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Zdeněk SvobodaB

CEITEC - Central European Institute of Technology, Brno University of Technology
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Abstract. In the paper, the asymptotic properties of recently defined special matrix
functions called delayed matrix sine and delayed matrix cosine are studied. The asymp-
totic unboundedness of their norms is proved. To derive this result, a formula is used
connecting them with what is called delayed matrix exponential with asymptotic prop-
erties determined by the main branch of the Lambert function.
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1 Introduction

Recently, a new formalization has been developed of the well-known method of steps [12, 13]
for solving the initial-value problem for linear differential equations with constant coefficients
and a single delay through special matrix functions called delayed matrix functions [6,15,20].
Using this method, representations have been found of solutions of homogeneous and non-
homogeneous systems, and some stability and control problems were solved in [5, 16]. Also,
a generalization has been developed to discrete systems and applied in [4, 21].

Let A be a nonzero n × n constant matrix, τ > 0 and let b · c be the floor function.
The delayed matrix exponential, defined in [15], is a matrix polynomial on every interval
[(k− 1)τ, kτ), k = 0, 1, . . . , defined by

eAt
τ =

bt/τc+1

∑
s=0

As (t− (s− 1)τ)s

s!
. (1.1)

The delayed matrix exponential equals to zero matrix Θ if t < −τ, the unit matrix I on [−τ, 0],
and is the fundamental matrix of a homogeneous linear system with a single delay

ẋ(t) = Ax(t− τ). (1.2)
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For the proof, we refer to [15]. In [15], too, a representation is derived of the solution of the
Cauchy initial problem (1.2), (1.3), where

x(t) = ϕ(t), −τ ≤ t ≤ 0, (1.3)

and ϕ : [−τ, 0]→ Rn is continuously differentiable.
Fundamental matrix (1.1) serves as a nice illustration of the general definition of a funda-

mental matrix to linear functional differential systems of delayed type [12,13]. For system (1.2),
this definition reduces to (details are omitted)

X(t) =

A
∫ t

−τ
X(u− τ)du + I, for almost all t ≥ −τ,

Θ,−2τ ≤ t < −τ

(1.4)

and its step-by-step application gives

X(t) = eAt
τ , t ≥ −2τ.

With its usefulness, the delayed matrix exponential stimulated the search for other delayed
matrix functions capable of simply expressing solutions of some linear differential systems
with constant coefficients. In [6], solutions of a homogeneous second-order linear system
with single delay

ẍ(t) = −A2x(t− τ). (1.5)

are expressed through delayed matrix functions called the delayed matrix sine Sinτ At and
delayed matrix cosine Cosτ At defined for t ∈ R as

Sinτ At =
bt/τc+1

∑
s=0

(−1)s A2s+1 (t− (s− 1)τ)2s+1

(2s + 1)!
(1.6)

and

Cosτ At =
bt/τc+1

∑
s=0

(−1)s A2s (t− (s− 1)τ)2s

(2s)!
. (1.7)

Matrices (1.6) and (1.7) are related to the 2n× 2n fundamental matrix X (t) of 2n-dimen-
sional system

ẏ(t) = Ay(t− τ/2),

where

A :=
(

Θ A
−A Θ

)
, y :=

(
y1

y2

)
,

equivalent with (1.5) through the substitution x(t) = y1(t). In much the same way as above,
we can derive (for details we refer to [24])

X (t) = eAt
τ/2 =

(
Cosτ A(t− τ/2) Sinτ A(t− τ)

−Sinτ A(t− τ) Cosτ A(t− τ/2)

)
.

The paper aims to prove the asymptotic unboundedness of the norms of delayed matrix sine
and delayed matrix cosine. This is done by utilizing relations between these functions and the
delayed matrix exponential. The proof is based on the properties of the main branch of the
Lambert function.

Therefore, we at first describe the necessary properties of the delayed exponential of a
matrix and the Lambert function in Part 2. Then, in Part 3, the main result on the asymptotic
properties of delayed matrix sine and delayed matrix cosine is proved.
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2 Delayed matrix exponential and Lambert function

To explain clearly the relationship between delayed linear differential equations and Lambert
function, we first consider the scalar case. Let n = 1, A = (a). Then, the fundamental matrix
to the scalar case of the system (1.2), i.e., of

ẋ(t) = ax(t− τ) (2.1)

is defined by (1.1) as

eat
τ =

bt/τc+1

∑
s=0

as (t− (s− 1)τ)s

s!
.

and its values at nodes t = kτ, k = 0, 1, . . . are

eakτ
τ =

k+1

∑
s=0

as (kτ − (s− 1)τ)s

s!
=

k

∑
s=0

as (k + 1− s)sτs

s!

= 1 + a
kτ

1!
+ a2 (k− 1)2τ2

2!
+ · · ·+ ak−1 2k−1τk−1

k!
+ ak τk

k!
.

Assume that there exists a real solution c of a transcendental equation

c = ae−cτ, (2.2)

i.e., that there exists a solution x(t) = ect of (2.1). Moreover, assume that, for a real root c
of (2.2), we have

eakτ
τ ∼ eckτ = 1 + c

kτ

1!
+ c2 k2τ2

2!
+ · · ·+ cn knτn

n!
+ · · ·

when k→ ∞. Then,
ea(k+1)τ

τ

eakτ
τ

∼ ec(k+1)τ

eckτ
= ecτ , k→ ∞. (2.3)

Analyzing equation (2.3), provided it is valid, we can expect that, in a general case, the se-
quence of values of delayed matrix exponential at nodes t = kτ, k → ∞ is approximately
represented by a “geometric progression” with the ordinary exponential of a constant matrix
serving as a “quotient” factor.

It is reasonable to expect that such a constant matrix can be expressed by the principal
branch of the Lambert function since (2.2) can be rewritten as

cτecτ = aτ (2.4)

or as
cτ = W(aτ) (2.5)

where W is the well-known Lambert W-function [3] (its properties given below are taken from
this paper), defined as the inverse function to the function

z = f (w) = wew, (2.6)

i.e., w = W(z). If z = x + iy and w = u + iv, then (2.6) yields
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x + iy = (u + iv)eu+iv (2.7)

and
x = eu(u cos v− v sin v), y = eu(u sin v + v cos v). (2.8)

The Lambert W-function is multi-valued (except for the point z = 0). For real z = x > −1/e
and w = u > −1, equation (2.6) defines a single-valued function w = W0(x). The function
W0(x) can be extended to the whole complex plane as a holomorphic function W0(z) except
for the values x < −1/e and y = 0. The extension w = W0(z) is called the principal branch of
the Lambert function.

The range of values of the principal branch W = W0(z) is bounded by a parametric curve
[3, p. 343]

` =
−v

tan v
+ iv, −π < v < π (2.9)

and equals to the domain

L :=
{
(u, v) ∈ C : u ≥ −1, |v| ≤ |v∗| < π where

−v∗

tan v∗
= u

}
.

For more details about the Lambert W-function, see [3].

The asymptotic properties of exp(W0(z)) are, in principle, determined by the real part of
W0(z). Let z = x + iy and

W0(x + iy) = Re W0(x + iy) + i Im W0(x + iy) = u + iv.

The set of complex numbers z = x + iy such that Re W0(z) = u = 0, i.e., (see (2.7), (2.8)),

x + iy = iv exp(iv)

is a closed curve ˜̀:
x = −v sin v, y = v cos v (2.10)

where, as it is clear from the definition of L, |v∗| = π/2 for u = 0 and |v| ≤ π/2. We have (as
a consequence of (2.8))

Re W0(z) < 0

if z lies within the interior of this curve and

Re W0(z) > 0 (2.11)

for numbers z of its exterior. From (2.10) it follows easily that the exterior domain to ˜̀ is
specified by the inequality

|z| > − arctan
(

Re z
|Im z|

)
. (2.12)

Lemma 2.1. For complex numbers z = x + iy, z 6= 0 with x ≥ 0,

| Im W0(z)| <
π

2
. (2.13)
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Proof. First, from (2.9) and definition of L, we obtain inequality |v| = |Im W0(z)| < π, there-
fore,

v sin v > 0. (2.14)

Secondly, for w = u+ iv = W0(z), the inequality u < 0 implies |v| < π/2 (see the definition of
L) and, in this case, (2.13) holds. This guarantees that sign(u cos v) = sign u. Applying (2.8)
and the assumption that x is nonnegative, we obtain

eu(u cos v− v sin v) = x ≥ 0⇒ u ≥ 0⇒ arg W0(z)Im W0(z) ≥ 0.

This fact also implies

| arg W0(z) + Im W0(z)| = | arg W0(z)|+ |Im W0(z)|. (2.15)

Equation (2.6) yields
z = wew = W0(z)eW0(z).

Therefore,
arg z = arg W0(z) + Im W0(z)

and, due to relation, (2.15) we also have

| arg z| = | arg W0(z)|+ |Im W0(z)|. (2.16)

For z 6= 0 with non-negative real parts, we have Re W0(z) > 0 by (2.11), from (2.14), we deduce
arg W0(z) 6= 0, Im W0(z) 6= 0, and, utilizing (2.16), we also have

π/2 ≥ | arg z| = | arg W0(z)|+ |Im W0(z)| > |Im W0(z)|.

Reverting to equation (2.3), we can expect that, in some cases, there exists a constant n× n
matrix C such that

lim
k→∞

eA(k+1)τ
τ (eAkτ

τ )−1 = eCτ, (2.17)

provided that the matrices eAkτ
τ are nonsingular (this property will be assumed throughout

the paper). One of such cases is analysed in [23] where the following is proved.

Theorem 2.2. Let λj, j = 1, . . . , n be the eigenvalues of the matrix A and let its Jordan canonical form
be

diag(λ1, . . . , λn) = D−1AD (2.18)

where D is a regular matrix. If
|λj| < 1/(eτ),

j = 1, . . . , n, then the sequence
eA(k+1)τ

τ (eAkτ
τ )−1, k→ ∞

converges, (2.17) holds and

eCτ = D exp (diag(W0(λ1τ), . . . , W0(λnτ)) D−1. (2.19)

Note that from (2.19) we immediately get explicit form of C since

Cτ = D (diag(W0(λ1τ), . . . , W0(λn, τ)) D−1

and
C = D diag (W0(λ1τ)/τ, . . . , W0(λnτ)/τ) D−1.
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3 Main result

The asymptotic properties of the delayed matrix sine and cosine can be deduced from the
relations with the delayed exponential of a matrix. We give relevant formulas that are similar
to the well-known Euler identity. Namely, for an arbitrary n× n matrix A and t ∈ R, we have

Sinτ A(t− τ) = Im eiAt
τ/2 =

1
2i

(
eiAt

τ/2 − e−iAt
τ/2

)
(3.1)

and
Cosτ A

(
t− τ

2

)
= Re eiAt

τ/2 =
1
2

(
eiAt

τ/2 + e−iAt
τ/2

)
. (3.2)

Formulas (3.1), (3.2) can be proved directly using the definitions of eAt
τ , Sinτ At and Cosτ At

given by formulas (1.1), (1.6) and (1.7) (for the proof we refer to [24]). Below, we use the
spectral norm of a matrix defined as

‖A‖S =
√

λmax(A∗A) (3.3)

where A∗ denotes the conjugate transpose of A and λmax is the largest eigenvalue of the matrix
A∗A. The main result of the paper follows.

Theorem 3.1. Let λj, j = 1, . . . , n be the eigenvalues of the matrix A and let its Jordan canonical form
be given by (2.18). If |λj| < 1/(eτ), j = 1, . . . , n and there exists at least one j = j∗ ∈ {1, . . . , n}
such that λj∗ 6= 0, then

lim sup
t→∞

‖Cosτ At‖S = ∞

and
lim sup

t→∞
‖ Sinτ At‖S = ∞.

Proof. We will only prove the assertion for Cosτ At as the proof for Sinτ At is analogous. Using
equation (3.2), we derive the assertion of the theorem utilizing the asymptotic properties of
the delayed exponential of matrix eiAt

τ/2. From the assumption (2.18), we readily get

(iA)k = D diag((iλ1)
k, . . . , (iλn)

k)D−1, k ≥ 0

and, using the associativity, we may express eiAkτ/2
τ/2 (with the aid of definition (1.1)) as

eAikτ/2
τ/2 = D diag

(
eλ1ikτ/2

τ/2 , . . . , eλnikτ/2
τ/2

)
D−1. (3.4)

For a natural number ` we define

F`
k (A) := eAi(k+`)τ/2

τ/2 (eAikτ/2
τ/2 )−1.

By Theorem 2.2 (formula (2.17)) and by (2.19), we have

lim
k→∞

F1
k (A) = D exp (diag(W0(λ1iτ/2), . . . , W0(λniτ/2)) D−1. (3.5)

From

F`
k (a) =

`

∏
l=1

F1
k−l−1(A),

we obtain
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lim
k→∞

F`
k (A) = lim

k→∞

`

∏
l=1

F`
k (A) =

`

∏
l=1

lim
k→∞

F`
k (A)

=
(

D exp (diag(W0(λ1iτ/2), . . . , W0(λniτ/2)) D−1
)`

.

Imagine, for a while, that the matrix A is a 1× 1 matrix, i.e., A = (a). Then, from (3.5) (with
λ = a, D := (1)), we get

F1
k (a) = (exp(W0(aiτ/2))) (1 + va(k)) (3.6)

where k is an arbitrary natural number and v = va(k) is a real discrete function such that

lim
k→∞

va(k) = 0. (3.7)

Applying formula (3.6) ` times, we obtain

F`
k (A) = (exp(W0(aiτ/2)))`

`

∏
l=1

(1 + va(k− 1 + l)).

Now we can derive a similar formula in the case of an n× n matrix A. First, utilizing (3.6),
we obtain:

F1
k (A) = D diag

(
eλ1i(k+1)τ/2

τ/2 , . . . , eλni(k+1)τ/2
τ/2

)
D−1

× D diag
((

eλ1ikτ/2
τ/2

)−1
, . . . ,

(
eλnikτ/2

τ/2

)−1
)

D−1

= D diag
(

eλ1i(k+1)τ/2
τ/2

(
eλ1ikτ/2

τ/2

)−1
, . . . , eλni(k+1)τ/2

τ/2

(
eλnikτ/2

τ/2

)−1
)

D−1

= D diag ((exp(W0(λ1iτ/2))) (1 + vλ1(k)), . . .

. . . , (exp(W0(λniτ/2))) (1 + vλn(k))) D−1

= D diag (exp(W0(λ1iτ/2)), . . . , exp(W0(λniτ/2))) D−1

× D diag ((1 + vλ1(k)), . . . , (1 + vλn(k))) D−1

= D diag (exp(W0(λ1iτ/2)), . . . , exp(W0(λniτ/2))) D−1M(k)

(3.8)

where the matrix M(k) is defined as

M(k) := D diag((1 + vλ1(k)), . . . , (1 + vλn(k)))D−1.

Denote
eW0(iA)τ/2 := D diag (exp(W0(λ1iτ/2)), . . . , exp(W0(λniτ/2))) D−1.

This matrix commutes with M(k) since

eW0(iA)τ/2M(k) = D diag(exp(W0(λ1iτ/2)), . . . , exp(W0(λniτ/2)))D−1

× D diag((1 + v1(k)), . . . , (1 + vn(k)))D−1

= D diag((1 + v1(k)), . . . , (1 + vn(k)))D−1

× D diag(exp(W0(λ1iτ/2)), . . . , exp(W0(λniτ/2)))D−1

= M(k)eW0(iA)τ/2.
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Utilizing (3.4), (3.6), and (3.8), we derive

F`
k (A) = eAi(k+`)τ/2

τ/2 (eAi(k+`−1)τ/2
τ/2 )−1 · · · eAi(k+2)τ/2

τ/2 (eAi(k+1)τ/2
τ/2 )−1eAi(k+1)τ/2

τ/2 (eAikτ/2
τ/2 )−1

= D diag
(

eλ1i(k+`)τ/2
τ/2

(
eλ1i(k+`−1)τ/2

τ/2

)−1
, . . . , eλni(k+`)τ/2

τ/2

(
eλni(k+`−1)τ/2

τ/2

)−1
)

D−1

× D diag
(

eλ1i(k+`−1)τ/2
τ/2

(
eλ1i(k+`−2)τ/2

τ/2

)−1
, . . .

. . . , eλni(k+`−1)τ/2
τ/2

(
eλni(k+`−2)τ/2

τ/2

)−1
)

D−1

· · ·

× D diag
(

eλ1i(k+1)τ/2
τ/2

(
eλ1ikτ/2

τ/2

)−1
, . . . , eλni(k+1)τ/2

τ/2

(
eλnikτ/2

τ/2

)−1
)

D−1

= eW0(iA)τ/2M(k + `− 1)eW0(iA)τ/2M(k + `− 2) · · · eW0(iA)τ/2M(k)

=
(

eW0(iA)τ/2
)` `−1

∏
l=0

M(k + l).

(3.9)

It is easy to see that the values of functions eλl ikτ/2
τ/2 , exp(`W0(λliτ/2)) (l = 1, . . . , n) and

the values of the same functions with complex conjugate arguments are complex conjugate
too. Applying this fact to Cosτ A ((k + `− 1)τ/2) = Re

(
eiA(k+`)τ/2

τ/2

)
(see (3.2)), we get (utiliz-

ing (3.4), (3.9)):

Re
(

eiA(k+`)τ/2
τ/2

)
=

1
2

(
eiA(k+`)τ/2

τ/2 + e−iA(k+`)τ/2
τ/2

)
=

1
2

(
D diag

(
eλ1ikτ/2

τ/2 , . . . , eλnikτ/2
τ/2

)
D−1

(
eW0(iA)τ/2

)` `−1

∏
l=0

M(k + l)

+ D diag
(

e−λ1ikτ/2
τ/2 , . . . , e−λnikτ/2

τ/2

)
D−1

(
eW0(−iA)τ/2

)` `−1

∏
l=0

M(k + l)

)

=
1
2

D diag
(

eλ1ikτ/2
τ/2 exp(`W0(λ1iτ/2))

+ e−λ1ikτ/2
τ/2 exp(−`W0(λ1iτ/2)), . . . , eλnikτ/2

τ/2 exp(`W0(λniτ/2))

+ e−λnikτ/2
τ/2 exp(−`W0(λniτ/2))

)
D−1

`−1

∏
l=0

M(k + l)

= D diag
(

Re
(

eλ1ikτ/2
τ/2 exp(`W0(λ1iτ/2))

)
, . . .

. . . , Re
(

eλnikτ/2
τ/2 exp(`W0(λniτ/2))

))
D−1

`−1

∏
l=0

M(k + l)

= D diag

(
Re
(

eλ1ikτ/2
τ/2 exp(`W0(λ1iτ/2))

) `−1

∏
l=0

(1 + vλ1(k + l)), . . .

. . . , Re
(

eλnikτ/2
τ/2 exp(`W0(λniτ/2))

) `−1

∏
l=0

(1 + vλn(k + l))

)
D−1. (3.10)

Now we use the well-known formula Re(z1z2) = |z1||z2| cos(arg z1 + arg z2) for complex
numbers z1, z2. Set

z1 = z1(k, λl) := eλl ikτ/2
τ/2 , z2 = z2(λl) := exp(`W0(λliτ/2)),



Unboundedness of the norms of delayed matrix sine and cosine 9

where l ∈ {1, . . . , n}, and denote

α1(k, λl) := arg z1(k, λl) = arg
(

eλl ikτ/2
τ/2

)
,

α2(λl) := arg z2(λl) = arg (exp(`W0(λliτ/2))) .

From the facts that the spectral radius is less or equal any matrix norm, the following inequal-
ity for the spectral norm holds

‖Cosτ A ((k + `− 1)τ/2)‖S ≥ ρ (Cosτ A ((k + `− 1)τ/2))

= ρ
(

Re
(

eiA(k+`)τ/2
τ/2

))
= ρk+`.

(3.11)

The similar matrices have same spectra and the spectral radii. The spectrum of diagonal
matrix consists to elements of the diagonal and using (3.10), we obtain

ρk = max
j=1,...,n

{∣∣∣∣∣Re
(

e
λjikτ/2
τ/2 exp(`W0(λjiτ/2))

) `−1

∏
l=0

(1 + vλj(k + l))

∣∣∣∣∣
}

≥ (1 + v∗(k))` max
j=1,...,n

{∣∣∣Re
(

e
λjikτ/2
τ/2 exp(`W0(λjiτ/2))

)∣∣∣} (3.12)

where
v∗(k) := min

j=1,...,n; l=0,...,`−1

{
vλj(k + l)

}
and, by (3.7),

lim
k→∞

v∗(k) = 0. (3.13)

Applying (3.11) and (3.12) we obtain the inequality

‖Cosτ A ((k + `− 1)τ/2)‖S ≥ (1 + v∗(k))` max
j=1,...,n

{∣∣∣Re
(

e
λjikτ/2
τ/2 exp(`W0(λjiτ/2))

)∣∣∣}
≥ (1 + v∗(k))` max

j=1,...,n

{∣∣∣eλjikτ/2
τ/2

∣∣∣ ∣∣exp(`W0(λjiτ/2))
∣∣ |cos (α1(k, λl) + α2(λl))|

}
.

Assume that j = j∗ ∈ {1, . . . , n} is fixed and that the eigenvalue λj∗ 6= 0 of the matrix A
is real. Then, the number z∗ = iλj∗τ/2 lies in the exterior domain of ˜̀ since inequality (2.12)
holds, i.e.,

|z∗| = |iλj∗τ/2| > − arctan
(

Re z∗

|Im z∗|

)
= − arctan 0 = 0 (3.14)

and, by (2.11),
Re W0(z∗) = Re W0(iλj∗τ/2) > 0. (3.15)

Now assume that j = j∗ ∈ {1, . . . , n} is fixed and that the eigenvalue λj∗ 6= 0 of the
matrix A is a complex number. Since λj∗ is an eigenvalue of A as well, we can assume that
λj∗ = x− iy where y > 0. Then, the number z∗ = iλj∗τ/2 lies in the exterior domain of ˜̀ since
inequality (2.12) holds, i.e.,

|z∗| = |iλj∗τ/2| = τ

2
|ix + y| = τ

2

√
x2 + y2 > − arctan

(
Re z∗

|Im z∗|

)
= − arctan

(
y
|x|

)
where arctan (y/|x|) > 0. Then, by (2.11),

Re W0(z∗) = Re W0(iλj∗τ/2) > 0. (3.16)
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From (3.15) and (3.16), it follows that there exists an eigenvalue λj∗ of A and a constant C̃ such
that

Re W0(iλj∗τ/2) > C̃ > 0. (3.17)

Utilizing (3.1), (3.2) (where A := (λj∗) and t = kτ/2) we derive

e
λj∗ ikτ/2
τ/2 = Cosτλj∗(k− 1)τ/2) + i Sinτλj∗(k/2− 1)τ. (3.18)

Let k = k∗ be such that
Cosτλj∗(k∗ − 1)τ/2) 6= 0. (3.19)

It is easy to see that such a k∗ always exists and note that it can be assumed greater than an
arbitrarily given sufficiently large positive integer. Then (3.18), implies

α1(k∗, λj∗) 6= ±
π

2
. (3.20)

By (2.13), we have |α2(λj∗)| < π/2. With regard to α2(λj∗), we consider two cases below:

a) Let α2(λj∗) 6= 0. Then, each interval [π/2 + 2sπ, π/2 + 2sπ + π], where s = 0, 1, . . . ,
contains at least two elements of an equidistant sequence

{α1(k∗, λj∗) + nα2(λj∗)}∞
n=−∞

and, in each interval, there exists an element of this sequence αs such that

|αs − π/2| > π

4
, |αs − π/2− π| > π

4

and
| cos(αs)| >

√
2/2. (3.21)

b) Let α2(λj∗) = 0. Then, (3.20) implies

| cos αs| = | cos α1(k∗, λj∗)| 6= 0. (3.22)

Therefore, in both cases a) and b), there exists a sequence of positive integers {`l}∞
l=1 such that

liml→∞ = ∞ and (due to (3.17), (3.21) and (3.22)) for all sufficiently large `l

| exp(`lW0(iλj∗τ/2))|| cos(α1(k∗, λj∗) + `lα2(λj∗))| > M exp(`lCτ/2) (3.23)

where

M :=


√

2
2

, if α2(λj∗) 6= 0,

| cos α1(k∗, λj∗)|, if α2(λj∗) = 0

and C is a constant satisfying 0 < C < C̃. Moreover, from (3.13), it follows that, for every
sufficiently large k, there exists a constant C0 satisfying 0 < C0 < C such that

1 + v∗(k) > exp(−C0τ/2). (3.24)
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From (3.12), (3.23), (3.24), we can derive

‖Cosτ A ((k∗ + `l − 1)τ/2)‖S ≥ (1 + v∗(k∗))`l

∣∣∣eλj∗ ik∗τ/2
τ/2

∣∣∣
×
∣∣exp(`lW0(λj∗ iτ/2))

∣∣ ∣∣cos
(
α1(k∗, λj∗) + α2(λj∗)

)∣∣
≥ exp(−`lC0τ/2)

∣∣∣eλj∗ ik∗τ/2
τ/2

∣∣∣M exp(`lCτ/2)

= M
∣∣∣eλj∗ ik∗τ/2

τ/2

∣∣∣ exp(`l(C− C0)τ/2).

Finally, we conclude

lim sup
t→∞

‖Cosτ At‖S ≥ lim
l→∞
‖Cosτ A ((k∗ + `l − 1)τ/2) ‖S

≥ lim
l→∞

M
∣∣∣eλj∗ ik∗τ/2

τ/2

∣∣∣ exp(`l(C− C0)τ/2)

= ∞.

An analogous assertion can also be obtained for Sinτ At. The scheme of the proof in this
case remains the same with the following minor modifications. In (3.10) the imaginary parts
of the complex expressions considered is used instead of their real parts. The relation (3.10)
turns into

Sinτ A ((k + `− 2)τ/2) = D diag

(
Im
(

eλ1ikτ/2
τ/2 exp(`W0(λ1iτ/2))

) `−1

∏
l=0

(1 + vλ1(k + l)), . . .

. . . , Im
(

eλnikτ/2
τ/2 exp(`W0(λniτ/2))

) `−1

∏
l=0

(1 + vλn(k + l))

)
D−1

and the estimation (3.12) has the form

‖Sinτ A ((k + `− 2)τ/2)‖S

≥ (1 + v∗(k))` max
j=1,...,n

{∣∣∣eλjikτ/2
τ/2

∣∣∣ ∣∣exp(`W0(λjiτ/2))
∣∣ |sin (α1(k, λl) + α2(λl))|

}
.

In (3.19), Sinτ instead of Cosτ is used and the constant M must be redefined as

M :=


√

2
2

, if α2(λj∗) 6= 0,

| sin α1(k∗, λj∗)|, if α2(λj∗) = 0.

4 Concluding remarks

In this part, we discuss some connections with previous results and facts. The author is
grateful to the referee for drawing attention to several topics which are discussed below.

i) Relationship with a linear ordinary non-delayed system. In the paper, properties of de-
layed matrix exponential and the Lambert W-function are used to prove that spectral norms
of delayed matrix sine and delayed matrix cosine are unbounded for t → ∞. This property is
proved under the assumption that the spectral radius ρ(A) of the matrix A is less that 1/(eτ).
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Many papers bring results on so-called special solutions of delayed differential systems (we
refer, e.g., to [1, 2, 7–11, 14, 17–19, 22] and to the references therein) approximating, in a certain
sense, all solutions of a given system. One of the conditions guaranteeing the existence of
special solutions is often (restricted to system (1.2)) the inequality

‖A‖ < 1/(eτ)

where ‖ · ‖ is an arbitrary norm. The totality of all special solutions is only an n-parameter
family where n equals the number of equations of the system. Moreover, it is often stated
that, in such a case, some properties (such as stability properties) of solutions of the initial
system are the same as those for solutions of a corresponding system of ordinary differential
equations.

Because of the well-known inequality ρ(A) ≤ ‖A‖, it is generally not possible from an
assumed inequality ρ(A) < 1/(eτ) to deduce ‖A‖ < 1/(eτ). Nevertheless, for the spectral
norm (3.3) used in the paper, we get (under the conditions of Theorem 3.1),

ρ(A) = ‖A‖S < 1/(eτ).

It means that, in a way, the properties of solutions of (1.2) are close, in a meaning, to properties
of an ordinary differential system and (1.2) is asymptotically ordinary. I.e., every solution of
system (1.2) is asymptotically close to a solution of a system of ordinary differential equations.

The construction of such a linear non-delayed system is described, e.g., in [1, Theorem 2.4]
(see also the Summary part in [17]). However, to find such a system is, in general, not an
easy task. The formula defining the matrix of ordinary differential system ([1, formula (2.8)]
or [17, formula (2.10)]) is a series of recurrently defined matrices and to find its sum is not
always possible (we refer to [7, Theorem 1.2], [17, part 4]).

In the case of a constant matrix, the fundamental matrix Xo(t) of the corresponding ordi-
nary differential system equals an ordinary matrix exponential Xo(t) = exp(Λ0t) where the
matrix Λ0 is a unique solution of the matrix equation

Λ = A exp(−Λτ)

such that ‖Λ0‖ τ < 1 (see the proof of statement (i) of the Theorem in [17]). So, an analysis of
the asymptotic behavior of the solutions of system (1.2) reduces, in a meaning, to an analysis
of the asymptotic behavior of solutions of a system of ordinary differential equations x′ = Λ0x,
i.e., analysis of the properties of the matrix Λ0. Tracing the proof of Theorem 3.1, we can assert
that the investigation of properties of the matrix Λ0 is, in our case, performed by using the
properties of Lambert W-function defined in Part 2 (see also the motivation example (2.1) and
formulas (2.2)–(2.5)).

ii) Existence of a root of characteristic equation with positive real part. Let n = 1 and
A = (a) in (1.5). Then, the characteristic equation (derived by substituting x = exp(λt))
equals

λ2 = −a2 exp(−τλ) (4.1)

and is equivalent with
λτ

2
exp

(
λτ

2

)
= ± iaτ

2
.

Utilizing the Lambert W-function, the last equation can be written as (see (2.4), (2.5))

λτ

2
= W

(
± iaτ

2

)
,
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therefore, all roots of (4.1) are values of the Lambert function. For

z = z± = ±iaτ/2,

inequality (2.12), which determines the domain of the points for which the principal branch
of the Lambert function W0 has positive real parts (inequality (2.11)), holds (see also (3.14),
(3.15)). Thus, we conclude that the unboundedness of the delayed matrix sine and cosine is
related to the existence of a root of characteristic equation with positive real part.

iii) Asymptotic behavior of the fundamental matrix solution by using the characteristic
equation. As noted in the Introduction, the general definition of a fundamental matrix to
linear functional differential systems of delayed type in [12,13] yields (in the simple case of the
matrix of the system with single delay being a constant matrix) a delayed matrix exponential
by formula (1.4). Delayed matrix sine and cosine can be expressed through delayed matrix
exponential by formulas (3.1), (3.2). Therefore, both Theorem 2.2 and Theorem 3.1, formulate
the asymptotic properties of the relevant fundamental matrix solutions depending on the
properties of the eigenvalues of the matrix A and, consequently, through the properties of
the roots of the characteristic equation described by the Lambert W-function. It is an open
question if the method used in the paper can be extended to matrices A with Jordan canonical
forms different from (2.18) in order to get further results on the behavior of the fundamental
matrix solution.
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[8] I. Győri, On existence of the limits of solutions of functional-differential equations, in:
Qualitative theory of differential equations, Vol. I, II (Szeged, 1979), Colloq. Math. Soc. János
Bolyai Vol. 30, North-Holland, Amsterdam–New York, 1980, pp. 325–362. MR0680602
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