
Acta Cybernetica 23 (2018) 829–852.

Approximations to the Normal Probability

Distribution Function using Operators of

Continuous-valued Logic

József Dombia and Tamás Jónásb

Abstract

In this study, novel approximation methods to the standard normal prob-
ability distribution function are introduced. The techniques presented are
founded on applications of certain operators of continuous-valued logic. It
is demonstrated here that application of the averaging Dombi conjunction
operator to two symmetric Sigmoid fuzzy membership functions results in a
function that is identical with Tocher’s approximation to the standard normal
probability distribution function. Next, an approximation connected with a
unary fuzzy modifier operator is discussed. Namely, the so-called Kappa func-
tion is applied for constructing a novel probability distribution function. It is
shown here that the asymptotic Kappa function is just the Sigmoid function
and the proposed Quasi Logistic probability distribution function can be uti-
lized to approximate the standard normal probability distribution function.
It is also explained how the new probability distribution function is connected
with the generator function of Dombi operators. The proposed approxima-
tion formula is very simple as it has only one constant parameter. It does
not include any exponential term, but has a good approximation accuracy
and fulfills certain requirements that only a few of the known approximation
formulas do.

Keywords: continuous logic, Dombi operators, sigmoid function, normal
probability distribution, approximation

1 Introduction

The normal probability distribution plays a significant role in probability theory
and mathematical statistics. Owing to the central limit theorem, it has an ex-
tremely wide range of applications in many areas of sciences. The fact that the
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cumulative distribution function of the standard normal random variable cannot
be expressed in a closed form and the practical needs for computing its values pro-
vided the motivations for researchers and practitioners over the last seven decades
to approximate the standard normal probability distribution function. These re-
search efforts resulted in an extremely wide range of approximations with many
applications.

In this paper, we will introduce approximations to the standard normal proba-
bility distribution function that are connected with the well-known Dombi operators
in continuous-valued logic. Firstly, we will utilize the averaging Dombi conjunction
operator to construct a probability density function from two Sigmoid functions.
We will show that this approximation method results in a probability distribution
function that is identical with Tocher’s approximation from 1963 [29]. Secondly,
we will introduce the Kappa function and based on this function, we will construct
the Quasi Logistic probability distribution function. We will show that the asymp-
totic Kappa function is just the Sigmoid function and using this result, we will also
show how the Quasi Logistic probability distribution function can be utilized for
approximating the standard normal probability distribution function. Here, we will
point out how the proposed probability distribution function is connected with the
generator function of Dombi operators and with the Kappa function-based uniary
operator that can be utilized as a general fuzzy modifier operator. The novelty of
our methods lies in the fact that some mathematical constructions of continuous-
valued logic can be successfully utilized to construct approximations to probability
distribution functions.

Many known approximations to the standard probability distribution function
focus mainly on the approximation accuracy, and so these methods result in highly
accurate functions, without taking some other aspects of the approximation into
account. It should be mentioned here that we require our approximations to meet
expectations that are based on certain theoretical and practical considerations.
These expectations are simplicity and accuracy, asymptotic equality of the ap-
proximator function to the standard normal distribution function to first order at
zero, symmetry of probability density function and a direct connection between the
density and distribution functions.

Finally, we propose the use of the following probability distribution function,
which is a special case of the Quasi Logistic distribution function, to approximate
the standard normal probability distribution function:

Φκ,π(x) =


0, if x ≤ −π

1

1 +
(
π−x
π+x

)√2π
, if x ∈ (−π,+π)

1, if x ≥ +π.

(1)

We call the function Φκ,π(x) the Dombi-Jónás probability distribution function.
It has only one constant parameter, which is the number π, while its maximum
absolute approximation error over the set of real numbers is 2.36 · 10−3. Note that
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there are just a few known approximations with a single constant parameter in
this accuracy range (e.g. [26], [20], [1], [13]), and all these approximations include
exponential terms, while ours does not contain any and has a very simple form. It
should also be added that the probability density function φκ,π(x) can be directly
expressed in the terms of the probability distribution function Φκ,π(x) without
differentiating it.

In many practical applications, the value of the standard normal probability
distribution function for an argument being less than -3 or greater than +3 is
considered to be zero and one, respectively, although the probability distribution
does not take these values. The proposed Φκ,π(x) approximation has the value of
zero, if x ≤ −π, and it has the value of 1, if x ≥ +π, so the function Φκ,π(x)
may be viewed as an alternative, with bounded domain, to the standard normal
probability distribution function.

The remaining part of the paper is organized as follows. In Section 2, we will re-
view some notable approximations to the standard normal probability distribution
function. Next, in Section 3, we will set our approximation criteria and introduce
novel approximation methods that are connected with the Dombi operators. Lastly,
in Section 4, we will summarize our approximation results and draw some key con-
clusions about the proposed Quasi Logistic probability distribution function.

2 Approximations to the Standard Normal
Probability Distribution Function

Now, we will give a short review of the techniques that are widely used for approxi-
mating the standard normal probability distribution function and enumerate some
notable approximations that have been constructed in the last seven decades.

We will use the common notations φ(x) and Φ(x) for the probability density
function and probability distribution function of the standard normal random vari-
able, respectively. That is,

φ(x) =
1√
2π

e−
x2

2 ; Φ(x) =

x∫
−∞

φ(t)dt. (2)

The approximation methods available in the literature can be categorized into
two main approach categories [21]. One category is the group of approximations
that are based on numerical methods, while the other category contains methods
that are founded on ad-hoc approximations.

The numerical methods are typically based on numerical integration techniques,
various power series, expansions in Hermite or Chebyshev polynomials and contin-
ued fraction expansions (e.g. [6], [18], [22], [25], [7]). In general, these methods can
yield a high-level approximation accuracy, but require complex computations.

The ad-hoc approximation methods typically utilize an a priori selected para-
metric function and apply various mathematical techniques to estimate the pa-
rameters in order minimize the approximation error. Matic et al. [21], Soranzo
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and Epure [28] and Yerukala and Boiroju [32] gave comprehensive overviews of the
approximation formulas in their papers. Here, without striving for completeness,
we enumerate some notable approximation formulas and indicate their maximum
absolute errors (MAE).

1. Pólya (1949) [26]: Φ(x) ≈ 1+
√

1−e−2x2/π

2 ; MAE = 3.15 · 10−3

2. Hart (1957) [15]: Φ(x) ≈ 1√
2π

e−2x2/π

x+0.8e−0.4x ; MAE = 4.30 · 10−3

3. Tocher (1963) [29]: Φ(x) ≈ e2
√

2/π

1+e2
√

2/π
; MAE = 1.77 · 10−2

4. Zelen & Severo (1964) [34]: Φ(x) ≈ 1−
(
a1t− a2t

2 + a3t
3
)

e−
x2

2√
2π

,

where t = (1 + 0.33267x)−1, a1 = 0.4361836, a2 = 0.1201676,
a3 = 0.937298; MAE = 1.15 · 10−5

5. Hart (1966) [16]: Φ(x) ≈ 1− e−
x2

2√
2πx

1−
√

1+bx2

1+ax2

P0+

√
P0x2+e−

x2
2

√
1+bx2

1+ax2

,

where a = 1+
√

1−2π2+6π
2π , b = 2πa2 and P0 =

√
π/2; MAE = 5.23 · 10−5

6. Page (1977) [24]: Φ(x) ≈ 1
2

1
1+tanh(y) , where y =

√
2
πx
(
1 + 0.044715x2

)
;

MAE = 1.79 · 10−4

7. Hamaker (1978) [14]: Φ(x) ≈ 1− 1
2

(
1−
√

1− e−y2
)

,

where y = 0.806x(1− 0.018x); MAE ≈ 6.23 · 10−4

8. Lin (1989) [19]: Φ(x) ≈ 1− 1
2e−0.717x−0.416x2

; MAE = 6.59 · 10−3

9. Norton (1989) [23]: Φ(x) ≈

{
1− 1

2e−0.717x−0.416x2

, if 0 ≤ x ≤ 2.7
1√
2πx

e−
x2

2 , if x > 2.7;

MAE = 8.07 · 10−3

10. Lin (1990) [20]: Φ(x) ≈ 1− 1

1+e
4.2π x

9−x
, where 0 ≤ x < 9; MAE = 6.69 · 10−3

11. Bagby (1995) [2]:

Φ(x) ≈ 1
2 + 1

2

√
1− 1

30

(
7e−x2/2 + 16e−x2(2−

√
2) +

(
7 + π

4x
2
)

e−x2
)

;

MAE ≈ 3.00 · 10−5

12. Waissi & Rossin (1996) [31]:
Φ(x) ≈ 1

1+e−
√
π(0.9x+0.0418198x3+0.0004406x5) ; MAE = 4.37 · 10−5

13. Bryc (2002) [4]: Φ(x) ≈ x2+a1x+a2√
2πx3+b1x2+b2x+2a2

e−
x2

2 ,

where a1 = 5.575192695, a2 = 12.77436324, b1 = 14.38718147,
b2 = 31.53531977; MAE = 1.87 · 10−5
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14. Shore (2005) [27]: Φ(x) ≈ 1+g(−x)+g(x)
2 ,

where g(x) = e− log 2eα/(λ/S1)((1+S1x)
(λ/S1)−1)+S2x

λ = 0.61228883, S1 = 0.11105481, S2 = 0.44334159, α = 6.37309208;
MAE ≈ 10−7

15. Aludaat and Alodat (2008) [1]: Φ(x) ≈ 1
2 + 1

2

√
1− e−

√
π/8x2

;
MAE = 1.97 · 10−3

16. Bowling et al. (2009) [3]: Φ(x) ≈ 1

1+e−(0.07056x3+1.5976x) ; MAE = 1.4 · 10−4

17. Yerukala et al. (2011) [33]:

Φ(x) ≈

{
0.5− 1.136H1 + 2.47H2 − 3.013H3, if 0 ≤ x ≤ 3.36

1, if x > 3.36,

where H1 = tanh(−0.2695x), H2 = tanh(0.5416x) and H3 = tanh(0.4134x);
MAE = 1.25 · 10−3

18. Vazquez-Leal et al. (2012) [30]: Φ(x) ≈ 1
2 tanh

(
179x
23 −

11
2 arctan

(
37x
294

))
+ 1

2 ;
MAE ≈ 1.00 · 10−6

19. Choudhury (2014) [5]: Φ(x) ≈ 1− 1√
2π

e−
x2

2

0.226+0.64x+0.33
√
x2+3

;

MAE = 1.93 · 10−4

20. Yerukala & Boiroju (2015) [32]: Φ(x) ≈ 1− e−
x2

2

44
79 + 8

5x+ 5
6

√
x2+3

;

MAE = 1.10 · 10−4

21. Yerukala & Boiroju (2015) [32]: Φ(x) ≈ wΦ1(x) + (1− w)Φ2(x),
where x > 0, w = 0.268, Φ1(x) is the approximation by Hart (1966)
and Φ2(x) is the approximation by Bryc (2002); MAE = 7.54 · 10−6

22. Matic et al. (2016) [21]:

Φ(x) ≈ 1
2 + sgn(x)

2

√
1− e−

2x2

π (1+γ2x2+γ4x4+γ6x6+γ8x8+γ10x10),
where γ2 = − 1

3 + 1
π ; γ4 = 7

90 −
2

3π + 4
3π2 ; γ6 = − 1

70 + 4
15π −

4
3π2 + 2

π3 ;
γ8 = 83

37800 −
76

945π + 34
45π2 − 8

3π3 + 16
5π4 ;

γ10 = − 73
249480 + 283

14175π −
178

567π2 + 88
45π3 − 16

3π4 + 16
3π5 ;

MAE = 5.79 · 10−6

23. Eidous and Al-Salman (2016) [13]: Φ(x) ≈ 1
2

(
1 +
√

e−5/8x2
)

;

MAE = 1.81 · 10−3

Based on the above approximation formulas, we may state that the accuracy of
approximations increases with the complexity of formulas and with the number of
parameters they possess.
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3 Novel Methods based on Operators of
Continuous-valued Logic

Fist of all, we will lay down some expectations that we require from approxima-
tions and use these criteria to evaluate our results and compare them with some
well-known ones. Next, we will introduce the Dombi operators that are familiar
in continuous-valued logic and construct novel approximation methods that are
connected with these operators.

3.1 Expectations towards Our Approximations

The most basic expectation towards an approximation is that it is sufficiently accu-
rate. In the literature, there are many approximations to the standard probability
distribution function that focus mainly on the approximation accuracy. These ef-
forts have resulted in highly accurate functions, without taking some other features
of the approximation into account. Here we set some criteria – driven by theoretical
and practical considerations – that we require our approximations to meet.

Simplicity and accuracy. The approximation functions should have a simple,
easily computable formula, and the approximation accuracy should meet the re-
quirements of practical applications.

Identity to first order at zero. Let F (x) be an approximating function to
the standard normal probability distribution function. We require F (x) to be a
probability distribution function and meet the following criteria:

F (0) = Φ(0) = 0.5

dF (x)

dx

∣∣∣∣
x=0

=
dΦ(x)

dx

∣∣∣∣
x=0

= φ(x)

∣∣∣∣
x=0

=
1√
2π
.

(3)

Symmetry. Since the probability density function φ(x) is an even function,
Φ(−x) = 1 − Φ(x) holds for any x ∈ R. We require the approximation F (x)
to have the same feature; that is, F (−x) = 1 − F (x) for any x ∈ R. Note that
if F (x) satisfies the F (−x) = 1− F (x) requirement, then the approximation error
function δ(x) = Φ(x)− F (x) is an odd function, and so the curve of |Φ(x)− F (x)|
is symmetric with respect to the vertical axis.

Direct connection between the density and distribution functions. In
practice, it may be useful, if the probability distribution function can be expressed
by the probability density function without integration, and vice versa, if the prob-
ability density function can be expressed by the probability distribution function
without differentiation. Hence, we prefer the approximations that result in prob-
ability density and distribution functions with a direct connection between them;
that is, one can be expressed by the other one in a closed form.



Continuous-valued Logic and Approximations to the Normal Distribution 835

It is worth emphasizing that only a few of the known approximations listed in
Section 2 meet all the requirements we demanded. In general, the more complex
an approximation formula is, the less of our criteria it meets. However, the approx-
imations with more complex formulas and higher number of constant parameters
result in a higher approximation precision. Note that many of the known approxi-
mations work just with positive values of variable x and let the user compute the
approximating function value by using the Φ(−x) = 1−Φ(x) equation for negative
values of x.

3.2 Dombi Operators in Continuous-valued Logic

Here, we will introduce the Dombi operator class that can be utilized for imple-
menting the conjunction and disjunction operations in continuous-valued logic [8],
[10].

Definition 1. The Dombi conjunction and disjunction operator in continuous-
valued logic is given by

oα(x) =
1

1 +

(
n∑
i=1

(
1−xi
xi

)α)1/α
and oα(x) =

1

1 +

(
1
n

n∑
i=1

(
1−xi
xi

)α)1/α
, (4)

where x = (x1, x2, ..., xn), and x1, x2, ..., xn are continuous-valued logic variables.

If α > 0, then the Dombi operator is a conjunction operator; if α < 0, then it
is a disjunction operator. Here, we will use the Dombi conjunction operators with
two operands and α = 1:

c(x1, x2) = o(x1, x2)|α=1 =


0, if x1 = 0 or x2 = 0

1

1 + 1−x1

x1
+ 1−x2

x2

, otherwise,
(5)

c(x1, x2) = o(x1, x2)|α=1 =


0, if x1 = 0 or x2 = 0

1

1 + 1
2

(
1−x1

x1
+ 1−x2

x2

) , otherwise, (6)

where x1 and x2 are two continuous-valued logic variables. We call c the averaging
Dombi conjunction operator. Note that operation c is not idempotent, while c may
be viewed as an idempotent variant of c.

Remark 1. Based on the general representation theorem [9],

o(x) = f−1

(
n∑
i=1

f(xi)

)
and o(x) = f−1

(
1

n

n∑
i=1

f(xi)

)
(7)
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are strict operators, if f(x) is a strictly monotone function, where x =
(x1, x2, ..., xn), and x1, x2, ..., xn are continuous-valued logic variables. If we ap-
ply the function

f(x) = fα(x) =

(
1− x
x

)α
(8)

to o(x) and o(x), then we get the operators oα(x) and oα(x), respectively. That is,
fα(x) is the generator function of Dombi conjunction and disjunction operators.

In fuzzy logic, the linguistic modifiers like ”very”, ”more or less”, ”somewhat”,
”rather” and ”quite” over fuzzy sets that have strictly monotonously increasing or
decreasing membership functions can be modeled by the following unary operator
called the Kappa function [11].

Definition 2. The Kappa modifier operator (Kappa function) is given by

κ(λ)
ν,ν0(x) =

1

1 + 1−ν0
ν0

(
ν

1−ν
1−x
x

)λ , (9)

where ν, ν0 ∈ (0, 1), λ ∈ R, and x is a continuous-valued logic variable.

In Section 3.4, we will use a special form of the unary modifier operator in (9)
to construct a probability distribution function.

3.3 The Sigmoid Function and Some of Its Basic Properties

Since we will use the Sigmoid function to construct probability density and probabil-
ity distribution functions, here we will introduce it and some of its main properties.

Definition 3. The Sigmoid function σ(λσ)(x) with the parameter λσ is given by

σ(λσ)(x) =
1

1 + e−λσx
, (10)

where λσ ∈ R, λσ 6= 0, x ∈ R.

Note that the Sigmoid function is also known as the Logistic function. The main
properties, such as the range, continuity, monotonicity, limits, role of the parameter
and convexity of the Sigmoid function σ(λσ)(x) are as follows.

Range. The range of σ(λσ)(x) is the interval (0, 1).

Continuity. σ(λσ)(x) is a continuous function in R.

Monotonicity.

• If λσ > 0, then σ(λσ)(x) is strictly monotonously increasing

• If λσ < 0, then σ(λσ)(x) is strictly monotonously decreasing
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Limits. Function σ(λσ)(x) takes neither the value zero, nor the value 1, as these
are its limits:

lim
x→+∞

σ(λσ)(x) =

{
1, if λσ > 0

0, if λσ < 0,
(11)

lim
x→−∞

σ(λσ)(x) =

{
1, if λσ < 0

0, if λσ > 0.
(12)

Role of the parameter. The parameter λσ of σ(λσ)(x) has a semantic meaning
related to the shape of the function curve. The first derivative of σ(λσ)(x) at x = 0
is

dσ(λσ)(x)

dx

∣∣∣∣
x=0

= λσσ
(λσ)(0)

(
1− σ(λσ)(0)

)
=
λσ
4
. (13)

That is, the λσ parameter determines the slope of σ(λσ)(x) at x = 0.

Convexity.

• σ(λσ)(x) has a single inflection point that is at x = 0

• If λσ > 0, then σ(λσ)(x) changes from concave to convex at x = 0

• If λσ < 0, then σ(λσ)(x) changes from convex to concave at x = 0

Figure 1 shows some examples of Sigmoid function plots.
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Figure 1: Examples of Sigmoid function plots.
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3.4 Tocher’s Approximation and the Averaging Dombi
Conjunction Operator

Applying the averaging Dombi conjunction in (6) to σ(λσ)(x) and σ(−λσ)(x) yields
the following dλσ (x) function:

dλσ (x) = c
(
σ(λσ)(x), σ(−λσ)(x)

)
=

1

1 + 1
2

(
1−σ(λσ)(x)
σ(λσ)(x)

+ 1−σ(−λσ)(x)
σ(−λσ)(x)

) =

=
1

1 + 1
2 (e−λσx + eλσx)

=
2eλσx

(1 + eλσx)
2 .

(14)

Figure 2 shows the averaging Dombi conjunction of two Sigmoid fuzzy member-
ship functions; that is, the intersection of two fuzzy sets that are given by Sigmoid
functions: by a decreasing and an increasing Sigmoid function with the same ab-
solute λσ parameter values.

-6 -4 -2 0 2 4 6
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ(λσ )(x)

σ(−λσ )(x)

c
(
σ(λσ )(x),σ(−λσ )(x)

)

Figure 2: The averaging Dombi conjunction of two Sigmoid fuzzy membership
functions.

Function dλσ (x), like the density function φ(x), has a bell-shaped curve, but
since

+∞∫
−∞

dλσ (x)dx =

+∞∫
−∞

2eλσx

(1 + eλσx)
2 =

[
− 2

λσ (1 + eλσx)

]+∞

−∞
=

2

λσ
, (15)

dλσ (x) is not a probability density function. Hence,

+∞∫
−∞

λσ
2
dλσ (x)dx =

+∞∫
−∞

λσeλσx

(1 + eλσx)
2 = 1, (16)
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and so we define the probability density function φσ(x) as follows.

Definition 4. The probability density function φσ(x) is given by

φσ(x) =
λσeλσx

(1 + eλσx)
2 , (17)

where λσ = 2
√

2/π.

Note that setting λσ to 2
√

2/π ensures that

φσ(x)
∣∣
x=0

= φ(x)
∣∣
x=0

. (18)

The corresponding probability distribution function Φσ(x) is

Φσ(x) =

x∫
−∞

φσ(t)dt =

[
− 1

1 + e2
√

2/πt

]x
−∞

=
1

1 + e−2
√

2/πx
. (19)

This means that the probability distribution function Φσ(x) is a Sigmoid function
that has the parameter λσ = 2

√
2/π. It is worth adding here that Φσ(x) is identical

to Tocher’s approximation result in (3) from 1963 [29]. However, we derived the
function Φσ(x) by generating the density function φσ(x) from Sigmoid functions by
utilizing the averaging Dombi conjunction operator, and this approach is different
from Tocher’s.

Approximation accuracy. It can be shown numerically that

max
x∈R
|Φ(x)− Φσ(x)| ≈ 0.0177. (20)

Figure 3 shows the curve of absolute error function |Φ(x)− Φσ(x)|.

Properties of the approximation. Here, we summarize the properties of this
approximation in the light of expectations that were prescribed in Section 3.1.

• Simplicity and accuracy. Φσ(x) has a simple formula, but its maximum
absolute approximation error has an order of magnitude of -2.

• Identity to first order at zero. Since Φσ(0) = Φ(0) and the parameter
λσ of φσ(x) was set such that φσ(0) = φ(0), Φσ(x) and Φ(x) are identical to
first order at x = 0.

• Symmetry. The probability density function φσ(x) is an even function and
so Φσ(−x) = 1− Φσ(x) holds for any x ∈ R.

• Direct connection between the density and distribution functions.
There is an interesting relation between the probability density function φσ(x)
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Figure 3: Absolute errors of approximation by Φσ(x).

and the probability distribution function Φσ(x) that is worth mentioning here.
Namely, utilizing (17) and λσ = 2

√
2/π gives the following equation:

φσ(x) = 2

√
2

π
Φσ(x) (1− Φσ(x)) . (21)

That is, φσ(x) can be expressed in terms of Φσ(x) in a closed form.

According to Hillier and Liberman [17], the Sigmoid function that matches Φ(x)
the best, has only one parameter and the form of (10) is

ΦHL(x) =
1

1 + e−1.702x
. (22)

This approximation has a maximum absolute error of 0.0095. Note that although
this approximation yields a higher accuracy than the approximation by the Φσ(x)
function, the first derivative of ΦHL(x) at x = 0 is not 1/

√
2π; that is, ΦHL(x) is

not identical with Φ(x) to first order.
Note that if we used the Dombi conjunction operator in (5) to create a proba-

bility density function from two Sigmoid functions, then we would get the following
probability distribution function:

Φ∗σ(x) =
3

π
arctan

(√
3

3

(
2e
√

6π/3x + 1
))
− 1

2
. (23)

The maximum absolute error of this approximation is 0.0231 and calculation of the
approximation formula requires the computation of an exponential function and an
arcus tangent function. We can find simpler formulas with better precision values
among the known approximations enumerated in Section 2.
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3.5 An Approximation Connected with the Unary Modifier
Operator

3.5.1 The Epsilon Function

Here, we introduce the Epsilon function that we will utilize for constructing ap-
proximations to the standard normal probability distribution function.

Definition 5. The Epsilon function ε
(λ)
d (x) is given by

ε
(λ)
d (x) =

(
x+ d

d− x

)λ d2
, (24)

where λ ∈ R, λ 6= 0, d ∈ R, d > 0, x ∈ (−d,+d).

The following theorem introduces an important asymptotic property of the Ep-
silon function.

Theorem 1. For any x ∈ (−d,+d), if d→∞,

ε
(λ)
d (x)→ eλx. (25)

Proof. Let x have a fixed value, x ∈ (−d,+d).

lim
d→∞

ε
(λ)
d (x) = lim

d→∞

(
x+ d

d− x

)λ d2
= lim
d→∞

((
d− x+ 2x

d− x

)d)λ
2

=

= lim
d→∞

((
1 +

2x

d− x

)d)λ
2

.

(26)

Since x is fixed, if d→∞, then ∆ = d− x→∞ and so the previous equation can
be continued as follows:

lim
d→∞

((
1 +

2x

d− x

)d)λ
2

= lim
∆→∞

((
1 +

2x

∆

)∆+x
)λ

2

=

=

(
lim

∆→∞

(
1 +

2x

∆

)∆

lim
∆→∞

(
1 +

2x

∆

)x)λ
2

=
(
e2x
)λ

2 · 1λ2 = eλx.

(27)

Based on Theorem 1, we can state that the asymptotic Epsilon function is just
the exponential function. It is worth mentioning here that the Epsilon function is
the basis of the so-called Epsilon probability distribution, which can be utilized to
approximate the exponential probability distribution [12].



842 József Dombi and Tamás Jónás

3.5.2 The Kappa Function and Some of its Basic Properties

Here, we define the Kappa function that we will use to approximate the standard
normal probability distribution function.

Definition 6. The Kappa function κ
(λκ)
d (x) is given by

κ
(λκ)
d (x) =

1

1 +
(
d−x
d+x

)λκ , (28)

where λκ ∈ R, λκ > 0, d ∈ R, d > 0, x ∈ (−d,+d).

Note that we utilize the Kappa function κ
(λκ)
d (x) solely with positive λκ param-

eter values. Here, we state the most important properties of the Kappa function

κ
(λκ)
d (x); namely, range, continuity, monotonicity, limits, role of the parameters

and convexity.

Range. The range of κ
(λκ)
d (x) is the interval (0, 1].

Continuity. κ
(λκ)
d (x) is a continuous function in (−d,+d).

Monotonicity. As λκ > 0, κ
(λκ)
d (x) is strictly monotonously increasing in the

interval (−d,+d).

Limits.

lim
x→−d+

κ
(λκ)
d (x) = 0 (29)

lim
x→+d−

κ
(λκ)
d (x) = 1 (30)

Note that as λκ > 0, κ
(λκ)
d (x) takes the value of 1 at d.

Role of the parameters. Both parameters λκ and d of κ
(λκ)
d (x) have a semantic

meaning related to the shape of the function curve.

• Parameter d specifies the (−d,+d) domain of κ
(λκ)
d (x).

• The first derivative of κ
(λκ)
d (x) at x = 0 is

dκ
(λκ)
d (x)

dx

∣∣∣∣
x=0

= 2λκd
κ

(λκ)
d (x)

(
1− κ(λκ)

d (x)
)

(d− x) (d+ x)

∣∣∣∣
x=0

=
λκ
2d
. (31)

That is, parameter λκ determines the gradient of function κ
(λκ)
d (x) at x = 0.
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Convexity. It can be shown that the Kappa function κ
(λκ)
d (x) has a single inflec-

tion point at x = 0, where it changes its shape from convex to concave.

3.5.3 Connection with the Sigmoid function

The Kappa function has the following asymptotic property that allows us to use
it for approximating the Sigmoid function and through that the standard normal
probability distribution function.

Lemma 1. If σ(λσ)(x) is a Sigmoid function with the parameter λσ > 0, κ
(λκ)
d (x)

is a Kappa function with parameters λκ, d > 0 and

λκ = λσ
d

2
, (32)

then for any x ∈ (−d,+d), if d→∞, then

κ
(λκ)
d (x)→ σ(λσ)(x). (33)

Proof. Let x have a fixed value. If the conditions of the lemma are satisfied, then

the Kappa function κ
(λκ)
d (x) may be written as

κ
(λκ)
d (x) =

1

1 +
(
d−x
d+x

)λκ =
1

1 +
(
d+x
d−x

)−λσ d2 =
1

1 + ε
(−λσ)
d (x)

, (34)

and based on Theorem 1, ε
(−λσ)
d (x)→ e−λσx, if d→∞; that is,

κ
(λκ)
d (x) =

1

1 + ε
(−λσ)
d (x)

−−−→
d→∞

1

1 + e−λσx
= σ(λσ)(x). (35)

Corollary 1. In the interval (−d,+d), the probability distribution function

Φσ(x) =
1

1 + e−λσx
(36)

can be approximated by the Kappa function

κ
(λκ)
d (x) =

1

1 +
(
d−x
d+x

)λκ , (37)

where d ∈ R, d > 0, λσ = 2
√

2/π, λκ =
√

2/πd.

Proof. The corollary follows from Lemma 1.
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3.5.4 The Quasi Logistic Probability Distribution Function

Now, we will we define the Quasi Logistic probability distribution function by
utilizing the Kappa function given in (28).

Definition 7. The Quasi Logistic probability distribution function is given by

Φκ,d(x) =


0, if x ≤ −d
κ

(λκ)
d (x), if x ∈ (−d,+d)

1, if x ≥ +d,

(38)

where d ∈ R, d > 0, λκ =
√

2/πd.

It is worth mentioning here that there is an interesting relation between the
Quasi Logistic probability density function φκ,d(x) and the probability distribution
function Φκ,d(x).

Lemma 2. If x ∈ (−d,+d), then

φκ,d(x) = 2d2

√
2

π

Φκ,d(x) (1− Φκ,d(x))

(d− x) (d+ x)
, (39)

where d ∈ R, d > 0.

Proof. Based on the definition of Φκ,d(x) in (38), if x ∈ (−d,+d), then

Φκ,d(x) = κ
(λκ)
d (x). (40)

Utilizing this equation, (31) and λκ =
√

2/πd, we get

φκ,d(x) =
dΦκ,d(x)

dx
=

dκ
(λκ)
d (x)

dx
=

= 2λκd
κ

(λκ)
d (x)

(
1− κ(λκ)

d (x)
)

(d− x) (d+ x)
= 2d2

√
2

π

Φκ,d(x) (1− Φκ,d(x))

(d− x) (d+ x)
.

(41)

Utilizing Lemma 2, the Quasi Logistic probability density function φκ,d(x) for
x ∈ R is

φκ,d(x) =

2d2

√
2

π

κ
(λκ)
d (x)

(
1− κ(λκ)

d (x)
)

(d− x) (d+ x)
, if x ∈ (−d,+d)

0, otherwise,

(42)

where d ∈ R, d > 0.

Note that based on the properties of κ
(λκ)
d (x), it can be shown that Φκ,d(x)

is in fact a probability distribution function and φκ,d(x) is its probability density
function. Therefore, the following criteria are met:
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1. φκ,d(x) ≥ 0 for any x ∈ R

2.
+∞∫
−∞

φκ,d(x)dx = 1

3.
x∫
−∞

φκ,d(t)dt = Φκ,d(x).

Corollary 2. The standard normal probability distribution function Φ(x) can be
approximated by the Quasi Logistic probability distribution function Φκ,d(x).

Proof. The corollary follows from the fact that Φ(x) can be approximated by the
Sigmoid function σ(λσ)(x) that has the parameter λσ = 2

√
2/π and from Corollary

1 and from the definition of the Quasi Logistic probability distribution function.

It is worth mentioning that φκ,d(x) can be derived from the Kappa function
also in the following way. Utilizing the fact that

fλκ,d(x) =

dκ
(λκ)
d (x)

dx
, if x ∈ (−d,+d)

0, otherwise
(43)

is a probability density function,

dκ
(λκ)
d (x)

dx
= 2λκd

κ
(λκ)
d (x)

(
1− κ(λκ)

d (x)
)

(d− x) (d+ x)
, (44)

and setting the requirement fλκ,d(0) = φ(0) results in the following equation:

2λκd
κ

(λκ)
d (x)

(
1− κ(λκ)

d (x)
)

(d− x) (d+ x)

∣∣∣∣
x=0

=
1√
2π

e−
x2

2

∣∣∣∣
x=0

. (45)

Using (31), this equation leads to λκ =
√

2/πd; that is, fλκ,d(x) = φκ,d(x), if

λκ =
√

2/πd.

3.5.5 Approximation Accuracy

It can be shown numerically that |Φ(x) − Φκ,d(x)| is approximately minimal, if
d = 3.1152. In this case, the maximum absolute approximation error is 2.15 · 10−3.
Considering the fact that 3.1152 is close to π, using d = π instead of d = 3.1152 does
not worsen significantly the approximation accuracy. If d = π, then the maximum
absolute approximation error is 2.36 · 10−3. Although the parameter d with value
of d = 3.1152 yields the least maximum absolute approximation error among the
Quasi Logistic probability distribution functions, we propose the use of function
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Φκ,π(x) as it has a very simple form and its maximum absolute approximation
error is just slightly greater than that of function Φκ,d(x) with d = 3.1152.

Φκ,π(x) =


0, if x ≤ −π

1

1 +
(
π−x
π+x

)√2π
, if x ∈ (−π,+π)

1, if x ≥ +π

(46)

We call the Quasi Logistic probability distribution function with d = π; that is, the
function Φκ,π(x), the Dombi-Jónás probability distribution function. The absolute
errors |Φ(x)− Φκ,d(x)| for d = 3.1152 and d = π are shown in Figure 4.

-6 -4 -2 0 2 4 6
x

0

0.5

1

1.5

2

2.5

3 ×10 -3

|Φ(x)−Φκ,d(x)|, d = π

|Φ(x)−Φκ,d(x)|, d = 3.1152

Figure 4: Absolute errors of approximations by using Quasi Logistic probability
distribution functions.

3.5.6 Properties of the Approximation

Here, we summarize the properties of the Φκ,π(x) approximation.

• Simplicity and accuracy. The maximum absolute error of approximation
Φκ,π(x) is 2.36 ·10−3 and at the same time function Φκ,π(x) has a very simple
form. In this accuracy range, there is no other known approximation that has
such a simple form. The known approximations that yield higher accuracy
have more complex forms, while the ones with similarly complex formulas do
not give greater accuracy.

• Identity to first order at zero. Since Φκ,π(0) = Φ(0) and the probability
density function φκ,π(x) was constructed such that φκ,π(0) = φ(0), Φκ,π(x)
and Φ(x) are identical to first order at x = 0.
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• Symmetric absolute error function. It can be shown that the probability
density function φκ,π(x) is an even function and so Φκ,π(−x) = 1 − Φκ,π(x)
holds for any x ∈ R.

• Direct connection between the density and distribution functions.
Based on Lemma 2, the density function φκ,π(x) can be directly expressed in
terms of the distribution function Φκ,π(x) in a closed form.

3.5.7 Connections with Dombi Operators

Next, we will show how the Epsilon function ε
(−λ)
d (x) and the Kappa function

κ
(λκ)
d (x) are connected with the Dombi operators.

Lemma 3. The generator function fα(x) of Dombi conjunction and disjunction

operators can be derived from the Epsilon function ε
(−λ)
d (x) by a linear function

transformation.

Proof. Let us apply the x′ = (x+ d)/(2d) linear transformation to the variable x,
where x ∈ (−d, d), d > 0. After this transformation, the domain of x′ is the interval
(0, 1), x = 2dx′ − d, and

ε
(−λ)
d (x) =

(
x+ d

d− x

)−λ d2
=

(
2dx′ − d+ d

d− 2dx′ + d

)−λ d2
=

(
x′

1− x′

)−λ d2
=

=

(
1− x′

x′

)λ d2
= fα(x′),

(47)

where α = λd/2.

Based on this result, the generator function of the Dombi operators may be
viewed as a special case of the Epsilon function.

Lemma 4. If ν = ν0 = 1/2, then the Kappa function κ
(λκ)
d (x) can be derived from

the Kappa function κ
(λ)
ν,ν0(x) in (9) by applying a linear function transformation.

Proof. The lemma can be proven by setting λ = λκ and applying the x′ = 2dx− d
linear transformation (d > 0).

Based on this lemma, we can state that the Kappa function κ
(λκ)
d (x), which

we utilized to construct the Quasi Logistic probability distribution function, is a
special case of the general fuzzy modifier operators.

4 Conclusions and Future Work

Table 1 summarizes the maximum absolute errors of the approximations presented
earlier. From this table, we can see that the approximation by function Φκ,π(x) has
a one order of magnitude less maximum absolute error than the approximation by
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Table 1: Goodness of the approximations given previously

F (x) max
x∈R
|Φ(x)− F (x)|

Φσ(x) 1.77 · 10−2

Φκ,π(x) 2.36 · 10−3

the function Φσ(x). Figure 5 and Figure 6 show the approximating function curves
and the absolute errors of the approximations, respectively.

Based on comparisons of these approximations with the ones given in the liter-
ature, the following findings should be emphasized.
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Figure 5: Approximations.
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Figure 6: Absolute errors.

Simplicity and accuracy. The first of the approximations listed earlier, which
is the same as Tocher’s approximation [29], has a maximum absolute approximation
error of 1.77 ·10−2. Although this approximation has a simple form, its accuracy is
lower than the accuracy of some known approximations that have similar complex
formulas (e.g. [26], [20], [1], [13]). The maximum absolute error of approximation
by function Φκ,π(x) is 2.36 · 10−3. This error is one order of magnitude less than
that of the first approximation. At the same time, function Φκ,π(x) has a very sim-
ple formula with only one constant parameter which is the constant π. It should be
added here that there are only a few known approximations with a single constant
parameter in this accuracy range (e.g. [26], [20], [1], [13]), and all these approxi-
mations include exponential terms, while Φκ,π(x) does not contain any. That is, to
the best of our knowledge, in this accuracy range, there is no other known approxi-
mation that has such a simple formula as Φκ,π(x). The known approximations that
yield a higher accuracy have more complex formulas, while the ones with similar
complex formulas do not give a higher accuracy.
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Identity to first order at zero. The presented approximations of Φ(x) are
identical with Φ(x) to first order at x = 0.

Symmetric absolute error function. It is worth noting that both of the above
approximations meet the F (−x) = 1 − F (x) criterion for any x ∈ R, and so their
absolute error function curves are symmetric with respect to the vertical axis, as
can be seen in Figure 6.

Direct connection between the density and distribution functions. It is
the case both for the Sigmoid approximation Φσ(x) and the Quasi Logistic approx-
imation Φκ,d(x) that the probability density function can be directly expressed in
terms of the probability distribution function in a closed form. That is, the density
function can be derived from the distribution function without differentiating it.
This property of the of our approximations can be very useful in practice.

Connections with the possibilistic approach. The given approximators are
connected with continuous logic. Namely, the approximation Φσ(x) is derived from
Sigmoid fuzzy membership functions by applying the averaging Dombi conjunction
operator, while the Quasi Logistic approximation is a linearly transformed form of
the Kappa function that is a well-known modifier operator in fuzzy theory.

Applicability. For any x ∈ R argument, the standard normal probability distri-
bution function Φ(x) takes a value in the interval (0, 1). In other words, it associates
positive probabilities with arguments that are much less than 0, and gives proba-
bilities less than 1 for those arguments that are much greater than zero. In many
practical applications, the probabilities for arguments that are much less or much
greater than the expected value of a normally distributed random variable are con-
sidered to be zero and one, respectively, although the exact probabilities for these
arguments lie in the interval (0, 1). The probability distribution function Φκ,π(x)
takes a value from the interval (0, 1) only if its argument is greater than −π and
less than +π. Noting that Φ(−π) = 0.00084, Φ(π) = 0.99916 and

max
x∈(−π,+π)

|Φ(x)− Φκ,π(x)| ≈ 2.36 · 10−3, (48)

the Dombi-Jónás probability distribution may be viewed as an alternative, with
bounded domain, to the standard normal probability distribution.

Plans for future work. The Kappa function that we used to construct the prob-
ability distribution function Φκ,π(x) is symmetric about the point (0, 0.5). In cer-
tain economic and technological applications, asymmetric probability distributions
with bounded domains are needed for modeling and simulation purposes. As part
of our future research work, we would like to study how a generalized, asymmetric
version of the Kappa function, which is defined over the bounded domain (a, b),
can be utilized for constructing asymmetric probability distribution functions.
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