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1 Introduction

In this paper we study the following parabolic problem

up = Apu+ Af(x)|u"2u+q(x)[ul*2u in (0,T) x Q,
u=~0 on [0,T) x 0Q), (1.1)

u‘t:() = Ug in Q,

and the corresponding stationary problem

{—Apu = Af(x)|ul"2u+q(x)|u|*?u in Q, 12)

u=2~0 on 0Q).

Here Q) is a bounded domain in RN with C"#-boundary 9Q for some g € (0,1), N > 1,
0 < T < o0; Ay is the p-Laplacian, 1 < &« < p < 9, f := f(x) and g := q(x) are measurable
functions on (). We assume that 1y € W&’p (Q)) and by a weak solution of (1.1) we mean a
function

u e C(0, T, L2(Q)) NLP(0, T; W, (Q) NL2((0,T) x Q),  u; € L2((0,T) x Q),
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satisfying

/Qu(t)q>(t)dx—/0uo¢(0)dx

= /Ot /Q(u@ — |VulP"2(Vu, V) + AfuY o + qut ' p)dxdt (1.3)

for all t € [0, T) and for all test functions ¢ € C'([0,T) x Q), ¢ = 0 on [0,T) x 9Q. A weak
solution u € Wé’p (Q)) of (1.2) is defined analogously.

Beginning with the well-known results of Ambrosetti, Brezis, Cerami [2], problems with
concave-convex nonlinearity of type (1.2) have received a lot of attention (cf., in particular,
Ambrosetti, Azorero, Peral [3], De Figueiredo, Gossez, Ubilla [19] and the references therein).
In the case f,q € C(Q)), p > 2, existence of local in time solutions of (1.1) is well understood;
see Ladyzhenskaja, Solonnikov, Ural’'tseva [30] for p = 2 and Zhao [42] for p > 2. Further-
more, for p =2 and f(x),q(x) = 1, Escobedo, Cazenave, Dickstein [18] have proved that there
exists a unique positive solution of (1.1) defined on a maximal time interval (0, T,,), where the
blow up alternative holds: either T,,, = 400, i.e., u, is a global in time solution, or else T,, < 400
and u, blows up in finite time ||uy(t)| > — +oco as t — Ty,. Furthermore, they found that there
exists a thresholds value A > 0 such that (1.1) has a global solution for 0 < A < A, whereas
any positive solution of (1.1) blows up in finite time for A > A. The dividing line A coin-
cides with the critical value of Ambrosetti, Brezis, Cerami [2] for the stationary problem (1.2)
which separates the interval (0, A] of the existence of minimal positive solution of (1.2) and
the interval (A, +c0) where positive solutions of (1.2) are absent. The key tool in [18] relies on
the arguments introduced by Brezis, Cazenave, Martel, Ramiandrisoa in [9], which is based
on the proving that any global solution u,(¢) of parabolic problem (1.1) converges to a weak
solution of the stationary problem (1.2) as t — +oco. In this way, the blow up behaviour for
A > A is obtained by contradiction.

The purpose of this paper is to investigate the existence of global and blow-up solutions
of (1.1) and the existence of bifurcations for branches of positive solutions of (1.2) with respect
to the behaviour of the functions f,q and the value of the parameter A. Our approach is
based on the development of the extended functional method [8,21,23-26]. The central role
in this method is played by the so-called generalised Collatz—Wielandt formula which gives a
threshold value A* of the existence of positive solutions for nonlinear elliptic boundary value
problems [21,24]. Furthermore, the dual variational problem corresponding to the Collatz—-
Wielandt formula allows finding a threshold value A** for the existence of global or blow-up
solutions to parabolic problems [23,25]. Our interest in the development of this approach also
emerges from the fact that the Collatz—Wielandt formula gives a simple numerical algorithm
for the calculating the threshold value A* [26].

2 Main results

The Collatz—Wielandt formula for the Perron root r = MaXye(R+ )", x£0 L(x) of Ayxn > 0,
where

L(x) = mlfl {[Ax]l DX #£ 0}, x € (RT)", (2.1)
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was discovered in 1942 by L. Collatz [10] and then developed by H. Wielandt [41] in 1950.
Since (2.1) has the following equivalent form (see e.g. [26])

B . (Ax,z) .
b= min g A0 vem

it is natural to call

A" = sup inf {L(u,cp) : /(2fu7’1<pdx #+ 0} (2.2)

ueCt gpeCy
as a generalized Collatz—Wielandt formula, where

Jo(IVulP=2Vu, V) dx — [qupdx
Jo furlpdx

L(u,¢) := , for /()fu””l(])dx # 0,
Ct={ucCi(Q)|u>0inQ, u=0on0oQ}, (2.3)
Co = {9 € C Q)| ¢(x) > 0in O, supp(p) C Q, ¢ # 0}

Remark 2.1. Another type of generalization for the Collatz-Wielandt formula to (1.2) can be
obtained directly from (2.1), i.e. as follows

A*= sup in —Apu(x)—q(x)ua—l(x) :u=0o0n u Ou’ L x
! _uesczl(amxeg{ fo)ur=1(x) tu=00n030, u>0, flx)u” ()#0}.

For similar approach, the reader is refereed to Barta [4] , Berestycki, Nirenberg, Varadhan [5],
Birindelli, Demengel [7], Donsker, Varadhan [17], Berestycki, Coville, Vo [6] and references
therein.

Remark 2.2. It is important to emphasise that minimax variational formula (2.2) admits a
simple numerical procedure for finding the extremal value A* (see [26]).

Along with (2.2), we also need the following equivalent minimax variational formula

A" = sup inf {L(u,gbp/u”_l) : / fu" Pyl dx # 0}. (2.5)
ueC+ pecy 0
Furthermore, we shall deal with the dual variational formulas for (2.2) and (2.5):
A™ = inf sup {L(u,gb) : / fur lpdx # 0} , (2.6)
peCt ueC+t Q
Ap* = inf sup {L(u,lpp/up_l) : / fu ' PyPdx # O} , (2.7)
peCi ueCt Q

respectively. By standard arguments it follows that A* < A** and A* < A},

Our main assumptions on f and g are the following.
(F1) There is an open subset U C Q) such that essinf,cy {f(x),q(x)} > 0.

(Bx) esssup, o {f(x),q(x)} < +oo.
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Lemma 23. Let 1l <a <p <.
(a) Assume (Fy), then A** < +oc0, A}* < +o0 and thus \* < +oo0.
(b) Assume f(x) > 0in Q and (F), then A* > 0 and thus A** > 0, A3 > 0.

Observe that problem (1.2) has the variational form with the Euler functional I, (), defined
1,
on Wy (Q) NLY(If], ) N L*(|q], ) by

1 A 1
I :f/vpd—f/ Wd—f/ * . 2.8
v =1 [ urar=2 [ fafras =1 [ gucas 25

Our result on the existence and non-existence of positive solutions and the existence of
bifurcation point for stationary problem (1.2) is as follows

Theorem 2.4. Let 1 < a < p < -y and Q) be a bounded domain in RN with C'P-boundary for some
e (0,1).

(i) Assume (Fy), then for any A > A*, (1.2) has no weak solution u, € C*.

(ii) Assume (Fy), f(x) > 0in Q and f,q € L*(Q), then for any A € (0,\*) there exists a weak
solution u, of (1.2) such that uy € C*. Moreover, if infycqy f(x) > 0, then (1.2) has a weak
non-negative solution uy» € L7(Q)) N Wé’P(Q)for A =A%

(iii) Assume p =2, f,q € C(Q), minyeq f(x) > 0and q(x) > 0 in Q. Suppose that uy+ # 0 and

uye € L®(Q). Then Xy := KerD21)+(uy+) is an one-dimensional subspace of W&’p(ﬂ) spanned
by ¢* € WP (Q); i, Xi = (¢*), WaP(Q) = X1 & Xa.
Furthermore, (A*,u,+) is a bifurcation point; i.e., there exist an interval (—a,a) C R and C!
mappings A : (—a,a) — Rand u : (—a,a) — Wg’p(ﬂ) such that for each s € (—a,a)
the function u(s) € C* is a weak solution of problem (1.1) for A = A(s), (u(0),A(0)) =
(ur+, A*), dA(0)/ds = 0, du(0)/ds = ¢* and A(s) < A* for s € (—a,a). Furthermore,
u(s) = up + s¢* +¢(s), where ¢ : (—a,a) — Xp, §(0) =0, dE(0)/ds = 0.

Remark 2.5. If one does not take into account that A* is expressed in generalized Collatz—-
Wielandt formula (2.2), then statements (i), (ii) of Theorem 2.4 follow from Theorems 2.1, 2.2
in [19].

Remark 2.6. In the case of the subcritical Sobolev exponent 1 < a < p < 7 < p*, where
p*=pN/(N—p)if N> pand p* = o0 if N < p, the existence of the weak positive solution
uy of (1.1) for A € (0, Ayr), where Ay is the so-called extreme value of the Nehari manifold
method (see [28]) can be obtained by the Nehari manifold method under weaker assumptions
f € L"(Q) and g € L?(Q) with some r,72 € (1,+00] (see, e.g., [22]). However, recent
investigations Il'yasov, Silva and Silva, Macedo [27,35] show that, in general, A does not
give the threshold value for the existence of positive solutions of (1.1).

Remark 2.7. Under assumptions (iii) of Theorem 2.4, the conditions u,+ # 0, u,« € L®(Q)) are
satisfied, for example, if 1 < g < p <y < p* (see [19]) or p = 2, f(x),g(x) =1 and N < 10
(see Mignot, Puel [32]).

For (1.1) our main result is the following theorem.

Theorem 2.8. Let 1 < a < p < 7 and Q be a bounded domain in RN with CYP-boundary for some

e (0,1).
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(i) Assume (Fy) is satisfied and infycq f(x) > 0. Let u) be a weak non-negative solution of (1.1)
defined on a maximal time interval (0, T,,).

® Suppose p = 2 and A > A**. Then T,, < +oo and u) blows up in finite time, i.e.,
|l ur(t)||ro — +o0as t — Ty

® Suppose 1 < p <2,v>2,A> A% and uy € C([0, Ty) X Q), up > 0in [0, Tpy) X Q.
Then Ty, < 400 and u, blows up in finite time, i.e., ||y (t)| Lo — +ooast — Ty,.

(i) Assume (F;), f(x) > 0in Qand f,q € L*(Q). Then (1.1) possesses global in time weak
positive solution u, for any A € (0, A*).

As it was mention above, from [2,18] it follows that if f(x),q(x) = 1 and p = 2, then
there exists A > 0 such that for A € (0,A) parabolic problem (1.1) possesses a global in
time solution whereas for A > A any positive solution u, blows up in finite time. Hence,
Theorem 2.8 yields the following result on the saddle-point property for (2.2) and (2.6).

Corollary 2.9. Assume that f(x),q(x) =1, p=2and 1 < a < 2 < v, O is a bounded domain
in RN with C'-boundary. Then variational formulas (2.2) and (2.6) satisfy the saddle-point property:
A=A = A

3 Proof of Lemma 2.3

(a) Let us prove that A" < +o0. The proof of A** < +o0 is similar. Assume (F;). Take a
ball B C U. Consider the first eigenpair (Aq,¢;) of the operator —A, on B with the zero
Dirichlet boundary condition. It is well known that the eigenvalue A is positive, simple
and isolated, and the corresponding eigenfunction ¢ is positive and ¢; € C!(B). Evidently
¢} /uP~1 € C1(Q) for any u € C*. Hence by Allegretto, Xi [1] there holds

up—1

p
<|Vu|p_2Vu,V¢l> <|V¢i|P in Q, VuecC.

In view of (Fy), there is § > 0 such that f(x) > 6, g(x) > ¢ a.e. on B. This implies that there
exists a sufficiently large A > 0 such that
A < A6sTTP 405 < Af(x)s7T P +q(x)s* P ae.in B, Vs > 0.

Hence

Ly Jsa = g(ut P dx
L(u, ¢l /uP™t) < Bfo(x)m—wfdx <A, VuecCh

which implies that A" < 4-c0.
(b) Since (F), there exists K > 0 such that f(x) < K, q(x) < K a.e. in Q. Following [2], let
us consider

—Ae=1 in0Q,
elaq = 0.

By the maximum principle (see Tolksdorf [38], Trudinger [39], Vazquez [40]) and the reg-
ularity arguments (see DiBenedetto [14], Lieberman [31], Tolksdorf [37]) one has e € C™.
Furthermore, it is easily seen that for any sufficiently small A > 0, there is M = M(A) > 0
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such that MP~1 — KM*1|le[|% 1 > AKM"71|le]|% L. Hence and in view of that f(x) > 0in Q,
by (2.2) we have

>A>0.

MP~1 — KM 1lella=Dp d
A* > inf L(Me, ¢) > inf Js! : He\lloo ) dx
peCy peCy M1 [ f(x)er g dx

4 Proof of Theorem 2.4

(i) By (F;), Lemma 2.3 implies that A* < +-co. Let A > A* and suppose, contrary to our claim,
that there exists a weak solution u, of (1.2) such that u, € C*. By (2.2), there is ¢, € CO+ such
that L(uy,¢p) < A and [, ful "¢rdx # 0. Assume, for instance, that [, fu] ¢y dx > 0.
Then

/(|VuA]p_2VuA,V¢A)dx—/ qu”/{_lcjudx—)\/ qu_1¢Adx<0
0 0 0

which is a contradiction.

(ii) Since (F,) and f(x) > 0in (), Lemma 2.3 implies that A* > 0. Let 0 < A < A*. By (2.2),
one can find i1, € C* such that L(i1,,¢) > A for all ¢ € C; . Hence and since f(x) >0, 1, isa
super-solution of (1.2). Take i = 0 for a sub-solution. Consider

Iy = min{I(u) | u € M,}, (4.1)

where M), = {u € Wol’p(Q)\ 0 <u < i} Inview of that f,q € L*(Q)), we may apply
Proposition 3.1 from [19] (see also for semilinear case Theorem 2.4 in Struwe [36]). Thus for
any A € (0,A*) there exists a minimizer u) € M, of (4.1) which weakly satisfies (1.2).

Using (Fy) it is not hard to show that there exists ug € M, such that

/q(x)|u0|"‘dx >0 and /f(x)|u0|7dx > 0.

This and the assumption 1 < & < p < y imply that there is a sufficiently small ¢ > 0 such that
tug € My and Iy (tug) < 0. Thus Iy = I,(u)) < 0 and therefore u, # 0.

Since u) < 1, in Q), one has u, € L®(Q)). Furthermore, by the assumptions 9Q} is Clh-
manifold for some B € (0,1). Hence, by C*-regularity results [14,31,37] we have u, € C1*(Q)
for some « € (0, 8). Finally, the maximum principle [38-40] implies that u, > 0 in Q) for all
A€ (0,A%).

Let us show that there exists a limit solution u,:. Since I (1)) < 0 and D, I, (u,)(u)) =0,
we have

(7;}7)””/\”5’_(’ya_“)/q(x)|u;\\"‘dx<0, (42)

WD [ fofuaprax — T fawlufiax <o, 43)

VA € (0,A*). Here and what follows we denote by || - ||; the norm in the space W&’p (Q).
In view of that g(x) < 400 in (), inequality (4.2) implies that [ju,]y < C; < 400 and
[ q(x)|up|*dx < Co < +oo , where Cq,C, do not depend on A € (0,A*). Hence by (4.3),
[ f(x)|upr|"dx < C3 < +oo. Consequently using infycq f(x) > 0 we derive that [[u,|r <
C4 < 400, where C3,Cy4 do not depend on A € (0,A*). Now the Banach—Alaoglu and Sobolev
theorems imply that there exists a sequence A, such that A, T A* and u,, — u,- weakly

in W&’p , strongly in L*(Q)) and uy, — uy» > 0 ae. in () as n — oo. Furthermore, since
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uy, — uy+ a.e. in Qand ||uy || < Cy, we have 1y, — uy- € L7(Q)) weakly in L7(Q) (see, e.g,
Theorem 13.44 in Hewitt, Stromberg [20]). By the same arguments uzn_l — Uy ! weakly in
LY/ (=1)(Q)). Hence in virtue of that f,q € L*(Q), we may pass to the limit in (1.2) as n — co.
Thus u,- weakly satisfies (1.2) for A = A*. This completes the proof of (ii).

(iii) Let p = 2. Since uy- # 0 and u,« € L®(Q)), the standard theory of regularity solutions
and maximum principle for elliptic equations yield u,- € C}(Q)) N C?(Q), uy+ > 0. Further-
more, since f(x) > 0 and g(x) > 0 in O, Hoph’s lemma implies (see Protter, Weinberger [34])
that du,+ /dv < 0 on dQ), where v := v(x) denotes the exterior unit normal to 0Q) at x € 9Q).

Consider the eigenvalue problem

—Ap = [Ny = Dful* + (e = Dqui )y = py in 0, @)
p=0 on dQ). .

Then there exists a first eigenpair (y1,¢*) of (4.4) such that ¢* > 0, ¢* € C2(Q) N CH(Q) and

JIVpPdx — [N (y = D)fui + (a = Dqui. *JyPdx it
J yrix W

Indeed, this can be shown by arguments introduced Diaz, Herndndez [13], Diaz, Herndndez,
II'yasov [12]. Let us give a sketch of its proof. Since duy+/dv < 0 on 9Q), one has cd(x) <
uy+(x) < Cd(x) for x € Q) with some constants 0 < ¢,C < +oo, where d(x) := dist(x,9Q)).
Hence by the monotonicity properties of eigenvalues it is sufficient to show that the first
eigenvalue of the problem

H1 = inf
$EW;?(Q)\0

—Ay — (A*(v —1)ful 2+ qé%ﬁl) Yp=uyp inQ,

p=0 on 0(),

(4.6)

is well-defined and has the usual properties. Assume first that 2 > 0. Then (4.6) is equivalent
to the existence of y such that r(y) = 1, where r(p) is the first eigenvalue for the associated
problem

Ay = r(p) (m CDfu %” " u) p O,

Pp=0 on Q).

(4.7)
That r(u) > 0 is well-defined follows by showing that (4.7) is equivalently formulated as
Tw = rw, with T = io Po F, where F : L2(Q,d* %) — W~12(Q) defined by

Fy) = (V- DAl S ) v,

P: W 12(Q) — W&’Z(Q) is the solution operator for the linear problem

{—Az =h(x) inQ, s

z=20 on dQ),

for h € W-12(Q), and where i : Wy?(Q) — L2(Q,d?™*) is the standard embedding. Then
F and P are continuous and the map i is compact (see Kufner [29]). Hence, it is possible to
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apply the Krein—-Rutman theorem in the formulation by Daners, Koch-Medina [16]. Thus we
have the variational formulation

/ |Vw|?dx
r(p) = mf Q

i - _— ; . 4.9)
weWy (Q)\{0} / /\* (v = 1) ful. ™+ (a = 1)qui*|lw® + pw ) dx

Hence a positive eigenvalue of (4.7) exits if and only if there is a 4 > 0 such that r(u) = 1.
Analogous argument gives the formulation for y < 0

(4.10)

/ (|Vw|* — pw?) dx
(n) = mf Q .
ni 12 -2
weWy?(Q)\{0} / A*(y = 1) fuls " + (a — 1)qui=?|w® dx

It is not hard to show that r(u) ( r1()) is decreasing (increasing) in p and r(p) — 0 (r1(p) —
+o0) as 4 — 400 (4 — —o0). Observe

/ |Vw|?dx
r(0) =r1(0) = 112nf 0_2 .
weWy”(0)\{0} / A (y = D) fuls" + (a — 1)qui?|w? dx

Thus, there exists a positive eigenvalue of (4.7) if r(0) > 1 and a negative one if r(0) < 1.
Hence —c0 < j; < +o0 and there exists a minimizer ¢* of (4.5) such that ¢* € C}(Q) N C?(Q),
¢* > 0,0¢*/0v < 0 on dQ) and

—Ap* — (A (y — 1)fu}:2 + (0 — 1)qui?)¢* = m¢p* inQ, (1)
¢* =0 on 9Q). ’

Let us show that 11 = 0. Assume the converse y; # 0 and suppose, for instance, that y; > 0.
Consider u, = u)« + e¢*. It is readily seen that u, € C* for sufficient small ¢. The equations
(1.2) and (4.11) imply the following equality

/(Vug,vw)dx — /qug“—lq;dx = A* /fuZ*Hbdx + e /¢*¢dx +0(¢)

which holds uniformly with respectto ¢ € B! := {¢ € C : [|[¢||y12 < 1} sothato(e) = r(e, ¢),
where |r(e, )| < Ce? and C < +oo does not depend on ¢ € B'. Hence there exists gy > 0
such that

e J (Vieo, Vip)dx — [ quitpdx
yecy J fuly typdx

which contradicts (2.2). The maximum principle for elliptic boundary value problems (see
e.g. [34]) implies that the minimal eigenvalue y; is simple. Consequently, the kernel X; :=

> A%, (4.12)

Ker D21, (u,+) is the one-dimensional subspace in Wg 7(Q) spanned by ¢*.
The proof of the second part of assertion (iii) follows from the bifurcation theorem of
Crandall and Rabinowitz [11].
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5 Blow up and global solutions

(i) Let p = 2. Since (F;), Lemma 2.3 implies that A** < +oc0. Let A > A**. Take ¢ > 0 such that
A — &> A**. Then by (2.6), there exists ¢, € Cj such that

sup Jo(Vu, V) dx — [ qu~1¢, dx

< A—g
ueC+ fQ f”nilqbft dx

that is
/Q(VM,V¢A)dx—)\/qu7’1¢A dx—/Qqu“’lcpA dx < —S/qu"”lm dax. (5.1)

By the assumptions there is ap > 0 such that f(x) > ag a.e. in Q). Hence, Jensen’s inequality
yields

v—1
</Q upy dx) < co/qu%lcpA dx, (5.2)

where 0 < ¢y < co does not depend on u € C*. Thus, one has the inequality

y—1
/Q(Vu, Vy)dx — }\/beﬂ’lq);L dx — /Qqu""l(p;\ dx < —ecg </Q upy dx) ,

which holds by continuity for any u € W&’p (Q), u>0in Q.

Assume that there exists a non-negative weak solution u of (1.1) defined on a maximal
time interval (0, Ty,). Suppose, contrary to our claim, that T, = +o0.

Consider 7(t) = [, u(t)¢, dx. Then by (1.3) we have

d

ﬁ”(t) = /Q(—(Vu, Vor) + Aful1 + qu* N g)) dx > eco(7(t))"!  a.e. in (0, +00).

However, then

1 1/(v=2)
1(H) > G (1 - C2t>

with some constants 0 < C;, C; < +o0. Hence and since vy > 2, we have
n(t) = / u(t)prdx — +o00 ast—1/Cy.
Q

But this is possible only if |[u(t)||p~ — 400 as t — T*.
Consider the case 1 < p < 2. By Lemma 2.3, A" < 4-o00. Take A > A}*. Then thereis e > 0
such that A — e > A}*. By (2.7), there exists ¢, € CO+ such that

Jo(IVul"2Vu, V() /u™1) dx — [ qu*~P ¢} dx
sup

<A—¢
ueC+ fQ f”v_p‘l’f\ dx

As above, we may assume that f(x) > ag a.e. in Q) for some a9 > 0. In view of that 1 < p < 2
and v > 2, Jensen’s inequality yields

(/Q uz_”(pf\ dx)

y—

—p S Co/ fu')/_pq)f{ dx/ (53)
(@)

s

N
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where 0 < ¢y < oo does not depend on u € C*. Thus, one has the inequality

/Q(|Vu]”_2Vu,V(4)§/up_l)dx—)\/beﬂ_pcpﬁdx—/Qqu"‘_pgbidx

TP
o
< —Cy (/ uz_”(pfL dx> ’ ,
0

for any u € C* with Cy = ecp > 0.

Assume that there exists a weak positive solution u € C'([0,T,,) x Q) of (1.1). Suppose,
contrary to our claim, that T,, = +oco.

Consider {(t) = [ u(t)?> P¢} dx. Then by (1.3) we have

L0 =@ p) [(~(ValP 290, V(1)) A+ qut ) dx > Chle(e)

=

a.e. in (0, +c0). Hence,
% (t) > C(')(é(t))v:? a.e.in (0, +00), (5.4)

=

N

which implies that
2(t) = /Qtt(t)2”’<,i>fL dx — +oo ast— T*

for some T* > 0.

(ii) By Theorem 2.4 (ii), for A € (0,A*) there exists a positive weak solution u, of (1.2)
which is a positive stationary solution of (1.1) defined globally in the time interval [0, +o0).
This completes the proof of (ii), Theorem 2.8.
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