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Abstract

In this paper we study two problems in the context of fully dynamic graph
algorithms that is, when we have to handle updates (insertions and removals
of edges), and answer queries regarding the current graph, preferably with a
better time bound than that when running a classical algorithm from scratch
each time a query arrives. In the first part we show that there are dense
(directed) graphs having no nontrivial strong certificates for maintaining a
depth-first search tree, hence the so-called sparsification technique cannot be
applied effectively to this problem. In the second part, we show that a maxi-
mal matching can be maintained in an (undirected) graph with a deterministic
amortized update cost of O(logm) (where m is the all-time maximum number
of the edges), provided that a lookahead of length m is available, i.e. we can
“take a peek” at the next m update operations in advance.

Keywords: dynamic graphs, depth-first search, sparse strong certificate,
maximal matching, lookahead

1 Introduction and notation
In the past two decades, there has been a growing interest in developing a framework
of algorithm design for dynamic graphs, that is, graphs which are subject to updates
– in our case, additions and removals of an edge at a time. The aim of a so-called
fully dynamic algorithm (here “fully” means that both addition and removal are
permitted) is to maintain the result of the algorithm after each and every update
of the graph, in a time bound significantly better than recomputing it from scratch
each time.

While there are plenty of ad hoc algorithms for specific problems (see e.g. [1, 3,
4, 5, 7, 8]), there are also some generic methods, one of them being the sparsificition
technique developed in [6]. This technique can speed up the computation of the
query in question, achieving the same time complexity as if the query were run on
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a sparse graph. In order for sparsification to be applicable, it is necessary for the
problem to have sparse strong certificates. Essentially, such a certificate for a graph
G is a sparse graph G′ on which the query should produce the same output. In [11],
several graph problems were shown not to have a sparse strong certificate, so the
technique cannot be applied to these problems (we call such properties unsparsable).
The authors of [11] left open the question whether the depth-first search problem
(that is, given a graph G and a vertex v of G, construct a depth-first search tree
of G from v as a root) has sparse strong certificates or not. One of the results of
the current paper is that this is not the case: there are dense graphs having no
nontrivial certificate at all for this property, thus sparsification cannot be used to
speed up the computation of a depth-first search tree in a dynamic graph. Although
our method is still an ad hoc construction, we do hope that it can give a better
insight on the nature of problems having sparse strong certificates (like edge and
vertex connectivity, bipartiteness and minimum spanning tree, to name but a few).

Also in [11], a systematic investigation of dynamic graph problems in the pres-
ence of a so-called lookahead was initiated: although the stream of update opera-
tions can be arbitrarily large and possibly builds up during the computation time, in
actual real-time systems it is indeed possible to have some form of lookahead avail-
able. That is, the algorithm is provided with some prefix of the update sequence
of some length (for example, in [11] an assembly planning problem is studied in
which the algorithm can access the prefix of the sequence of future operations to
be handled of length Θ(

√
m/n log n)), where m and n are the number of edges

and nodes, respectively. Similarly to the results of [11] (where the authors devised
dynamic algorithms using lookahead for the problems of strongly connectedness
and transitive closure), we will execute the tasks in batches: by looking ahead at
t = O(m) future update operations, we treat them as a single batch, preprocess our
current graph based on the information we get from the complete batch, then we
run all the updates, one at a time, on the appropriately preprocessed graph. This
way, we achieve an amortized update cost of O(logm) for maintaining a maximal
matching.

In this paper, a graph G is viewed as a set (or list) of edges, with |G| standing
for its cardinality. This way notions like G ∪H for two graphs G and H (sharing
the common set V (G) = V (H) of vertices) are well-defined.

Related work. There is an interest in computing a maximum (i.e. maximum
cardinality) or maximal (i.e. non-expandable) matching in the fully dynamic set-
ting. There is no “best-so-far” algorithm, since the settings differ: Baswana, Gupta
and Sen [2] presented a randomized algorithm for maximal matching, having an
O(log n) expected amortized time per update. (Note that algorithms for maximal
matching automatically provide 2-approximations for maximum matching and also
vertex cover.) For the deterministic variant, Ivkovic̀ and Lloyd [9] defined an algo-
rithm with an O((n + m)0.7072) amortized update time, which was improved to an
amortized O(

√
m) update cost by Neiman and Solomon [13]. For maximum match-

ing, Onak and Rubinfeld [14] developed a randomized algorithm that achieves a
c-approximation for some constant c, with an O(log2 n) expected amortized update
time. To maintain an exact maximum cardinality matching, Micali and Vazirani
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[12] gave an algorithm with a worst-case update time of O(
√
n · m). Allowing

randomization, an update cost of O(n1.495) is achievable due to Sankowski [15].
We are not aware of any results on allowing lookahead for any of the matching

problems, but the notion has been applied to several problems in this field: follow-
ing the seminal work of Khanna, Motwani and Wilson [11], where lookahead was
investigated for the problems of maintaining the transitive closure and the strongly
connectedness of a directed graph, Sankowski and Mucha [16] also considered the
transitive closure with lookahead via the dynamic matrix inverse problem, devis-
ing a randomized algorithm, and Kavitha [10] studied the dynamic matrix rank
problem.

2 Depth-first search trees

One of the main results of the current paper is that the (general) depth-first search
tree property dfs is also unsparsable. Although this is again carried out in an ad hoc
way, we hope that it might give an insight into the structure of unsparsable prop-
erties.

2.1 Notation

We use the following notions introduced in [11] in this form.
A graph property is an arbitrary function P which maps graphs to nonempty

sets of objects. For example, the depth-first search function dfs maps a given
directed graph to several possible depth-first search forests.

The so-called sparsification technique (introduced originally in [11, 6] as a tool
for studying properties of dynamic graphs) is based on the notion of certificates:

Definition 1 (Strong Certificate). For a graph property P, a strong P-certificate
of a graph G is a graph G′ on the same vertex set as G such that

P(G′ ∪H) ⊆ P(G ∪H)

holds for any graph H.

Evidently, any graph G is a certificate of itself, and the following properties of
transitivity and monotonicity hold [11, 6]:

• If G′ is a strong P-certificate for G and G′′ is a strong P-certificate for G′,
then G′′ is a strong P-certificate for G as well.

• If G′ and H ′ are strong P-certificates for G and H, respectively, then G′∪H ′
is a strong P-certificate for G ∪H.

In the state-of-the-art for dynamic graph algorithms, the sparsification technique
can be used to develop a dynamic algorithm for a specific problem if there are
sparse strong certificates for the given problem:
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Definition 2 (Sparse strong certificate). A property P has sparse strong certifi-
cates if, for every graph G having n vertices, there exists a strong P-certificate for
G with O(n) edges.

If some property P has sparse strong certificates, having c·n edges, say, and there
is a fully dynamic graph algorithm with a runtime of T (n) on sparse graphs having
n nodes and c ·n edges, moreover, there is an algorithm which can compute a sparse
strong certificate of a graph having n nodes and 2c·n edges with a runtime of T ′(n),
then (by arranging the graph into a form of a complete binary tree of its specific
subgraphs) one can construct a fully dynamic algorithm solving P for arbitrary
graphs with a runtime of O(log(n)(T (n)+T ′(n)). For example, if there were sparse
strong certificates for dfs that are computable in T ′(n) = O(n) time, then the
technique would yield a dynamic algorithm having an update cost of O(n log n)
(note that for dense graphs this cost would improve over the naïve approach, which
has an update cost of O(m)).

In particular, if one shows that for a given property P, there exist graphs for
arbitrarily large n having Ω(n2) edges having no nontrivial certificates (we call such
properties unsparsable), then, as a byproduct one gets that sparsification cannot
be applied effectively to speed up the computation of P in the dynamic setting.

In [11], a number of unsparsable properties were found: the breadth-first search
tree property, strong connectivity, the lexicographic depth-first search tree prop-
erty, transitive closure, diameter, minimum cut and maximum matching have been
shown to be unsparsable. Most of the methods developed in [11] are applicable
only to monovalued properties, i.e., when P(G) is a singleton set for every graph
G. Indeed, all these properties are monovalued but that of the breadth-first search
tree property (in which case the result is the set of all possible breadth-first trees
of the input graph) which have been shown to be unsparsable using an ad hoc
reasoning. The authors of [11] explicitly state that “we are unable to extend this to
the case of general depth-first search tree property, and that remains an interest-
ing open question”, after showing that the (monovalued) property of lexicographic
depth-first search tree property is unsparsable.

2.2 The property dfs is unsparsable
The property dfs assigns to a graph the set of all of its subgraphs that may be the
result of a depth-first search according to some arbitrary ordering of the vertices,
called on a specific vertex 1. For the sake of completeness, the algorithm is explicitly
presented below.

d f s ( v : Node ) {
for each neighbour u o f v do

i f ( parent [u]==null){
parent [u ] := v
d f s ( u )

}
}



DFS is Unsparsable and Lookahead Can Help in Maximal Matching 891

for each node v do
parent [ v ] := null

d f s ( 1 )

The source of ambiguity in this algorithm is that the order of the neighbours
of a node in which they are traversed is not specified. As an example, the reader is
referred to Figure 1 where a graph G and two of its possible dfs trees are depicted.
Of course if there is a total ordering defined on the nodes, and the neighbours of
each node are traversed according to this ordering, then the dfs tree is unique
and the property becomes a monovalued property called lexicographic depth-first
search tree, which, due to the results of [11], is unsparsable. Clearly, every possible
depth-first search tree corresponds to a lexicographic one, e.g. the search trees
depicted in Figure 1 correspond to the orderings 1 ≺ 2 ≺ 5 ≺ 7 ≺ 4 ≺ 6 ≺ 3 and
1 ≺ 3 ≺ 6 ≺ 7 ≺ 2 ≺ 4 ≺ 5, respectively.

1

2 3

4

5 6

7

(a) Original graph

1

2 3

4

5 6

7

(b) A dfs tree from node 1

1

2 3

4

5 6

7

(c) Another dfs tree from node 1

Figure 1: Possible depth-first search trees

Next we show that the dfs property is unsparsable as well by means of giving an
explicit family of graphs having Ω(n2) edges such that the smallest strong certificate
of any member G of the family is G itself. By “smallest”, we mean minimal:

Definition 3. A strong P-certificate G′ of a graph G is a minimal strong P-
certificate of G if no proper subgraph of G′ is a strong P-certificate of G.

Observe that a minimal strong dfs-certificate has no edges of the form (i, 1).
Indeed, since 1 is always the root of any depth-first search tree, such edges cannot
be tree edges and thus can be removed from a graph without changing the set of its
depth-first search trees. Similarly, a minimal strong dfs-certificate does not have
loop edges.

In order to show that dfs is unsparsable, we first need to prove the following
three lemmas.

Lemma 1. Assume G is a graph such that all of its vertices are reachable from the
vertex 1. Then the same holds in any strong dfs-certificate G′ of G.
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Proof. Clearly, any vertex v is a descendant of the root node 1 in any depth-first
search tree in a graph G′ if and only if v is reachable from 1 in G′. Hence, if some
vertex v is not reachable from 1 in G′, then dfs(G′) consists of trees in which
v does not occur while dfs(G) consists of trees in which all the nodes occur, so
dfs(G′) ∩ dfs(G) = ∅. In particular, dfs(G′) 6⊆ dfs(G) and G′ is not a strong
dfs-certificate of G.

The next lemma allows us to consider only subgraphs as possible certificates.

Lemma 2. Assume G′ is a minimal strong dfs-certificate of G. Then G′ ⊆ G.

Proof. Assume V (G′) = V (G) and G′ 6⊆ G is a minimal strong dfs-certificate of
G. Then (i, j) ∈ G′ −G for some nodes i, j ∈ V . By minimality, j 6= 1 and i 6= j.
There are two cases: either i = 1 or i 6= 1.

• If i = 1, then there exists a depth-first search tree of G′ in which j is a depth-
one node. (That is, any tree we get if we uncover j first.) Since (1, j) is not
an edge in G, there is no such tree in dfs(G) and thus dfs(G′) 6⊆ dfs(G),
which is a contradiction.

• If i 6= 1, then let H be the graph consisting of the single edge (1, i). It
suffices to check that dfs(G′ ∪ H) 6⊆ dfs(G ∪ H). If in G′ ∪ H we uncover
the neighbour i of 1 first; then we uncover the neighbour j of i; then we
get a depth-first search tree of G′ ∪H in which (i, j) is a tree edge. This is
clearly not possible in G ∪ H as (i, j) is not an edge in that graph. Hence
dfs(G′ ∪H) 6⊆ dfs(G∪H) and G′ is not a strong dfs-certificate of G, which
is a contradiction.

The last technical lemma of the section provides a sufficient condition for some
edges being unremovable when looking for a certificate subgraph:

Lemma 3. Assume G′ ⊆ G, and (i, j) ∈ G is an edge such that j is not reachable
from i in G′; moreover, both i and j are reachable in G from 1, and (1, j) is not
an edge in G.

Then G′ is not a strong dfs-certificate of G.

Proof. Assume G′ is a strong dfs-certificate of G. By Lemma 1 we get that both
i and j are reachable from 1 in G′ as well. Let k /∈ {1, j} be a node of a path from
1 to j in G′. Notice that k 6= i in this case, since by assumption j is not reachable
from i in G′. Also, k is thus reachable from 1 in G′.

Consider the graph H on the same set of nodes consisting of the edges (k, i),
(k, j), (1, k) and (1, i).

Then there exists a depth-first search tree of G′ ∪ H in which i and k are
depth-one nodes, and j is a child of k.

To see this, first observe that neither j nor k is reachable from i in G′ ∪H:

• By assumption, j is not reachable from i in G′.
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• Since the edges (k, i) and (1, i) are never used in a shortest i  j path, j is
not reachable in G′ ∪ {(k, i), (1, i)}.

• Adding (1, k) and (k, j) does not change the transitive closure of the graph
since k is already reachable from 1 in G′, and j is also reachable from k in
G′. Hence, j is not reachable from i in G′ ∪H.

• Since (k, j) ∈ H, j is reachable from k in G′ ∪H.

• Thus k is not reachable from i in G′ ∪H.

So, if during a depth-first search on G′ ∪ H one uncovers the node i first via the
edge (1, i) ∈ H, then traverses the node in an arbitrary manner, neither j nor k
appears as the descendant of i since these nodes are not reachable from i. Then,
after finishing traversal of i, one uncovers k via the edge (1, k) ∈ H, and then j via
(k, j) ∈ H. Finishing the procedure in an arbitrary way we get a depth-first search
tree in which i and k are both depth-one nodes and j is a child of k.

We claim that there is no such depth-first search tree of G ∪ H, proving the
above lemma. To see this, we list the possible orders in which the nodes i, j and k
are uncovered during a depth-first search of G ∪H:

• Assume i is uncovered first. Then, as (i, j) ∈ G, j becomes a descendant of i
in the tree.

• Assume j is uncovered first. Then j cannot be a child of k.

• Assume k is uncovered first. Then, since (k, i) ∈ H, we get that i also becomes
a descendant of k.

Hence, during any depth-first search of G ∪H it cannot happen that i and k are
both depth-one nodes and j is a child of k, hence dfs(G′ ∪H) 6⊆ dfs(G ∪H) and
G′ is not a strong dfs-certificate of G.

Now we are ready to show the main result of this section.

Theorem 1. The property dfs is unsparsable: there exists an infinite family of
graphs having Ω(n2) edges such that for each member G of the family, the only
minimal strong dfs-certificate is G itself.

Proof. Let n = 2k + 1 be an odd number for some integer k > 1 and Gn be the
graph on n vertices consisting of the following edges:

• The edges (1, i) for each 2 ≤ i ≤ k + 1.

• The edges (i, j) for each 2 ≤ i ≤ k + 1 and k + 2 ≤ j ≤ 2k + 1.

That is, a three-layered graph such that the first layer consists of the node 1, the
other two layers contain k nodes each, and from each node of each layer there is an
edge to every node of the next layer. (See Figure 2).
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1

2 3 . . . k k + 1

k + 2 k + 3 . . . 2k 2k + 1

Figure 2: The graph G2k+1

It is clear that all the nodes of Gn are reachable from 1. By Lemma 2, any minimal
strong dfs-certificate of Gn is a subgraph G′ of Gn. Now G′ has to contain all the
edges of the form (1, i) since removing such an edge would make node i unreachable
from 1, contradicting Lemma 1. We claim that none of the edges (i, j) with 2 ≤
i ≤ k + 1 and k + 2 ≤ j ≤ 2k + 1 can be removed. Indeed, as the removal of (i, j)
would make j unreachable from i, and there is no direct edge 1 → j in G, we see
from Lemma 3 that G′ has to contain all the edges from the middle towards the
bottom layer. Hence G′ = Gn is the only minimal strong dfs-certificate of G and
this graph has k2 + k = Θ(n2) edges.

3 Maximal matching with lookahead

In this section we present an algorithm that maintains a maximal matching in
a dynamic graph G with constant query and O(logm) update time (note that
O(logm) is also O(log n) as m = O(n2)), provided that a lookahead of length m is
available in the sequence of (update and query) operations. This is an improvement
over the currently best-known deterministic algorithm [13] that has an update cost
of O(

√
m) without lookahead, and has the same amortized update cost as the

best-known randomized algorithm [2].
In this problem, a matching of a(n undirected) graph G is a subset M ⊆ G of

edges having pairwise disjoint sets of endpoints. A matching M is maximal if there
is no matching M ′ ) M of G. Given a matching M , for each vertex v of G let
mate(v) denote the unique vertex u such that (u, v) ∈ M if such a vertex exists,
otherwise mate(v) = null.

In the fully dynamic version of the maximal matching problem, the update
operations are edge additions +(u, v), edge deletions −(u, v) and the queries have
the form mate(u).

The following is clear:

Proposition 1. Suppose G is a graph in which M is a maximal matching. Then
a maximal matching in the graph G + (u, v) is

• M ∪ {(u, v)}, if mate(u) = mate(v) = null,

• M , otherwise.
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This proposition gives the base algorithm greedy for computing a maximal
matching in a graph:

Let M be an empty l i s t o f edges ;
for ( (u, v) ∈ G ) {

i f ( mate(u) == null and mate(v) == null){
mate(u) := v ; mate(v) := u ;
i n s e r t (u, v) to M ;

}
}
return M ;

Note that if one initializes the mate array in the above code so that it contains some
non-null entries, then the result of the algorithm represents a maximal matching
within the subgraph of G spanned by the vertices having null mates initially.
Also, with M represented by a linked list, the above algorithm runs in O(m) total
time using no lookahead. Hence, by calling this algorithm on each update operation
(after inserting or removing the edge in question), we get a dynamic graph algorithm
with no lookahead (hence it uses a lookahead of at most m operations), a constant
query cost (as it stores the mate array explicitly) and an O(m) update cost. Using
this algorithm A1, we build up a sequence Ak of algorithms, each having a smaller
update cost than the previous ones. (In a practical implementation there would be
a single algorithm A taking k as a parameter along with the graph G and the update
sequence, but for proving the time complexity it is more convenient to denote the
algorithms in question by A1, A2, and so on.)

In our algorithm descriptions the input is the current graph G (which is ∅ the
first time we start running the program) and a sequence (q1, . . . , qt) of operations.
Of course as the sequence can be arbitrarily long, we do not require an explicit
representation, just the access of the first m elements (that is, we have a lookahead
of length m).

Lemma 4. Assume Ak is a fully dynamic algorithm for maintaining a maximal
matching with an f(k) · m1/k amortized update cost, constant query cost using a
lookahead of length m.

Then there is a universal constant c such that there exists a fully dynamic algo-
rithm Ak+1 that also maintains a maximal matching with (f(k)+c(1+logm))m1/k+1

amortized update cost, and a constant query cost using a lookahead of length m.

Before proving the above lemma, we derive the main result of the section.
As A1 is an algorithm satisfying the conditions of this lemma with k = 1 and
f(k) = c0 for some constant c0, it implies that for each k > 1 that there is
a fully dynamic algorithm that maintains a maximal matching with an amor-
tized update cost of (c0 + kc(1 + logm))m1/k = O(k logm · m1/k). Setting k =
logm, we get that Alogm has an amortized update cost of O(log2 m ·m1/ logm) =

O
(

log2 m ·
(
2logm

)1/ logm
)

= O(log2 m · 2) = O(log2 m).
Hence we get:
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Theorem 2. There exists a fully dynamic algorithm for maintaining a maximal
matching with an O(log2 m) amortized update cost and constant query cost, using
a lookahead of length m.

Now we prove Lemma 4 by defining the algorithm Ak+1 below.

• The algorithm Ak+1 works in phases and returns a graph G (as an edge set)
and a matching M (as an edge list).

• The algorithm accesses the global mate array in which the current maximal
matching of the whole graph is stored. (Ak+1 might get only a subgraph of
the whole actual graph as input.)

• In one phase, Ak+1 either handles a block ~q = (q1, . . . , qt) of t = m
k

k+1

operations or a single operation.

• Let G and M respectively denote the current graph and matching we have at
the beginning of a phase.

• If |G| is smaller than our favorite constant 42, then the phase handles only the
next operation by explicitly modifying G, afterwards recomputing a maximal
matching from scratch, in O(42) (constant) time. That is,

1. We iterate through all the edges (u, v) ∈ M , and set mate[u] and
mate[v] to null (in effect, we remove the “local part” M of the global
matching);

2. We apply the next update operation on G;
3. We set M := greedy(G,mate).

Otherwise the phase handles t operations as follows:

1. Using lookahead (observe that t < m) we collect all the edges involved
in ~q (either by a +(u, v) or a −(u, v) update operation) into a graph G′.

2. We construct the graph G′′ = G−G′.
3. We iterate through all the edges (u, v) ∈ M , and set mate[u] := null,

mate[v] := null.
4. We run M := greedy(G′′,mate).
5. We call Ak(G ∩ G′, (q1, . . . , qt)). Let G∗ and M∗ be the graph and

matching returned by Ak.
6. We set G := G′′ ∪G∗ and M := M ∪M∗.

In order to give the reader a better insight, we give an example before analyzing
the time complexity. To make the example more manageable, we adjust the con-
stants as follows: we shall use the constant 1 instead of 42 (that is, if G contains at
most one edge, we do not make a recursive call but recompute the matching) and
also, the block size A2 handles in one phase will be set to 1 while A3, which we call
at the topmost level, will handle 3 operations in one phase.
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(a) The original graph G.

a

b

f

g

c

d

e

(b) G−G′ with a maximal matching.

Figure 3: Executing Steps 1− 3 of A3 on G, looking ahead the operations +(f, g),
−(a, f), +(d, c)

Example 1. Let us assume that we call the algorithm A3 on the graph G of
Figure 3 (a). As the graph contains more edges than our threshold 1, a block of
update operations of length 3 will be handled in a phase, using lookahead. (Note
that if we used our actual algorithm to compute the length of the phase, we would
get 62/3 ≈ 3.3 as the number of edges in G is m = 6 and in A3, k is 2.) Now
assume the next three update operations are +(f, g), −(a, f) and +(d, c). Thus
G′ = {(f, g), (a, f), (d, c)} is the set of edges involved, that’s for Step 1. In Steps 2
and 3, we construct the graph G′′ = G−G′ and run the greedy matching algorithm
on it, the (possible) result is shown in Figure 3 (b). (Note that since greedy does
not specify the order of the edges during the traversal, the actual results can vary.)
In the Figure, thick circles denote those vertices having a non-null mate at this
point (that is, mate[a] = b, mate[b] = a, and so on, c, d and f having a null
mate). Now, A2 is called on G∩G′ (depicted in Figure 4 (a)), and the whole block
of three updates is passed to A2.
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e

(a) The graph G ∩G′
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f

g

c

d

e

(b) A2 adds (f, g) directly

Figure 4: Handling the first recursive call.

Now as the input graph of A2 has only one edge, A2 just handles the next
update +(f, g); that is, it inserts the edge (f, g) into its input of Figure 4 (a) and
runs greedy on this, resulting in the graph of Figure 4 (b). Observe that at this
point mate[a] = b and mate[g] = e, so neither of these two edges is added to the
maximal matching managed by A2. (That is, the mate array is a global variable.
This is vital: this way one can ensure that the union of the matchings of different
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recursion levels is still a matching, and also ensures a constant-time query cost.)
Then, as the current graph has two edges (which is larger than the threshold),

A2 handles a complete block of operations in a phase. (Now the length of the
block happens to be 1 so this does not make that much of a difference. Actually,
as m = 2 and k = 1, the length of the block should indeed be 21/2 ≈ 1.4.) Thus,
using a lookahead of length 1, the only operation to be handled is −(a, f). So we
compute the difference graph and run greedy on it (Figure 5 (a)), compute the
intersection graph and call A1 on this along with the update sequence consisting
of the single operation −(a, f) (Figure 5 (b)). As the input of A1 is now a graph

a

b

f

g

c

d

e

(a) The result of greedy run on the
difference graph

a

b

f

g

c

d

e

(b) The graph passed to A1 along with
the single update −(a, f)

Figure 5: Handling the second update

consisting of a single edge, it gets removed (as the edge in question is not involved
in the matching, which can be seen e.g. from the mate array, the global matching
is not changed), resulting in an empty graph on which greedy gives an empty
matching as well. Then, A1 returns, as it handled the only operation it received.
Now A2 takes control. Concluding the second phase, it constructs the union of its
intersection graph and the empty graph returned by A1, so its current graph G
becomes the graph on Figure 5 (a). As now the graph has only one edge, the next
update +(d, c) is handled directly: the edge (c, d) is inserted and greedy is run
(Figure 6 (a)). Now as A2 has handled its whole input block, it returns its current
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(a) The edge (c, d) is added to the
matching by A2.
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(b) The current graph and matching
after handling all the updates.

Figure 6: Handling the last update

graph: A3 takes control and glues together its difference graph from Figure 3 (b)
and the returned graph 6 (a), resulting in the graph in Figure 6 (b) which would
be the starting graph of further updates. Note that in the actual algorithm, as
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2 < logm < 3, we would call A2 at the top level and handle a block of 61/2 ≈ 2.44;
that is, two updates, but we deliberately chose to call A3 for the sake of covering
almost all the possibilities the algorithm can have (the exception being the case
where a matched edge gets removed, which can be simply handled by setting the
endpoints’ mate values to null and removing the edge from the local matching of
the given recursion level).

Having completed this example, we will now show its correctness. That is, we
claim that each Ak maintains a maximal matching among those vertices having a
null mate when the algorithm is called. This is true for the greedy algorithm A1.
Now assuming Ak satisfies our claim, let us check Ak+1. When the graph is small,
the algorithm throws away its locally stored matching M , resetting the mate array
to its original value in the process (in fact, this is the only reason why we store the
local matching at each recursion level: the global matching state can be queried
by accessing the mate array alone). Then we handle the update and run greedy,
which is known to compute a maximal matching on the subgraph of G spanned by
the vertices having a null mate. So this case is clear.

For the second case, if a block of t operations is handled, then we split the graph
into two, namely a difference graph G′ and an intersection graph G′′. By construc-
tion, when handling the block, the edges belonging to G′ do not get touched. Hence,
at any time point, a maximal matching of G can be computed by starting from a
maximal matching of G′ and then extending the matching by a maximal matching
in the subgraph of G′′ not covered by the matching of G′. Thus, if we compute
a maximal matching M ′ in the subgraph of G′ spanned by the vertices having a
null mate, updating the mate array accordingly (that is, calling greedy on G′),
and maintaining a maximal matching M ′′ over the vertices of G′′ having a null
mate after that point (which is done by Ak, by the induction hypothesis), we get
that at any time M ′ ∪M ′′ is a maximal matching of G. Hence, the algorithm is
correct.

Now we analyse the time complexity of Ak+1. When a phase handles t oper-
ations, then Step 1 can be executed in O(t log t) = O(m logm) time (if we use a
self-balancing tree representation for storing our graphs, say an AVL tree). Then
in Step 2, we construct the difference of the two sets of size O(m) in O(m logm)
time. Step 3 requires an additional time of O(m), since the matching is of size
O(m) and it is stored as a list of edges. For Step 4, as |G′′| ≤ |G| = m, also
an O(m) time is required, and for Step 5, computing the intersection G ∩ G′ re-
quires a time of O(m logm), and Ak, being run on a dynamic graph having at most
t = m

k
k+1 edges during its whole lifecycle of t operations needs t · f(k) · t1/k =

m
k

k+1 · f(k) ·m
1

k+1 = f(k) ·m computation steps. Gluing together the graphs and
the matchings in Step 6 needs a time of O(m logm) + O(m). Hence the total cost
of Steps 1-6 handling a whole phase is O(m) + O(m logm) + O(m) + f(k) · m +
O(m logm) + O(m) = (f(k) + c(1 + logm))m for some universal constant c, and
since a phase consists of m

k
k+1 operations, the amortized cost of a single operation

becomes (f(k) + c(1 + logm))m
1

k+1 and Lemma 4 is proved.
The careful reader may observe that a major part of the time bound comes from
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the set operations. If an initialization cost of O(n2 log n) is affordable (i.e. if there
are Ω(n2 log n) operations in total), then we can do better:

• Each algorithm Ak has an adjacency matrix as well, initialized to an all-zero
matrix in the very beginning (this initialization takes the aforementioned
O(n2 log n) setup cost).

• In Step 1, edges of G′ are stored into this matrix (taking still O(m) time).

• Now the graphs G − G′ and G ∩ G′, as lists of edges, can be constructed
in O(m) time (since lookup in G′ now takes constant time instead of the
previous O(logm)).

• Since G′′ is represented as an edge list, greedy still takes O(m) time.

• After performing Step 5, we have to set the auxiliary matrix to an all-zero
matrix by looking ahead once again the very same sequence and setting each
accessed edge to 0. This takes O(m) time.

• Also, taking the unions of the graphs and matchings upon returning can be
destructive to the original lists, thus it can be done in constant time.

Hence in this case the total cost spent for a phase becomes O((f(k) + c)m) for
some universal constant c, yielding an amortized update cost of O((k+1) ·m1/k+1)
for Ak, which boils down to an amortized update cost of O(logm) by choosing
k = logm and we showed:

Theorem 3. There exists a fully dynamic algorithm for maintaining a maximal
matching with an O(n2 log n) initialization cost, O(logm) amortized update cost
and constant query cost using a lookahead of length m.

4 Conclusion

In this study we dealt with two problems arising in the context of fully dynamic
graph algorithms. First, we showed via an ad hoc method that the depth-first
search tree (or, forest) property is unsparsable; that is, there are dense graphs
for this property having no nontrivial strong certificates. Thus, the technique of
sparsification cannot be applied to this problem effectively – if it could be, it would
result in an algorithm having in an update cost of O(n log n), but it’s not. This
solves an open problem mentioned in [11].

In the second, more detailed part of the study we showed that by using a
lookahead of linear length, there is a deterministic algorithm achieving an O(logm)
amortized update cost (after a somewhat costly initialization which, if cannot be
afforded for some matter, then the update cost becomes O(log2 m)). This result
shows that lookahead can help in the dynamic setting for problems other than the
transitive closure (and the SCC) properties, studied in [11]: indeed, the best known
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deterministic algorithm for the problem using no lookahad has an update cost of
O(
√
m).

It is an interesting question to study further the possibilities of using lookahead
for different problems, and maybe factor in also randomization as well.
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