A Perron type theorem for positive solutions of functional differential equations

Pituk Mihály: A Perron type theorem for positive solutions of functional differential equations. (2018)

[thumbnail of ejqtde_2018_057.pdf]
Előnézet
Cikk, tanulmány, mű
ejqtde_2018_057.pdf

Letöltés (420kB) | Előnézet

Absztrakt (kivonat)

A nonlinear perturbation of a linear autonomous retarded functional differential equation is considered. According to a Perron type theorem, with the possible exception of small solutions the Lyapunov exponents of the solutions of the perturbed equation coincide with the real parts of the characteristic roots of the linear part. In this paper, we study those solutions which are positive in the sense that they lie in a given order cone in the phase space. The main result shows that if the Lyapunov exponent of a positive solution of the perturbed equation is finite, then it is a characteristic root of the unperturbed equation with a positive eigenfunction. As a corollary, a necessary and sufficient condition for the existence of a positive solution of a linear autonomous delay differential equation is obtained.

Mű típusa: Folyóirat
Egyéb cím: Honoring the career of László Hatvani on the occasion of his seventy-fifth birthday
Folyóirat/könyv/kiadvány címe: Electronic journal of qualitative theory of differential equations : special edition
Dátum: 2018
Kötet: 3
Szám: 57
ISSN: 1417-3875
Oldalak: pp. 1-11
Kulcsszavak: Differenciálegyenlet, Perron tétel
Megjegyzések: Bibliogr.: p. 10-11. ; Összefoglalás angol nyelven
Feltöltés dátuma: 2018. nov. 07. 09:58
Utolsó módosítás: 2021. nov. 12. 10:28
URI: http://acta.bibl.u-szeged.hu/id/eprint/55727
Bővebben:
Tétel nézet Tétel nézet