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Weighted Languages Recognizable by

Weighted Tree Automata∗

Zoltán Fülöpa and Zsolt Gazdaga

Abstract

Yields of recognizable weighted tree languages, yields of local weighted
tree languages, and weighted context-free languages are related. It is shown
that the following five classes of weighted languages are the same: (i) the class
of weighted languages generated by plain weighted context-free grammars, (ii)
the class of weighted languages recognized by plain weighted tree automata,
(iii) the class of weighted languages recognized by deterministic and plain top-
down weighted tree automata, (iv) the class of weighted languages recognized
by deterministic and plain bottom-up weighted tree automata, and (v) the
class of weighted languages determined by plain weighted local systems.

1 Introduction

A tree automaton recognizes a set of trees over a ranked alphabet Σ and a yield
alphabet (or frontier alphabet) X [14, 15]. Such trees are called ΣX-trees and the
elements of X may be leaves of ΣX-trees. Hence, a tree automaton also recognizes
a language over X as follows. For a ΣX-tree ξ, we define the yield yd(ξ) of ξ to be
the string in X∗ obtained by reading the leaves of ξ from left to right. Then, the
language recognized by a tree automaton is the set of all strings yd(ξ), where ξ is
a tree recognized by the automaton.

The idea of using tree automata in the theory of languages was proposed already
in papers [26], [20], [27] and [22]. Then, more results were obtained in [7], [23], [28],
and [25], of which a summary can be found in [14, 15] (also, cf. [10, 6]). Among
other things, it was proved that the following four classes of languages are the same:
(i) the class of context-free languages, (ii) the class of languages recognized by tree
automata, (iii) the class of languages recognized by deterministic top-down tree
automata, and (iv) the class of languages obtained by taking the yield of local tree
languages (cf. Thm. II.9.4, III.2.7, and III. 2.9 in [14]).

With another line of research, tree automata were generalized to weighted tree
automata (wta for short) [2, 1], in order to be able to deal with quantitative aspects
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of recognizable tree languages. A wta recognizes a weighted ΣX-tree language; that
is, a mapping from the set of ΣX-trees to a weight structure. Here, we consider the
case that the weight structure is a semiring K. For surveys, see [11, 13]; and note
that in these papers weighted tree languages are called tree series. Also, weighted
context-free languages were introduced under the name of algebraic power series
[5]; see [24, 19] and [21] for summary and [8] for a recent application1.

Weighted ΣX-tree languages with a yield alphabet and weighted languages over
X may be related as in the classical (unweighted) case. We can generalize the yield
function to the weighted setting such that the yield yd(Φ) of a weighted ΣX-tree
language Φ will be a weighted language over X. In fact, the weight of a string
w ∈ X∗ in yd(Φ) is the sum of the weight of all trees in Φ of which the yield is
w. We note that there may be infinitely many such trees, hence the sum may have
infinitely many terms. In this case the semiring K should be complete in the sense
defined in [9].

The fundamental relation between recognizable weighted tree languages and
weighted context-free languages is established in Thm. 8.6 and Cor. 8.7 of [11] in
the form that, roughly speaking, algebraic power series are the same as yields of
recognizable tree series. The authors use proof techniques, e.g. a theory of fixed
points, which assume that the weight semiring is continuous (hence complete) and
commutative. However, in some cases these strong assumptions are not necessary
to achieve the same result. For instance, we do not need the assumption that K is
complete to define the weight of a string in a weighted context-free grammar if, for
every w ∈ X∗, the set of derivation trees of w with nonzero weight is finite (cf. the
definition of the weighted CF grammar in [8]). The same holds for the yield of a
weighted tree language Φ: we do not need the condition that K is complete if, for
every w ∈ X∗, the set of ΣX-trees ξ with yd(ξ) = w and Φ(ξ) 6= 0 is finite.

In this paper, we extend the above mentioned result of [11] to classes of weighted
languages where the weight semiring is not commutative and not necessarily com-
plete. Moreover, using the notions in [14], we will also take into consideration
the weighted tree languages recognized by deterministic top-down wta and by de-
terministic bottom-up wta, as well as weighted languages obtained by taking the
yield of local weighted tree languages [12]. For this, we adapt the definition of a
weighted CF grammar of [8] to our semiring weighted context-free grammar and
call this weighted context-free grammar plain. Moreover, we will introduce the con-
cept of a plain wta and of a plain weighted local system, both as the counterpart of
a plain weighted context-free grammar. Then, as the main result of the paper, we
will show in Theorem 1 that the following five classes of weighted languages are the
same: (i) the class of weighted languages generated by plain weighted context-free
grammars, (ii) the class of weighted languages recognized by plain wta, (iii) the
class of weighted languages recognized by deterministic and plain top-down wta,
(iv) the class of weighted languages recognized by deterministic and plain bottom-
up wta, and (v) the class of weighted languages determined by plain weighted local
systems.

1The weight structure in [8] is a valuation monoid, which is a generalization of a semiring.
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2 Preliminaries

2.1 General concepts

First, let N be the set of positive integers and N0 be the set of nonnegative integers.
For every k ∈ N, we define [k] = {1, . . . , k}.

An alphabet is a finite set X of symbols. We denote by X∗ the set of all words
(or strings) over X and by ε the empty string. The length of a string w ∈ X∗ is
denoted by |w|. A language L (over X) is an arbitrary subset of X∗.

A ranked alphabet is a tuple (Σ, rk) where Σ is an alphabet and rk : Σ→ N0 is
the rank mapping. For every k ≥ 0, we define Σk = {σ ∈ Σ | rk(σ) = k}. Sometimes
we write σ(k) to mean that σ ∈ Σk. Moreover, let X be a set disjoint with Σ. The
set of terms (or: trees) over X, denoted by TΣ(X), is the smallest set T such that
(i) Σ0∪X ⊆ T and (ii) if k ≥ 1, σ ∈ Σk, and ξ1, . . . , ξk ∈ T , then σ(ξ1, . . . , ξk) ∈ T .
We shall abbreviate TΣ(∅) by TΣ.

We define the mapping pos : TΣ(X) → P(N∗) by recursion as follows: (i) for
each y ∈ (Σ0 ∪ X) we let pos(y) = {ε} and (ii) for every k ≥ 1, σ ∈ Σ(k), and
ξ1, . . . , ξk ∈ TΣ(X) we let pos(σ(ξ1, . . . , ξk)) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ξi)}. For
every ξ ∈ TΣ(X) we call pos(ξ) the set of positions in ξ and, for every p ∈ pos(ξ),
we define the label ξ(p) ∈ Σ of ξ at position p and the subtree ξ|p ∈ TΣ(X) of ξ
at position p in the usual way (cf. e.g. [13]). We shall call ξ(ε) the root of ξ and
denote it by rt(ξ).

A monoid (K,+, 0) is commutative if a+b = b+a and zero-sum free if a+b = 0
implies a = b = 0 for every a, b ∈ K. We extend the binary summation + to a
sum operation

∑
I : KI → K for each finite index set I in the usual way. For each

finite family (ai | i ∈ I) of elements of K we write the sum
∑
I(ai | i ∈ I) also

in the form
∑

(ai | i ∈ I) or
∑
i∈I ai. Moreover, the monoid (K,+, 0) is complete

if it has a sum operation
∑
I : KI → K for each countable index set I such that

this sum coincides with the extension of + when I is finite (for the axioms, see [9,
p. 124]). For countable index sets I and families (ai | i ∈ I) we will also use the
notation

∑
(ai | i ∈ I) and

∑
i∈I ai in the same sense as that for finite index sets

and families.
A semiring is an algebra (K,+, ·, 0, 1) which consists of a commutative monoid

(K,+, 0), called the additive monoid, and a monoid (K, ·, 1), called the multiplica-
tive monoid of the semiring, such that multiplication distributes (from both left
and right) over addition, and moreover, 0 6= 1 and 0 is absorbing with respect to ·
(also both from left and right). We call the semiring zero-sum free if its additive
monoid is zero-sum free and commutative if its multiplicative monoid is commu-
tative. Furthermore, the semiring is complete if its additive monoid is complete
and the generalized distributivity law holds for infinite sums (see [9, p. 124]). An
introduction to and some details about semirings can be found e.g. in [17, 18]. As
usual, we often denote a semiring by its carrier set.

In the rest of this paper Σ will denote an arbitrary ranked alphabet, X
will denote an arbitrary alphabet which is disjoint with Σ, and K will
denote an arbitrary semiring, unless specified otherwise.
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A K-weighted tree language is a mapping Φ : TΣ(X)→ K. For every ξ ∈ TΣ(X),
the element Φ(ξ) of K is called the weight of ξ (in Φ). Analogously, a K-weighted
language is a mapping λ : X∗ → K and, for every w ∈ X∗, the element λ(w) of K
is called the weight of w (in λ). Sometimes we drop K from K-weighted and thus
we speak about a weighted (tree) language.

Next, we define the yield of weighted tree languages which satisfies a certain
condition. For this, first we define the yield of a tree in TΣ(X) by the function
ydΣ : TΣ(X)→ X∗ as follows: (i) for every y ∈ (Σ0 ∪X) let ydΣ(y) = ε if y ∈ Σ0

and ydΣ(y) = y if y ∈ X, and (ii) for every ξ = σ(ξ1, . . . , ξk), where k ≥ 1, we
define ydΣ(ξ) = ydΣ(ξ1) . . . ydΣ(ξk). Hence, we have yd−1

Σ (w) = {ξ ∈ TΣ(X) |
ydΣ(ξ) = w} for every w ∈ X∗.

Now let Φ : TΣ(X)→ K be a weighted tree language. We call Φ summable for
yield (or: summable) if the semiring K is complete or the set

TΦ(w) = {ξ ∈ yd−1
Σ (w) | Φ(ξ) 6= 0}

is finite for every w ∈ X∗. If Φ is summable, then we define the yield of Φ to be
the weighted language yd(Φ) : X∗ → K by

yd(Φ)(w) =
∑

ξ∈TΦ(w)

Φ(ξ)

for every w ∈ X∗, where
∑

denotes the extension of the addition of K. (The fact
that Φ is summable guarantees that the above sum is well-defined.) Moreover, for
a class C(K) of summable K-weighted languages we define yd′(C(K)) = {yd(Φ) |
Φ ∈ C(K)} and we will write yd for yd′ in the rest of the paper.

2.2 Weighted context-free languages

Weighted context-free grammars over semirings were introduced in [5] (see also
[24, 19]). Recently, a Chomsky-Schützenberger theorem was proved for weighted
context-free grammars over tree valuation monoids in [8]. We follow the idea of
[8] to define the semantics of a weighted context-free grammar, but we will use
semirings as weight structures.

A K-weighted context-free grammar (or CF(K)-grammar for short) is a tuple
G = (N,X,Z, P,wt), where N and X are alphabets (nonterminals and terminals,
respectively) such that N ∩X = ∅, Z ∈ N (initial nonterminal), P is a finite set
of rules of the form A→ α, where A ∈ N and α ∈ (N ∪X)∗, and wt: P → K is a
mapping (weight assignment). Given a rule r = (A→ α), we call the nonterminal
A the left-hand side of r and denote it by lhs(r).

The semantics of a weighted context-free grammar is defined in [8] in terms of
leftmost derivations. Here, we follow an equivalent approach and use derivation
trees in the sense of [16, Sect. 3.1]. In fact, we will treat P as a ranked alphabet
by letting rk(r) = |α| for every r = (A → α) ∈ P and we will denote this ranked
alphabet by P̄ . Hence P̄k = {(A→ α) ∈ P | |α| = k} for every k ≥ 0.

We can extend the mapping wt to trees in TP̄ (X) by defining the mapping
wt′ : TP̄ (X)→ K as follows. For every ζ ∈ TP̄ (X),
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(i) if ζ = r for some rule r ∈ P̄0, then wt′(ζ) = wt(r),

(ii) if ζ ∈ X, then wt′(ζ) = 1, and

(iii) if ζ = r(ζ1, . . . , ζk), for some k ≥ 1, r ∈ P̄k, and ζ1, . . . , ζk ∈ TP̄ (X), then
wt′(ζ) = wt′(ζ1) · . . . · wt′(ζk) · wt(r) (where · is the multiplication of K).

We note that wt′ is a K-weighted tree language, thus we may call wt′(ζ) the weight
of ζ. From now on, we write wt for wt′.

Next, we define derivation trees as certain trees in TP̄ (X). Formally, for every
w ∈ X∗, we define the set DG(w) of derivation trees of w such that, for every
ζ ∈ TP̄ (X), we have ζ ∈ DG(w), if and only if

- lhs(rt(ζ)) = Z and ydP̄ (ζ) = w,

- for every p ∈ pos(ζ) with ζ(p) = (A → α1 . . . αk) for some k ≥ 1 and
α1, . . . , αk ∈ (N ∪X), we have ζ(pi) = yi, where

yi =

{
αi if αi ∈ X
a rule ri ∈ P̄ with lhs(ri) = αi if αi ∈ N,

for every 1 ≤ i ≤ k.

The following concept was suggested by [8]. However, we will use a new name
to identify the defined class of weighted context-free grammars. We call G plain if
the semiring K is complete or the set {ζ ∈ DG(w) | wt(ζ) 6= 0} is finite for every
w ∈ X∗. In this case we define the weighted language generated by G to be the
K-weighted language λG : X∗ → K given for every w ∈ X∗ by

λG(w) =
∑

ζ∈DG(w),wt(ζ)6=0

wt(ζ).

The class of weighted languages generated by plain CF(K)-grammars is denoted
by CFLp(K).

Example 1. It is known that the language L = {w ∈ {0, 1}∗ | |w|0 = |w|1} is
context-free. It can be generated, for instance, by the context-free grammar

r1 : S → SS, r2 : S → 0S1, r3 : S → 1S0, and r4 : S → ε .

This grammar is ambiguous; that is, there are words in L which have more than
one derivation tree.

Now we will consider the tropical semiring Trop = (N ∪ {∞},min,+,∞, 0).
It is well known that Trop is complete. Then we define the CF(Trop)-grammar
G = ({S}, X, S, P,wt), where X = {0, 1}, P = {r1, r2, r3, r4}, wt(r1) = wt(r2) =
wt(r3) = 0, and wt(r4) = 1. The grammar G is plain, because Trop is complete.
In Figure 1, we show two trees in TP̄ (X), where the rank of r1, r2, r3, and r4 in P̄
is 2, 3, 3, and 0, respectively. The first tree (from left to right) is not a derivation
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S → SS

S → 0S1

S → ε 0 1

1

S → 0S1

0 S → SS

S → 1S0

1 S → ε 0

S → ε

1

Figure 1: Two trees in TP̄ (X) of Example 1.

tree of any w ∈ X∗, while the second one is a derivation tree of 0101, i.e. it is in
DG(0101). The weight of the first tree is 1 and the weight of the second one is 2.

Now let w ∈ Σ∗. It is clear that for every ζ ∈ TP̄ (X), the weight of ζ is the
number of the occurrences of r4 (roughly speaking, the number of erasing rules) in
ζ. Let us denote this number by #ers(ζ). Moreover,

λG(w) = min(wt(ζ) | ζ ∈ DG(w),wt(ζ) 6=∞) = min(#ers(ζ) | ζ ∈ DG(w)).

2.3 Recognizable weighted tree languages

A K-weighted tree automaton with yield alphabet (or K-wta for short) is a tuple
A = (Q,Σ, X, δ, κ) where Q is a finite nonempty set, the set of states, Σ is the
ranked input alphabet, X is the yield alphabet, δ = (δk | k ∈ N0) is a family of
transition mappings2 such that

δk : Qk × Σk ×Q→ K for k ≥ 1 and δ0 : (Σ0 ∪X)×Q→ K,

and κ : Q→ K is the root weight mapping.
For every k ∈ N we call an element (q1 . . . qk, σ, q) ∈ Qk × Σk ×Q a transition,

and call δk(q1 . . . qk, σ, q) ∈ K the weight of that transition. (Here and in the rest
of the paper, we abbreviate (q1, . . . , qk) by q1 . . . qk.)

Let ξ ∈ TΣ(X). A run of A on ξ is a mapping ω : pos(ξ) → Q. The set of
all runs of A on ξ is denoted by RA(ξ). For every ω ∈ RA(ξ) and p ∈ pos(ξ), the
run ω|p of A on ξ|p is defined by ω|p(p′) = ω(pp′) for every p′ ∈ pos(ξ|p). Now we
define the weight of a run ω ∈ RA(ξ) to be an element δ∗(ω) of K by induction as
follows:

2In the literature δ is also called a tree representation and δk is given as a mapping of type

Σk → SQk×Q.
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• if ξ = y ∈ (Σ0 ∪X), then δ∗(ω) = δ0(y, ω(ε)),

• if ξ = σ(ξ1, . . . , ξk) for some k ≥ 1, then

δ∗(ω) = δ∗(ω|1) · . . . · δ∗(ω|k) · δk(ω(1) . . . ω(k), σ, ω(ε)),

where · is the product of the semiring K. (Note that ω|i ∈ RA(ξi) because
ξi = ξ|i for every 1 ≤ i ≤ k).

The K-weighted tree language ||A|| : TΣ(X)→ K recognized by A is defined by

||A||(ξ) =
∑

ω∈RA(ξ)

δ∗(ω) · κ(ω(ε))

for every ξ ∈ TΣ(X). An introduction to the theory of wta over semirings and some
results can be found in [4], [11], and [13].

Example 2. (Cf. [3, Example 3.3]) We consider the arctic semiring Arct = (N ∪
{−∞},max,+,−∞, 0) and construct the wta A = (Q,Σ, X, δ, κ) which recognizes
the weighted tree language height : TΣ(X)→ N, where height(ξ) = max{|w| | w ∈
pos(ξ)}. For this, let Q = {p1, p2}, Σ = {σ(2), α(0)}, X = {x1, x2}. Furthermore,
let

δ0(y, p1) = δ0(y, p2) = 0, for all y ∈ (Σ0 ∪X),
δ2(p1p2, σ, p1) = δ2(p2p1, σ, p1) = 1,
δ2(p2p2, σ, p2) = 0,

and for every other transition (q1q2, σ, q) we have δ2(q1q2, σ, q) = −∞. Lastly, let
κ(p1) = 0 and κ(p2) = −∞.

Intuitively, A works as follows. For every input tree ξ and run ω ∈ RA(ξ),

- if ω assigns p1 to each position in a path from the root to a leaf of ξ (in
particular, to the root and to that leaf of ξ) and assigns p2 to every other
position in ξ, then the weight of ω is equal to the length of that path,

- if ω assigns p2 to each position in ξ, then the weight of ω is 0, and

- in every other case, the weight of ω is −∞.

Hence,

max
(
δ∗(ω) | ω ∈ RA(ξ), ω(ε) = p1

)
= height(ξ) and

max
(
δ∗(ω) | ω ∈ RA(ξ), ω(ε) = p2

)
= 0,

for every ξ ∈ TΣ(X). Thus,

||A||(ξ) = max(δ∗(ω) + κ(ω(ε)) | ω ∈ RA(ξ)) =

max
(

max(δ∗(ω) + κ(p1) | ω ∈ RA(ξ), ω(ε) = p1),

max(δ∗(ω) + κ(p2) | ω ∈ RA(ξ), ω(ε) = p2)
)

=

max
(
height(ξ) + 0, 0 + (−∞)

)
= height(ξ).
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A K-wta A = (Q,Σ, X, δ, κ) is bottom-up deterministic (or bu-deterministic)
if for every y ∈ (Σ0 ∪ X), there is at most one q ∈ Q such that δ0(y, q) 6= 0,
and for every k ≥ 1, σ ∈ Σk, and w ∈ Qk there is at most one q ∈ Q such that
δk(w, σ, q) 6= 0. If this is the case, then for every input tree ξ ∈ TΣ(X), there is at
most one ω ∈ RA(ξ) such that δ∗(ω) 6= 0. Thus ||A||(ξ) = δ∗(ω) ·κ(ω(ε)), if ω is the
only element of RA(ξ) with δ∗(ω) 6= 0 and ||A||(ξ) = 0 if there is no such element
in RA(ξ).

Moreover, A is top-down deterministic (or td-deterministic) if the set {q ∈ Q |
κ(q) 6= 0} is a singleton, for every y ∈ (Σ0 ∪X), there is at most one q ∈ Q such
that δ0(y, q) 6= 0, and for every k ≥ 1, σ ∈ Σk, and q ∈ Q there is at most one
w ∈ Qk such that δk(w, σ, q) 6= 0. In this case, for every q ∈ Q and ξ ∈ TΣ(X),
there is at most one ω ∈ RA(ξ) with ω(ε) = q and δ∗(ω) 6= 0. Hence the formula
for ||A||(ξ) can be simplified in the same way as for a bu-deterministic K-wta. Let
us mention that for both kinds of deterministic K-wta, the addition + of K is not
used to the compute ||A||.

A K-weighted tree language Φ : TΣ(X) → K is recognizable (bu-
deterministically recognizable, td-deterministically recognizable) if there is a K-wta
(resp. bu-deterministic K-wta, td-deterministic K-wta) A such that Φ = ||A||.
The class of all summable and recognizable K-weighted tree languages is denoted
by Recs(K). The notations bud-Recs(K) and tdd-Recs(K) are introduced in an
analogous way.

2.4 Local weighted tree languages

Local weighted tree languages were introduced in [12]. Here, we give a slightly
more general definition by using a yield alphabet X in order to be able to handle
yields of local weighted tree languages.

We introduce the family Fork(Σ, X) = (Forkk(Σ, X) | k ≥ 0) of sets, where

Forkk(Σ, X) = (Σ ∪X)k × Σk for k ≥ 1 and Fork0(Σ, X) = Σ0 ∪X.

We write the elements of Forkk(Σ, X), k ≥ 1 in the form (y1 . . . yk, σ) and call them
(Σ, X)-forks. A fork (y1 . . . yk, σ) occurs in a tree if the tree has a σ-node of which
the k children are labeled by y1, . . . , yk from the left to right.

A K-weighted local system (or K-wls for short) is a system L = (Σ, X, ϕ, ρ),
where ϕ is a family of mappings (ϕk | k ≥ 0) with

ϕk : Forkk(Σ ∪X)→ K, and ρ : (Σ ∪X)→ K

is another mapping. Intuitively, we associate a weight, i.e., an element of K with
each fork and also with each symbol in Σ ∪X. Note that this weight may be 0.

Next, we define the K-weighted tree language determined by L. For this, we
extend ϕ to the mapping ϕ′ : TΣ(X)→ K defined by induction as follows:

(i) ϕ′(y) = ϕ0(y) for every y ∈ (Σ0 ∪X),

(ii) ϕ′(σ(ξ1, . . . , ξk)) = ϕ′(ξ1) · . . . · ϕ′(ξk) · ϕk(rt(ξ1) . . . rt(ξk), σ) for every k ≥ 1,
σ ∈ Σk, and ξ1, . . . , ξk ∈ TΣ(X).
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In the following we write ϕ for ϕ′. The K-weighted tree language ||L|| : TΣ(X)→ K
determined by L is defined by ||L||(ξ) = ϕ(ξ) · ρ(rt(ξ)) for every ξ ∈ TΣ(X). As for
deterministic K-wta, the operation + of K is not used in the definition of ||L||.

Thus, ϕ(ξ) is the (semiring) product of the weights associated with the forks
in ξ. The order of the factors is the postorder of the nodes of ξ. Also, the weight
||L||(ξ) of ξ is the product of ϕ(ξ) and the weight associated to the root of ξ.

Example 3. We consider again the ranked alphabet Σ = {σ(2), α(0)}, the set
X = {x1, x2} and the semiring Arct. We define the Arct-wls L = (Σ, X, ϕ, ρ) by

• ϕ2(yα, σ) = 1, ϕ2(yz, σ) = 0 for all y, z ∈ (Σ∪X) with z 6= α, and ϕ0(y) = 0
for all y ∈ (Σ0 ∪X), and

• ρ(y) = 0 for all y ∈ (Σ ∪X).

It should be clear that ||L||(ξ) is the number of the occurrences of the pattern
σ( , α) in ξ for every ξ ∈ TΣ(X), where ’ ’ is a placeholder which may be filled by
any element of Σ ∪X. We note that in [13, Example 3.4] a wta is given over the
semiring of natural numbers which recognizes ||L|| (with the difference being that
there X = ∅).

A K-weighted tree language Φ : TΣ(X) → K is called local if there is a K-wls
L such that Φ = ||L||.

3 The results

Now, we will introduce plain wta and plain wls and define weighted languages
recognizable by plain wta and determined by plain wls, respectively. We relate the
class of weighted languages generated by plain weighted context-free grammars, the
class of weighted languages recognizable by plain wta, and the class of weighted
languages determined by plain wls.

We say that a K-wta A = (Q,Σ, X, δ, κ) is plain if K is complete or, for every
w ∈ Σ∗, the set

UA(w) = {ξ ∈ yd−1
Σ (w) | ∃(ω ∈ RA(ξ)) : δ∗(ω) · κ(ω(ε)) 6= 0}

is finite.

Lemma 1. Let A = (Q,Σ, X, δ, κ) be a K-wta.

(1) If A is plain, then ||A|| is summable and

yd(||A||)(w) =
∑

ξ∈UA(w),ω∈RA(ξ)

δ∗(ω) · κ(ω(ε))

for every w ∈ Σ∗.
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(2) If K is zero-sum free and ||A|| is summable, then A is plain.

(3) If A is bu-deterministic and ||A|| is summable, then A is plain. The same
holds when we replace bu-deterministic by td-deterministic.

Proof. Let w ∈ Σ∗. It is obvious that

T||A||(w) =

{ξ ∈ yd−1
Σ (w) | ||A||(ξ) 6= 0} = {ξ ∈ yd−1

Σ (w) |

 ∑
ω∈RA(ξ)

δ∗(ω) · κ(ω(ε))

 6= 0} ⊆

{ξ ∈ yd−1
Σ (w) | ∃(ω ∈ RA(ξ)) : δ∗(ω) · κ(ω(ε)) 6= 0} = UA(w).

Now, we will prove (1). Since A is plain, the set UA(w) is finite. Thus T||A||(w)
is also finite, hence ||A|| is summable. Moreover,

yd(||A||)(w) =
∑

ξ∈T||A||(w)

||A||(ξ) =
∑

ξ∈T||A||(w)

 ∑
ω∈RA(ξ)

δ∗(ω) · κ(ω(ε))

 =

∑
ξ∈UA(w)

 ∑
ω∈RA(ξ)

δ∗(ω) · κ(ω(ε))

 =
∑

ξ∈UA(w),ω∈RA(ξ)

δ∗(ω) · κ(ω(ε)),

where the third equality holds because for every ξ ∈ (UA(w) \ T||A||(w)) the corre-
sponding sum is 0 and the fourth one holds because summation is associative and
commutative in K.

To prove (2), we assume that K is zero-sum free and that ||A|| is summable.
Due to the fact that K is zero-sum free, ⊆ becomes an equality and therefore
T||A||(w) = UA(w). Since T||A||(w) is finite, the set UA(w) is also finite and hence A
is plain.

Statement (3) follows from the fact that, by the remarks we made on the runs
of bu-deterministic wta and td-deterministic wta, ⊆ becomes an equality and so
we have again that T||A||(w) = UA(w).

Let Recp(K) be the class of allK-weighted tree languages which are recognizable
by a plain K-wta. The notations bud-Recp(K) and tdd-Recp(K) are introduced in
an analogous way.

Let A be a plain K-wta. Then we call yd(||A||) the weighted language recognized
by A and denote it by λA. Note that

λA =
∑

ξ∈UA(w),ω∈RA(ξ)

δ∗(ω) · κ(ω(ε)).

The next statements immediately follow from Lemma 1.

Corollary 1. (1) yd(Recp(K)) ⊆ yd(Recs(K)).
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(2) If K is zero-sum free, then yd(Recp(K)) = yd(Recs(K)).

(3) yd(bud-Recp(K)) = yd(bud-Recs(K)).

(4) yd(tdd-Recp(K)) = yd(tdd-Recs(K)).

It is an open question whether there is a semiring K such that yd(Recs(K)) \
yd(Recp(K)) 6= ∅. However, we can prove the following weaker statement.

Lemma 2. There is a semiring K and a K-wta A which is not plain such that ||A||
is summable.

Proof. We consider the semiring (Z,+, ·, 0, 1) of integers. We note that Z is not
zero-sum free. Moreover, we define the Z-wta A = (Q,Σ, X, δ, κ), where Q =
{p, q, r}, Σ = Σ1 = {γ}, X = {x}. Moreover,

• δ0(x, p) = −1, δ0(x, q) = δ0(x, r) = 1,

• δ1(p, γ, p) = δ1(q, γ, q) = 1 and δ1(s, γ, t) = 0 for every other combination
s, t ∈ Q,

• κ(p) = κ(q) = κ(r) = 1.

There are three runs ωp, ωq, and ωr on the input tree x, which are defined by
ωp(ε) = p, ωq(ε) = q, and ωr(ε) = r. For these runs, we have

δ∗(ωp) · κ(p) + δ∗(ωq) · κ(q) + δ∗(ωr) · κ(r) = (−1) · 1 + 1 · 1 + 1 · 1 = 1,

hence ||A||(x) = 1. For each n ≥ 1, there are two runs ωp,n and ωq,n with nonzero
weight on the tree γn(x). The run ωp,n associates p with each position in γn(x),
and the run ωq,n is defined analogously. For these runs, we have

δ∗(ωp,n) · κ(p) + δ∗(ωq,n) · κ(q) = (−1) · 1 + 1 · 1 = 0,

hence ||A||(γn(x)) = 0. This means that T||A||(x) = {x} and T||A||(w) = ∅ for every
w ∈ X∗ with w 6= x. Hence A is summable.

However, for every ξ ∈ TΣ(X), we have ydΣ(ξ) = x and there is a run ω on ξ
such that δ∗(ω) · κ(ω(ε)) 6= 0. Hence the set UA(x) is infinite and thus A is not
plain.

Now we turn to local weighted tree languages and the weighted languages de-
termined by them.

We call a K-weighted local system L = (Σ, X, ϕ, ρ) plain if K is complete or
the set {ξ ∈ yd−1

Σ (w) | ϕ(ξ) · ρ(rt(ξ)) 6= 0} is finite for every w ∈ X∗. It follows
immediately from the corresponding definitions that a K-wls L is plain if and only
if ||L|| is summable. For a plain K-wls L, we call yd(||L||) the weighted language
determined by L and denote it by λL. We denote by Locp(K) the class of weighted
tree languages determined by plain K-weighted local systems.

Proposition 1. [12, Lm. 1] Locp(K) ⊆ bud-Recp(K).
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Proof. The construction used in the proof of [14, Thm. II. 9.4] (see also Lemma 1 of
[12]) can be naturally extended to the yield alphabet. Indeed, let L = (Σ, X, ϕ, ρ)
be a K-wls and construct the K-wta A = (Q,Σ, X, δ, κ) in the following way.
Let Q = {z | z ∈ (Σ ∪ X)} and, for every y ∈ (Σ0 ∪ X) and z ∈ (Σ ∪ X), let
δ0(y, z) = ϕ0(y), if z = y and let δ0(y, z) = 0, otherwise. Furthermore, for every
k ≥ 1, z1 . . . zk ∈ (Σ ∪X)k, σ ∈ Σk, and z ∈ (Σ ∪X), let

δk(z1 . . . zk, σ, z) =

{
ϕk(z1 . . . zk, σ) if z = σ

0 otherwise.

Lastly, for every σ ∈ Σ, let κ(σ) = ρ(σ).
It is easy to see that A is bu-deterministic. Now let ξ ∈ TΣ(X) and ωξ ∈ RA(ξ)

be the run defined by ωξ(p) = ξ(p), for every p ∈ pos(ξ). It can be readily seen
by induction on ξ that δ∗(ωξ) = ϕ(ξ). Moreover, for every run ω ∈ RA(ξ) with
ω 6= ωξ, we have δ∗(ω) = 0. Then, for every ξ in TΣ(X), we get that

||A||(ξ) =
∑

ω∈RA(ξ)

δ∗(ω) · κ(ω(ε)) = δ∗(ωξ) · κ(ωξ(ε)) =

δ∗(ωξ) · κ(ξ(ε)) = ϕ(ξ) · ρ(rt(ξ)) = ||L||(ξ).

Now assume that L is plain. By our above remark, ||L|| is summable. Hence
||A|| is also summable. Since A is bu-deterministic, by Lemma 1(3) we obtain that
A is plain.

Now we have all the concepts available to state the main result of this paper.

Theorem 1. For each weighted language λ : TΣ(X)→ K, the following five state-
ments are equivalent:

(1) λ can be generated by a plain CF(K)-grammar,

(2) λ can be determined by a plain K-wls,

(3) λ can be recognized by a plain and bottom-up deterministic K-wta,

(4) λ can be recognized by a plain and top-down deterministic K-wta,

(5) λ can be recognized by a plain K-wta.

If K is zero-sum free, then the following can be added to the list:

(6) λ can be recognized by a K-wta A such that ||A|| is summable.

Proof. The proof of the first statement is that (1) ⇒ (2) by Lemma 3, (2) ⇒ (3)
by Proposition 1, (1) ⇒ (4) by Lemma 4, (3), (4) ⇒ (5) by definition, and finally
(5) ⇒ (1) by Lemma 6. The second statement follows from Corollary 1(2).

Lemma 3. CFLp(K) ⊆ yd(Locp(K)).
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Proof. Let G = (N,X,Z, P,wt) be a plain CF(K)-grammar. We define the K-wls
L = (P̄ ,X, ϕ, ρ), where

• P̄ is the ranked alphabet defined in Section 2.2,

• for every k ≥ 1, the mapping ϕk : Forkk(P̄ ∪ X) → K is defined by
ϕk(y1 . . . yk, r) = wt(r) if r = (A → α1 . . . αk) for some k ≥ 1 and
α1, . . . , αn ∈ (N ∪X), and

yi =

{
αi if αi ∈ X
a rule ri ∈ P with lhs(ri) = αi if αi ∈ N,

for every 1 ≤ i ≤ k; and ϕk(y1 . . . yk, r) = 0 in every other case,

• the mapping ϕ0 : Fork0(P̄ ∪ X) → K is defined by ϕ0(r) = wt(r) for every
r ∈ P̄0 and ϕ0(x) = 1 for every x ∈ X,

• the root mapping ρ : (P̄ ∪ X) → K is defined, for every y ∈ (P̄ ∪ X) by
ρ(y) = 1 if y ∈ P with lhs(y) = Z and ρ(y) = 0 in every other case.

Let w ∈ X∗. Due to the construction, DG(w) ⊆ yd−1
P̄

(w) and

ϕ(ζ) · ρ(rt(ζ)) =

{
wt(ζ) if ζ ∈ DG(w)

0 otherwise

for every ζ ∈ yd−1
P̄

(w). If K is not complete, then the set {ζ ∈ DG(w) | wt(ζ) 6= 0}
is finite because G is plain. Thus the set {ζ ∈ yd−1

Σ (w) | ϕ(ζ) · ρ(rt(ζ)) 6= 0} is also
finite. Hence L is plain. Moreover, we have

λG(w) =
∑

ζ∈DG(w),wt(ζ) 6=0

wt(ζ) =
∑

ζ∈yd−1

P̄
(w)

ϕ(ζ) · ρ(rt(ζ)) =

∑
ζ∈yd−1

P̄
(w)

||L||(ζ) = yd(||L||)(w),

where second equality follows using that DG(w) ⊆ yd−1
P̄

(w) and the note made on
the values of ϕ(ζ) · ρ(rt(ζ)) for trees not in DG(w).

Lemma 4. CFLp(K) ⊆ yd(bud-Recp(K) ∩ tdd-Recp(K)).

Proof. Let G = (N,X,Z, P,wt) be a plain CF(K)-grammar. We define the K-wta
A = (Q, P̄ ,X, δ, κ), where

• Q = N ∪ {x | x ∈ X},

• P̄ is the ranked alphabet defined in Section 2.2,

• the family δ is defined as follows:
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– for every k ≥ 1, rule r = (A → α1 . . . αk) ∈ P̄k with α1, . . . , αk ∈
(N ∪X), and q1, . . . , qk, q ∈ Q, we let δk(q1 . . . qk, r, q) = wt(r) if q = A
and

qi =

{
αi if αi ∈ N
x if αi = x ∈ X,

for 1 ≤ i ≤ k; and we let δk(q1 . . . qk, r, q) = 0 for every other choice of
q1, . . . , qk and q,

– for every r = (A → ε) ∈ P̄0 and q ∈ Q, we define δ0(r, q) = wt(r) if
q = A and δ0(r, q) = 0 otherwise,

– for every x ∈ X and q ∈ Q, we define δ0(x, q) = 1 if q = x and δ0(x, q) =
0 otherwise,

• for every q ∈ Q, κ(q) = 1 if q = Z and κ(q) = 0 otherwise.

It is obvious that A is both bu-deterministic and td-deterministic. We will show
that it is also plain and that λG = yd(||A||).

For every ζ ∈ TP̄ (X), there is a distinguished run ωζ ∈ RA(ζ) defined for each
p ∈ pos(ζ) by

ωζ(p) =

{
lhs(r) if ζ(p) = r for some r ∈ P̄ ,

x if ζ(p) = x for some x ∈ X.

The transition mappings of A are designed in such a way that, for every ζ ∈ TP̄ (X)
and ω ∈ RA(ζ), we have δ∗(ω) = 0 if ω 6= ωζ , and

δ∗(ωζ) · κ(ωζ(ε)) =

{
wt(ζ) if ζ ∈ DG(w) for some w ∈ X∗,
0 otherwise.

This, the fact that G is plain, and that DG(w) ⊆ yd−1
P̄

(w) implies that if K is not

complete, then the set {ζ ∈ yd−1
P̄

(w) | δ∗(ωζ) · κ(ωζ(ε)) 6= 0} is finite for every
w ∈ X∗. This means that A is plain. Furthermore, for every w ∈ X∗, we have

λG(w) =
∑

ζ∈DG(w),wt(ζ) 6=0

wt(ζ) =
∑

ζ∈yd−1

P̄
(w)

δ∗(ωζ) · κ(ωζ(ε)) =

∑
ζ∈yd−1

P̄
(w)

∑
ω∈RA(ζ)

δ∗(ω) · κ(ω(ε)) =
∑

ζ∈yd−1

P̄
(w)

||A||(ζ) = yd(||A||)(w),

where ωζ is the particular run in RA(ζ) defined above. The second equality holds
because DG(w) ⊆ yd−1

P̄
(w) and the note made on δ∗(ωζ). The third one holds

because δ∗(ω) = 0 for ω 6= ωζ .

To prove that yd(Recp(K)) ⊆ CFLp(K) we need the following preparation. A
K-wta A = (Q,Σ, X, δ, κ) has Boolean root weights (see [13, Sec. 3.2]) if κ(q) ∈
{0, 1} for every q ∈ Q. In this case we replace κ by the set F = {q ∈ Q | κ(q) = 1}



Weighted Languages Recognizable by Weighted Tree Automata 881

and write A = (Q,Σ, X, δ, F ). For a ξ ∈ TΣ(X), let RFA(ξ) = {ω ∈ RA(ξ) | ω(ε) ∈
F}. Then it is easy to see that ||A||(ξ) =

∑
ω∈RF

A(ξ) δ
∗(ω). Moreover,

UA(w) = {ξ ∈ yd−1
Σ (w) | ∃(ω ∈ RFA(ξ)) : δ∗(ω) 6= 0}

and

λA(w) =
∑

ξ∈UA(w),ω∈RF
A(ξ)

δ∗(ω).

In [4, Thm. 6.1.6] it is shown that K-wta and K-wta with Boolean root weights
are equally powerful (see [13, Thm. 3.6]). We will now give another, slightly
modified proof.

Lemma 5. For each K-wta A there is a K-wta A′ with Boolean root weights such
that ||A|| = ||A′|| and UA(w) = UA′(w) for every w ∈ Σ∗.

Proof. Let A = (Q,Σ, X, δ, κ) be a K-wta. We construct a K-wta A′ with Boolean
root weights such that ||A|| = ||A′||. First, let F = {qf | q ∈ Q} be a disjoint copy
of Q and let Q′ = Q∪F . Then construct A′ = (Q′,Σ, X, δ′, F ), where δ′ is defined
as follows:

- for every y ∈ (Σ0 ∪X) and q ∈ Q, let

δ′0(y, q) = δ0(y, q) and δ′0(y, qf ) = δ0(y, q) · κ(q), and

- for every k ≥ 1, σ ∈ Σk, q1, . . . , qk ∈ Q′, and q ∈ Q, let

δ′k(q1 . . . qk, σ, q) =

{
δk(q1 . . . qk, σ, q) if q1, . . . , qk ∈ Q
0 otherwise

and

δ′k(q1 . . . qk, σ, qf ) =

{
δk(q1 . . . qk, σ, q) · κ(q) if q1, . . . , qk ∈ Q
0 otherwise.

Now we will explore the relation between the runs of A and of A′ on a tree ξ ∈
TΣ(X). First, we note that RA(ξ) ⊆ RA′(ξ) because Q ⊆ Q′. Actually, a run
ω ∈ RA′(ξ) is in RA(ξ) if and only if ω(p) ∈ Q for every p ∈ pos(ξ). Next, we
introduce the notation

R̂FA′(ξ) = {ω ∈ RFA′(ξ) | ω(p) ∈ Q for every p ∈ pos(ξ) with p 6= ε}.

Note that, for each ω ∈ R̂FA′(ξ), we have ω(ε) = qf for some q ∈ Q. Moreover,

there is a bijection from R̂FA′(ξ) to RA(ξ) defined by the correspondence ω 7→ ω̂,
where ω̂(ε) = q if ω(ε) = qf and ω̂(p) = ω(p) for any other p ∈ pos(ξ) with p 6= ε.
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It follows from the construction that, for every ξ ∈ TΣ(X) and ω ∈ RA′(ξ), we
have

δ′∗(ω) =


δ∗(ω) if ω ∈ RA(ξ)

δ∗(ω̂) · κ(ω̂(ε)) if ω ∈ R̂FA′(ξ)
0 otherwise,

where ω 7→ ω̂ is the bijection defined above.
Then we find that

||A′||(ξ) =
∑

ω∈RF
A′ (ξ)

δ′∗(ω) =
∑

ω∈R̂F
A′ (ξ)

δ′∗(ω) =
∑

ω∈RA(ξ)

δ∗(ω) · κ(ω(ε)) = ||A||(ξ)

holds for every ξ ∈ TΣ(X). The second equality holds because δ′∗(ω) = 0 for each

ω ∈ (RFA′(ξ)\ R̂FA′(ξ)) and the third one holds by the bijection between R̂FA′(ξ) and
RA(ξ) described above. This proves that ||A′|| = ||A||.

Now, let w ∈ X∗. To see that UA(w) = UA′(w), first we note that

UA′(w) = {ξ ∈ yd−1
Σ (w) | ∃(ω ∈ R̂FA′(ξ)) : δ′∗(ω) 6= 0}.

Due to the bijection between R̂FA′(ξ) and RA(ξ) for every ξ ∈ TΣ(X), we have
UA′(w) = UA(w).

Corollary 2. For each plain K-wta A there is a plain K-wta A′ with Boolean root
weights such that λA = λA′ .

Proof. Let A be a plain K-wta and construct A′ as in Lemma 5. Since UA(w) =
UA′(w) for every w ∈ Σ∗, it follows that A′ is also plain. Furthermore, since
||A|| = ||A||′, we have

λA = yd(||A||) = yd(||A′||) = λA′ .

Lemma 6. yd(Recp(K)) ⊆ CFLp(K).

Proof. Let A = (Q,Σ, X, δ, F ) be a plain K-wta with Boolean root weights (by
Corollary 2 without loss of generality). We construct a plain CF(K)-grammar G
such that λA = λG . Let G = (N,X,Z, P,wt), where

• N = {Z} ∪
(
Q× (Σ ∪X)

)
, where Z is a new symbol,

• P and wt are defined as follows:

– for every (q, y) ∈ F × (Σ ∪ X), the rule r = (Z → (q, y)) is in P with
wt(r) = 1,

– for every k ≥ 1, (q, σ) ∈ Q × Σk, (q1, y1), . . . , (qk, yk) ∈ Q × (Σ ∪ X),
the rule r = ((q, σ) → (q1, y1) . . . (qk, yk)) is in P with wt(r) =
δk(q1 . . . qk, σ, q),



Weighted Languages Recognizable by Weighted Tree Automata 883

(Z → (p, σ))

((p, σ)→ (q̄, α)(q, δ))

((q̄, α)→ ε) ((q, δ)→ (p′, x)(p, β))

((p′, x)→ x)

x

((p, β)→ ε)

f7−→ p

q̄ q

p′ p

σ

α δ

x β

Figure 2: A visualization of the bijection f given in Lemma 6.

– for every (q, σ) ∈ Q×Σ0, the rule r = ((q, σ)→ ε) is in P with wt(r) =
δ0(σ, q), and

– for every (q, x) ∈ Q×X, the rule r = ((q, x)→ x) is in P with wt(r) =
δ0(x, q).

First we show that, for every w ∈ X∗, there is a bijection f between the sets

DG(w) and {(ξ, ω) | ξ ∈ yd−1
Σ (w), ω ∈ RFA(ξ)}

such that if f(ζ) = (ξ, ω) for ζ ∈ DG(w), then wt(ζ) = δ∗(ω). To find such a

bijection, for each tree ζ ∈ DG(w), we define ζ̂ ∈ TΣ(X) and ωζ ∈ RFA(ζ̂) as follows.

Let pos(ζ̂) = {p ∈ pos(ζ|1) | (ζ|1)(p) 6∈ X}. Moreover, for every p ∈ pos(ζ̂), let

ζ̂(p) be the second, while ωζ(p) be the first component of lhs(r), where r = (ζ|1)(p)

(see Figure 2 for example). It can be seen that the mapping f : ζ 7→ (ζ̂, ωζ) is a
bijection which satisfies the condition wt(ζ) = δ∗(ωζ).

Now, assume that K is not complete and let w ∈ X∗. Since A is plain and
thus UA(w) is finite, the set {(ξ, ω) | ξ ∈ yd−1

Σ (w), ω ∈ RFA(ξ), δ∗(ω) 6= 0} is also
finite because, for every ξ ∈ yd−1

Σ (w), the set RFA(ξ) is also finite. Then, due to
the bijection defined above, the set {ζ ∈ DG(w) | wt(ζ) 6= 0} is also finite, which
proves that G is plain.
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Finally, we show that λG = λA. Indeed, for every w ∈ X∗,

λG(w) =
∑

ζ∈DG(w),wt(ζ) 6=0

wt(ζ) =
∑

ξ∈yd−1
Σ (w)

ω∈RF
A(ξ),δ∗(ω)6=0

δ∗(ω) =

∑
ξ∈UA(w),ω∈RF

A(ξ)

δ∗(ω) = λA(w),

where the second equality holds due to the bijection f defined above, the third one
holds because we extend the sum with finitely many 0, and the fourth one holds
from the definition of λA and Lemma 1(1).
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[11] Z. Ésik and W. Kuich, Formal tree series. J. of Automata, Languages, and
Combinatorics, 8(2):219–285, 2003.
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