Electronic Journal of Qualitative Theory of Differential Equations
2017, No. 68, 1-12; https://doi.org/10.14232/ejqtde.2017.1.68 www.math.u-szeged.hu/ejqtde/

The number of zeros of Abelian integrals for a
perturbation of a hyper-elliptic Hamiltonian system
with a nilpotent center and a cuspidal loop

Ali Atabaigi ™

Razi University, Kermanshah, 67149-67346, Iran

Received 1 December 2015, appeared 26 October 2017
Communicated by John R. Graef

Abstract. In this paper we consider the number of isolated zeros of Abelian integrals
associated to the perturbed system ¥ =y, ¥ = —x3(x — 1)2 + e(a + Bx + yx®)y, where
e > 0is small and &, 8, ¥ € R. The unperturbed system has a cuspidal loop and a
nilpotent center. It is proved that three is the upper bound for the number of isolated
zeros of Abelian integrals, and there exists some &, § and 7 such that the Abelian
integrals could have three zeros which means three limit cycles could bifurcate from
the nilpotent center and period annulus. The proof is based on a Chebyshev criterion
for Abelian integrals, asymptotic behaviors of Abelian integrals and some techniques
from polynomial algebra.
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1 Introduction
Consider the following polynomial Liénard equations of type (m, n), i.e.

x=y, y=-g8x)—¢f(x)y, (1.1)

where ¢ > 0 is small, f(x) and g(x) are polynomials of degree m and n, respectively. For ¢ = 0
the above system reduces to

x=y, y=-8x), (1.2)

which is a Hamiltonian system with the Hamiltonian function

Hiny) = 27 +6), G = [ g

where G is a polynomial in x of degree n + 1. The level curves are rational for n = 0, 1, elliptic
for n = 2,3 and hyper-elliptic for n > 4. Suppose the unperturbed system (1.2) has a family of
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Figure 1.1: The level curves of H(x,y) = h.

periodic orbits I, defined by H(x,y) = h. Then for the associated perturbed system (1.1) there
exists an Abelian integral or so-called first-order Melnikov function of the following form:

I(h,6) = — fr )y

According to the Poincaré-Pontryagin—-Andronov theorem, it is known that the total number
of isolated zeros (counting their multiplicities) of the Abelian integral I(h, §) is an upper bound
for the number of limit cycles bifurcated from the periodic annulus of the unperturbed system
(1.2). The second part of Hilbert’s 16th problem for system (1.1), asks for an upper bound for
the number of limit cycles in terms of m and n and their relative distributions.

Some of the previous works that focus on hyper-elliptic case are as follows: Asheghi et al.
in [1] studied the Chebyshev’s property of a 3-dimensional vector space of Abelian integrals
by integrating the 1-form (ag + 1x + a2x?)ydx over the compact level curves of a hyper-elliptic
Hamiltonian of degree 7. Wang in [8] investigated the number of different phase portraits of
hyper-elliptic Hamiltonian system of degree five and obtained 40 different phase portraits.
Kazemi et al. in [5] studied the zeros of Abelian integrals obtained by integrating 1-form
(a+bx + cx® + x*)ydx over the compact level curves of (1.1)|.—o with g(x) = —x(x — 3)(x — 1)3
and proved that the upper bound of the number of isolated zeros of Abelian integral is
three. Wang in [7] studied the zeros of Abelian integrals obtained by integrating 1-form
(a + Bx + yx?)ydx over the compact level curves of the hyper-elliptic Hamiltonian of degree
five H(x,y) = y; + 3xt — %xS and proved that the upper bound of the number of isolated
zeros of Abelian integral is two.

In this paper, we provide a study of the zeros of Abelian integrals obtained by integrating
the 1-form y(a + Bx + yx3)dx over the compact level curves of the following Hamiltonian

system
X =1y,
{y' - 1R "

which has a nilpotent center at (0,0), a cusp point at (1,0) and a cuspidal loop T 1 (see
Fig. 1.1).
Inside and outside I’ 1 all orbits I'y, are closed,
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2 {(x y)[H(x, y) = hi,

with H(x,y) = 3>+ A(x) where A(x) = 1 x* — 22+ 2x%, and h € (0, &) U (&, +0). When
h — 0%, T'j, shrinks t the center (0,0), and when h — %, then I', tends to T 1 from the inside
and outside (see Fig. 1.1).

We intend to study a perturbation of (1.3) of the from:

X =y,
14
{y': —x3(x —1)2 +e(a + Bx + 23y, (14

which is a Liénard system of type (3,5). Here, 0 < |¢] < 1, a,B and <y are arbitrary real
parameters. According to classification in [8] system (1.3) is the case (14) (« > 0).
Associated to the given perturbation we have the following Abelian integral

1(h,6) = ?gh(oc + Bx + yx®)ydx = aly(h) + BIy(h) + I3 (h), he(0,%) (1.5)

where [ (h) = frh xkydx, k=0,1,3, and 6 = («, B, 7y) is the parameter vector.

A limit cycle is an isolated periodic orbit in the set of periodic orbits. The Abelian integral
I(h,d) is a suitable tool for studying limit cycles of system (1.4). We recall that a limit cycle of
system (1.4) corresponds to an isolated zero of the Abelian integral I(h, ).

The rest of the paper is presented in two sections. In Section 2, we show that the Abelian
integral (1.5) has the Chebyshev property with accuracy one for i € (0, 61—0). Hence, by the
criterion introduced in [6] we get that the upper bound for the number of isolated zeros of
I(h,6) in any compact subinterval of (0, &) is three. In Section 3, we calculate the asymptotic
expansions of Abelian integral I(/, ) near the nilpotent center and the cuspidal loop, using
that we get that there exists some «, 8,y such that the Abelian integral I(h,J) can have three
isolated zeros in (0, %), which means that the system (1.4) can have three limit cycles.

2 Bifurcation of limit cycles from the period annulus

In this section we study the maximum number of limit cycles which bifurcate from the period
annulus of system (1.3) for h € (0, &). We use an algebraic criterion given in [6] to study the

related Abelian integral I(h, ) of system (1.4). But first we give the following definitions.

Definition 2.1. The base functions {I;(h,0), i =0,2,...,n — 1} in the Abelian integral I(, J)
is said to be a Chebyshev system with accuracy k, if the number of zeros of any nontrivial
linear combination

wolo(h) + a1l (h) + -+ Dén_lln_l(h),

counted with multiplicity is at most n + k — 1.

Definition 2.2. Let fy, f1,..., fr—1 be analytic functions on an open interval L of R. The con-
tinuous Wronskian of (fo, f1,..., fr—1) atx € Lis

fggxi flj_lgxg
W[fo,fl,...,fk—le) = det (f](l)(x)> . fO X ' fkfl X

0<ij<k—1

fo(kfl)(x) fk(ﬁl)(x)
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Consider a Hamiltonian function with the following special form
H(x,y) = A(x) + B(x)y™",

which is analytic in some open subset of the plane and has a local minimum at the origin. We
fix that H(0,0) = 0, then (0,0) is the center critical point of the associated vector field. So,
there exists a period annulus P foliated by the set of ovals I'; C {H(x,y) = h} surrounding
the origin. The period annulus can be parametrized by the energy levels /1 € (0, ) for some
ho € (0, +c0]. In the sequel, we denote the projection of P on the x-axis by (xy, x,). It is easy to
verify that, under the above assumptions, xA’(x) > 0 for any x € (x4, x,) \ {0} and B(0) > 0.
Thus by implicit function theorem, there exists a smooth unique analytic function z(x) with
xp < z(x) < 0 such that A(x) = A(z(x)) for 0 < x < x,. Theorem A in [6] is as follows.

Theorem 2.3. Let us consider the Abelian integrals

Ii(h, ) = ﬁ(x)y2s_1dx, i=0,1,...,n—1,
Ty
where, for each h € (0,hy), Ty is the oval surrounding the origin inside the level curve {A(x) +
B(x)y*" = h}. f; are analytic functions on (x;,x,) and s € N. Fori =0,1,...,n — 1, define

fz(x) — mi(x) = wi(x) — a)i(Z(X))-

) B

If the following conditions are verified:

(i) W[mo, my,my, ..., m;|(x) is non-vanishing on (0, x,) fori =0,1,...,n—2,

(i) Wmo, my, my, ..., my_1](x) has k zeros on (0, x,) counted with multiplicities, and
(iii) s > m(n+k—2),

then the base functions {I;(h,6), i = 0,1,...,n — 1} form a Chebyshev system with accuracy
k on (0,hg). Here W[mg, my,my, ..., mg|(x) denotes the continuous Wronskian of the functions
{mgy, my,my, ..., m} at x € (0,x,).

The efficiency of Theorem 2.3 comes from the fact that finding an upper bound for the
number of zeros of Abelian integrals I(h, ) follows just from some pure algebraic computa-
tions.

In the sequel, we will apply Theorem 2.3 to show that the Abelian integral (1.5)

1(h,6) = 75 (ot v )ydx = alp(h) + BL (h) + v 13 (h),

1

has Chebyshev property with accuracy one in the interval (0, g

orem 2.3 we have

). Using the notation in The-

1 1 2 1 1
H(x,y) = §y2+ ZX4 - gx5 + gxé =: §y2+A(x),

and s =1, n = 3. The period annulus inside I 1 is foliated by the level curves

I ={(xy) €R*|H(x,y)=h, 0<h< %},
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Figure 2.1: The involution of x and z(x) defined by A(x) = A(z(x)).

whose images on the x-axis is an open interval (x;,1), where

1 1
Y= {28420 VI0 4 — 3 ~ 5 ~ —0.4370801776,

5v/28 +10+v10

is the intersection point of I L with negative half x-axis, which satisfies

Ax) = A1) = — (10x° +6x* +3x+1) (x—1)> =0. 2.1)

60(

It is easy to check that xA’(x) > 0 for all x € (x;,1) \ {0}. Therefore, there exists an analytic
function z(x) with x; < z(x) < 0 such that A(x) = A(z(x)) as 0 < x < 1, see Fig. 2.1.

To apply Theorem 2.3, we notice that Iy(h) = frh xkydx, hence m =1, n =3 and s = 1, so
that the hypothesis (c) (s > m(n +k —2)) of Theorem 2.3 is not fulfilled (note that, as we shall
see, in our case k = 1). However it is possible to overcome this problem using the following
result (see Lemma 4.1 in [2]), and obtain new Abelian integrals for which the corresponding s
is large enough to verify the inequality.

Lemma 2.4. Let 7y, be an oval inside the level curve { A(x) + B(x)y? = h} and we consider a function
F such that F/ A’ is analytic at x = 0. Then, for any k € IN,

k=27, _ k
[mF(x)y dx—/ G(x)y*dx,

Th
where G(x) = 2(BE)'(x) — (BF) ().

Here we have to promote the power s to three such that the condition s > n — 1 holds.
On the oval I';, we have

1 VY
Ii(h,6) = ﬁﬁ A(x) + 5 )x ydx
h

21h < 2x1 A (x)ydx + f 3dx> i=0,1,2,3. (2.2)

Now we apply Lemma 2.4 with k = 3 and F(x) = 2x'A(x) to the first integral above to get

2x' A(x)ydx :]{ Gi(x)y’dx,
Ly Ly
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where G;(x) = %(Zﬁfz‘ig‘)) =

8i
S0y and

gi = 10(1 4 1) x'3 — (30 4 34i) x'*2 + (33 + 39i) x' "1 — (154 15{) «'.

By (2.2) we obtain

o) = % T (¥4 Gi()) yidx = ﬁ fgh (AR) + ) +Gi(x)ydx
= 41? <]§h 2(x' + Gi(x))A(x)y’dx + frh(xi + Gi(x))y5dx) : (2.3)

Again we apply Lemma 2.4 with k = 5 and F(x) = 2(x' + G;(x))A(x) to the first integral
above to get

fi:h 2(x' + Gi(x))A(x)yPdx = 7? Gi(x)y dx,

Y Lh

= () = 4 (2AHGE)AR)Y &
where Gj(x) = £ (== A,(z) =) = 13500 (x—1)°" and
g; = (1000 + 11007 + 100#*) x'™® — (6000 + 70007 + 680 %) x'
+ (15270 4 18674 i + 1936 i) x'** + (—21276 — 26784 i — 2952) x'*3
+ (218407 + 17271 + 2541 %) x' ™2 — (7830 + 96307 + 1170%) x' !
+ (1575 4 18001 + 225 %) x'.

From (2.3) we obtain

4h*1;(h,8) = 2 fi(x)ydx = I;(h,9), (2.4)

where fi(x) = x' + G;j(x) + G;(x). It is clear that {Iy,[;, [z} is a Chebyshev system with
accuracy one on (0, %) if and only if {Iy, I1, I3} is a Chebyshev system with accuracy one on
the same interval. As s = 3, n = 3 and the condition s > n — 1 is satisfied, now, we can
apply Theorem 2.3 to study the Chebyshev property of {Iy, I;, I3} in the interval (0, ). For

7 60
i=0,1,3, let

)= B ) = @) - @)

wi(x

We know that for x; < z < 0 < x < 1, A(x) = A(z(x)) is equivalent to &(x —z)q(x,z) = 0,
where

q(x,z) =10x° — 24 x* +10zx* +15x% — 24 2x% 4 102%4°
+152zx% — 24 2%x% + 10 x%2° + 15 22x — 24 x7°
+10xz* +152% — 242* +102°.

So, A(x) = A(z(x)) is equivalent to g(x,z(x)) = 0. We need to prove that {myg, m1, ms} satisfy
hypothesis (i)-(iii) of Theorem 2.3 with k = 1. To do this we prove the following lemma.



The number of zeros of Abelian integrals 7

Lemma 2.5.
(i) W[mp](x) # 0 forall x € (0,1);
(i) W[mo, m1](x) # 0 for all x € (0,1);
(iii) Wmo, mq, m3](x) has one zero in (0,1) counted with multiplicities.

Proof. Using Maple 15 we compute the above three Wronskians. We find out that

B (x—z)p1(x,z2)
WlmoJ(x) = - (x—1)%x(z— 1)z
- (x _z) 2 (x,2)
Wl m (3 = o000 (2 — 1% 2 (x — 1)® x#A (m,2)’
(x — z) 3 (x,2)

Whrto, e ml(3) = 7546875000 (2 - )72 (x — 12 (8 (1,2

where z = z(x) is defined by the equation g(x,z(x)) =0, x; <z < 0 < x < 1, implicitly. And
p1(x,z), p2(x,z) and p3(x,z) are polynomials in (x,z). Moreover the resultant between

A(x,z) = 10x* — 24 x% 4+ 202x° + 15 x% — 48 zx? + 30 22«2
+30zx — 722%x + 40 x2% + 452% — 96 2% + 50 2%,

and g(x, z) with respect to z is

12960000 x° (x —1)2 (102 + 6x% +3x + 1) (1022 — 24 x + 15)°,

which has no roots in the interval (0,1). This proves that the functions W{[mg, m;] and
W{myg, my, ms] are well defined.
Therefore by Theorem 2.3, we need to check if p;(x,z) # 0 for all (x, z) satisfying q(x,z) =
Dand x; <z<0<x<1,fori=1,2,3.
Using Maple 15, we calculate the resultant r;(x) between p;(x,z) and g(x,z) with respect
to z, to obtain
r1(x) = x°(x — 1)1, (x),

where kq(x) is a polynomial in x of degree 80. Applying Sturm’s Theorem, we know that
ki(x) # 0in (0,1), thus there exist no points (x,z) € (0,1) x (x;,0) such that satisfy p;(x,z) =
0 and ¢q(x,z) = 0, simultaneously, which implies that W[my](x) # 0 for x € (0,1).

Next we consider the resultant r,(x) between px(x,z) and g(x,z) with respect to z, and
obtain

ra(x) = x1(x — 1)®ky(x),

where ki(x) is a polynomial in x of degree 128. Applying Sturm’s theorem, we get that
ka(x) # 0in (0,1), which implies that W([my, m1](x) # 0 for x € (0,1).
Finally, we compute the resultant r3(x) between p3(x,z) and g(x, z) to get

r3(x) = x¥(x — 1)*k3(x),

where k3(x) is a polynomial in x of degree 198. By applying Sturm’s theorem, we get that
k3(x) has only one root in (0,1). Using the algorithm of real root isolation to k3(x) and using
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function realroot with accuracy 1455 in Maple 15, we get that the root is located in the closed
: 57 913

subinterval [27, 1551 )-

On the other hand, we get the resultant r3(z) between p3(x,z) and q(x,z) with respect to

x as follows
r3(z) = 224 (z — 1)%k3(2),

where k3(z) is a polynomial in z of degree 198. By applying Sturm'’s theorem, we get that
k3(z) has only one root in (x;,0). Again, using algorithm of real root isolation to k3(z) and
using function realroot with accuracy tp5; in Maple 15, we can prove that the root is in the
closed subinterval [—233, — 421,

Therefore, there exists a unique x* € (0,1), with ?TZ <x*< 19()%, so that W[myg, my, m3](x*) =0.
We will now show that x* is simple root. Let us denote W{myg, m1, m3](x) by Wo(x,z(x)) and
calculate its derivative, that is

dWo  oWo oWy _ dz (x — 2z)3p4(x, 2)

x  ox oz Ndx (x —1)16x%(z — 1)1629(A(x,2))>’

where ps(x,z) is a polynomial in (x,z). The resultant with respect to z between g(x,z) and
pa(x,z) is

ra(x) = %2 (x = 1)% (1022 — 24x + 15)° (1023 + 632 + 3x + 1) " ky(x),

where k4(x) is a polynomial of degree 220 in x. By applying Sturm’s theorem, we find that
ks(x) has no zeros in [27, 7). Therefore, W{mg, m1, m3](x) has exactly one simple root in the
interval (0,1). This ends the proof. O

So far we have proved the following.

Theorem 2.6. The collection {Iy(h),I(h),Is(h)} is a Chebyshev system with accuracy one on the

interval (0, %). Hence, if the Abelian integral 1(h,d) is not identical to zero, then for all values of

parameters («, B, 7y) it has at most three zeros, counting multiplicities, in any compact subinterval of
(0, &), and the number of limit cycles bifurcating from the periodic annulus is at most three.

3 Asymptotic expansions of Abelian integral I(h, J)

In this section we study the asymptotic expansion of Abelian integral I(h,0) at h = 0 and
h = %, respectively. Using these asymptotic expansions we prove the following theorem.

Theorem 3.1. Consider the Abelian integral (1.5). If v # 0, Then 1(h, ) can have
(i) two zeros near the h = 0 for some (x, B);
(ii) three zeros near the h = % for some (a, B);

(iii) three zeros in (0, %) for some («, B).

Proof. i) We follow the idea given in [4] and [7] and adapt our notations according to [7]. To
obtain the asymptotic expansion of Abelian integral I(h,é) as h — 07, we compute I(h,J)
near the nilpotent center (0,0). Let us denote the intersection points of the oval I';, with the
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negative and positive half x-axis by x;(h) and x,(h), respectively. We know that A (x) =
x* (1 - &x+ £x?), introduce

A(x) =u*, or \/1—§x+ X2 =/2u. (3.1)
w(xu)—x\/1—§x+fx2 V2u. (3.2)

Applying the implicit function theorem to ¥(x,u) = 0 at (x,u) = (0,0), we know that there
exists a unique analytic function x = ¢(u) and a small positive number 0 < p < 1 such that
Y(@(u),u) =0 for |u| < p. It can be checked that ¢(u) has the following expression:

Let

¢ (u) =V2u+ - u+—\f +Z§g ! iiggxf +o(u?). (3.3)

Using transformation (3.1) the Abelian integral (1.5) is written to
x,(h) 3
I(h,8) =22 o (0 + Bx + yx°)/h — A(x)dx
X h

1
hi

= 2\@/ . (e + Bx + 'yx3)|x:4,(u) Vh—utg'(u)du
_hi

+o0
=2v2Y a(6)Ey, (3.4)
k=0
where the first five coefficients are as follows
= \/Ea,
a = g o+ 2 :B/
59
apy = \f2 <25 X+ = ,B>
2944 568
= —_— 4
4 375 75 PTAY
a4 = 5oo L /3 (3433 & + 3240 B+ 2000),
and
E, — / Ch—ddu,  k=0,12,... (3.5)
Letu = h%s, then we have
Ek—hw/ k1 —stds = 't / s5v/1 — s4ds.

Using the change of variable s* = T, we obtain

T (—1F s 1 s | 14+ (=1)k k+1 3
Ek:(élc)ﬂk/() T (1”)%"17:(4)}”5( i '2>’
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where B(a, b) is the following Beta-function fora >0, b > 0,

B(a,b) = /01 11 — 1) 1dr.

It is obvious that E; = 0 when k is odd. From the relation between Beta-function and Gamma-
function,
_ T(a)r(d)
Plab) = T(a+b)’

we compute the three elliptic integrals Ej for k = 0, 2,4 as follows

V2 V2

3.3 2V2 5 3.7
Ey = ——_m2h3, E, = Z22T2(3) s, Es = 1h1, 3.6
T =svm W B amgT oo
where I'(a) = 0+°° x"~le=*dx is the Gamma-function and I'(3) ~ 1.225416702.
Substituting (3.6) into (3.4) we get
I(h,8) = hi[co(8) + ca(5)h? + () + - -], 3.7)
where
4\/§ 3
co(d) = ———m2x,
8v2 ,(3\ (59 12
—2¥Ver2(2) (= e
200) = 5= (4) <25‘J“r 5 5)’
2v2 s
0) = —————=—m2 (3433 a0 + 3240 8 4 20007) .
When ¢y(6) = c2(0) = 0, we get a unique solution
(a*, B*) = (0,0). (3.8)
Substituting (3.8) into c4(6), we get ca(a*, B*,7) = zggggjé) n%’y and as vy # 0,
a(C(), Cz)
rank —————(a*, B*,v) =2,
aw g P

hence by Theorem 1.3 in [4], we get that, if v # 0, then the Abelian integral (1.5) can have at
least two zeros for some (&, §) near (a*, §*). Therefore the perturbed system (1.4) could have
at least two limit cycles near the origin, for e sufficiently small.

ii) For the expansion of I(h, §) near h = %, we introduce the change of variables x = X+ 1, y =
Y and still denote X, Y by x,y, respectively. Therefore, system (1.4) becomes

X =y,

y=—x*(x+1)°+eq(x,y), (3.9)

where
qx,y) = (e +B+7+(B+371)x+37vx*+72°)y.
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For ¢ = 0 system (3.9) has the Hamiltonian

- 1 1 3 3 1
H(x,y):§y2+8x6+5x5+1x4+§x3.

This system has a cusp critical point at (0,0) and a cuspidal loop I'y. There are two families
of periodic orbits of (3.9) near Iy given by I;" : H(x,y) = h, 0 < +h < 1. Then the two
corresponding Abelian integrals are given by

I(h) = ]érhi gdx.
It was proved in [3] that
I_(h) = ¢o+ Boota|h|# + (&2 + te1)h + Baos| | — %Boof4lh|% +0(1?), (3.10)
for0 < —h <« 1, and
1. (h) = & — Bjpei |]? + (e2 + t21)h — Biofal |5 — %Ba‘oarm% +0(1), (3.11)

for 0 < h < 1, where By > 0, Bj, < 0, Bip > 0 and Bj, < 0 are some constants and ¢,t* € R
and

Co = gdx = —0.3893984390 « — 0.06298450076 5 — 0.02583505112 1,
Ty

&1 =2V2(a+pB+7) V3,
&= 7{ (qy — & — B — )dt = 21.18278454  + 14.41919762 B, (3.12)
Iy

o3 = V2323 (=28 +3a),

_ 3 1419 73 2
= - V2 - V2B - S V2.
& 18\@[320 Va2 vap -2 vy

By (3.12), when ¢y = ¢; = 0, we get a unique solution
(@, B) = (0.1138108557, —1.1138108567 ). (3.13)
Substituting (3.13) into ¢, we get ¢ (&, B, y) = 5.12252570 and as 7y # 0,

8(5(), C_l) =
rank W(w, B,v) =2
Thus, by Theorem 3.2 of [3] we know that there exists some (a, B) close to (&, B) for which the
Abelian integral (1.5) could have 3 zeros near i = {. This means that the perturbed system
(1.4) could have 3 limit cycles near cuspidal loop, for ¢ sufficiently small.
There are two different distributions of 3 limit cycles near cuspidal loop: (1,2) and (2,1),
where (i, j) denotes that i limit cycles are outside the loop while j limit cycles inside the loop.

iii) From the calculations made along the proof of parts i) and ii) when cy(d) = c2(6) = 0, we
get a unique solution (a*, B*) = (0, 0). Substituting this into c4(4) and ¢y, we get c4(a*, B*, ) =
4000v2_ 3. and &o(a*, B*,y) = —0.02583505112. Hence as 7 # 0,

262512(3)
d(co, c2)

I B, 7)
thus using Theorem 2.1 given in [10] we get the result. This ends the proof of the theorem. [J

rank (a*,B%,7v) =2, ca(a”, B*,v)co(a”, B%,v) <O,
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