The structure of pairing strategies for k-in-a-row type games

Győrffy Lajos and London András and Makay Géza: The structure of pairing strategies for k-in-a-row type games. In: Acta cybernetica, (23) 2. pp. 561-572. (2017)

[thumbnail of actacyb_23_2_2017_8.pdf]
Preview
Cikk, tanulmány, mű
actacyb_23_2_2017_8.pdf

Download (930kB) | Preview

Abstract

In Maker-Breaker positional games two players, Maker and Breaker, play on a finite or infinite board with the goal of claiming or preventing the opponent from getting a finite winning set, respectively. For different games there are several winning strategies for Maker or Breaker. One class of winning strategies is the so-called pairing (paving) strategies. Here, we describe all possible pairing strategies for the 9-in-a-row game. Furthermore, we define a graph of the pairings, containing 194,543 vertices and 532,107 edges, in order to give them a structure. A complete characterization of the graph is also given.

Item Type: Article
Journal or Publication Title: Acta cybernetica
Date: 2017
Volume: 23
Number: 2
ISSN: 0324-721X
Page Range: pp. 561-572
Language: English
Place of Publication: Szeged
Related URLs: http://acta.bibl.u-szeged.hu/50022/
DOI: 10.14232/actacyb.23.2.2017.8
Uncontrolled Keywords: Játékelmélet, Kombinatorika, Hipergráf, Számítástechnika, Kibernetika
Additional Information: Bibliogr.: 572. p. ; ill. ; összefoglalás angol nyelven
Subjects: 01. Natural sciences
01. Natural sciences > 01.01. Mathematics
01. Natural sciences > 01.02. Computer and information sciences
Date Deposited: 2018. Feb. 13. 09:45
Last Modified: 2022. Jun. 20. 14:55
URI: http://acta.bibl.u-szeged.hu/id/eprint/50088

Actions (login required)

View Item View Item