Bendaoud, M. and Benyouness, A. and Sarih, M.: Nonlinear maps preserving the pseudo spectral radius of skew semi-triple products of operators. In: Acta scientiarum mathematicarum, (84) 1-2. pp. 39-47. (2018)
![]() |
Cikk, tanulmány, mű
math_084_numb_001-002_039-047.pdf Hozzáférés joga: Campus Download (178kB) |
Abstract
Let H be a complex Hilbert space of dimension greater than 2, and denote by L(H) the algebra of all bounded linear operators on H. For ε > 0 and T ∈ L(H), let rε(T) denote the ε-pseudo spectral radius of T. Let S1 and S2 be subsets of L(H) which contain all rank one operators and the identity. A characterization is obtained for surjective maps φ: S1 → S2 satisfying rε(φ(T)φ(S) ∗φ(T)) = rε(T S∗T) (T, S ∈ S1). An analogous description is also obtained for the pseudo spectrum of operators.
Item Type: | Article |
---|---|
Journal or Publication Title: | Acta scientiarum mathematicarum |
Date: | 2018 |
Volume: | 84 |
Number: | 1-2 |
ISSN: | 0001-6969 |
Page Range: | pp. 39-47 |
Official URL: | http://www.acta.hu |
Uncontrolled Keywords: | Leképezés, Operátorelmélet |
Additional Information: | Bibliogr.: p. 46-47. ; Összefoglalás angol nyelven |
Date Deposited: | 2018. Nov. 10. 09:09 |
Last Modified: | 2019. Sep. 09. 13:44 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/55802 |
Actions (login required)
![]() |
View Item |