Bifurcation of critical periods of a quartic system

Huang Wentao and Basov Vladimir and Han Maoan and Romanovski Valery G.: Bifurcation of critical periods of a quartic system. (2018)

[thumbnail of ejqtde_2018_076.pdf]
Preview
Cikk, tanulmány, mű
ejqtde_2018_076.pdf

Download (474kB) | Preview

Abstract

For the polynomial system x˙ = ix + xx¯(ax2 + bxx¯ + cx¯ 2 ) the study of critical period bifurcations is performed. Using calculations with algorithms of computational commutative algebra it is shown that at most two critical periods can bifurcate from any nonlinear center of the system.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2018
Number: 76
ISSN: 1417-3875
Page Range: pp. 1-18
Uncontrolled Keywords: Bifurkáció, Polinom
Additional Information: Bibliogr.: p. 15-18. ; Összefoglalás angol nyelven
Date Deposited: 2018. Nov. 07. 12:35
Last Modified: 2020. Jul. 29. 12:29
URI: http://acta.bibl.u-szeged.hu/id/eprint/55746

Actions (login required)

View Item View Item