and A(2)

(Σ(1),V2)
can be assumed to be nor-

malized hence, let A
(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, q

(1)
inV1

, wt
(1)
V1
, q

(1)
terV1

)
over Γ(1) ∪ Σ(2) and

A
(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, q

(2)
inV2

, wt
(2)
V2
, q

(2)
terV2

)
over Γ(2)∪Σ(1). Moreover, without any loss,
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we assume that Q
(1)
V1
∩Q(2)

V2
= ∅. We let y =

(
y(1), y(2)

)
and consider the set H =(

Z(1) ∪
{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y}, and a maximal subset G ⊆ H ∪Z(1) ∪Z(2)

satisfying the following condition: every element of Z(1) (resp. of Z(2)) occurs
either in at most one pair of H as a left (resp. as a right) coordinate, or as
a single element of G. Assume that G1, . . . , Gm is an enumeration of all such

sets. We let Q = Q
(1)
V1
∪ Q(2)

V2
\
{
q

(1)
terV1

}
and consider, for every 1 ≤ j ≤ m, the

normalized wva AGj
=
〈
Σ, AGj

〉
where AGj

=
(
Q, q

(1)
inV1

, wtGj
, q

(2)
terV2

)
and ΓGj

=

Σ(1) ∪ Σ(2) ∪Gj ∪ {y}. The weight assignment mapping wtGj
is defined, for every

1 ≤ j ≤ m, as follows:

wtGj ((q, σ, q′)) =

wt
(1)
V1

((q, σ, q′)) if q, q′ ∈ Q(1)
V1
\
{
q

(1)
terV1

}
and

σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(1) ∩Gj

)
wt

(2)
V2

((q, σ, q′)) if q, q′ ∈ Q(2)
V2

and σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(2) ∩Gj

)
wt

(1)
V1

((
q, σ, q

(1)
terV1

))
if q ∈ Q(1)

V1
\
{
q

(1)
terV1

}
, q′ = q

(2)
inV2

, and

σ ∈ Σ(1) ∪ Σ(2) ∪
(
Z(1) ∩Gj

)
wt

(1)
V1

((
q, x(1), q′

))
if q, q′ ∈ Q(1)

V1
\
{
q

(1)
terV1

}
and

σ =
(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(2)
V2

((
q, x(2), q′

))
if q, q′ ∈ Q(2)

V2
and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(1)
V1

((
q, x(1), q

(1)
terV1

))
if q ∈ Q(1)

V1
\
{
q

(1)
terV1

}
, q′ = q

(2)
inV2

, and

σ =
(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every q, q′ ∈ Q, σ ∈ ΓGj .

By Lemma 1 and Proposition 4, it suffices to show that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥·∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =∑
1≤j≤m

∥∥AGj

∥∥.

Let w1, w2 ∈ Σ+, u1 ∈ preimΓ(1)∪Σ(2) (w1), and u2 ∈ preimΓ(2)∪Σ(1) (w2). We
set w1w2 = w = w(0) . . . w(n − 1) hence, w1 = w(0) . . . w(k) and w2 = w(k +
1) . . . w(n−1) for some 0 ≤ k < n−1. Furthermore, we set u1u2 = u = u(0) . . . u(n−
1) and, by our assumption, we have u1 = u(0) . . . u(k) and u2 = u(k+1) . . . u(n−1).
Let h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
, h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that w1 ∈ h(1) (u1) and

w2 ∈ h(2) (u2). Moreover, let

Pu1 :
(
q

(1)
inV1

, u (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u (k) , q

(1)
terV1

)
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be a path of A
(1)

(Σ(2),V1)
over u1, and

Pu2
:
(
q

(2)
inV2

, u (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u (n− 1) , q

(2)
terV2

)
be a path of A

(2)

(Σ(1),V2)
over u2.

We point out the following cases.

• The sets {w(0), . . . , w(k)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w(k+1), . . . , w(n−1)}∩(

Σ \
(
Σ(1) ∪ Σ(2)

))
are disjoint. Then, if weight(Pu1

) 6= 0 6= weight(Pu2
), by

the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such that
for every j ∈ J

P
(Gj)
u′ :

(
q

(1)
inV1

, u′ (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u

′ (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′ (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u

′ (n− 1) , q
(2)
terV2

)
is a path of AGj

over u′, where u′ is obtained by u by replacing every oc-

currence of y(1) in u1 and y(2) in u2, respectively by y. Clearly, it holds

weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). Moreover, since K is idempo-

tent, we get
∑

j∈J weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). By the defi-

nition of the list G1, . . . , Gm we have also weight
(
P

(Gj)
u′

)
= 0 for every j ∈

{1, . . . ,m}\J , and thus
∑

1≤j≤m weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

Furthermore, the relabeling h(j) : ΓGj → P(Σ), for every 1 ≤ j ≤ m, which

is defined as the identity on Σ(1) ∪ Σ(2), and

– h(j)(z(1)) = h(1)(z(1)) for every z(1) ∈ Z(1) ∩Gj ,

– h(j)(z(2)) = h(2)(z(2)) for every z(2) ∈ Z(2) ∩Gj , and

– h(j)((x(1), x(2))) are defined nondeterministically in Σ \ (Σ(1) ∪ Σ(2) ∪
{w(0), . . . , w(n − 1)} ∪ {h(j)(z(i)) | z(i) ∈ Z(i) ∩Gj , i = 1, 2}) whenever
(x(1), x(2)) ∈ Gj \ {y}

is valid, and clearly w ∈ h(j)(u′) for every j ∈ J .

• The sets {w(0), . . . , w(k)} ∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w(k+ 1), . . . , w(n− 1)}

∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are not disjoint. For simplicity, let us assume that the

two sets have only one common letter σ, and let 0 ≤ l1 < . . . < lr ≤ k
and k + 1 ≤ lr+1 < . . . < ls ≤ n − 1 be the positions in w such that
w(l1) = . . . = w(lr) = w(lr+1) = . . . = w(ls) = σ.

Since u1 ∈ preimΓ(1)∪Σ(2) (w1) and u2 ∈ preimΓ(2)∪Σ(1) (w2) we get that
u(l1) = . . . = u(lr) = x(1) and u(lr+1) = . . . = u(ls) = x(2) for some x(1) ∈
Z(1) ∪ {y(1)} and x(2) ∈ Z(2) ∪ {y(2)}. If weight(Pu1) 6= 0 6= weight(Pu2), by
the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such that

for every j ∈ J , the path P
(Gj)
u′ which is determined by
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(
q

(1)
inV1

, u′ (0) , q
(1)
1

)
. . .
(
q

(1)
l1
, (x(1), x(2)), q

(1)
l1+1

)
. . .
(
q

(1)
lr
, (x(1), x(2)), q

(1)
lr+1

)
. . .
(
q

(1)
k−1, u

′ (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′ (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
lr+1

, (x(1), x(2)), q
(2)
lr+1+1

)
. . .
(
q

(2)
ls
, (x(1), x(2)), q

(2)
ls+1

)
. . .
(
q

(2)
n−1, u

′ (n− 1) , q
(2)
terV2

)
is a path of AGj

over u′, and weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

The word u′ is obtained by u by replacing the letters u(l1), . . . , u(ls) by
(x(1), x(2)) and from the remaining letters we replace every occurrence of
y(1) and y(2) with y. With the same argument, as in the previous case, we ob-

tain
∑

1≤j≤m weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
), and in the obvious

way, we define an h(j) ∈ V R(ΓGj
) such that w ∈ h(j)(u′) for every j ∈ J .

In case the sets {w(0), . . . , w(k)}∩
(
Σ \ Σ(1) ∪ Σ(2)

)
and {w(k+1), . . . , w(n−

1)} ∩
(
Σ \ Σ(1) ∪ Σ(2)

)
have more than one common elements, then we sim-

ilarly merge the labels of the corresponding transitions and construct the

paths P
(Gj)
u′ .

Conversely, let w ∈ Σ+, u′(j) ∈ preimΓGj
(w) for some 1 ≤ j ≤ m, and

P
(Gj)

u′(j) :
(
q

(1)
inV1

, u′(j) (0) , q
(1)
1

)
. . .
(
q

(1)
k−1, u

′(j) (k) , q
(2)
inV2

)(
q

(2)
inV2

, u′(j) (k + 1) , q
(2)
k+1

)
. . .
(
q

(2)
n−1, u

′(j) (n− 1) , q
(2)
terV2

)
be a path of AGj

over u′(j). Then, there are two paths Pu1
, Pu2

of A
(1)

(Σ(2),V1)
and

A
(2)

(Σ(1),V2)
over u1 and u2 respectively, where the word u = u1u2 is obtained by the

word u′(j) as follows. For every 0 ≤ t ≤ k we replace every occurrence of (x(1), x(2))
(resp. y) by x(1) (resp. y(1)) and for every k + 1 ≤ t ≤ n − 1 we replace every
occurrence of (x(1), x(2)) (resp. y) by x(2) (resp. y(2)). Moreover, it is not difficult
to show that u1 ∈ preimΓ(1)∪Σ(2)(w1), u2 ∈ preimΓ(2)∪Σ(1)(w2), where w = w1w2

and weight(Pu1)weight(Pu2) = weight
(
P

(Gj)

u′(j)

)
.

We conclude that for every w ∈ Σ+ it holds(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ · ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=
∑{(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

)
| w = w1w2

}

=
∑


∑

u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

)
∑

u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
| w = w1w2
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=
∑

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1
)∑

u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2
) | w = w1w2


=
∑

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)∑

Pu1

∑
Pu2

weight(Pu1
)weight(Pu2

) | w = w1w2


=

∑
1≤j≤m

∑
u′(j)∈preimΓGj

(w)

∑
P

(Gj)

u′(j)

weight
(
P

(Gj)

u′(j)

)

=
∑

1≤j≤m

∑
u′(j)∈preimΓGj

(w)

(∥∥AGj

∥∥ , u′(j)
)

=

 ∑
1≤j≤m

∥∥AGj

∥∥ , w


where the fifth equality holds since K is idempotent. Hence, we get∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ · ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥
as required, and our proof is completed.

Proposition 8. The class V Rec (K,Σ) is closed under the star operation applied
to proper series.

Proof. Let r ∈ V Rec (K,Σ) be proper and A = 〈Σ, A〉 a normalized wva, with
A = (Q, qin, wt, qter) over ΓA = ΣA ∪ Z ∪ {y}, accepting r. We consider the wva
A′ = 〈Σ, A′〉 over Σ and K with Q′ = Q \ {qter} and A′ = (Q′, qin, wt

′, qin) over
ΓA. The weight assignment mapping wt′ : Q′ × ΓA ×Q′ → K is defined for every
q, q′ ∈ Q′, σ ∈ ΓA as follows:

wt′ ((q, σ, q′)) =

{
wt ((q, σ, q′)) if q′ 6= qin
wt ((q, σ, qter)) if q′ = qin

.

By standard arguments on weighted automata, we can show that ‖A′‖ = ‖A‖∗.
Moreover, for every w ∈ Σ∗ we have

(‖A′‖ , w) =
∑

u∈preimΓA
(w)

(‖A′‖ , u)

=
∑

u∈preimΓA
(w)

(
‖A‖∗ , u

)
=

∑
u∈preimΓA

(w)

∑
n≥0,u=u1...un

((‖A‖ , u1) · . . . · (‖A‖ , un))
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=
∑

n≥0,w=w1...wn

∑
ui∈preimΓA

(wi)

1≤i≤n

((‖A‖ , u1) · . . . · (‖A‖ , un))

=
∑

n≥0,w=w1...wn

∑
u1∈preimΓA

(w1)

(‖A‖ , u1) · . . . ·
∑

un∈preimΓA
(wn)

(‖A‖ , un)

=
∑

n≥0,w=w1...wn

(r, w1) · . . . · (r, wn)

= (r∗, w)

which implies that ‖A′‖ = r∗ hence, r∗ ∈ V Rec (K,Σ) and our proof is completed.

Proposition 9. The class V Rec (K,Σ) is closed under the shuffle product.

Proof. Let r(i) ∈ V Rec (K,Σ) with i = 1, 2. We consider the proper series r′(1), r′(2)

over Σ and K defined, for every w ∈ Σ∗, by

•
(
r′(1), w

)
=

{ (
r(1), w

)
if w ∈ Σ+

0 otherwise
, and

•
(
r′(2), w

)
=

{ (
r(2), w

)
if w ∈ Σ+

0 otherwise.

Then r(1)
� r(2) = r′(1)

� r′(2) +
(
r(1), ε

)
r(2) + r(1)

(
r(2), ε

)
+
(
r(1), ε

) (
r(2), ε

)
ε̄.

By Propositions 2, 4, and 5 it suffices to show that r′(1)
� r′(2) ∈ V Rec (K,Σ).

By Proposition 3, we can construct normalized wva A(i) =
〈
Σ, A(i)

〉
with A(i) =(

Q(i), q
(i)
in , wt

(i), q
(i)
ter

)
over Γ(i) = Σ(i) ∪ Z(i) ∪

{
y(i)
}

and K, accepting respec-

tively r′(i), with i = 1, 2. Without any loss, we assume that Q(1) ∩ Q(2) = ∅
and

(
Z(1) ∪

{
y(1)

})
∩
(
Z(2) ∪

{
y(2)

})
= ∅. We consider the wva A(1)

(Σ(2),V1)
=〈

Σ, A
(1)

(Σ(2),V1)

〉
and A(2)

(Σ(1),V2)
=

〈
Σ, A

(2)

(Σ(1),V2)

〉
determined by the procedure

before Lemma 1. By Proposition 3 and Lemma 1 these wva can be also assumed

to be normalized hence, let A
(1)

(Σ(2),V1)
=
(
Q

(1)
V1
, q

(1)
inV1

, wt
(1)
V1
, q

(1)
terV1

)
over Γ(1) ∪ Σ(2)

and A
(2)

(Σ(1),V2)
=
(
Q

(2)
V2
, q

(2)
inV2

, wt
(2)
V2
, q

(2)
terV2

)
over Γ(2) ∪ Σ(1). Moreover, without

any loss, we assume that Q
(1)
V1
∩ Q(2)

V2
= ∅. We let y =

(
y(1), y(2)

)
and con-

sider the set H =
(
Z(1) ∪

{
y(1)

})
×
(
Z(2) ∪

{
y(2)

})
\ {y} and a maximal subset

G ⊆ H ∪Z(1) ∪Z(2) satisfying the following condition: every element of Z(1) (resp.
of Z(2)) occurs either in at most one pair of H as a left (resp. as a right) coor-
dinate, or as a single element of G. Assume that G1, . . . , Gm is an enumeration

of all such sets. We let Q = Q
(1)
V1
× Q(2)

V2
, ΓGj

= Σ(1) ∪ Σ(2) ∪ Gj ∪ {y}, for ev-

ery 1 ≤ j ≤ m, and consider the normalized wva AGj=
〈
Σ, AGj

〉
over Σ and K
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with AGj
=
(
Q,
(
q

(1)
inV1

, q
(2)
inV2

)
, wtGj

,
(
q

(1)
terV1

, q
(2)
terV2

))
over ΓGj

, where the weight

assignment mapping wtGj is defined for every 1 ≤ j ≤ m as follows:

wtGj

(((
q(1), q(2)

)
, σ,
(
q′(1), q′(2)

)))
=

wt
(1)
V1

((
q(1), σ, q′(1)

))
if q(2) = q′(2) and σ ∈ Σ(1) ∪ Σ(2) ∪

(
Z(1) ∩Gj

)
wt

(2)
V2

((
q(2), σ, q′(2)

))
if q(1) = q′(1) and σ ∈ Σ(1) ∪ Σ(2) ∪

(
Z(2) ∩Gj

)
wt

(1)
V1

((
q(1), x(1), q′(1)

))
if q(2) = q′(2) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

wt
(2)
V2

((
q(2), x(2), q′(2)

))
if q(1) = q′(1) and σ =

(
x(1), x(2)

)
∈ Gj ∪ {y}

0 otherwise

for every
(
q(1), q(2)

)
,
(
q′(1), q′(2)

)
∈ Q, σ ∈ ΓGj

.

Next, we show that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥=
∑

1≤j≤m

∥∥AGj

∥∥.

For this let w,w1 = w1 (0) . . . w1 (n1 − 1) , w2 = w2 (0) . . . w2 (n2 − 1) ∈ Σ+ such
that w ∈ w1 � w2, and u1 ∈ preimΓ(1)∪Σ(2) (w1), u2 ∈ preimΓ(2)∪Σ(1) (w2). Hence,
there exist valid relabelings h(1) ∈ V R

(
Γ(1) ∪ Σ(2)

)
and h(2) ∈ V R

(
Γ(2) ∪ Σ(1)

)
such that w1 ∈ h(1) (u1) , w2 ∈ h(2) (u2). We consider a path

Pu1
:
(
q

(1)
inV1

, u1 (0) , q
(1)
1

)
. . .
(
q

(1)
n1−1, u1 (n1 − 1) , q

(1)
terV1

)
of A

(1)

(Σ(2),V1)
over u1 and a path

Pu2 :
(
q

(2)
inV2

, u2 (0) , q
(2)
1

)
. . .
(
q

(2)
n2−1, u2 (n2 − 1) , q

(2)
terV2

)
of A

(2)

(Σ(1),V2)
over u2. We distinguish the following cases.

• The sets {w1(0), . . . , w1(n1−1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w2(0), . . . , w2(n2−

1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are disjoint. Then, if weight(Pu1) 6= 0 6= weight(Pu2),

by the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such

that for every j ∈ J there is a path P
(Gj)
u of AGj over u, for u ∈ (u1 � u2) ∩

preimΓGj
(w) with weight

(
P

(Gj)
u

)
= weight(Pu1

)weight(Pu2
). Since K is

idempotent it holds
∑
j∈J

weight
(
P

(Gj)
u

)
= weight(Pu1

)weight(Pu2
) and thus∑

1≤j≤m
weight

(
P

(Gj)
u

)
= weight(Pu1)weight(Pu2).

• The sets {w1(0), . . . , w1(n1−1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
and {w2(0), . . . , w2(n2−

1)}∩
(
Σ \

(
Σ(1) ∪ Σ(2)

))
are not disjoint. Moreover, for simplicity, we assume

that the two sets have only one common letter σ, and let 0 ≤ l1 < . . . <
lr ≤ n1 − 1 and 0 ≤ g1 < . . . < gs ≤ n2 − 1 be the positions in w1, w2

respectively, such that w1(l1) = . . . = w1(lr) = w2(g1) = . . . = w2(gs) = σ.
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Since u1 ∈ preimΓ(1)∪Σ(2) (w1) and u2 ∈ preimΓ(2)∪Σ(1) (w2) we get that
u1(l1) = . . . = u1(lr) = x(1) and u2(g1) = . . . = u2(gs) = x(2) for some x(1) ∈
Z(1) ∪ {y(1)} and x(2) ∈ Z(2) ∪ {y(2)}. If weight(Pu1

) 6= 0 6= weight(Pu2
),

by the definition of the list G1, . . . , Gm, there is a set J ⊆ {1, . . . ,m} such

that for every j ∈ J there is a path P
(Gj)
u′ of AGj

over u′, where u′ is ob-

tained by u by replacing x(1) (resp. x(2)) in u1 (resp. u2) at the posi-
tions l1, . . . , lr (resp. g1, . . . , gs) by the pair

(
x(1), x(2)

)
, and from the re-

maining letters we replace every occurrence of y(1) and y(2) with y, for

u ∈ u1 � u2. Again, we have weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
)

and hence,
∑

1≤j≤m
weight

(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
). On the other

hand, it is trivially shown that u′ ∈ preimΓGj
(w).

Conversely, keeping the previous notations, for every w ∈ Σ+, u′ ∈ preimΓGj
(w)

for some 1 ≤ j ≤ m, there are u1 ∈ preimΓ(1)∪Σ(2)(w1), u2 ∈ preimΓ(2)∪Σ(1)(w2)

with w ∈ w1 � w2, such that for every path P
(Gj)
u′ of AGj

over u′, there are paths

Pu1
of A

(1)

(Σ(2),V1)
over u1 and Pu2

of A
(2)

(Σ(1),V2)
over u2, with weight

(
P

(Gj)
u′

)
=

weight(Pu1
)weight(Pu2

). Using the same as above argument, we can show that∑
1≤j≤m

weight
(
P

(Gj)
u′

)
= weight(Pu1

)weight(Pu2
).

Now for every w1, w2 ∈ Σ+, it holds(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

)
=

∑
u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

) ∑
u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
=

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1)
∑

u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2)

=
∑

u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu1

∑
Pu2

weight(Pu1)weight(Pu2).

Hence, for every w ∈ Σ+, we get(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥� ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w)
=

∑
w1,w2∈Σ+

w∈w1�w2

((∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , w1

)(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , w2

))

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

(∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ , u1

)
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∑
u2∈preimΓ(2)∪Σ(1) (w2)

(∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ , u2

)
=

∑
w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
Pu1

weight(Pu1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)

∑
Pu2

weight(Pu2
)

=
∑

w1,w2∈Σ+

w∈w1�w2

∑
u1∈preimΓ(1)∪Σ(2) (w1)

∑
u2∈preimΓ(2)∪Σ(1) (w2)∑

Pu1

∑
Pu2

weight(Pu1
)weight(Pu2

)

=
∑

1≤j≤m

∑
u∈preimΓGj

(w)

∑
P

(Gj)
u

weight
(
P (Gj)
u

)

=

 ∑
1≤j≤m

∥∥AGj

∥∥ , w


which implies that

∥∥∥∥A(1)

(Σ(2),V1)

∥∥∥∥ � ∥∥∥∥A(2)

(Σ(1),V2)

∥∥∥∥ =
∑

1≤j≤m

∥∥AGj

∥∥ hence, r′(1)
�

r′(2) =
∑

1≤j≤m

∥∥AGj

∥∥. Therefore, by Proposition 4, we conclude that r′(1)
� r′(2) ∈

V Rec (K,Σ), as required.

Remark 1. The definition of the weight assignment mappings wtGj for 1 ≤ j ≤ m,
in the above proof, is not completely right. More precisely, it may happen that there

are q(1) ∈ Q(1)
V1
, q(2) ∈ Q(2)

V2
and σ ∈

(
Σ(1) ∩ Σ(2)

)
(resp. σ = (x(1), x(2)) ∈ Gj ∪{y})

such that wt
(1)
V1

((
q(1), σ, q(1)

))
= k1 6= 0, wt

(2)
V2

((
q(2), σ, q(2)

))
= k2 6= 0 with

k1 6= k2 (resp. wt
(1)
V1

((q(1), x(1), q(1))) = k1 6= 0, wt
(2)
V2

((
q(2), x(2), q(2)

))
= k2 6= 0

with k1 6= k2). Then, the value wtGj

(((
q(1), q(2)

)
, σ,
(
q(1), q(2)

)))
is not well-

defined3. Therefore, if this is the case, for every such pair of states
(
q(1), q(2)

)
and

σ ∈
(
Σ(1) ∩ Σ(2)

)
∪Gj ∪ {y}, we introduce a new state r and we set

- wtGj

(((
q(1), q(2)

)
, σ,
(
q(1), q(2)

)))
= k1,

- wtGj

(((
q(1), q(2)

)
, σ, r

))
= k1,

- wtGj

((
r, σ,

(
q(1), q(2)

)))
= k2,

3Other authors proving the closure of the class of recognizable series under the shuffle product
have also ignored this case (cf. for instance [34]).
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- wtGj ((r, σ, r)) = k2, and

- wtGj

(((
q′(1), q′(2)

)
, σ′, r

))
= wtGj

(((
q′(1), q′(2)

)
, σ′,

(
q(1), q(2)

)))
,

- wtGj

((
r, σ′,

(
q′(1), q′(2)

)))
= wtGj

(((
q(1), q(2)

)
, σ′,

(
q′(1), q′(2)

)))
,

for every q′(1) ∈ Q(1)
V1
, q′(2) ∈ Q(2)

V2
, σ′ ∈ ΓGj

.

The following theorem summarizes the results of this section.

Theorem 1. Let K be a commutative and idempotent semiring and Σ an infinite
alphabet. Then the class of v-recognizable series over Σ and K is closed under
sum, and under scalar, Hadamard, Cauchy and shuffle products, and under star
operation applied to proper series.

5 Rational series over infinite alphabets

In this section, we extend the notion of rational series over the infinite alphabet
Σ and the semiring K4. In fact, we state a Kleene-Schützenberger type result for
v-recognizable series over Σ and K. For this, we define the notion of rationality
for series over Σ in the same way we did it for v-recognizable series. A similar
approach for defining regular expressions over infinite alphabets has been followed
in [1, 25]. Firstly, we recall the concept of rational series over finite alphabets.
Let ∆ be a finite alphabet. The class Rat(K,∆) of rational series over ∆ and
K is the least class of series containing the polynomials over ∆ and K and being
closed under sum, Cauchy product, and star operation applied to proper series.
The subsequent result is the fundamental theorem of Schützenberger stating the
coincidence of rational and recognizable series.

Theorem 2. [35, 18, 34] Let K be a semiring and ∆ a finite alphabet. Then a
series s ∈ K 〈〈∆∗〉〉 is recognizable iff it is rational.

Definition 3. A series s over Σ and K is called v-rational if there is a subalphabet
Γ ⊆fin Σ and a rational series s′ over ∆ = Γ ∪ Z ∪ {y} and K such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

Now we discuss why we adopted the above definition for rational series over infi-
nite alphabets. One could think of alternative definitions, more precisely, by defin-
ing rational series over the infinite alphabet Σ in the same way we do it for rational
series over finite alphabets. It is not difficult to see that such a consideration should

4In this section we can relax the commutativity property of K.
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not derive an expressively equivalent notion to wva. Consider for instance the nor-
malized wva A = 〈Σ, A〉 where A = ({qin, qter}, qin, wt, qter) with ΣA = {a} and
Z = {z}. The only non-zero assignment of wt is given by wt((qin, z, qter)) = k 6= 0.
Then trivially, ‖A‖ =

∑
a′∈Σ\{a} ka

′ and it is not difficult to see that this series is
not rational in the sense of rational series over finite alphabets. Even if we should
consider our rational series to contain, by definition, series of the above form, then
still this is not sufficient. For instance let us consider the normalized wva B = 〈Σ, B〉
where B = ({pin, p, pter}, pin, wt, pter) with ΣB = {b}, Z = {z, z′} and non-zero
weights wt((pin, z, p)) = k,wt((p, z′, pter)) = k′. Then it is easily obtained that

‖B‖ =
∑

a,a′∈Σ\{b}
a 6=a′

kk′aa′.

On the other hand, the Cauchy product of the series
∑

a∈Σ\{b}
ka

∑
a′∈Σ\{b}

k′a′ clearly

differs from ‖B‖.
Next, we state our Kleene-Schützenberger type theorem for series over Σ and

K.

Theorem 3. Let K be a semiring and Σ an infinite alphabet. Then a series
s ∈ K 〈〈Σ∗〉〉 is v-recognizable iff it is v-rational.

Proof. Let s ∈ V Rec(K,Σ). Then, there exists a wva A = 〈Σ, A〉 where A is a
weighted automaton over ΓA = ΣA ∪ Z ∪ {y} such that

s = ‖A‖ =
∑

u∈preimΓA
(w)

(‖A‖ , u) .

By Theorem 2 the recognizable series ‖A‖ over ΓA and K is also rational. This
implies that s is v-rational. By a similar argument, we show that if s is v-rational,
then it is also v-recognizable, and this concludes our proof.

6 Weighted monadic second order logic over infi-
nite alphabets

Droste and Gastin in their seminal paper [12] (cf. also [13]), introduced a weighted
monadic second order logic (MSO logic for short) and proved in the quantitative
setup the fundamental result of Büchi [7], Elgot [17], and Trakhtenbrot [41] relating
recognizable and MSO-definable languages. More precisely, they determined two
fragments of their weighted MSO logic, namely the restricted, and the existential
restricted one, and proved that the classes of series defined by sentences in these
two fragments coincide with the class of recognizable series over a finite alphabet
and a commutative semiring. We would like to extend this result for the class of
v-recognizable series. For this, we introduce a weighted MSO logic over the infinite
alphabet Σ and the commutative semiring K.
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Firstly we recall, for the reader’s convenience, the basic definitions of weighted
MSO logic (cf. [12, 13]) by adopting the notations of [19].

Let ∆ be a finite alphabet. The syntax of MSO logic formulas over ∆ is given
by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨ φ | ∃x � φ | ∃X � φ

where a ∈ ∆ and we let false = ¬true. The set free(φ) of free variables of an
MSO logic formula φ is defined as usual. In order to define the semantics of MSO
logic formulas we need the notions of the extended alphabet and valid assignment
(cf. for instance [40]). Let V be a finite set of first and second order variables. For
every word u = u(0) . . . u(n − 1) ∈ ∆∗ we let Dom(u) = {0, . . . , n− 1}. A (V, u)-
assignment σ is a mapping associating first order variables from V to elements of
Dom(u), and second order variables from V to subsets of Dom(u). If x is a first
order variable and i ∈ Dom(u), then σ[x→ i] denotes the (V ∪ {x}, u)-assignment
which associates i to x and coincides with σ on V \{x}. For a second order variable
X and I ⊆ Dom(u), the notation σ[X → I] has a similar meaning.

We shall encode pairs of the form (u, σ), where u ∈ ∆∗ and σ is a (V, u)-
assignment, using the extended alphabet ∆V = ∆×{0, 1}V . Indeed, every word in
∆∗V can be considered as a pair (u, σ) where u is the projection over ∆ and σ is the
projection over {0, 1}V . Then σ is a valid assignment if for every first order variable
x ∈ V the x-row contains exactly one 1. In this case, σ is the (V, u)-assignment
such that for every first order variable x ∈ V, σ(x) is the position of the 1 on the
x-row, and for every second order variable X ∈ V, σ(X) is the set of positions
labelled with 1 along the X-row. It is not difficult to see that the language

NV = {(u, σ) ∈ ∆∗V | σ is a valid (V, u)-assignment}

is recognizable.
For every (u, σ) ∈ NV we define the satisfaction relation (u, σ) |= φ by induction

on the structure of φ, as follows:

- (u, σ) |= true,

- (u, σ) |= Pa(x) iff u(σ(x)) = a,

- (u, σ) |= x ≤ x′ iff σ(x) ≤ σ(x′),

- (u, σ) |= x ∈ X iff σ(x) ∈ σ(X),

- (u, σ) |= ¬φ iff (u, σ) 6|= φ,

- (u, σ) |= φ ∨ φ′ iff (u, σ) |= φ or (u, σ) |= φ′,

- (u, σ) |= ∃x � φ iff there exists an i ∈ Dom(u) such that (u, σ[x→ i) |= φ,

- (u, σ) |= ∃X � φ iff there exists an I ⊆ Dom(u) such that (u, σ[X → I) |= φ.

If (u, σ) ∈ ∆∗V \ NV , then we let (u, σ) 6|= φ.
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Definition 4. The syntax of formulas of the weighted MSO logic over ∆ and K
is given by the grammar

φ ::= true | Pa(x) | x ≤ x′ | x ∈ X | ¬φ | φ ∨ φ | ∃x � φ | ∃X � φ

ϕ ::= k | φ | ϕ⊕ ϕ | ϕ⊗ ϕ |
⊕

x � ϕ |
⊕

X � ϕ |
⊗

x � ϕ |
⊗

X � ϕ

where k ∈ K, a ∈ ∆.

We denote by MSO(K,∆) the set of all weighted MSO logic formulas ϕ over
∆ and K. We represent the semantics of formulas ϕ ∈ MSO(K,∆) as series
‖ϕ‖ ∈ K 〈〈∆∗〉〉. For the semantics of MSO logic formulas φ we use the satisfaction
relation as defined above. Therefore, the semantics of MSO logic formulas φ gets
only the values 0 and 1.

Definition 5. Let ϕ ∈MSO(K,∆) and V be a finite set of variables with free(ϕ) ⊆
V. The semantics of ϕ is a series ‖ϕ‖V ∈ K 〈〈∆∗V〉〉. Consider an element
(u, σ) ∈ ∆∗V . If (u, σ) /∈ NV , then we let (‖ϕ‖V , (u, σ)) = 0. Otherwise, we de-
fine (‖ϕ‖V , (u, σ)) ∈ K, inductively on the structure of ϕ, as follows:

- (‖k‖V , (u, σ)) = k,

- (‖φ‖V , (u, σ)) =

{
1 if (u, σ) |= φ
0 otherwise

,

- (‖ϕ⊕ ψ‖V , (u, σ)) = (‖ϕ‖V , (u, σ)) + (‖ψ‖V , (u, σ)) ,

- (‖ϕ⊗ ψ‖V , (u, σ)) = (‖ϕ‖V , (u, σ)) · (‖ψ‖V , (u, σ)) ,

-
(
‖
⊕

x � ϕ‖V , (u, σ)
)

=
∑

0≤i≤n−1

(
‖ϕ‖V∪{x} , (u, σ[x→ i])

)
,

-
(
‖
⊕

X � ϕ‖V , (u, σ)
)

=
∑

I⊆Dom(u)

(
‖ϕ‖V∪{X} , (u, σ[X → I])

)
,

-
(
‖
⊗

x � ϕ‖V , (u, σ)
)

=
∏

0≤i≤n−1

(
‖ϕ‖V∪{x} , (u, σ[x→ i])

)
,

-
(
‖
⊗

X � ϕ‖V , (u, σ)
)

=
∏

I⊆Dom(u)

(
‖ϕ‖V∪{X} , (u, σ[X → I])

)
.

We simply denote ‖ϕ‖free(ϕ) by ‖ϕ‖. If ϕ is a sentence, then ‖ϕ‖ ∈ K 〈〈∆∗〉〉.
Furthermore, it holds [12]

(‖ϕ‖V , (u, σ)) =
(
‖ϕ‖ , (u, σ|free(ϕ))

)
for every (u, σ) ∈ NV .

Definition 6. A formula ϕ ∈MSO(K,∆) will be called restricted if
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• it contains no universal quantification of the form
⊗

X � ψ, and

• whenever it contains a universal first order quantification
⊗

x � ψ, then ψ is
a formula of the form ψ = ⊕1≤i≤n (ki ⊗ φi) where ki ∈ K and φi is an MSO
logic formula for every 1 ≤ i ≤ n.

We denote withRMSO(K,∆) the subclass of all restricted formulas inMSO(K,
∆).

Definition 7. A formula ϕ ∈ RMSO(K,∆) is called restricted existential if it is of
the form

⊕
X1,...,Xn

�ψ with ψ ∈ RMSO(K,∆) and ψ contains no set quantification.

The subclass of all restricted existential formulas in MSO(K,∆) is denoted by
REMSO(K,∆).

Definition 8. A series s over ∆ and K is called MSO (resp. RMSO, REMSO) de-
finable if there is sentence ϕ in MSO(K,∆) (resp. RMSO(K,∆), REMSO(K,∆))
such that s = ‖ϕ‖.

Theorem 4. [12, 13] Let K be a commutative semiring and ∆ a finite alphabet.
Then for every series s ∈ K 〈〈∆∗〉〉 the following statements are equivalent.

i) s is recognizable.

ii) s is RMSO-definable.

iii) s is REMSO-definable.

Furthermore, if the semiring K is locally finite, then the above statements are also
equivalent to

iv) s is MSO-definable.

Now we are ready to introduce the MSO logic characterization for series over
the infinite alphabet Σ and the commutative semiring K.

Definition 9. A series s over Σ and K is called VMSO (resp. VRMSO, VREMSO)
definable if there is a subalphabet Γ ⊆fin Σ and an MSO (resp. RMSO, REMSO)
definable series s′ over ∆ = Γ ∪ Z ∪ {y} and K such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

Theorem 5. Let K be a commutative semiring and Σ an infinite alphabet. Then
for every series s ∈ K 〈〈Σ∗〉〉 the following statements are equivalent.

i) s is v-recognizable.

ii) s is VRMSO-definable.
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iii) s is VREMSO-definable.

Furthermore, if the semiring K is locally finite, then the above statements are also
equivalent to

iv) s is VMSO-definable.

Proof. We obtain our result by Theorem 4 and Definition 9, using similar arguments
as the ones in the proof of Theorem 3.

7 Weighted linear dynamic logic over infinite al-
phabets

Vardi in 2011 introduced a linear dynamic logic (LDL for short) over infinite words
and stated the expressive equivalence of LDL formulas to ω-rational expressions (cf.
[42]). LDL is a combination of propositional dynamic logic and of classical LTL. In
[20] the authors proved the coincidence of the classes of rational and LDL-definable
languages interpreted over finite words. Recently, LDL has been investigated in
the quantitative setup for both finite and infinite words [16]. More precisely, the
authors proved the expressive equivalence of weighted LDL formulas to weighted
automata for finite words over commutative semirings, and for infinite words over
totally commutative complete semirings. In this section, we introduce a weighted
LDL over the infinite alphabet Σ and the commutative semiring K, and we show the
expressive equivalence of weighted LDL formulas to weighted variable automata.

Let us firstly recall the basic definitions for weighted LDL logic over finite al-
phabets [16]. Let ∆ be a finite alphabet. For every letter a ∈ ∆ we consider an
atomic proposition pa, and we let P = {pa | a ∈ ∆}. Moreover, for every p ∈ P we
identify ¬¬p with p.

Definition 10. The syntax of LDL formulas ψ over ∆ is given by the grammar

ψ ::= true | pa | ¬ψ | ψ ∧ ψ | 〈θ〉ψ
θ ::= φ | ψ? | θ + θ | θ; θ | θ+

where pa ∈ P and φ denotes a propositional formula over the atomic propositions
in P .

For every LDL formula ψ and u ∈ ∆∗ we define the satisfaction relation u |= ψ,
inductively on the structure of ψ, as follows:

- u |= true,

- u |= pa iff u(0) = a,

- u |= ¬ψ iff u 6|= ψ,

- u |= ψ1 ∧ ψ2 iff u |= ψ1 and u |= ψ2,
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- u |= 〈φ〉ψ iff u |= φ and u≥1 |= ψ,

- u |= 〈ψ1?〉ψ2 iff u |= ψ1 and u |= ψ2,

- u |= 〈θ1 + θ2〉ψ iff u |= 〈θ1〉ψ or u |= 〈θ2〉ψ,

- u |= 〈θ1; θ2〉ψ iff u = vv′, v |= 〈θ1〉 true, and v′ |= 〈θ2〉ψ,

- u |= 〈θ+〉ψ iff there exists n with 1 ≤ n ≤ |u| such that u |= 〈θn〉ψ,

where θn, n ≥ 1 is defined inductively by θ1 = θ and θn = θn−1; θ for n > 1.

Definition 11. The syntax of formulas ϕ of the weighted LDL over ∆ and K is
given by the grammar

ϕ ::= k | ψ | ϕ⊕ ϕ | ϕ⊗ ϕ | 〈ρ〉ϕ
ρ ::= φ | ϕ? | ρ⊕ ρ | ρ · ρ | ρ⊕

where k ∈ K, φ denotes a propositional formula over the atomic propositions in P ,
and ψ denotes an LDL formula as in Definition 10.

We denote by LDL(K,∆) the set of all weighted LDL formulas ϕ over ∆ and
K. We represent the semantics ‖ϕ‖ of the formulas ϕ ∈ LDL(K,∆) as series over
∆ and K.

Definition 12. Let ϕ ∈ LDL(K,∆). The semantics of ϕ is a series ‖ϕ‖ ∈
K 〈〈∆∗〉〉. For every u ∈ ∆∗ the value (‖ϕ‖ , u) is defined inductively as follows:

- (‖k‖ , u) = k,

- (‖ψ‖ , u) =

{
1 if u |= ψ
0 otherwise

,

- (‖ϕ1 ⊕ ϕ2‖ , u) = (‖ϕ1‖ , u) + (‖ϕ2‖ , u),

- (‖ϕ1 ⊗ ϕ2‖ , u) = (‖ϕ1‖ , u) · (‖ϕ2‖ , u),

- (‖〈φ〉ϕ‖ , u) = (‖φ‖ , u) · (‖ϕ‖ , u≥1),

- (‖〈ϕ1?〉ϕ2‖ , u) = (‖ϕ1‖ , u) · (‖ϕ2‖ , u),

- (‖〈ρ1 ⊕ ρ2〉ϕ‖ , u) = (‖〈ρ1〉ϕ‖ , u) + (‖〈ρ2〉ϕ‖ , u),

- (‖〈ρ1 · ρ2〉ϕ‖ , u) =
∑

v,v′∈∆∗

u=vv′

((‖〈ρ1〉 true‖ , v) · (‖〈ρ2〉ϕ‖ , v′)) ,

- (‖〈ρ⊕〉ϕ‖ , u) =
∑
n≥1

(‖〈ρn〉ϕ‖ , u)

where for the definition of (‖〈ρ⊕〉ϕ‖ , u) we assume that ‖〈ρ〉 true‖ is proper, and
ρn, n ≥ 1 is defined inductively by ρ1 = ρ and ρn = ρn−1 · ρ for n > 1.
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A series s ∈ K 〈〈∆∗〉〉 is called LDL-definable if there is a formula ϕ ∈ LDL(K,∆)
such that s = ‖ϕ‖.

Theorem 6. [16] Let K be a commutative semiring and ∆ a finite alphabet. A
series s ∈ K 〈〈∆∗〉〉 is recognizable iff it is LDL-definable.

Now we are ready to introduce the LDL characterization for series over the
infinite alphabet Σ and the semiring K.

Definition 13. A series s over Σ and K is called VLDL-definable if there is a
subalphabet Γ ⊆fin Σ and an LDL-definable series s′ over ∆ = Γ ∪ Z ∪ {y} and K
such that

(s, w) =
∑

u∈preim∆(w)

(s′, u)

for every w ∈ Σ∗.

By Theorem 6 and Definition 13, using similar arguments as the ones in the
proof of Theorem 3, we obtain the subsequent result.

Theorem 7. Let K be a commutative semiring and Σ an infinite alphabet. Then
a series s ∈ K 〈〈Σ∗〉〉 is v-recognizable iff it is VLDL-definable.

8 Application to variable finite automata

In this section, we derive new results for the class of languages accepted by variable
finite automata (vfa for short) over the infinite alphabet Σ (cf. [21, 22]). We
need first to recall the definition of vfa from [21, 22] but we follow the terminology
used previously for wva. Let Z be a finite set of bounded variables and y a free
variable. Then, a variable finite automaton over Σ is a pair A = 〈Σ, A〉 where
A = (Q,ΓA, I, E, F ) is a finite automaton with input alphabet ΓA = ΣA ∪Z ∪ {y}
where ΣA ⊆fin Σ. The language of A is defined by

L(A) =
⋃

u∈L(A)

h∈V R(ΓA)

h(u).

Then the vfa A = 〈Σ, A〉 can be considered, in the obvious way, as a wva A′ over
the Boolean semiring B. Moreover, it holds

w ∈ L(A) iff (‖A′‖ , w) = 1

for every w ∈ Σ∗.
A language L ⊆ Σ∗ is called recognizable if there is a vfa A = 〈Σ, A〉 such that

L = L(A).

Theorem 8. Let Σ be an infinite alphabet. The class of recognizable languages
over Σ is closed under union, intersection, concatenation, Kleene star, and shuffle
product.5

5The closure under union and intersection has been also proved in [21, 22].
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Proof. In Theorem 1 we let K = B. Then for every L ⊆ Σ∗, clearly L is recognizable
iff its characteristic series 1L ∈ B 〈〈Σ∗〉〉 is v-recognizable. We conclude our result
by the idempotency property of B.

Next we define the notions of rational (resp. MSO-definable, LDL-definable)
languages over the infinite alphabet Σ.

Definition 14. Let Σ be an infinite alphabet. A language L over Σ is called rational
(resp. MSO-definable, LDL-definable) if there is a subalphabet Γ ⊆fin Σ and a
rational (resp. MSO-definable, LDL-definable) language L′ over ∆ = Γ ∪ Z ∪ {y}
such that

L =
⋃

u∈L′
h∈V R(∆)

h(u).

The next theorem establishes new characterizations for the class of languages
accepted by vfa.

Theorem 9. Let Σ be an infinite alphabet and L ⊆ Σ∗. Then the following state-
ments are equivalent.

i) L is recognizable.

ii) L is rational.

iii) L is MSO-definable.

iv) L is LDL-definable.

Proof. We take into account the definition of recognizable languages over the infi-
nite alphabet Σ and Definition 14. Then we obtain the equivalence (i) ⇐⇒ (ii)
by Kleene’s theorem, the equivalence (i) ⇐⇒ (iii) by Büchi’s theorem, and the
equivalence (i) ⇐⇒ (iv) by [20].

Conclusion

We introduced weighted variable automata over an infinite alphabet Σ and a com-
mutative semiring K. Our model is based on the variable automaton model of
[21, 22] but we followed the terminology used in [26, 27] for variable tree automata
over infinite ranked alphabets. Indeed, that terminology presents in a strict math-
ematical way the operation of (weighted) variable automata models. With the
additional assumption that K is idempotent we proved the closure of the class of
series accepted by our models under the operations of sum, and scalar, Hadamard,
Cauchy, and shuffle products, as well as star operation applied to proper series. We
introduced the notion of rational series over the infinite alphabet Σ and an arbi-
trary semiring K and stated a Kleene-Schützenberger type theorem. We defined a
weighted MSO logic over the infinite alphabet Σ and the commutative semiring K
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and proved a Büchi type theorem, extending the work of Droste and Gastin [12, 13]
to series over infinite alphabets. Finally, we considered a weighted LDL over the
infinite alphabet Σ and the commutative semiring K and proved the expressive
equivalence of its formulas to weighted variable automata.

It is an open problem whether we can relax the idempotency property of the
semiring K for the closure properties of the class V Rec(K,Σ). Furthermore, it
should be very interesting to study the weighted variable automata theory over
more general weight structures, contributing to real world applications, like for
instance over valuation monoids [15].
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