Bifurcation of critical periods of a quartic system

Huang, Wentao and Basov, Vladimir and Han, Maoan and Romanovski, Valery G.: Bifurcation of critical periods of a quartic system. Electronic journal of qualitative theory of differential equations 76. pp. 1-18. (2018)

[img] Cikk, tanulmány, mű
ejqtde_2018_076.pdf

Download (474kB)

Abstract

For the polynomial system x˙ = ix + xx¯(ax2 + bxx¯ + cx¯ 2 ) the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2018
Number: 76
Page Range: pp. 1-18
ISSN: 1417-3875
Uncontrolled Keywords: Bifurkáció, Polinom
Additional Information: Bibliogr.: p. 15-18. ; Összefoglalás angol nyelven
Date Deposited: 2018. Nov. 07. 12:35
Last Modified: 2018. Nov. 07. 12:35
URI: http://acta.bibl.u-szeged.hu/id/eprint/55746

Actions (login required)

View Item View Item