Waldhauser Tamás: On eigenvectors of the Pascal and Reed-Muller-Fourier transforms. In: Acta cybernetica, (23) 3. pp. 959-979. (2018)
Preview |
Cikk, tanulmány, mű
actacyb_23_3_2018_15.pdf Download (407kB) | Preview |
Abstract
In their paper at the International Symposium on Multiple-Valued Logic in 2017, C. Moraga, R. S. Stankovi´c, M. Stankovi´c and S. Stojkovi´c presented a conjecture for the number of fixed points (i.e., eigenvectors with eigenvalue 1) of the Reed-Muller-Fourier transform of functions of several variables in multiple-valued logic. We will prove this conjecture, and we will generalize it in two directions: we will deal with other transforms as well (such as the discrete Pascal transform and more general triangular self-inverse transforms), and we will also consider eigenvectors corresponding to other eigenvalues.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta cybernetica |
Date: | 2018 |
Volume: | 23 |
Number: | 3 |
ISSN: | 0324-721X |
Page Range: | pp. 959-979 |
Language: | English |
Place of Publication: | Szeged |
Related URLs: | http://acta.bibl.u-szeged.hu/55467/ |
Uncontrolled Keywords: | Reed-Muller-Fourier-transzformáció, Pascal-transzformáció, Többváltozós függvény, Logika, Transzformáció |
Additional Information: | Bibliogr.: p. 975-976. ; összefoglalás angol nyelven |
Subjects: | 01. Natural sciences 01. Natural sciences > 01.01. Mathematics 01. Natural sciences > 01.02. Computer and information sciences |
Date Deposited: | 2018. Nov. 08. 09:12 |
Last Modified: | 2022. Jun. 21. 08:41 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/55688 |
Actions (login required)
![]() |
View Item |