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Abstract. In this paper we have constructed a class of non-hyperbolic exponential poly-
nomials that contains all the partial sums of the Riemann zeta function. An exponential
polynomial has been also defined to illustrate the complexity of the structure of the
set defined by the closure of the real projections of its zeros. The sensitivity of this
set, when the vector of delays is perturbed, has been analysed. These results have
immediate implications in the theory of the neutral differential equations.
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1 Introduction

We deal with exponential polynomials (EP for short) defined as

h(z, a, r) := 1−
N

∑
k=1

ake−zrk , N ≥ 1, rk > 0, ak ∈ R, z ∈ C.

The vectors a := (a1, a2, . . . , aN), r := (r1, r2, . . . , rN) are known as vector of coefficients, and
vector of delays, respectively. The closure of the real projections of the zeros of h(z, a, r) is the
set

Rh(z,a,r) =
{
<z : h(z, a, r) = 0

}
.

In the Example 2.1 of this document we have constructed an EP h(z, a, r) to illustrate, on one
hand the complicate nature of Rh(z,a,r), and on the other hand how the stability of Rh(z,a,r)
is modified when the vector of delays is perturbed. The main result of the paper is the
Theorem 3.3. There we have defined a class, say G, where any EP of G is non-hyperbolic, so
any EP of G is not uniformly asymptotically stable (see, for instance, [1, Definitions 5.1, 5.2]),
that contains to the family of EP having as components of the vectors of coefficients and delays
the numbers

ak := −1, rk := log(k + 1), k = 1, 2, . . . , N.
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Therefore G contains all the partial sums of the Riemann zeta function,

ζn(z) :=
n

∑
k=1

1
kz , n = N + 1.

The main result is based on the fact that the point 0 belongs to the sets Rg(z,a,r) when
g(z, a, r) ∈ G. Indeed, we firstly prove that 0 ∈ Rg(z,a,r) when g(z, a, r) is a partial sum ζn(z),
n ≥ 2. Then, by using a result of [1], the above property is also true for all the functions
belonging to G. That is, 0 is a point of Rg(z,a,r) for any g(z, a, r) ∈ G. Consequently, the non-
hyperbolicity of any EP of G follows. Regarding the first question, it is important to stress that
the vector of delays of ζn(z), for each n ≥ 2, is (log 2, log 3, . . . , log n) so its components are
not commensurable nor rationally independent (RI for short) for any n > 3. Thus, a priori, we
have a new difficulty to add to the problem of determining the structure of the sets Rg(z,a,r)
when g(z, a, r) coincides with a partial sum ζn(z) for n > 3. Indeed, besides the case that the
components of the vector of delays are commensurable (see [1, Lemma 2.4]), mostly of the
known results about the zeros of exponential polynomials, apply when the vector of delays
has RI components (see, for instance, [1, 3, 8, 9, 12–14] and [4, Chapter 3]).

The implications of the results of the present paper to the theory of functional difference
equations and neutral functional differential equations are immediate. In effect, as we can see
in [1], given the functional difference equation

x(t)−
N

∑
k=1

akx(t− rk) = 0, (1.1)

for any continuous function φ : [−ρ, 0] → R, where ρ ≥ max {rk : 1 ≤ k ≤ N}, there exists a
unique solution x(φ) of (1.1), for t ≥ −ρ, which satisfies x(φ)(t) = φ(t) for all t ∈ [−ρ, 0].
Therefore, by setting

(S(t)φ)(u) := x(φ)(t + u), u ∈ [−ρ, 0],

the set of operators
S(t) : C([−ρ, 0], R)→ C([−ρ, 0], R), t ≥ 0,

is a strongly continuous semi-group of bounded linear operators on the space C([−ρ, 0], R) of
continuous functions defined on [−ρ, 0] and valued in R. Moreover, if we define

β := inf
{

b : there exists A > 0 such that |S(t)| ≤ Aebt},

then
β = sup

{
<z : 1−∑N

k=1 ake−zrk = 0
}

.

Therefore the location of the zeros of the EP h(z, a, r) gives information about the order β of
the semi-group S(t).

The solution operator for the non-homogeneous neutral functional differential equation

d
dt

(
x(t)−

N

∑
k=1

akx(t− rk)

)
= b0x(t)−

N

∑
k=1

bkx(t− rk), b0, bk ∈ R, (1.2)

which usually appears in models of distributed networks [10, 11] and in the control of struc-
tures through delayed forcing depending on the acceleration [2], can be written as a sum of
a completely continuous operator and the operator S described above (see [5] and [1, p. 436].
This gives information about the spectrum of the solution operator (see again [1, p. 436]).
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Consequently, as it is noted in [12, Sect. 1], h(z, a, r) = 0 determines the essential spectrum of
the solution operator of (1.2) (a precise description of this property can be found in [6, Part 3]).

The solutions of equation (1.2) satisfy a spectrum-determined growth condition (see, for
instance, [7, Chapter 9, Corollary 3.1]), and the spectrum of the infinitesimal generator deter-
mines the stability of the zero solution, which can be sensitive to small changes in the delays
(see again [12, Section 1]). Actually,

sup
{
<z : 1−∑N

k=1 ake−zrk = 0
}

,

could not be continuous with respect to the vector of delays r := (r1, . . . , rN), like it is shown
in [1, Example 2.1], and the same occurs in our example below. Therefore small changes in
the delays can destabilise the equation, which is very important in control problems where
usually there are slight delays in the application of the control action.

In the next section, we analyse the sensibility of certain exponential polynomial h(z, a, r)
with respect to the vector of delays.

2 Delay perturbations

As in [1], we introduce the notation

d(x, B) := inf {|x− y| : y ∈ B} , δ(A, B) := sup {d(x, B) : x ∈ A} ,

and
δH(A, B) := max {δ(A, B), δ(B, A)} (Hausdorff distance),

where x ∈ R, and A, B are bounded subsets of R.
From [1, Lemma 2.5], Rh(z,a,r) is always lower semicontinuous in r at any vector r0, that is,

lim
r→r0

δ(Rh(z,a,r0), Rh(z,a,r)) = 0. (2.1)

However, in general, (2.1) is not true if we substitute δ by the Hausdorff distance δH. Indeed,
it occurs, for instance in an example of EP, given by Silkowski [15] and analysed in [1, Exam-
ple 2.1], with a vector of delays r having two commensurable components. In our example,
it is defined an EP h(z, a, r) with a vector of delays having three components being RI two
of them. As we prove below, the set Rh(z,a,r) is the union of an isolated point and a closed
interval.

Example 2.1. A study on the sensitivity of the exponential polynomial

h(z, a, r) := 1− 3
27z −

1
64z −

3
216z . (2.2)

The EP (2.2) is of the form 1−∑N
k=1 ake−zrk , with N = 3 and

a = (3, 1, 3), r = (log 27, log 64, log 216),

as vectors of coefficients and delays, respectively. Since log 216 = log 27 + 1
2 log 64, the com-

ponents of r are linearly dependent over the rationals, but log 27, log 64 are RI. Consider the
sequence of vectors of delays rn := (log 27, log 64, 1

n + log 216), n = 1, 2, . . . First we claim the
components of rn are RI for any fixed n ≥ 1. Otherwise, for some β1, β2 ∈ Q, we can write

1 = β1 log 2 + β2 log 3.
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It means that the number e would be an algebraic number, which is a contradiction because
e is transcendental. Consequently the claim follows. Now, let us define the sequence of
exponential polynomials

h(z, a, rn) := 1− 3e−z log 27 − e−z log 64 − 3e−z(log 216+ 1
n ), n ≥ 1. (2.3)

Our aim is now to find the sets Rh(z,a,rn). To do it we introduce a new sequence of EP

H(z, a, rn) := h(−z, a, rn), n = 1, 2, . . .

and then, by using the relation Rh(z,a,rn) = −RH(z,a,rn), we have enough to find the sets RH(z,a,rn).
By (2.3),

H(z, a, rn) = 1− 3ez log 27 − ez log 64 − 3ez(log 216+ 1
n ), n ≥ 1,

so, according to [13, Theorem 9], we firstly need to prove that the intermediate equations

64x = 1 + 27x3 + 216x3e
x
n , (2.4)

27x3 = 1 + 64x + 216x3e
x
n , (2.5)

do not have any real solution. Indeed, since 64x ≤ 1 for any x ≤ 0, we get

64x < 1 + 27x3 + 216x3e
x
n , for all n ≥ 1.

If x > 0, since 64x < 216x3e
x
n , it follows

64x < 1 + 27x3 + 216x3e
x
n , for all n ≥ 1.

Therefore the equation (2.4) has no real solution for any n ≥ 1. Regarding the equation (2.5),
by writing 27x3 as 33x+1, if x < −1/3, one has 27x3 < 1. Therefore

27x3 < 1 + 64x + 216x3e
x
n , for all n ≥ 1.

If x > 0, since 27x3 < 216x3e
x
n , we get

27x3 < 1 + 64x + 216x3e
x
n , for all n ≥ 1.

Consequently (2.5) has no real solution whether x ∈ R \ [−1/3, 0] for all n ≥ 1. It only remains
to prove that the equation (2.5) has no real solution in the interval [−1/3, 0], for all n ≥ 1.
Indeed, we write (2.5) as

27x(1− e
x
n · 8x)3 = 1 + 64x. (2.6)

Then, for any n ≥ 1, since e
−1
3n ≤ e

x
n for all x ∈ [−1/3, 0], we have

27x(1− e
x
n · 8x)3 ≤ 27x(1− e

−1
3n · 8x)3, for all n ≥ 1. (2.7)

Now we claim that

27x(1− e
−1
3n · 8x)3 < 1 + 64x, if x ∈ [−1/3, 0], for all n ≥ 1. (2.8)

Indeed, by means of the change of variable 3x + 1 = u, and defining An := e
−1
3n , the inequation

(2.8) becomes

3u
(

1− An

2
2u
)
< 1 +

1
4

22u, if u ∈ [0, 1], for all n ≥ 1. (2.9)
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For each n ≥ 1, it is not hard to check that the function

fn(u) := 3u
(

1− An

2
2u
)

, u ∈ [0, 1],

attains its maximum value at a point, say un, satisfying An
2 2un = log 3

log 6 . Therefore we have

un =
log
(

log 9
An log 6

)
log 2

=

1
3n + log

(
log 9
log 6

)
log 2

≤
1
3 + log

(
log 9
log 6

)
log 2

, for all n ≥ 1.

Then, by putting c :=
1
3+log

(
log 9
log 6

)
log 2 and taking into account that c ≈ 0.7752037030, it follows

fn(un) = 3un

(
1− log 3

log 6

)
≤ 3c

(
1− log 3

log 6

)
≈ 0.9065920697, for all n ≥ 1,

which means that
fn(u) < 1, for any u ∈ [0, 1], for all n ≥ 1.

On the other hand, the function

g(u) := 1 +
1
4

22u, u ∈ [0, 1],

is strictly increasing on [0, 1] and then its minimum value is g(0) = 5
4 . This proves (2.9), so

(2.8) follows too. Then the claim follows. Therefore, taking into account (2.7), the equation
(2.6) has no real solution in the interval [−1/3, 0] for any n ≥ 1. Consequently, (2.5) does not
have any real solution. This implies, by virtue of [13, Theorem 9], that RH(z,a,rn) has no gap for
all n ≥ 1 and then

RH(z,a,rn) = [αn, βn] for all n ≥ 1,

where αn, βn, by [13, (4.1)], are the unique real solutions of the equations

1 = 27x3 + 64x + 216x3e
x
n , 216x3e

x
n = 1 + 27x3 + 64x,

respectively. Since for large enough n, αn, βn can be roughly taken as −0.47 and 0.22, re-
spectively, the set RH(z,a,rn) ≈ [−0.47, 0.22]. Therefore, noticing h(z, a, rn) = H(−z, a, rn), for n
sufficiently large

Rh(z,a,rn) ≈ [−0.22, 0.47]. (2.10)

On the other hand, (2.2) can be written as a product, that is,

h(z, a, r) = h(z, a1, r1)h(z, a2, r2),

where
h(z, a1, r1) := 1 +

1
8z , h(z, a2, r2) := 1− 1

8z −
3

27z .

Therefore Rh(z,a,r) = Rh(z,a1,r1) ∪ Rh(z,a2,r2). Since all the zeros of h(z, a1, r1) are imaginary,
Rh(z,a1,r1) = {0}. Regarding the set Rh(z,a2,r2), we claim that

Rh(z,a2,r2) = [α, β], for some 0 < α < β.

Indeed, as done earlier, we define H(z, a2, r2) := h(−z, a2, r2). Then

H(z, a2, r2) = 1− 8z − 27z3 = 1− ez log 8 − 3ez log 27,
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so the vector r2 = (log 8, log 27) has RI components. It is immediate that the equation
8x = 1 + 27x3 has no real solution. Then, because of [13, Theorem 9], it follows that
RH(z,a2,r2) = [α′, β′] for some real numbers α′, β′. From [13, (4.1)], α′, β′ are the unique
real solutions of the equations

1 = 8x + 27x3, 27x3 = 1 + 8x,

respectively. An easy computation gives us the approximate values α′ ≈ −0.47 and β′ ≈
−0.17, so RH(z,a2,r2) ≈ [−0.47,−0.17]. Noticing H(z, a2, r2) := h(−z, a2, r2), we have

Rh(z,a2,r2) ≈ [0.17, 0.47], (2.11)

as claimed. Consequently

Rh(z,a,r) = Rh(z,a1,r1) ∪ Rh(z,a2,r2) ≈ {0} ∪ [0.17, 0.47]. (2.12)

However, from (2.10), Rh(z,a,rn) ≈ [−0.22, 0.47] for n sufficiently large and then, taking into
account (2.12), it is evident that

lim
n→∞

δH(Rh(z,a,rn), Rh(z,a,r)) 6= 0.

This means that the continuity of Rh(z,a,r) with respect to the Hausdorff metric at the vector
r = (log 27, log 64, log 216) fails. In other words, the perturbation of the vector of delays has
destabilised the closure of the set of the real part of the zeros of h(z, a, r). However, h(z, a, r)
(see (2.2)) can be also written of the form

g(z, a, s) := 1−
N

∑
k=1

ake−zγk ·s, (2.13)

where

N = 3, a = (3, 1, 3), s = (log 2, log 3), γ1 = (0, 3), γ2 = (6, 0), γ3 = (3, 3),

and γk · s is the inner product in R2 of γk by s, for k = 1, 2, 3. Since the components of s are
RI, by designating by t = (t1, t2) a generic vector of delays, we could apply [1, Theorem 2.2]
("If s is a fixed vector of (R+

∗ )
M, where M > 1 is an integer, R+

∗ := (0,+∞) and the components of s
are RI, then Rg(z,a,t) → Rg(z,a,s) in the Hausdorff metric as t→ s") obtaining

lim
t→s

δH(Rg(z,a,t), Rg(z,a,s)) = 0,

which means that the perturbation of the vector of delays s does not destabilise the set Rg(z,a,s).
It is important to stress that, in spite of Rh(z,a,r) = Rg(z,a,r), the vectors r, s, used in each rep-
resentation of (2.2), are distinct: r ∈ R3 and it has components rationally dependent whereas
s ∈ R2 with RI components.

3 The non-hyperbolicity of the class G

Let us first recall that an EP h(z, a, r) is said to be hyperbolic at a vector r0 if 0 /∈ Rh(z,a,r0) (see,
for instance, [1, Definition 5.1]). In this section we prove the non-hyperbolicity of a class of EP,
denoted by G, that contains all the partial sums of the Riemann zeta function. The functions
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of G will be of the form (2.13) and all them will be denoted as g(z, a, s). Therefore we begin by
expressing the partial sums ζn(z) under the form (2.13) with the peculiarity that the vectors
of delays will have RI components. To do it, for each n ≥ 2, it is enough to introduce vectors,
say Γj, for j = 1, . . . , n− 1, as follows.

Given the integer n ≥ 2, let kn be the number of primes not exceeding n. For each j =
1, . . . , n − 1, the vector Γj := (Γjl)l=1,2,...,kn of Rkn has components Γjl defined as the unique
non-negative integers such that each j + 1 is expressed of a unique form as

j + 1 = 2Γj13Γj2 · · · pΓjkn
kn

,

by virtue of the fundamental theorem of arithmetic. Then,

Γ1 = (1, 0, . . . , 0), Γ2 = (0, 1, . . . , 0), Γ3 = (2, 0, . . . , 0), . . . (3.1)

and so on. The vectors Γj allow us to write ζn(z) under the form

ζn(z) = 1 +
n−1

∑
j=1

e−zΓj·p,

where Γj · p denotes the usual inner product in Rkn of Γj by the vector p defined as

p := (log 2, log 3, log 5, . . . , log pkn). (3.2)

That is, the components of p are the logarithms of all the prime numbers not exceeding n, so
pkn denotes the last prime such that pkn ≤ n, and, consequently, p has RI components. We
define the class

G :=
{

g(z, a, r) = 1 + ∑n−1
j=1 e−zΓj·r, n ≥ 2, r ∈ (R+

∗ )
kn with RI components

}
,

where R+
∗ := (0,+∞). Therefore G contains all the partial sums of the Riemann zeta function

ζn(z), n ≥ 2.
In order to facilitate the reading of the manuscript, we state two results that will be used

below.

Theorem 3.1 (Sufficiency of [3, Theorem 2]). Let Gn(z) := ζn(−z), n ≥ 2, and G∗n(z) := Gn(z)−
pz

kn
, where pkn is the last prime not exceeding n > 2. If a real number c is such that the vertical line

x = c intersects the level curve |G∗n(z)| = pc
kn

, then c ∈ RGn(z) := {<z : Gn(z) = 0}.

Corollary 3.2 ([1, Corollary 3.1]). Let g(z, a, r) be the EP defined as

g(z, a, r) := a0 +
N

∑
j=1

aje−zγj·r, (3.3)

where N, M are positive integers, aj ∈ R for all 0 ≤ j ≤ N, the vectors γj ∈ RM, 1 ≤ j ≤ N, have
components which are non-negative integers and r is a vector of RM with positive components. Then,
the following statements are equivalent:

(i) 0 ∈ Rg(z,a,r0) for some r0 with RI components;

(ii) 0 ∈ Rg(z,a,r) for all r with RI components.
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The main result of the paper is the following.

Theorem 3.3. Any EP of G is non-hyperbolic.

Proof. We first claim that 0 ∈ Rζn(z) := {<z : ζn(z) = 0} for all n ≥ 2. Indeed, for n = 2,

ζ2(z) = 1+ 1
2z , whose zeros, by direct computation, are zk =

(2k+1)πi
log 2 , k ∈ Z. Then Rζ2(z) = {0}

and the claim follows for n = 2. Assume n > 2. We consider the analytic variety |G∗n(z)| = 1,
corresponding to the value c = 0 in Theorem 3.1. Noticing the definition of G∗n(z) (see again
Theorem 3.1), we have

G∗n(z) =
n

∑
m=1, m 6=pkn

mz =
n

∑
m=1, m 6=pkn

mxmiy =
n

∑
m=1, m 6=pkn

mxeiy log m

=
n

∑
m=1, m 6=pkn

mx(cos(y log m) + i sin(y log m)).

Then, by taking the square of the modulus of G∗n(z), and from the elementary trigonomet-
ric formulas

cos2 A + sin2 A = 1, cos(A− B) = cos A cos B + sin A sin B, A, B ∈ R,

the Cartesian equation of |G∗n(z)| = 1 is

n

∑
m=1, m 6=pkn

m2x + 2 · 1x
n

∑
m=2,m 6=pkn

mx cos
(
y log

(m
1

))
+ . . . + 2(n− 1)x

n

∑
m=n,m 6=pkn

mx cos
(
y log

( m
n−1

))
= 1. (3.4)

We can see in Figure 3.1 the graph of the analytic variety |G∗n(z)| = 1 for some values of n,
when <(z) ∈ [−1, 1] and =(z) ∈ [0, 200].

In equation (3.4), by canceling 1 and dividing by 2x+1, for x → −∞, we can see that the
horizontal lines

y = (2k + 1)
π

2 log 2
, k ∈ Z, (3.5)

are asymptotes of the infinitely many arc-connected components of the analytic variety
|G∗n(z)| = 1. On the other hand, since the left-hand side of (3.4) tends to ∞ when x → ∞, the
range of x is upper bounded by a number, say b+n,0. Therefore the domain of the variable x is
the interval (−∞, b+n,0), eventually could be (−∞, b+n,0] (in the first case the line x = b+n,0 is an
asymptote, in the second one x = b+n,0 intersects |G∗n(z)| = 1). Anyway, given x ∈ (−∞, b+n,0)

there is at least a point of |G∗n(z)| = 1 with abscissa x, and if x > b+n,0 there is no point of
the variety. If there is a point of |G∗n(z)| = 1 with abscissa b+n,0 we then say that b+n,0 is acces-
sible. Consequently, each arc-connected component of |G∗n(z)| = 1 is an open curve on the
left, directed to −∞, bounded by two asymptotes of the family (3.5), and closed on the right,
where it is bounded by the line x = b+n,0. Thus if z0 is a zero of G∗n(z) with <z0 ≥ 0, whose
existence is assured by [4, Chapter 3, Theorem 3.19], z0 is an interior point of |G∗n(z)| = 1
because |G∗n(z0)| = 0 < 1 (the variety |G∗n(z)| = 1 produces two open sets of interior and
exterior points: {z : |G∗n(z)| < 1} and {z : |G∗n(z)| > 1}, respectively). Therefore there exists a
point z1 of |G∗n(z)| = 1 with <z0 < <z1. It means that b+n,0 ≥ <z1 > <z0 ≥ 0, so

b+n,0 > 0, for all n > 2. (3.6)
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Graph of
∣∣G∗3 (z)∣∣ = 1 Graph of

∣∣G∗4 (z)∣∣ = 1.

Graph of
∣∣G∗5 (z)∣∣ = 1 Graph of

∣∣G∗6 (z)∣∣ = 1.

Figure 3.1: Graph of the analytic variety |G∗n(z)| = 1, for some values of n.

Then, since the domain of x in |G∗n(z)| = 1 is the interval (−∞, b+n,0) (eventually it could be
(−∞, b+n,0]), from (3.6), it follows that the line x = 0 intersects |G∗n(z)| = 1. Consequently, by
Theorem 3.1, 0 ∈ RGn(z), for all n > 2. Since Gn(z) := ζn(−z), it follows that Rζn(z) = −RGn(z)
and then 0 ∈ Rζn(z), for all n > 2. As we have just proved that 0 ∈ Rζ2(z), we get

0 ∈ Rζn(z) for all n ≥ 2. (3.7)

Since, for each n ≥ 2, ζn(z) is an EP of the form (3.3) with N = n− 1, M = kn, γj = Γj defined
in (3.1), r = p defined in (3.2) and aj = 1 for all 0 ≤ j ≤ N, by applying Corollary 3.2, we
deduce that 0 ∈ Rg(z,a,r) for any g(z, a, r) ∈ G. Consequently, from [1, Definition 5.1], it follows
that any EP of G is non-hyperbolic. The proof is now complete.
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