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1 Introduction

Recently, the method of steps [5] was applied in [6] to obtain representation of solutions of
differential equations with one delay. We recall this result.

Theorem 1.1. Let τ > 0, B be N × N matrix, and ϕ ∈ C1([−τ, 0], RN), f : [0, ∞) → RN be given
functions. Then the solution of the Cauchy problem consisting of the equation

ẋ(t) = Bx(t− τ) + f (t), t ≥ 0

and initial condition
x(t) = ϕ(t), t ∈ [−τ, 0] (1.1)

has the form

x(t) = eBt
τ ϕ(−τ) +

∫ 0

−τ
eB(t−τ−s)

τ ϕ′(s)ds +
∫ t

0
eB(t−τ−s)

τ f (s)ds

for any t ≥ −τ, where eBt
τ is the delayed matrix exponential defined as

eBt
τ =


Θ, t < −τ,

I, −τ ≤ t < 0,

I + Bt + B2 (t−τ)2

2 + · · ·+ Bk (t−(k−1)τ)k

k! , (k− 1)τ ≤ t < kτ, k ∈N,

Θ and I are the N × N zero and identity matrix, respectively.
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This result was generalized in [8] for the case of n ∈ N constant delays and C1 initial
function. Nevertheless, we rather recall a simplified result from [9] that was originally pub-
lished for equations with variable coefficients, time-dependent delays and only continuous
function ϕ.

Theorem 1.2. Let n ∈ N, 0 < τ1, . . . , τn ∈ R, τ := max{τ1, τ2, . . . , τn}, B1, . . . , Bn be pairwise
permutable N × N matrices, i.e. BiBj = BjBi for each i, j ∈ {1, . . . , n}, ϕ ∈ C([−τ, 0], RN), and
f : [0, ∞) → RN be a given function. Then the solution of the Cauchy problem consisting of the
equation

ẋ(t) = B1x(t− τ1) + B2x(t− τ2) + · · ·+ Bnx(t− τn) + f (t), t ≥ 0 (1.2)

and initial condition (1.1) possesses the form

x(t) =


ϕ(t), −τ ≤ t < 0,

Xn(t)ϕ(0) +
∫ t

0 Xn(t− s)∑n
m=1 Bmψ(s− τm)ds

+
∫ t

0 Xn(t− s) f (s)ds, 0 ≤ t

(1.3)

where

ψ(t) =

{
ϕ(t), t ∈ [−τ, 0),

θ, t /∈ [−τ, 0),
(1.4)

θ is the N-dimensional vector of zeros, and Xn(t) = eB1,B2,...,Bn(t−τn)
τ1,τ2,...,τn is the multi-delayed matrix

exponential given by

e
B1,...,Bjt
τ1,...,τj =



Θ, t < −τj,

Xj−1(t + τj), −τj ≤ t < 0,

Xj−1(t + τj) + Bj
∫ t

0 Xj−1(t− s1)Xj−1(s1)ds1 + · · ·
· · ·+ Bk

j

∫ t
(k−1)τj

∫ s1
(k−1)τj

. . .
∫ sk−1
(k−1)τj

Xj−1(t− s1)

×∏k−1
i=1 Xj−1(si − si+1)Xj−1(sk − (k− 1)τj)dsk . . . ds1,

(k− 1)τj ≤ t < kτj, k ∈N

(1.5)

for each j = 2, 3, . . . , n, where Xj−1(t) = e
B1,...,Bj−1(t−τj−1)
τ1,...,τj−1 .

Formula (1.3) was used in [8] to derive stability results. So it is usable for theoretical
purposes. However, it does not seem to be very suitable for practical calculation of a solution,
as the multi-delayed matrix exponential is built up inductively.

In the present paper, we provide another representation of solutions of linear nonhomo-
geneous differential equations with any finite number of delays in the sense of the following
definition.

Definition 1.3. Let n ∈ N, 0 < τ1, . . . , τn ∈ R, τ := max{τ1, τ2, . . . , τn}, ϕ ∈ C([−τ, 0], RN),
B1, . . . , Bn be N × N matrices, and f : [0, ∞) → RN be a given function. The function x :
[−τ, ∞) → RN is a solution of the Cauchy problem (1.2), (1.1), if x ∈ C1([0, ∞), RN) (at t = 0
the derivative in equation (1.2) represents the right-hand derivative), x(t) solves equation (1.2)
on [0, ∞) and satisfies the condition (1.1).

To obtain the representation we involve the unilateral Laplace transform. Of course, the
idea to apply the Laplace transform to delay differential equations is not a new one. For
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instance in [2], the Laplace transform of a solution of a linear delayed differential equation is
expressed using a Laplace transform of its fundamental solution. Rather than focusing on the
Laplace image of a solution, in this paper we make use of properties of the Laplace transform
and its inverse [4, 10], in particular of the uniqueness of the inverse on the set of continuous
functions. So we obtain a closed-form formula for the solution.

The paper is organized as follows. The next section concludes some known and basic
results on the Laplace transform. Section 3 contains our main results on the representation
of a solution of (1.2), (1.1) which is another extension of Theorem 1.1 to the case of multiple
delays (clearly equivalent to Theorem 1.2). Here we consider also the equation

ẋ(t) = Ax(t) + B1x(t− τ1) + · · ·+ Bnx(t− τn) + f (t), t ≥ 0 (1.6)

with the initial condition (1.1), and derive the representation of its solution (see [6] for the case
of one delay). This section is enclosed by an example.

In the whole paper we shall denote | · | the norm of a vector without any respect to its
dimension. Further, N and N0 denote the set of all positive and nonnegative integers, respec-
tively. We also assume the property of an empty sum, ∑i∈∅ z(i) = 0 for any function z.

2 Preliminary results

The main tool we use in our computations is the unilateral Laplace transform defined as

L{ f (t)} =
∫ ∞

0
e−pt f (t)dt

for Re p > a and an exponentially bounded function f such that | f (t)| ≤ ceat for all t ≥
0 and some constants a, c ∈ R. For the case of brevity we sometimes adopt the notation
F(p) = L{ f (t)}. Then f (t) = L−1{F(p)}. Note that here the preimage is assumed to vanish
on (−∞, 0), which we emphasize by L−1{F(p)} = f (t)σ(t), when needed. Recall σ is the
Heaviside step function defined as

σ(t) =

{
0, t < 0,

1, t ≥ 0.

Moreover, we apply L (and L−1) to each coordinate when considering the Laplace transform
(or its inverse) of a vector.

The next lemma concludes some of properties of the Laplace transform (see e.g. [4, 10]).

Lemma 2.1. The following equalities hold true for sufficiently large Re p and appropriate functions f , g:

1. L{a f (t) + bg(t)} = aL{ f (t)}+ bL{g(t)} for constants a, b ∈ R,

2. L−1
{

e−pτ

p

}
= σ(t− τ) for τ ≥ 0,

3. L−1{F(p)G(p)} = ( f ∗ g)(t) for convolution operator ∗,

4. L{ f ′(t)} = pL{ f (t)} − f (0),

5. L−1{1} = δ(t) where δ(t) is Dirac delta distribution.
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Note that due to the arguments preceding the above lemma, point (3) of the lemma can be
written as

L−1{F(p)G(p)} = (( f σ) ∗ (gσ))(t) =
∫ t

0
f (s)g(t− s)ds.

The next two lemmas are corollaries of the latter one.

Lemma 2.2. The following identities hold true for sufficiently large Re p:

1. L−1{F1(p)F2(p) . . . Fn(p)} = ( f1 ∗ f2 ∗ · · · ∗ fn)(t) for n ∈ N, n ≥ 2 and appropriate func-
tions f1, f2, . . . , fn,

2. L−1
{(

e−pτ

p

)n}
= (t−nτ)n−1

(n−1)! σ(t− nτ) for τ > 0, n ∈N.

Proof. (1) If n = 2, the statement coincides with Lemma 2.1.3. On suppose that the statement
holds for n = k, using Lemma 2.1, one obtains

L−1{F1(p)F2(p) . . . Fk+1(p)} = (L−1{F1(p)F2(p) . . . Fk(p)} ∗ fk+1)(t)

= ( f1 ∗ f2 ∗ · · · ∗ fk+1)(t).

(2) If n = 1 the statement becomes Lemma 2.1.2. Now, suppose that it holds for n = k.
Lemma 2.1 yields

L−1

{(
e−pτ

p

)k+1
}

=

(
L−1

{(
e−pτ

p

)k
}
∗ L−1

{
e−pτ

p

})
(t)

=
∫ t

0

(s− kτ)k−1

(k− 1)!
σ(s− kτ)σ(t− s− τ)ds

=
∫ t−τ

kτ

(s− kτ)k−1

(k− 1)!
ds σ(t− (k + 1)τ) =

(t− (k + 1)τ)k

k!
σ(t− (k + 1)τ)

what was to be proved.

Lemma 2.3. Let n ∈N, 0 < τ1, τ2, . . . , τn ∈ R, k1, k2, . . . , kn ∈N0. Then

L−1

{
n

∏
m=1

(
e−pτm

p

)km
}

=


δ(t), k1 = k2 = · · · = kn = 0,

(t−∑n
m=1 kmτm)

∑n
m=1 km−1

(∑n
m=1 km−1)! σ

(
t−

n

∑
m=1

kmτm

)
, k1 + k2 + · · ·+ kn ∈N.

(2.1)

Proof. We shall prove the statement by mathematical induction with respect to n. For n = 1,
(2.1) is obtained from Lemma 2.1.5 and Lemma 2.2.2. Now, suppose that the statement holds
with n = l. For simplicity we denote Ln the left-hand side of (2.1). Then we expand as in the
proof of Lemma 2.2.2,

Ll+1 =

(
Ll ∗ L−1

{(
e−pτl+1

p

)kl+1
})

(t). (2.2)

Using the inductive hypothesis and Lemma 2.2.2, we subsequently consider four cases.
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If k1 = k2 = · · · = kl+1 = 0, we get Ll+1 = (δ ∗ δ)(t) = δ(t). If k1 = k2 = · · · = kl = 0,
kl+1 ∈N, (2.2) gives

Ll+1 =
(t− kl+1τl+1)

kl+1−1

(kl+1 − 1)!
σ(t− kl+1τl+1)

by the sifting property of δ function [3]. Similarly, if k1 + k2 + · · ·+ kl ∈ N, kl+1 = 0, then
Ll+1 = Ll .

Finally, if k1 + k2 + · · ·+ kl ∈N and kl+1 ∈N, it remains to rewrite the right-hand side of
(2.2) as integral

Ll+1 =
∫ t

0

(
s−∑l

m=1 kmτm

)∑l
m=1 km−1(

∑l
m=1 km − 1

)
!

σ

(
s−

l

∑
m=1

kmτm

)

× (t− s− kl+1τl+1)
kl+1−1

(kl+1 − 1)!
σ(t− s− kl+1τl+1)ds

=
∫ t−kl+1τl+1

∑l
m=1 kmτm

(
s−∑l

m=1 kmτm

)∑l
m=1 km−1(

∑l
m=1 km − 1

)
!

(t− s− kl+1τl+1)
kl+1−1

(kl+1 − 1)!
ds σ

(
t−

l+1

∑
m=1

kmτm

)
.

Now, take the substitution

s =
l

∑
m=1

kmτm + ξ

(
t−

l+1

∑
m=1

kmτm

)
to obtain

Ll+1 =

(
t−∑l+1

m=1 kmτm

)∑l+1
m=1 km−1

σ
(

t−∑l+1
m=1 kmτm

)
(

∑l
m=1 km − 1

)
! (kl+1 − 1)!

B

(
l

∑
m=1

km, kl+1

)

where B(·, ·) is the Euler beta function. Rewriting the beta function using gamma functions,
B(u, v) = Γ(u)Γ(v)

Γ(u+v) for any u, v > 0, and since Γ(k) = (k− 1)! for any k ∈N, one obtains

Ll+1 =

(
t−∑l+1

m=1 kmτm

)∑l+1
m=1 km−1

σ
(

t−∑l+1
m=1 kmτm

)
(

∑l+1
m=1 km − 1

)
!

.

The proof is finished.

Remark 2.4. If B1, . . . , Bn are N×N matrices and w is an N-dimensional vector, then the latter
lemma yields

L−1

{(
n

∏
m=1

(
Bme−pτm

p

)km
)

w

}
= L−1

{(
n

∏
m=1

(
e−pτm

p

)km
)(

n

∏
m=1

Bkm
m

)
w

}

= L−1

{
n

∏
m=1

(
e−pτm

p

)km
}(

n

∏
m=1

Bkm
m

)
w

=


δ(t)w, k1 = k2 = · · · = kn = 0,

(t−∑n
m=1 kmτm)

∑n
m=1 km−1

(
∏n

m=1 Bkm
m

)
w

(∑n
m=1 km − 1)!

σ

(
t−

n

∑
m=1

kmτm

)
,

k1 + k2 + · · ·+ kn ∈N.
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Next, we recall an estimation of the multi-delayed matrix exponential from [8].

Lemma 2.5. Let n ∈N, 0 < τ1, . . . , τn ∈ R, B1, . . . , Bn be pairwise permutable N × N matrices and
eB1,...,Bnt

τ1,...,τn be given by (1.5). If α1, . . . , αn ∈ R are such that ‖Bi‖ ≤ αieαiτi for each i = 1, . . . , n, then∥∥∥eB1,...,Bnt
τ1,...,τn

∥∥∥ ≤ e(α1+···+αn)(t+τn)

for any t ∈ R.

As a corollary we get a sufficient condition for x(t) of (1.3) to be exponentially bounded.

Lemma 2.6. Let the assumptions of Theorem 1.2 be fulfilled and the function f be exponentially
bounded. Then the solution x(t) of (1.2), (1.1) is exponentially bounded.

Proof. Let c1, c2 ∈ R be such that | f (t)| ≤ c1ec2t for all t ≥ 0, and α1, . . . , αn ∈ R such
that ‖Bi‖ ≤ αieαiτi for each i = 1, . . . , n. We can suppose that c2 > 0 (otherwise take c2 >

0). By Lemma 2.5, ‖Xn(t)‖ ≤ eαt for any t ∈ R where α = ∑n
i=1 αi. Then denoting ϕ :=

maxt∈[−τ,0] |ϕ(t)|, for t ≥ 0 we obtain

|x(t)| ≤ ϕeαt +
n

∑
m=1
‖Bm‖ϕ

∫ t

0
eα(t−s)ds + c1

∫ t

0
eα(t−s)+c2sds

≤ ϕ

(
1 +

n

∑
m=1

‖Bm‖
α

)
eαt +

c1e(α+c2)t

c2
≤ Ce(α+c2)t

for a constant C.

3 Main results

This section is devoted to main results of the present paper. First we suppose that the function
f is exponentially bounded.

Theorem 3.1. Let n ∈ N, 0 < τ1, . . . , τn ∈ R, τ := max{τ1, τ2, . . . , τn}, B1, . . . , Bn be pairwise
permutable N × N matrices, i.e. BiBj = BjBi for each i, j ∈ {1, . . . , n}, ϕ ∈ C([−τ, 0], RN), and
f : [0, ∞)→ RN be a given exponentially bounded function, i.e., there exist constants c1, c2 ∈ R such
that | f (t)| ≤ c1ec2t for all t ≥ 0. Then the solution of the Cauchy problem (1.2), (1.1) has the form

x(t) =

{
ϕ(t), −τ ≤ t < 0,

A(t)ϕ(0) + ∑n
j=1 Bj

∫ τj
0 A(t− s)ϕ(s− τj)ds +

∫ t
0 A(t− s) f (s)ds, 0 ≤ t

(3.1)

where

A(t) = ∑
∑n

m=1 kmτm≤t
k1,...,kn≥0

(t−∑n
m=1 kmτm)∑n

m=1 km

k1! . . . kn!

n

∏
m=1

Bkm
m (3.2)

for any t ∈ R.
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Proof. By Lemma 2.6, the solution is exponentially bounded and we can apply the Laplace
transform on the studied equation (1.2). By Lemma 2.1.4, we obtain

pL{x(t)} − ϕ(0) =
n

∑
i=1

Bi

∫ ∞

0
e−psx(s− τi)ds + L{ f (t)}

=
n

∑
i=1

Bi

(∫ τi

0
e−ps ϕ(s− τi)ds +

∫ ∞

τi

e−psx(s− τi)ds
)
+ F(p)

=
n

∑
i=1

Bi

(∫ ∞

0
e−psψ(s− τi)ds + e−pτi

∫ ∞

0
e−psx(s)ds

)
+ F(p)

=
n

∑
i=1

(
BiL{ψ(t− τi)}+ Bie−pτiL{x(t)}

)
+ F(p)

for ψ(t) given by (1.4). Therefrom, we get(
pI−

n

∑
i=1

Bie−pτi

)
L{x(t)} = ϕ(0) +

n

∑
i=1

BiL{ψ(t− τi)}+ F(p).

From theory of matrices we know (see e.g. [11, Proposition 7.5]) that, on suppose that p is
sufficiently large, or more precisely, p is such that∥∥∥∥∥ n

∑
i=1

Bie−pτi

∥∥∥∥∥ < p

for a fixed induced norm ‖ · ‖, the matrix I−∑n
i=1

Bie−pτi

p is invertible and it holds

(
I−

n

∑
i=1

Bie−pτi

p

)−1

=
∞

∑
k=0

(
n

∑
i=1

Bie−pτi

p

)k

.

Hence

L{x(t)} = 1
p

(
I−

n

∑
i=1

Bie−pτi

p

)−1 [
ϕ(0) +

n

∑
i=1

BiL{ψ(t− τi)}+ L{ f (t)}
]

,

i.e.

x(t) = A0 +
n

∑
j=1

Bj Aj + A f

where

A0 = L−1

 1
p

 ∞

∑
k=0

(
n

∑
i=1

Bie−pτi

p

)k
 ϕ(0)

 ,

Aj = L−1

 1
p

 ∞

∑
k=0

(
n

∑
i=1

Bie−pτi

p

)k
L{ψ(t− τj)}

 , j = 1, . . . , n,

A f = L−1

 1
p

 ∞

∑
k=0

(
n

∑
i=1

Bie−pτi

p

)k
 F(p)

 .
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Now, applying Lemma 2.1, we get

A0 =
∞

∑
k=0
L−1

 1
p

(
n

∑
i=1

Bie−pτi

p

)k

ϕ(0)

 =
∞

∑
k=0

σ ∗ L−1


(

n

∑
i=1

Bie−pτi

p

)k

ϕ(0)


 (t)

= (σ ∗ δ)(t)ϕ(0) +
∞

∑
k=1

σ ∗ L−1


(

n

∑
i=1

Bie−pτi

p

)k

ϕ(0)


 (t).

Consequently, by multinomial theorem [1],

A0 = σ(t)ϕ(0) +
∞

∑
k=1

σ ∗ L−1


 ∑

k1+···+kn=k
k1,...,kn≥0

(
k

k1, . . . , kn

) n

∏
m=1

(
Bme−pτm

p

)km

 ϕ(0)


 (t)

= σ(t)ϕ(0) +
∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

)(
σ ∗ L−1

{(
n

∏
m=1

(
Bme−pτm

p

)km
)

ϕ(0)

})
(t)

where (
k

k1, . . . , kn

)
=

k!
k1! . . . kn!

is the multinomial coefficient. Finally, by Lemma 2.3 and Remark 2.4,

A0 = σ(t)ϕ(0) +
∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

) ∫ t

0

(s−∑n
m=1 kmτm)

∑n
m=1 km−1

(∑n
m=1 km − 1)!

×
(

n

∏
m=1

Bkm
m

)
ϕ(0)σ

(
s−

n

∑
m=1

kmτm

)
σ(t− s)ds

= σ(t)ϕ(0) +
∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

)
(t−∑n

m=1 kmτm)
k

k!

× σ

(
t−

n

∑
m=1

kmτm

)(
n

∏
m=1

Bkm
m

)
ϕ(0) = A(t)ϕ(0).

For each j = 1, . . . , n we apply Lemma 2.1,

Aj =
∞

∑
k=0

σ ∗ L−1


(

n

∑
i=1

Bie−pτi

p

)k

L{ψ(t− τj)}


 (t),

multinomial theorem,

Aj = (σ ∗ ψ(· − τj))(t) +
∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

)

×
(

σ ∗ L−1

{
n

∏
m=1

(
e−pτm

p

)km
}
∗
(

n

∏
m=1

Bkm
m

)
ψ(· − τj)

)
(t),
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and Lemma 2.3,

Aj =
∫ t

0
σ(t− s)ψ(s− τj)ds +

∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

)( n

∏
m=1

Bkm
m

)

×
(

σ ∗ (· −∑n
m=1 kmτm)

∑n
m=1 km−1

(∑n
m=1 km − 1)!

σ

(
· −

n

∑
m=1

kmτm

)
∗ ψ(· − τj)

)
(t).

The double sum from the right-hand side of the above identity can be written as

∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

(
k

k1, . . . , kn

)( n

∏
m=1

Bkm
m

)(
(· −∑n

m=1 kmτm)
k

k!
σ

(
· −

n

∑
m=1

kmτm

)
∗ ψ(· − τj)

)
(t)

=
∫ t

0

∞

∑
k=1

∑
k1+···+kn=k

k1,...,kn≥0

∏n
m=1 Bkm

m

k1! . . . kn!

(
t− s−

n

∑
m=1

kmτm

)k

σ

(
t− s−

n

∑
m=1

kmτm

)
ψ(s− τj)ds.

Hence,

Aj =
∫ t

0

∞

∑
k=0

∑
k1+···+kn=k

k1,...,kn≥0

∏n
m=1 Bkm

m

k1! . . . kn!

(
t− s−

n

∑
m=1

kmτm

)k

σ

(
t− s−

n

∑
m=1

kmτm

)
ψ(s− τj)ds

=
∫ t

0
∑

∑n
m=1 kmτm≤t−s

k1,...,kn≥0

(t− s−∑n
m=1 kmτm)

∑n
m=1 km

k1! . . . kn!

(
n

∏
m=1

Bkm
m

)
ψ(s− τj)ds

for each j = 1, . . . , n. Note that the above integral can be shrink to
∫ τj

0 when t > τj, along with
ψ(s− τj) → ϕ(s− τj). On the other side, if t < τj, it can be extended to

∫ τj
0 , since

∫ τj
t = 0

because of the empty sum property. Therefore,

Aj =
∫ τj

0
A(t− s)ϕ(s− τj)ds, j = 1, . . . , n.

Finally, as for Aj we derive

A f =
∫ t

0
∑

∑n
m=1 kmτm≤t−s

k1,...,kn≥0

(t− s−∑n
m=1 kmτm)

∑n
m=1 km

k1! . . . kn!

(
n

∏
m=1

Bkm
m

)
f (s)ds

which is exactly
∫ t

0 A(t− s) f (s)ds. The statement is proved.

As is shown below, the statement of the above theorem holds for a more general function f .

Corollary 3.2. Theorem 3.1 remains valid if the function f is not exponentially bounded.

Proof. On setting

ϕ(t) =

{
Θ, t ∈ [−τ, 0),

I, t = 0,

f ≡ Θ and considering equation (1.2) as a matrix equation, one can see that A(t) of (3.2) is a
matrix solution of this equation and initial condition, i.e.

Ȧ(t) = B1A(t− τ1) + · · ·+ BnA(t− τn), t ≥ 0
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considering the right-hand derivative at t = 0, and

A(t) =
{

Θ, t ∈ [−τ, 0),

I, t = 0.

Let t ≥ 0 be arbitrary and fixed. Denote M ⊂ {1, . . . , n} the (possibly empty) set of all indices
such that t < τj if and only if j ∈ M. Then from (3.1) we know that

x(t) = A(t)ϕ(0) + ∑
j∈M

Bj

∫ t

0
A(t− s)ϕ(s− τj)ds

+
n

∑
M 63j=1

Bj

∫ τj

0
A(t− s)ϕ(s− τj)ds +

∫ t

0
A(t− s) f (s)ds.

Differentiating we obtain

ẋ(t) =
n

∑
m=1

BmA(t− τm)ϕ(0) + ∑
j∈M

Bj

(
A(0)ϕ(t− τj) +

∫ t

0

n

∑
m=1

BmA(t− τm − s)ϕ(s− τj)ds

)

+
n

∑
M 63j=1

Bj

∫ τj

0

n

∑
m=1

BmA(t− τm − s)ϕ(s− τj)ds

+A(0) f (t) +
∫ t

0

n

∑
m=1

BmA(t− τm − s) f (s)ds

=
n

∑
M 63m=1

BmA(t− τm)ϕ(0) + ∑
j∈M

Bj

(
ϕ(t− τj) +

∫ τj

0

n

∑
M 63m=1

BmA(t− τm − s)ϕ(s− τj)ds

)

+
n

∑
M 63j=1

Bj

∫ τj

0

n

∑
M 63m=1

BmA(t− τm − s)ϕ(s− τj)ds + f (t)

+
∫ t

0

n

∑
M 63m=1

BmA(t− τm − s) f (s)ds

= ∑
j∈M

Bj ϕ(t− τj) +
n

∑
M 63m=1

Bm

(
A(t− τm)ϕ(0) +

n

∑
j=1

Bj

∫ τj

0
A(t− τm − s)ϕ(s− τj)ds

+
∫ t−τm

0
A(t− τm − s) f (s)ds

)
+ f (t)

=
n

∑
j=1

Bjx(t− τj) + f (t)

since x(t− τj) = ϕ(t− τj) if j ∈ M. This completes the proof.

Taking a simple substitution we obtain the following result for delayed differential equa-
tions with a constant non-delayed term. The solution is understood in the sense analogous to
Definition 1.3.

Theorem 3.3. Let n ∈ N, 0 < τ1, . . . , τn ∈ R, τ := max{τ1, τ2, . . . , τn}, A, B1, . . . , Bn be pairwise
permutable N × N matrices, ϕ ∈ C([−τ, 0], RN), and f : [0, ∞) → RN be a given function. Then
the solution of the Cauchy problem (1.6), (1.1) has the form

x(t) =


ϕ(t), −τ ≤ t < 0,

B(t)ϕ(0) + ∑n
j=1 Bj

∫ τj
0 B(t− s)ϕ(s− τj)ds

+
∫ t

0 B(t− s) f (s)ds, 0 ≤ t

(3.3)
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where

B(t) = eAt ∑
∑n

m=1 kmτm≤t
k1,...,kn≥0

(t−∑n
m=1 kmτm)∑n

m=1 km

k1! . . . kn!

n

∏
m=1

B̃km
m (3.4)

for any t ∈ R, and B̃m = Bme−Aτm for each m = 1, . . . , n.

Proof. Let us set y(t) = e−Atx(t). Then y satisfies

ẏ(t) = B̃1y(t− τ1) + · · ·+ B̃ny(t− τn) + f̃ (t), t ≥ 0,

y(t) = e−At ϕ(t) =: ϕ̃(t), −τ ≤ t ≤ 0

for f̃ (t) = e−At f (t) for all t ≥ 0. Application of Theorem 3.1 yields

y(t) =


ϕ̃(t), −τ ≤ t < 0,

Ã(t)ϕ̃(0) + ∑n
j=1 B̃j

∫ τj
0 Ã(t− s)ϕ̃(s− τj)ds

+
∫ t

0 Ã(t− s) f̃ (s)ds, 0 ≤ t

with

Ã(t) = ∑
∑n

m=1 kmτm≤t
k1,...,kn≥0

(t−∑n
m=1 kmτm)∑n

m=1 km

k1! . . . kn!

n

∏
m=1

B̃km
m .

Now, returning back to x and using ϕ̃(0) = ϕ(0),

eAtB̃jÃ(t− s)ϕ̃(s− τj) = BjeA(t−s)Ã(t− s)ϕ(s− τj),

eAtÃ(t− s) f̃ (s) = eA(t−s)Ã(t− s) f (s)

and B(t) = eAtÃ(t), the statement follows immediately.

Finally, we present an application of the results derived on a scalar equation. In practical
computations, we rewrite the sum in (3.2) or (3.4) as

∑
∑n

m=1 kmτm≤t
k1,...,kn≥0

=

⌊
t

τ1

⌋
∑

k1=0

⌊
t−k1τ1

τ2

⌋
∑

k2=0
· · ·

⌊
t−∑n−1

m=1 kmτm
τn

⌋
∑

kn=0
.

Now the solution given by (3.1) or (3.3) can be computed by hand or using a software.

Example 3.4. Let us consider the following initial value problem

ẋ(t) = −3.5x(t) + 2x(t− 1)− x(t− 2) + 3x(t− 2.5) + 1, t ≥ 0

x(t) = −t, t ∈ [−2.5, 0].
(3.5)

The solution of this problem is found using Theorem 3.3 and is illustrated in Figure 3.1. We
added a more detailed view at the interval [2, 3], as one may get an impression from the first
part of Figure 3.1 that the solution is not differentiable at some point.
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Figure 3.1: The solution of (3.5) with a delayed view at the interval [2, 3].
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