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Abstract. We establish new oscillation and nonoscillation criteria for the perturbed
generalized Riemann–Weber half-linear equation with critical coefficients

(Φ(x′))′ +

(
γp

tp +
n

∑
j=1

µp

tpLog2
j t

+ c̃(t)

)
Φ(x) = 0

in terms of the expression

1
logn+1 t

∫ t
c̃(s)sp−1 Log ns log2

n+1 s ds.

The obtained criteria complement results of [O. Došlý, Electron. J. Qual. Theory Differ.
Equ., Proc. 10’th Coll. Qualitative Theory of Diff. Equ. 2016, No. 10, 1–14].
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1 Introduction

Consider the half-linear differential equation of the form

L[x] := (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn x, p > 1, (1.1)

where r, c are continuous functions, r(t) > 0 and t ∈ [T, ∞) for some T ∈ R. The terminology
half-linear comes from the fact that the solution space of (1.1) is homogenous, but generally not
additive for p 6= 2. In the special case p = 2 this equation reduces to the linear Sturm–Liouville
differential equation

(r(t)x′)′ + c(t)x = 0. (1.2)

In this paper we deal with oscillatory properties of equations of the form (1.1). It is well known
that the classical linear Sturmian theory of (1.2) can be naturally extended also to (1.1), see [8].
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In particular, (1.1) is called oscillatory if all of its solutions are oscillatory, i.e., it has infinitely
many zeros tending to infinity. In the opposite case all solutions of (1.1) are nonoscillatory, i.e.,
they are eventually positive or negative and (1.1) is said to be nonoscillatory. Let us emphasize
that oscillatory and nonoscillatory solutions of (1.1) cannot coexist.

If we suppose that (1.1) is nonoscillatory, one can study the influence of the perturbation c̃
on the oscillatory behavior of the equation of the form

(r(t)(Φ(x′))′ + (c(t) + c̃(t))Φ(x) = 0. (1.3)

The concrete (non)oscillation criteria measure the positiveness of the function c̃ (generally
of arbitrary sign). If c̃ is “sufficiently positive” then the perturbed equation (1.3) becomes
oscillatory, if c̃ is negative or “not too much positive”, then (1.3) remains nonoscillatory. This
approach is sometimes referred to as the perturbation principle and leads, e.g., to the Hille–
Nehari type (non)oscillation criteria for (1.3) which compare limits inferior and superior of
certain integral expressions with concrete constants. These integral expressions are usually
either of the form ∫ t

T
R−1(s)ds

∫ ∞

t
c̃(s)hp(s)ds if

∫ ∞
R−1(t)dt = ∞ (1.4)

or ∫ ∞

t
R−1(s)ds

∫ t

T
c̃(s)hp(s)ds if

∫ ∞
R−1(t)dt < ∞, (1.5)

where h is a solution of (1.1) (or a function which is asymptotically close to a solution of
(1.1)) and R = rh2|h′|p−2. Criteria of this type can be found in [1–3, 5–7, 9, 10, 13], see also
the references therein. Note that the divergence or convergence of the integral

∫ ∞ R−1(t)dt is
closely connected with the so called principality of the solution h of (1.1), see [4,8] for details.

Let us summarize the known results concerning the above mentioned criteria which apply
to perturbations of the Euler and Rieman–Weber type equations. Denote

γp :=
(

p− 1
p

)p

, µp =
1
2

(
p− 1

p

)p−1

.

An example of a nonoscillatory equation of the form (1.1) is the half-linear Euler type equation
with the critical coefficient γp (called also the oscillation constant)

(Φ(x′))′ +
γp

tp Φ(x) = 0, (1.6)

whose principal solution is h1(t) = t
p−1

p and the second one (linearly independent of h1) is
asymptotically equivalent to h2(t) = t

p−1
p log

2
p t, see [11]. Note that the criticality of γp in (1.6)

means that if we replace γp in (1.6) by another constant γ, then (1.6) is oscillatory for γ > γp

and nonoscillatory for γ < γp. It was shown in [7] that the perturbed Euler type equation

(Φ(x′))′ +
(γp

tp + c̃(t)
)

Φ(x) = 0 (1.7)

is nonoscillatory if
lim sup

t→∞
E(t) < µp, lim inf

t→∞
E(t) > −3µp

and oscillatory if
lim inf

t→∞
E(t) > µp,



Perturbed generalized half-linear Riemann–Weber equation 3

where E(t) = log t
∫ ∞

t c̃(s)sp−1 ds. Došlý and Řezníčková [9] proved the same couple of non-
oscillation and oscillation criteria with E(t) = 1

log t

∫ t
T c̃(s)sp−1 log2 s ds. Compare both cases of

E(t) with (1.4) and (1.5) taking h(t) = h1(t) and h(t) = h2(t), respectively.
Further natural step was to find similar statements also for perturbations of the Riemann–

Weber (sometimes called Euler–Weber) half-linear equation with critical coefficients

(Φ(x′))′ +

(
γp

tp +
µp

tp log2 t

)
Φ(x) = 0. (1.8)

This equation has a pair of solutions asymptotically close to the functions h1(t) = t
p−1

p log
1
p t

and h2(t) = t
p−1

p log
1
p t log

2
p (log t) and if we replace the constant µp in (1.8) by a different

constant µ, then (1.8) is oscillatory for µ > µp and nonoscillatory for µ < µp, see [12]. The
(non)oscillation criteria for the perturbed equation

(Φ(x′))′ +

(
γp

tp +
µp

tp log2 t
+ c̃(t)

)
Φ(x) = 0 (1.9)

were formulated in terms of

E(t) = log(log t)
∫ ∞

t
c̃(s)sp−1 log s ds,

which complies with (1.4) taking h(t) = h1(t). The relevant nonoscillation criterion for (1.9)
was proved in [2] and oscillatory criterion in [10]. The case which corresponds to (1.5) and to
the second function h2 remained open.

Recently, the criteria from [2, 10] were generalized in [3] to perturbations of the following
generalized Riemann–Weber half-linear equation with critical coefficients

(Φ(x′))′ +

(
γp

tp +
n

∑
j=1

µp

tpLog2
j t

)
Φ(x) = 0, (1.10)

where n ∈N and

log1 t = log t, logk t = logk−1(log t), k ≥ 2, Log jt = Πj
k=1 logk t.

Elbert and Schneider in [12] derived the asymptotic formulas for the two linearly indepen-
dent nonoscillatory solutions of (1.10). These solutions are asymptotically equivalent to the
functions

h1(t) = t
p−1

p Log
1
p
n t, h2(t) = t

p−1
p Log

1
p
n t log

2
p
n+1 t. (1.11)

Došlý in [3] studied the equation

LRW [x] := (Φ(x′))′ +

(
γp

tp +
n

∑
j=1

µp

tpLog2
j t

+ c̃(t)

)
Φ(x) = 0 (1.12)

and proved the following statement.
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Theorem A. Suppose that the integral
∫ ∞ c̃(t)tp−1 Log nt dt is convergent.

(i) If

lim sup
t→∞

logn+1 t
∫ ∞

t
c̃(s)sp−1 Log ns ds < µp,

lim inf
t→∞

logn+1 t
∫ ∞

t
c̃(s)sp−1 Log ns ds > −3µp,

then (1.12) is nonoscillatory.

(ii) Suppose that there exists a constant γ >
2γp p(p−2)

3(p−1)2 such that c̃(t)tp log3 t ≥ γ for large t and

lim inf
t→∞

logn+1 t
∫ ∞

t
c̃(s)sp−1 Log ns ds > µp.

Then (1.12) is oscillatory.

Observe that the integral expression from Theorem A relates to (1.4) with h(t) = h1(t)
from (1.11). If n = 1, then (1.12) reduces to (1.9) and the criteria from Theorem A reduce to
that obtained in [2, 10].

The aim of this paper is to complement Theorem A (and also the corresponding results of
[2, 10] in case n = 1). We utilize the second function h2 from (1.11) and find a related couple
of criteria for equation (1.12) formulated in terms of the expression

1
logn+1 t

∫ t
c̃(s)sp−1 Log ns log2

n+1 s ds

which corresponds to (1.5).

2 Auxiliary statements

In this section we present the known statements which will be used in the proofs of our main
results in the next section. Denote

R(t) := r(t)h2(t)|h′(t)|p−2, G(t) := r(t)h(t)Φ(h′(t)) (2.1)

and recall that q = p
p−1 is the so called conjugate number of p.

The following statement comes from [13].

Theorem B. Let h be a function such that h(t) > 0 and h′(t) 6= 0, both for large t. Suppose that the
following conditions hold:∫ ∞

R−1(t) dt < ∞, lim
t→∞

G(t)
∫ ∞

t
R−1(s) ds = ∞. (2.2)

If

lim sup
t→∞

∫ ∞

t
R−1(s) ds

∫ t

T
h(s)L[h](s) ds <

1
q
(−α +

√
2α), (2.3)

lim inf
t→∞

∫ ∞

t
R−1(s) ds

∫ t

T
h(s)L[h](s) ds >

1
q
(−α−

√
2α) (2.4)

for some α > 0, then (1.1) is nonoscillatory.
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The following theorem was proved in [6].

Theorem C. Let h be a positive continuously differentiable function satisfying the following conditions:

h(t)L(h)(t) ≥ 0 for large t,
∫ ∞

h(t)L(h)(t) dt = ∞, (2.5)

∫ ∞
R−1(t) dt = ∞ and lim

t→∞
G(t) = ∞. (2.6)

Then (1.1) is oscillatory.

In the following lemma we summarize some technical facts which are either evident or
were derived in [3].

Lemma 2.1. For n ≥ 2 and large t we have

Log nt > · · · > Log 1t = log t > · · · > logn t

and

(logn t)′ =
1

t Log n−1t
, (Log nt)′ =

Log nt
t

n

∑
i=1

1
Log it

.

Moreover, for h(t) = t
p−1

p Log
1
p
n t and the operator defined in (1.12) we have

h′(t) =
p− 1

p
t−

1
p Log

1
p
n t

(
1 +

n

∑
i=1

1
(p− 1)Log it

)
and

h(t)LRW [h](t) =
Log nt
t log3 t

[
2γp p(2− p)

3(p− 1)2 + c̃(t)tp log3 t + o(1)
]

as t→ ∞. (2.7)

3 Main results

Our main result concerning nonoscillation of (1.12) reads as follows.

Theorem 3.1. If

lim sup
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log ns log2

n+1 s ds < 2µp(−α +
√

2α), (3.1)

lim inf
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log ns log2

n+1 s ds > 2µp(−α−
√

2α) (3.2)

for some α > 0, then equation (1.12) is nonoscillatory.

Proof. We prove the statement with the use of the function h(t) = t
p−1

p Log
1
p
n t log

2
p
n+1 t in Theo-

rem B. By a direct differentiation (and using Lemma 2.1) we have

h′(t) =
p− 1

p
t−

1
p Log

1
p
n t log

2
p
n+1 t +

1
p

t
p−1

p Log
1
p−1
n t

Log nt
t

(
1

log t
+ · · ·+ 1

Log nt

)
log

2
p
n+1 t

+
2
p

t
p−1

p Log
1
p
n t log

2
p−1
n+1 t

1
t Log nt

=
p− 1

p
t−

1
p Log

1
p
n t log

2
p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)
.
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Denote Γp =
(

p−1
p

)p−1
. Then

Φ(h′) = Γpt−1+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−1

.

By a direct differentiation (and using Lemma 2.1 again) we obtain

(Φ(h′))′ = −γpt−2+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−1

+ γpt−2+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

n

∑
i=1

1
Log it

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−1

+ 2γp t−2+ 1
p Log

− 1
p

n t log
1− 2

p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−1

+ Γp(p− 1)t−1+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−2

× −1
(p− 1)t

[
1

log2 t
+

1
Log 2t

(
1

log t
+

1
Log 2t

)
+ · · ·+ 1

Log nt

n

∑
i=1

1
Log it

+
2

Log n+1t

n+1

∑
i=1

1
Log it

]
.

Observe that the expression in the square brackets can be rearranged as follows:

n

∑
i=1

1
Log 2

i t
+ ∑

1≤i<j≤n

1
Log it Log jt

+
2

Log n+1t

n+1

∑
i=1

1
Log it

.

Hence

(Φ(h′))′ = t−2+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−2

×
{
−γp

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)

+ γp

n

∑
i=1

1
Log it

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)

+ 2γp
1

Log n+1t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)

−Γp

[
n

∑
i=1

1
Log 2

i t
+ ∑

1≤i<j≤n

1
Log it Log jt

+
2

Log n+1t

n+1

∑
i=1

1
Log it

]}
.

Denote by A(t) the expression in the curly brackets. By a direct computation with using the
fact that (

n

∑
i=1

1
Log it

)2

=
n

∑
i=1

1
Log 2

i t
+ ∑

1≤i<j≤n

2
Log it Log jt
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we obtain

A(t) = − γp + γp
p− 2
p− 1

n

∑
i=1

1
Log it

+ 2γp
p− 2
p− 1

1
Log n+1t

− γp

n

∑
i=1

1
Log 2

i t

+ γp
2− p
p− 1 ∑

1≤i<j≤n

1
Log it Log jt

+ 2γp
2− p
p− 1

1
Log n+1t

n+1

∑
i=1

1
Log it

.
(3.3)

Next, denote

B(t) :=

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−2

.

Using the power expansion

(1 + x)s = 1 + sx +
s(s− 1)

2
x2 +

s(s− 1)(s− 2)
6

x3 + o(x3) as x → 0, s ∈ R,

we obtain

B(t) = 1 +
p− 2
p− 1

(
n

∑
i=1

1
Log it

+
2

Log n+1t

)
+

(p− 2)(p− 3)
2(p− 1)2

(
n

∑
i=1

1
Log it

+
2

Log n+1t

)2

+
(p− 2)(p− 3)(p− 4)

6(p− 1)3

(
n

∑
i=1

1
Log it

+
2

Log n+1t

)3

+ o(log−3 t),

as t→ ∞.
Next observe that if at least one of the indices i, j, k is greater than one, then

1
Log it Log jt Log kt

= o
(

log−3 t
)

as t→ ∞.

Hence we can write B(t) in the form

B(t) = 1 +
p− 2
p− 1

(
n

∑
i=1

1
Log it

+
2

Log n+1t

)

+
(p− 2)(p− 3)

2(p− 1)2

(
n

∑
i=1

1
Log 2

i t
+ ∑

1≤i<j≤n

2
Log it Log jt

+
4

Log n+1t

n+1

∑
i=1

1
Log it

)

+
(p− 2)(p− 3)(p− 4)

6(p− 1)3
1

log3 t
+ o(log−3 t)

(3.4)

as t→ ∞.
From (3.3) and (3.4), we obtain

A(t) · B(t)

= − γp + γp
p− 2
p− 1

n

∑
i=1

1
Log it

+ 2γp
p− 2
p− 1

1
Log n+1t

− γp

n

∑
i=1

1
Log 2

i t

+ γp
2− p
p− 1 ∑

1≤i<j≤n

1
Log it Log jt

+ 2γp
2− p
p− 1

1
Log n+1t

n+1

∑
i=1

1
Log it

− γp
p− 2
p− 1

n

∑
i=1

1
Log it

+ γp

(
p− 2
p− 1

)2 n

∑
i=1

1
Log 2

i t
+ 2γp

(
p− 2
p− 1

)2

∑
1≤i<j≤n

1
Log it Log jt
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+ 2γp

(
p− 2
p− 1

)2 1
Log n+1t

n

∑
i=1

1
Log it

− γp
p− 2
p− 1

1
log3 t

− 2γp
p− 2
p− 1

1
Log n+1t

+ 2γp

(
p− 2
p− 1

)2 1
Log n+1t

n

∑
i=1

1
Log it

+ 4γp

(
p− 2
p− 1

)2 1
Log 2

n+1t

− γp
(p− 2)(p− 3)

2(p− 1)2

n

∑
i=1

1
Log 2

i t
+ γp

(p− 2)2(p− 3)
2(p− 1)3

1
log3 t

− γp
(p− 2)(p− 3)

(p− 1)2 ∑
1≤i<j≤n

1
Log it Log jt

− 2γp
(p− 2)(p− 3)

(p− 1)2
1

Log n+1t

n+1

∑
i=1

1
Log it

− γp
(p− 2)(p− 3)(p− 4)

6(p− 1)3
1

log3 t
+ o(log−3 t)

= − γp − µp

n

∑
i=1

1
Log 2

i t
−

2γp p(p− 2)
3(p− 1)2

1
log3 t

+ o(log−3 t)

as t→ ∞. Summarizing the above computations, we have

(Φ(h′))′ = t−2+ 1
p Log

1− 1
p

n t log
2− 2

p
n+1 t

(
−γp − µp

n

∑
i=1

1
Log 2

i t
−

2γp p(p− 2)
3(p− 1)2

1
log3 t

+ o(log−3 t)

)
as t→ ∞. Consequently, for the operator LRW defined in (1.12) we have

hLRW [h] = h(Φ(h′))′ + hp

(
γp

tp +
n

∑
j=1

µp

tpLog2
j t

+ c̃(t)

)

=
Log nt log2

n+1 t
t

(
−γp − µp

n

∑
i=1

1
Log 2

i t
−

2γp p(p− 2)
3(p− 1)2

1
log3 t

+ o(log−3 t)

)

+ tp−1 Log nt log2
n+1 t

(
γp

tp +
n

∑
j=1

µp

tpLog2
j t

+ c̃(t)

)

=
Log nt log2

n+1 t

t log3 t

(
−

2γp p(p− 2)
3(p− 1)2 + o(1)

)
+ c̃(t)tp−1 Log nt log2

n+1 t

(3.5)

as t→ ∞. In order to check conditions (2.2), express R(t) and G(t) from (2.1):

R(t) = h2(t)|h′(t)|p−2

=

(
p− 1

p

)p−2

t Log nt log2
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−2

=

(
p− 1

p

)p−2

t Log nt log2
n+1 t(1 + o(1))

and

G(t) = h(t)Φ(h′(t))

=

(
p− 1

p

)p−1

Log nt log2
n+1 t

(
1 +

n

∑
i=1

1
(p− 1)Log it

+
2

(p− 1)Log n+1t

)p−1

=

(
p− 1

p

)p−1

Log nt log2
n+1 t(1 + o(1))
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as t → ∞. Since
∫ ∞ R−1(s) ds < ∞, the first condition in (2.2) is satisfied. The second

condition in (2.2) is also fulfilled, since∫ ∞

t

1
R(s)

ds =
(

p
p− 1

)p−2 1
logn+1 t

(1 + o(1)) (3.6)

and hence
G(t)

∫ ∞

t

1
R(s)

ds =
p− 1

p
Log nt logn+1 t(1 + o(1))→ ∞

as t→ ∞.
Finally, we show that conditions (2.3) and (2.4) hold. To this end, let ε ∈ (0, 1). Then

lim
t→∞

Log nt log2
n+1 t

log1+ε t
< lim

t→∞

logn+1
2 t

logε t
= lim

t→∞

(n + 1)!
εn+1 logε t

= 0

and hence

lim
t→∞

1
logn+1 t

∫ t

T

Log ns log2
n+1 s

s log3 s
ds < lim

t→∞

1
logn+1 t

∫ t

T

1
s log2−ε s

ds = 0. (3.7)

From (3.5) and (3.6) we obtain(∫ ∞

t
R−1(s) ds

)(∫ t

T
h(s)LRW [h](s) ds

)
=

(
p

p− 1

)p−2 1
logn+1 t

(1 + o(1))

×
∫ t

T

Log ns log2
n+1 s

s log3 s

(
−

2γp p(p− 2)
3(p− 1)2 + o(1)

)
+ c̃(s)sp−1 Log ns log2

n+1 s ds

as t→ ∞. Conditions (3.1) and (3.2) together with (3.7) imply

lim sup
t→∞

(∫ ∞

t
R−1(s)ds

)(∫ t

T
h(s)LRW [h](s)ds

)
=

(
p

p− 1

)p−2

lim sup
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log ns log2

n+1 s ds <
1
q
(−α +

√
2α)

and

lim inf
t→∞

(∫ ∞

t
R−1(s)ds

)(∫ t

T
h(s)LRW [h](s)ds

)
=

(
p

p− 1

)p−2

lim inf
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log ns log2

n+1 s ds >
1
q
(−α−

√
2α).

All assumptions of Theorem B are true, which finishes the proof.

To obtain the oscillatory counterpart of Theorem 3.1, we first prove the following criterion
for the equation

L̃RW [x] := (Φ(x′))′ +

(
γp

tp +
n+1

∑
j=1

µp

tp Log 2
j t

+ d(t)

)
Φ(x) = 0, (3.8)

which is in fact equation (1.12) shifted from n to n + 1. The reason why we formulate this
criterion rather for (3.8) than for (1.12) is only technical.
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Theorem 3.2. Suppose that there exists a constant γ such that

d(t)tp log3 t ≥ γ >
2γp p(p− 2)

3(p− 1)2 (3.9)

for large t. If ∫ ∞
d(t)tp−1 Log n+1t dt = ∞, (3.10)

then equation (3.8) is oscillatory.

Proof. Take h(t) = t
p−1

p Log
1
p
n+1t. According to Lemma 2.1 (with n replaced by n + 1)

h′(t) =
p− 1

p
t−

1
p Log

1
p
n+1t(1 + o(1)) as t→ ∞.

Hence, by (2.1)

R(t) = h2(t)|h′(t)|p−2 =

(
p− 1

p

)p−2

t Log n+1t(1 + o(1)) as t→ ∞

and consequently∫ t
R−1(s) ds =

(
p− 1

p

)2−p

logn+2 t(1 + o(1))→ ∞ as t→ ∞.

Further,

G(t) = h(t)Φ(h′(t)) =
(

p− 1
p

)p−1

Log n+1t(1 + o(1))→ ∞ as t→ ∞.

Rewriting (2.7) for the operator from (3.8) we have

h(t)L̃RW [h](t) =
Log n+1t

t log3 t

[
2γp p(2− p)

3(p− 1)2 + d(t)tp log3 t + o(1)
]

=

[
2γp p(2− p)

3(p− 1)2 + o(1)
]

Log n+1t

t log3 t
+ d(t)tp−1 Log n+1t

as t→ ∞. Because the integral
∫ ∞ Log n+1t

t log3 t
dt is convergent, condition (3.10) implies∫ ∞

hL̃RW [h](t) dt = ∞.

Thanks to condition (3.9) we have also hL̃RW [h](t) ≥ 0 for large t. This means that equation
(3.8) is oscillatory by Theorem C.

The following statement is the oscillatory criterion which complements Theorem 3.1.

Theorem 3.3. Suppose that there exists a constant γ such that

tp log3 t

(
c̃(t)−

µp

tp Log 2
n+1t

)
≥ γ >

2γp p(p− 2)
3(p− 1)2 (3.11)

for large t. If

lim inf
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log ns log2

n+1 s ds > µp, (3.12)

then (1.12) is oscillatory.
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Proof. Let us rewrite (1.12) into the form

(Φ(x′))′ +

(
γp

tp +
n+1

∑
j=1

µp

tpLog2
j t

+

(
c̃(t)−

µp

tp Log 2
n+1t

))
Φ(x) = 0,

so (1.12) is seen as a perturbation of the generalized Riemann–Weber equation with the critical
coefficients and with n + 1 elements in the sum. We apply Theorem 3.2 with the perturbation
term d(t) = c̃(t)− µp

tp Log 2
n+1t

. Then (3.9) is guaranteed by (3.11). With respect to (3.12) there

exist ε > 0 and T̃ > T such that

lim inf
t→∞

1
logn+1 t

∫ t

T
c̃(s)sp−1 Log n+1s logn+1 s ds > µp + ε

and also ∫ t

T
c̃(s)sp−1 Log n+1s logn+1 s ds > (µp + ε) logn+1 t

for t > T̃. Let b > T̃. With the use of integration by parts and the above inequality, we have

∫ b

T

(
c̃(t)−

µp

tp Log 2
n+1t

)
tp−1 Log n+1t dt

=
∫ b

T
c̃(t)tp−1 Log n+1t dt−

∫ b

T

µp

t Log n+1t
dt

=
∫ b

T

1
logn+1 t

c̃(t)tp−1 Log n+1t logn+1 t dt− µp
[
logn+2 t

]b
T

=

[
1

logn+1 t

∫ t

T
c̃(s)sp−1 Log n+1s logn+1 s ds

]b

T
+
∫ T̃

T

∫ t
T c̃(s)sp−1 Log n+1s logn+1 s ds

t Log nt log2
n+1 t

dt

+
∫ b

T̃

∫ t
T c̃(s)sp−1 Log n+1s logn+1 s ds

t Log n log2
n+1 t

dt− µp
[
logn+2 t

]b
T

≥ 1
logn+1 b

∫ b

T
c̃(t)tp−1 Log n+1t logn+1 t dt + K1 +

∫ b

T̃

µp + ε

t Log n+1t
dt− µp

[
logn+2 t

]b
T

≥ µp + ε + K1 + (µp + ε)
[
logn+2 t

]b
T̃ − µp

[
logn+2 t

]b
T

= µp + ε + K1 + ε logn+2 b− K2 → ∞

as b→ ∞, where

K1 =
∫ T̃

T

∫ t
T c̃(s)sp−1 Log n+1s logn+1 s ds

t Log nt log2
n+1 t

dt, K2 = (µp + ε) logn+2 T̃ − µp logn+2 T.

Hence condition (3.10) is satisfied and (1.12) is oscillatory according to Theorem 3.2.

Remark 3.4. If α = 1
2 in Theorem 3.1, then

2µp(−α +
√

2α) = µp, 2µp(−α−
√

2α) = −3µp

and the constants from (3.1) and (3.2) in Theorem 3.1 reduce to the constants in Theorem A,
part (i). The generalization for α 6= 1

2 is due to Theorem B. Note also that the constants
in the nonoscillatory part of Theorem A could be generalized in the same way by utilizing
[13, Theorem 3.2] in the proof of Theorem A.
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