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A Parallel Interval Arithmetic-based Reliable

Computing Method on a GPU

Zsolt Bagóczkia and Balázs Bánhelyib

Abstract

Video cards have now outgrown their purpose of being only a simple tool
for graphic display. With their high speed video memories, lots of maths units
and parallelism, they can be very powerful accessories for general purpose
computing tasks. Our selected platform for testing is the CUDA (Compute
Unified Device Architecture), which offers us direct access to the virtual in-
struction set of the video card, and we are able to run our computations on
dedicated computing kernels. The CUDA development kit comes with a use-
ful toolbox and a wide range of GPU-based function libraries. In this parallel
environment, we implemented a reliable method based on the Branch-and-
Bound algorithm. This algorithm will give us the opportunity to use node
level (also called low-level or type 1) parallelization, since we do not modify
the searching trajectories; nor do we modify the dimensions of the Branch-
and-Bound tree [5]. For testing, we chose the circle covering problem. We
then scaled the problem up to three dimensions, and ran tests with sphere
covering problems as well.
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1 Introduction

Finding platforms for parallel computations is not at all easy and straightforward,
but depending on the task CUDA can be a great choice. With its computational
power and easy implementation, it not only lowers the runtime of our applications,
but speeds up the development process itself. The platform developed by NVIDIA
provides a powerful tool for GPGPU (General-Purpose computing on Graphics
Processing Units).

Two advantages of CUDA are that it provides direct access to the GPU’s vir-
tual instruction set and that our processes are computed on dedicated, computing
kernels. CUDA is an API, meaning that it is not a new programming language
one has to learn, but rather a tool that can be paired with different widely known
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and frequently used programming languages, and it is implementable in several
well-known development environments (e.g. Matlab, MS Visual Studio). When it
comes to number representation, it is important to know that while every video
card supports the integer number representation, the implementation of the float-
ing point number representation was not realized until the appearance of DirectX 9.
Double precision on video cards was not present until 2008, before the GT200 series
of NVIDIA and before the HD3000 and HD4000 series of AMD. In the more recent
GPU architectures there is a way to implement it, and many of the recent function
libraries include the double precision version of the functions, just like that in the
interval arithmetic function libraries by NVIDIA that we use. For efficiency pur-
poses it is highly advisable to use vector-based containers in our application, since
the GPU itself works with vectors too, and it is capable of performing operations
simultaneously on the elements of the vectors.

The GPU’s architecture, however, limits the usability of the card on various
types of computing, since it is specialized on executing operations on multiple data
flows at the same time. This design ensures the possibility of parallelization, so the
processes based on this principle are easy to parallelize. That is, in these cases, the
GPU can ensure computations many times faster than the CPU could. The GPU
was our primary choice, since we have to perform the same process on all of the
elements of a dataflow.

Our program uses the parallel version of the Branch-and-Bound method. During
the iterations of the algorithm, intervals bounding the input problem or a part
of the original problem will be divided into subintervals, and this process will be
executed on multiple subintervals simultaneously. The power of parallelizing will be
significant when handling a large number of input circles, and when the boundaries
of the circles are near the boundaries of our intervals, because in such cases the
division of the input problem has to be repeated very often, hence the number of
subintervals will be large. The possibilities of parallelizing the algorithm will be
discussed in Section 2.3.

2 The approximating method based on Branch-
and-Bound and interval arithmetic

2.1 Reliable methods

In numerical computations, most of the time it is not enough to give a rounded
up or rounded down result for our problems since we often need the most accurate
solution possible, within a minimal error range, if possible, with a very accurate
error estimation that can be used in further calculations. Lots of significant mathe-
matical proofs require this kind of reliability, but this requirement can be extended
to more realistic problems, such as different economic problems, where a miscalcu-
lation, or an incorrectly calculated error range can result in the loss of a great deal
of money.
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To solve these kinds of tasks, we will utilize so-called reliable numerical meth-
ods. To understand what we mean by a method being reliable, we need to be
aware of the cause of these expectations, namely the error. It may originate from
different problems, which might for instance be the inaccuracy of the input data,
the inaccuracy of the formulas used; or, in our case, the inaccuracy of the numeric
representation we use. These errors may accumulate throughout the whole compu-
tation process, and significantly distort the results. It is easy to see that because
of this distortion, when it is necessary to have exact results, the results must be
handled differently.

In short, we can call a method reliable if it gives us the upper and lower bounds
of our results, with a guaranteed error estimation at the end of the process.

2.2 Naive interval arithmetic, and its usage

In numerical analysis due to the finite precision of computers and estimations, we
can lose significant digits and this will leave us with inexact results and possibly
huge errors. Because of this, it is reasonable to demand that a method should be
able to give interval bounds of our computational results instead of a rounded up
or rounded down result. It provides both a lower and upper bound to the results,
hence instead of exact values, we have to compute with intervals. Whenever we
encounter a source of error like rounding, our intervals will keep expanding, but
the reliable method will give us an estimation of the error that we can include in
our future computations in order to get increasingly accurate results [2, 1].

On the video cards, to be able to utilize the GPU in our computations as
much as possible, we will have to define both intervals, and interval arithmetic
operations directly. For this, we will use the cuda_interval_rounded_arith.h

and cuda_interval_lib.h function libraries provided by NVIDIA, in which we
find all the required interval operations [6].

However, using one-dimensional intervals on their own will not be sufficient for
our two-dimensional test cases. Implementing these is not a hard task with the
mentioned function libraries, and the way to create multidimensional intervals is
fairly obvious.

The shapes used will be represented using two-dimensional intervals. The unit
square to cover will be stored in a two-dimensional interval, namely [[x1, y1], [x2, y2]],
where x = (0, 1) and y = (0, 1). With these two points, the unit square can be
extended in the plane. For the circles, a class is used to store the data structure.
The origin of the circles is stored in one, two-dimensional interval with an (x, y)
coordinate pair in the plane, where both x and y are intervals. Then we store the
square of the length of the radius as a simple interval (r2). For an illustration of
this, see Figure 1.

The most significant operation that had to be implemented using intervals is
the checking method itself, which is used to determine the covering of a subproblem
– a slice of the unit square – with a given circle. We check if the distance of the
points in the square from the origin of the circle are smaller than the radius of the
circle itself. In the Euclidean plane, the distance between two points can be found
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via the formula

distance(p1, p2) =
√

((p2,1 − p1,1)2 + (p2,2 − p1,2)2), (1)

where p1 = (p1,1, p1,2) and p2 = (p2,1, p2,2) are two-dimensional points in the Eu-
clidean plane. It is easy to see that it is not efficient to take the root of the sum for
each iteration, so the square of the radius of the circles will be stored in advance,
and only the square of the distance will be computed without taking the square
root each time. All we have to do now is to compare the squares of the two values
with the following formula:

sup(distance2) < inf(r2), (2)

where sup is the supremum value of the interval and inf is the infimum value.

Figure 1: Two-dimensional shapes

2.3 The Branch-and-Bound algorithm

The implementation of our reliable method is based on a simplified Branch-and-
Bound algorithm. The algorithm is well known and it is used widely in mathe-
matical proofs, mathematical or computational optimization and in solving linear
programming tasks.

The technique consists of two major substeps, namely the branching and the
bounding. In the branching process, we divide our problem into two (dichotome
branching) or more (polytome branching) subproblems, building an enumeration
tree. Every division creates a new branch in this tree. The bounding process will
give us the lower bound of the feasible solutions in the set of the solutions.

A simplified version of the algorithm is used with the goal to reliably prove any
given quality of a two dimensional interval. A checking method is used to help
in deciding whether the given quality is met. We discussed the checking method
in Section 2.2 above. To improve the runtime, and to avoid infinite loops due to
the infinite bisection of the subproblems when we bisect precisely on an interval
boundary, we give a constraint for the length of the new subintervals. Let us call this
constraint ε, the limit of the error. It should be mentioned that we cannot reliably
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decide whether the quality is not actually met. This problem originates from the
interval arithmetic we use; namely, there might be cases where the subintervals
created by our bisections are already smaller than the given error limit ε, so a
reliable proof only can be given if the given quality is actually met; otherwise it can
not be proven whether the problem did not meet the quality or if in the bisection
process, the result is already smaller than the given constraint.

The Branch-and-Bound algorithm is an easily parallelizable method [4]. We
use node level parallelization, which means that we evaluate the nodes (which are
the subproblems) simultaneously, and after all the evaluations are complete, we
compare the results and continue the process based on the results [9]. This kind of
parallelization is called low-level, or type 1 parallelization, since we will not modify
the search trajectories or the dimensions of the Branch-and-Bound tree [7]. For
this purpose, we shall use the computing cores of the CUDA supporting NVIDIA
video cards, since they contain significantly more cores than a standard CPU does.

Algorithm 1 A parallel B&B algorithm.

Funct PIBB(param, ε)

1: Set the working buffer BW := {param} and the result set L := {}
2: Calculate current thread ID: tid
3: while BW is not empty do
4: Pop v from BW and split along all sides, and take the subproblem which

belongs to our current thread: vtid
5: if maxWidth(vtid) < ε then Termination rule
6: Ltid = false
7: else if isMetQuality(vtid) is false then
8: Push vtid into BW
9: break

10: end if
11: Synchronize threads
12: if tid = 0 then
13: for i = 1, . . . , sizeOf(L) do
14: if Li = false then
15: print Cannot decide whether the quality is not met or the result is

smaller than ε
16: return false
17: end if
18: end for
19: end if
20: end while
21: print The quality is met
22: return true

The correctness of the single core, non-parallel version of the algorithm has
already been proven (see [3]).
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Figure 2: Test cases of circle covering

3 Test cases

3.1 Circle covering

The problem of circle covering [8] is the dual of the circle packing problem [12],
where our goal is to give the densest covering of different shapes with n congruent
circles. There are numerous proofs for both locally and globally optimal circle
covering cases (see [11]).

For now, let us put aside the optimization problem for the covering cases. Our
choice of testing was to place n × n circles on the Euclidean plane in such a way
that they will certainly cover the unit square. The most obvious idea for this is
to divide the diagonal of the square into n pieces, so the radius of a circle will be

r =
√

2
n . In order to ensure the reliability of our computation, we need to add an

error to the radius, which has to be bigger than our constraint (εr > ε). The reason
is that near the tangential points of the circles, the distance should be 0 – which is
smaller than our error range, causing the program to return with an undecidable
result. During the testing phase, we used the values ε = 10−5 and εr = 10−4.

As we mentioned earlier, the method we use is a simple Branch-and-Bound
based algorithm. The behaviour of it on the circle covering case is demonstrated
by the first five test cases shown in Figure 2. We divide the sides of an interval
into subintervals, and we check whether the given interval-piece is covered; then
we continuously divide and check as explained above, until the result is positive
or undecidable. The intervals will be divided up until the length of the intervals
attain the length of the ε constraint, and below that point the method returns with
an undecidable result.

When the number of the input circles is to the power of 2, the covering is
unequivocal, meaning that it is decidable with a minimal amount of subproblems -
in this case subboxes. For example, the n = 1, n = 2 and the n = 4 cases shown in
Figure 2 illustrate the clarity and simplicity of the decision. The reason is that in
these cases the dividing point of the intervals will be exactly on the intersections of
the circles. Within a few divisions, we will reach a state where all the subproblems
are the largest squares inside the circles, hence the circles will obviously cover the
squares.
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3.2 Expanding the circle covering problem to sphere cover-
ing

While solving circle covering problems in the Euclidean plane has a certain math-
ematical attraction, the world around us is three dimensional, hence we found it
more useful to extend the problem to higher dimensions.

Firstly, we will have to rescale the input data. To store the spheres, we will use
a class similar to the one we used to store circles, with a small modification to store
the third dimension coordinates as well. The figure we wish to cover in this case
is the unit cube, which is defined as the following: [[x1, y1], [x2, y2], [x3, y3]], where
[xi, yi] = [0, 1], if i = 1, 2, 3. For data storage, we can use the stack buffer we have
implemented earlier, which is accessible for both the CPU and GPU.

The n3 spheres are placed along the space diagonal of the cube, and along lines
parallel to this, which will ensure that they are tangential to each other. The radius
in this case can be calculated from the 3D-space diagonal.

When rescaling the checking method, the distance between two points in a three-
dimensional space is found using the usual distance metric in three dimensions.
For a (p, q) pair of points, where p = (p1, p2, p3), and q = (q1, q2, q3), the following
formula applies:

distance(p, q) =
√

((q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2). (3)

The covering is true when the distance between the points of an interval from
the centre of the given sphere are less than the radius of the sphere (for which we
store the squared value in the program). In this case, the subintervals will be cubes.

3.3 The test results

We ran the test cases first on 1, then on 2 CPU cores [10] as a benchmark for
the GPU runtime testing, which was conducted on 256 CUDA cores. The runtime
dependency on the number of circles can be clearly seen after a few cases, so we
ended up running 20 test cases on all three of the core numbers.

We conducted the tests on the following hardware: AsRock Anniversary H97
motherboard, Intel Pentium G3450 CPU, 2*4GB DDR3 Kingston KVR16N11S8/4
memory, ASUS STRIX GTX950 2GB GPU and the Windows 10 Pro operating
system.

The results of the runtime tests of the two-dimensional have been plotted in
Figure 3. The results we got completely matched our expectations. By increasing
the number of the circles, the runtimes also increased, and when we use more and
more cores for the computations, the runtimes display an inversely proportional
relation.

Our expectations for the three-dimensional problems were very similar to our
expectations for the two dimensional one. The reason we still found it advisable
to run the test cases in three dimensions is because of the increasing difference
between the CPU and GPU runtimes that will provide an even better way of
comparing them.
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Figure 3: The runtime of the program on various test cases, with a different number
of cores

The results of the tests can be seen in Figure 4. The values of the CPU and GPU
runtimes do not display any irregularities; in fact they are just as we expected them
to be; and the characteristics are almost identical to those we observed in the two
dimensional test cases. The interesting part is when we compare the two results.
Thanks to the parallelization on the GPU, the runtime of our program is never
more than a few seconds, even when the process on the CPU terminates with a
runtime of over an hour. This demonstrates the runtime differences much better
than the few-minute differences measured in the two-dimensional testcases. Table
1 gives the actual measured runtime values in seconds.

2 4 6 8 10 12 14 16 18 20

n
(n*n*n is the number of spheres)

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g1

0(
R

un
tim

e)
(lo

g1
0(

s)
)

CPU 2 cores
GPU 256 CUDA cores

Figure 4: Test cases for sphere covering
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As can be seen in both Figure 3 and Figure 4, there are certain exceptional
cases. We mentioned previously that when the input number of circles or spheres
is to the power of 2, the number of subboxes needed to be generated is minimal,
which is the same as the number of the input shapes. In other words, the number
of interval divisions made by the algorithm is low, therefore it should terminate
rapidly and lead to significantly lower runtimes compared to those cases where the
number of the input shapes was not to the power of 2.

Table 1: The results for the circle and the sphere covering test cases with different
numbers of circles. The results are given in seconds.

Circle Sphere
n CPU (s) GPU (s) CPU (s) GPU (s)

1 core 2 cores 256 cores 2 cores 256 cores
1 0.000 0.000 0.000034 0.000 0.000035
2 0.016 0.016 0.000036 0.015 0.00004
3 0.015 0.015 0.001071 0.188 0.0018
4 0.016 0.016 0.000049 0.032 0.0001
5 0.031 0.046 0.004135 2.703 0.0134
6 0.078 0.063 0.005870 7.516 0.0242
7 0.140 0.078 0.010647 18.750 0.05675
8 0.016 0.016 0.000098 0.390 0.000627
9 0.312 0.204 0.019143 72.609 0.1624
10 0.406 0.235 0.028382 124.656 0.2489
11 0.593 0.359 0.033319 219.141 0.3049
12 0.765 0.469 0.054516 332.390 0.5652
13 1.000 0.594 0.053796 557.468 0.5919
14 1.281 0.766 0.069647 824.157 0.8735
15 1.625 0.969 0.081841 1069.800 1.0883
16 0.110 0.063 0.000297 23.094 0.00503
17 2.422 1.375 0.097214 2127.890 1.6199
18 2.782 1.562 0.109281 2915.480 1.8684
19 3.422 1.906 0.132101 3848.860 2.3156
20 3.719 2.094 0.136277 4481.250 2.7

4 Conclusions

During the testing of our reliable method we had a chance to try it out in a paral-
lel, graphical computational environment. The test proved most informative, and
the results once again met our expectations. It was a good illustration of where
computing can not only be done fast and efficiently with supercomputers, but the
average PC user can also have the opportunity and tools to experiment even if they
are on a tight budget.
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When handling processes or computations that are straightforward to paral-
lelize, either at a tree or node level, it is recommended to exploit the power of the
GPU, and if one does, one of the best options is CUDA. It provides a friendly, eas-
ily operable platform and supports most of the well-known programming languages
like Java, C/C++, Python if not directly, then with the help of third party applica-
tions. The toolbox offers numerous process monitoring, examining opportunities,
and ready made function libraries that contain algorithms and methods specially
designed for GPU usage. Functions that are essential or indispensable in the daily
work routine of a programmer or a mathematician are available.

A big advantage of CUDA and computing on GPUs overall is the accessibility
of the video cards. Entry-level video cards are already able to solve parallel com-
puting tasks and produce satisfactory results, and the 256 CUDA cores we used
is roughly equal to the computational power of these cards. Cards supporting the
latest version of CUDA are available in the price range of 100e, which makes them
affordable even for regular PC users.

With the help of the readily scalable test cases, we got a good idea of the com-
puting power of different architectures and their limitations. Now we can say from
experience that when using approximation methods, a resource for computations
like a video card is a very efficient tool, especially because it removes a big burden
from our processor.

If we can reliably determine the properties for a circle, sphere, and hypersphere
covering problem, then the next step is obvious: developing an algorithm which is
able to give the optimal solution for the covering problems. In the future, we would
like to develop a global optimization method based on our GPU-powered parallel
method using interval arithmetic.
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