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Abstract 
Partial Least Squares (PLS) regression of blood–brain permeation data (logBB) including 348 
diverse organic compounds and drugs was built using 903 Dragon descriptors.  The prediction 
performance of the obtained PLS model is acceptable: the squared correlation coefficient 
(cumulative sum of squares of all the Y's explained by all extracted components) R2

Y(CUM)  = 
0.822, the crossvalidated correlation coefficient (cumulative fraction of the total variation of 
the Y's that can be predicted by all the extracted components) Q2

Y(CUM)  = 0.640, the number 
of independent variables, X=487, for a dataset of 342 compounds (six compounds was 
outliers). The Y-randomization test demonstrated the absence of chance correlation which is 
confirmed by the lower values of regression line intercepts for R2X(CUM)  (0.307) and Q2(CUM) 
(-0.320). The descriptors such as polar surface area (N,O and N,O,S,P polar contributions), 
octanol-water partition coefficient (Ghose-Crippen and Moriguchi), hydrophilic factor, 
complementary information content index and the number of H-bond donor atoms showed the 
largest Variables Importance in the Projection (VIP) values and can influence the logBB.  The 
values of logBB predicted by our model display lower differences against experimental values 
of 342 compounds than logBB values predicted by QikProp. 
 
Introduction 
The blood–brain barrier (BBB) is a complex system implicated in the normal function of the 
central nervous system (CNS) through: (i) strictly limiting the passive diffusion of polar 
substances from the blood to the brain; (ii) mediating the transport of nutrients to the brain 
and of toxic metabolites and xenobiotics from the brain; (iii) overseeing the migration of 
circulating immune cells. [1-3] Penetration of blood-brain barrier, represents one of the most 
important and challenging areas in drug discovery. The presence of the BBB makes difficult 
the development of new therapies for brain diseases including meningitis, brain abscess, 
epilepsy, multiple sclerosis, neuromyelitis optica, late-stage neurological trypanosomiasis, 
Alzheimer's disease, cerebral edema, HIV encephalitis, etc [4]. To measure the drug transport 
across the blood brain barrier the blood–brain partition coefficient, logBB has been defined, 
[5] logBB= log(Cbrain/Cblood), where Cbrain and Cblood are the equilibrium concentrations of the 
drug in the brain and the blood, respectively. 
In vitro experimental determination of BBB permeation is expensive, time consuming and 
requires compound’s stability, purity and assay special conditions, while in vivo 
determinations based on radiolabeled compounds are required in some cases. [6] In 1988 the 
first theoretical model for a large number of H2 histamine receptor agonists predicting logBB 
values has been reported. [7] Ever since many attempts to correlate the experimental blood-
brain concentration ratio values with physico– chemical parameters have been reported. [8-
24] 
In this study the prediction of logBB values based on a larger dataset of compounds belonging 
to different structural classes collected from literature [12, 22, 23, 25-33] is reported. The aim 
is to build a comprehensive and general model for the blood brain barrier penetration of 
different organic compounds and drugs. 
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Methodology 
Dataset.  In our study we combined various literature data sets to collect a large-scale logBB 
dataset comprising 348 experimental logBB values. These dataset are available upon request 
from the authors and contains compounds that belong to different structural classes: 197 
compounds classified as permeable showing positive logBB values, ranging from 0 to 1.64, 
and 151 compounds classified as non-permeable displaying negative logBB value, ranging 
from -0.01 to -2.15. 
Descriptors. The following classes of descriptors were calculated with the help of Dragon 
software [34]: of 1D-functional groups, 1D-atom centered fragments, 2D-topological 
descriptors, 2D walk and path counts, 2D-autocorrelations, 2D-connectivity indices, 2D-
information indices, 2D-topological charge indices, 2D-Eigenvalue-based indices, 2D-
topological descriptors, 2D-edge adjacency indices, 2D-Burden eigenvalues, molecular 
properties, 2D-binary fingerprints and 2D-frequency fingerprints starting from the SMILES 
codes. Molecular descriptors were checked and constant or near-constant variables were 
excluded. If two descriptors register a correlation coefficient of 0.99 one of them was 
eliminated. The final set of descriptors used in PLS investigation included 903 molecular 
descriptors. The complete list of molecular descriptors and their meaning are provided on the 
Dragon website.[34] 
PLS method. PLS analysis is a linear modeling technique [35] aimed at finding the 
relationship between the independent variable X-matrix (Dragon descriptors) and response Y-
matrix (logBB). The information contained in the descriptor X-matrix is projected on a 
smaller number of latent variables called PLS components, denoted by A. The prediction of 
Y-values is carried out by extracting a set of 125 orthogonal components from the initial X-
matrix, which display the highest predictive power.  The number of A factors was determined 
using the cross-validation method leave seven out, with maximum number of iterations when 
fitting the model of 200, whereas the confidence level was set at 95%. The VIP reflects the 
influence of the variables in the PLS model concerning the property Y (i.e., its correlation to 
all responses), and independent variables X [36]. To evaluate the robustness of the PLS model 
obtained we used the response permutation method implemented in SIMCA package [36]. 
 
Robustness of the QSAR models. Golbraigh demonstrated that the Q2 is not adequate to 
assess the predictive ability of the QSAR model. [37] Therefore, Y-randomization test is a 
widely used technique to evaluate the robustness of a QSAR model. [38] It consists in 
building a number of QSAR models using the initial descriptor matrix and the randomized Y 
variable. The plot showing R2Y(CUM) (cumulative sum of squares of all the Y's explained by 
all extracted components) and Q2

(CUM) (cumulative fraction of the total variation of the Y's 
that can be predicted by all the extracted components) for all PLS-DA models (all the Y 
permuted models, and also the initial model) on the Y-axis and the correlation coefficients 
between randomized and original response variables on the X-axis was analyzed [37].If the 
Y-axis intercept of the regression line does not exceed 0.3–0.4 for R2Y(CUM), and 0.05 for 
Q2

(CUM), the model is considered free of chance correlation. [38] The selected PLS model was 
subjected to 999 Y-randomizations.  
 
LogBB prediction by QikProp. The QikProp software [39] developed by Professor William 
L. Jorgensen [40] fitted to 710 compounds including 500 drugs, one of the state of the art 
tools in predicting log(BB) was used as reference for our model. In addition to predicting the 
absorption, distribution, metabolism, and excretion (ADME) physically and pharmaceutically 
relevant properties of organic molecules or drugs, QikProp provides ranges for comparing a 
particular molecule properties.  
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Results and discussions 
 In order to correlate the experimental logBB values with structural descriptors, the 
PLS calculations were initiated for 903 descriptors and 348 log BB values [36]. From the 125 
principal components resulted, the first 10% of the components already explain 54% of the 
information content of the X-matrix. The first PLS model was constructed using the initial X 
matrix, was not satisfactory, therefore we proceed to the improvement of the statistics as 
follows: (1) the normal probability plot of Y standardized residuals - standard deviation 
higher than ±3 - was the criterion for gradually eliminating the outliers; (ii) the overfit was 
reduced by excluding the noise variables (variable coefficient values close to 0). Therefore, 
six compounds were identified as outliers as their standard deviations exceeded ±3SD (±3.04 
to ±4.31) and 416 noise variables were progressively eliminated. The statistical parameters of 
the final model are suitable for a large dataset of compounds. The cumulative sum of squares 
(SS) of all the X values explained by all extracted components R2X(CUM) = 0.559, the 
cumulative SS of all the Y’s explained by all extracted components R2Y(CUM) = 0.822, and the 
fraction of the total variation of Y values that can be predicted for all extracted principal 
components Q2Y(CUM) = 0.640. The variables which influence markedly our PLS model (VIP > 
1.6) include several straightforward descriptors such as polar surface area (PSA - N,O and 
N,O,S,P polar contributions), octanol-water partition coefficient (Ghose-Crippen and 
Moriguchi), hydrophilic factor, complementary information content index and the number of 
H-bond donor atoms. This is in accord with well accepted parameters such as lipophilicity, 
hydrogen bonding capacity, molecular charge, molecular size, molecular shape, and 
molecular flexibility which was correlated with log BB. [5] Complementary information 
content index is an topological index which is calculated based on Shanon information theory 
[41]  Generally speaking, the molecular topology is correlated with a large number of 
molecular and biological properties. In particular, the topological indices of zero order are of 
special importance for the suitable description of molar volume of organic compounds which 
in turn is correlated with logBB [42]. Higher polarity and hydrogen bonding are detrimental 
for blood-brain penetration, whereas higher molecular volume was positively correlated. [5] 
PSA is highly correlated with the hydrogen bonding capacity of a compound. [5] Norinder 
and Haeberlein [43] observed a linear correlation between PSA and the sum of N + O atoms, 
and concluded that (N + O) ≤ 5 is favorable for blood brain penetration. Clark, [44] stated that 
logP is favorable to get positive values of log BB. 
 The predictive capacity or validity of a QSAR model is a measure of how accurately 
the model can predict the biological activity of the set of compounds. The final model was 
internally validated using, the Y-permutation procedure using 999 randomizations to cover 
the complete dataset, each time forming a distinct set. The scrambled models were 
constructed with the same number of latent variables as the final model. The plot displayed in 
Figure 1 demonstrates that the Y-intercept (logBB-intercept) of the R2X(CUM) and Q2

(CUM) lines 
has lower values and indicates no chance correlation for the selected model.  
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Figure1. Y - Randomization results for the final PLS model. The x-axis reports the 
correlation coefficient between original and permuted response data, while on the y-axis are 
represented R2 (black triangles) and Q2 (grey squares) values for the 999 randomized models 

 
 

Several descriptors displaying higher VIP (Variables Importance in the Projection) 
values might play a critical role in defining BBB permeability of organic compounds. The top 
ten descriptors according toVIP magnitudes included in the PLS model are shown in Table 1. 

 
Table 1. The most relevant descriptors of the PLS model 

Var ID VIP 
VIPcvS
E 

CoeffC
S 

CoeffCScvS
E Descriptor significance 

ALOGP 
2.01
4 0.028 0.035 0.009 Ghose-Crippen octanol-water partition coeff. (logP) 

MLOGP 
1.92
6 0.035 0.032 0.010 Moriguchi octanol-water partition coeff. (logP) 

BLTD48 
1.92
6 0.035 -0.032 0.009 Verhaar Daphnia base-line toxicity from MLOGP (mmol/l) 

TPSA(NO
) 

1.82
3 0.021 -0.031 0.007 Topological polar surface area using N,O polar contributions 

MLOGP2 
1.81
3 0.029 0.029 0.016 Squared Moriguchi octanol-water partition coeff. 

TPSA(Tot) 
1.75
9 0.015 -0.031 0.008 

Topological polar surface area using N,O,S,P polar 
contributions 

Hy 
1.72
9 0.049 -0.030 0.022 Hydrophilic factor 

ALOGP2 
1.72
2 0.025 0.024 0.009 Squared Ghose-Crippen octanol-water partition coeff.  

CIC1 
1.63
6 0.027 0.017 0.011 

Complementary Information Content index 
 (neighborhood symmetry of  first order) 

nHDon 
1.62
9 0.040 -0.033 0.022 Number of donor atoms for H-bonds (N and O) 

*VIP =  The influence of every term in the matrix X on all the Y's;  VIPcvSE = The jack knife standard error of 
the VIP computed by seven rounds of cross validation; CoeffCS = PLS regression coefficients corresponding to 

centered and scaled X, and scaled (but uncentered) Y; CoeffCScvSE = The jack knife standard error of the 
coefficients CoeffCS computed by seven rounds of cross validation. 

 
For the same dataset of compounds QplogBB (Predicted brain/blood partition coefficient) was 
calculated with QikProp module from Schrödinger suite. The logBB predicted by our model 
register lower differences with respect to experimental values than QikProp calculations (see 
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Figure 2). The highest number of compounds displaying low differences to experimental 
values (0.05-0.3) is predicted by our PLS model, whereas QikProp predictions exhibit higher 
differences against experiment. 

 

 
Figure 2. The number of compounds versus logBBexp-logBBpred; black bars render the PLS 

model and grey bars depict the QikProp prediction. 
 

These results can be explained by the fact that the domain of applicability of the 
regression equation used by QikProp, is based on N=104 compounds of the molecular weight 
between 20-525 Da, while the molecular weight for our dataset of N=348 compounds ranges 
16-1202 Da. 
Conclusions 

We have applied a PLS approach to a dataset of 348 compounds with known 
experimental logBB values, which belong to different structural classes. Some straightforward 
descriptors such as topological polar surface area, octanol-water partition coefficient and the 
number of H-bond donor atoms influence the developed PLS model, showing VIP values 
higher than 1.6. The final PLS model built on a large dataset excluded the risk of arbitrary 
correlation. Further QSAR experiments using diverse modeling methodologies including 3D 
descriptors and additional compounds will be pursued. 
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