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ABSTRACT 
In the present paper, we have carried out quantitative structure-fungicidal activity 
relationships analysis on a novel series of Mannich bases with trifluoromethyl-1,2,4-triazole 
and substituted benzylpiperazine moieties reported to have improved fungicidal activity 
against Fusarium oxysporum f.sp. cucumerinum. The chemical structures were energy 
minimized based on semiempirical quantum chemical method RM1. The molecular 
descriptors were calculated using the DRAGON, InstantJchem and ChemProp software. 
Several  models  for  the  prediction  of  fungicidal activity  have  been  drawn  up  by  using  
the  multiple  regression  technique (MLR). The genetic algorithm approach was employed for 
variable selection method to search for the best ranking models. The predictive ability of the 
MLR models was validated using an external test set of 5 out of 18 molecules. The best MLR 
model was chosen by observing acceptable r2, 2

adjr  and 2
LOOq  values, low residual errors and 

high Multi-Criteria Decision Making (MCDM) scores. The MLR equation suggests the 
positive impact of GETAWAY and edge adjacency matrix descriptors on the fungicidal 
activity. The high acidic character of the molecule increase the fungicidal activity. 
 
INTRODUCTION 
Triazoles are often used in pharmacology, medicine and agriculture, having a broad spectrum 
of biological activities such as antimicrobial, cytotoxic, antihistaminic, anticonvulsant, 
analgesic, anti-inflammatory, insecticidal, antimycotic, antimycobacterial, anticancer, 
antiprotozoal, antimalarial and anti-ulcer activity [1]. 
Molecules containing thiazole ring systems are important because of their low toxicity and 
excellent biological activity [2].  
Triazoles undergo different types of reactions to yield other heterocyclic compounds, e.g., 
mannich bases, thioureas, thioethers, schiff bases, triazolothiadiazoles, triazolothiazines, 
triazolothiazepines and triazolothiadiazines. They are not only transition compounds but they 
are also very effective organic compounds [3].  
Triazole compounds have shown a great efficacy against antifungal infections. The 
mechanism of inhibition of fungal growth is well established. Thus, the azoles antifungal 
action is performed in two steps: (i) inhibition of ergosterol synthesis, a major component of 
fungal membrane and (ii) the blocking of P450-dependent enzyme i.e., lanodterol 14-α- 
demethylase (CYP 51) [4]. Triazole fungicides are widely used broad-spectrum fungicides 
that inhibit the sterol 14-α-demethylase, an enzyme involved in the biosynthesis of ergosterol 
[5]. 
A series of novel 18 trifluoromethyl-substituted 1,2,4-triazole Mannich bases containing 
substituted benzylpiperazine ring have been synthesized and investigated for their herbicidal, 
fungicidal and plant growth regulators activity [6] (Table 1).  
The current paper presents a quantitative structure-activity relationships study for this series 
of 1-[(4-substituted-benzylpiperazin-1-yl)methyl]-4-(substituted)benzylideneamino-3-
trifluoromethyl-1H-1,2,4-triazole-5(4H)-thiones using multiple linear regression (MLR). 
These compounds were optimized using the RM1 semiempirical molecular orbital method 
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[7]. Descriptors calculated for the RM1 geometries were related to the mycelial growth 
inhibition activity against the Fusarium oxysporum f. sp. cucumerinum fungi test [6]. 
 
Table 1. The chemical structure of trifluoromethyl-substituted 1,2,4-triazole Mannich bases 
and their Fusarium oxysporum f. sp. Cucumerinum experimental relative inhibition rates 
(RIR)* 
 

No Structure RIR HATS8u 
R2u 

 
EEig11r 

 

Strongest 
basic pKa 

 

∆Hf 
kcal/mol 

1 

 

0.101 0.402 2.004 2 7.74 -3.69 

2 

 

0.804 0.271 2.103 2.167 7.74 -47.91 

3 

 

0.187 0.426 1.972 2 7.74 -81.18 

4 

 

0 0.428 1.966 2.167 7.74 -86.31 

5 

 

0 0.398 2.032 2.167 7.74 -73.76 

6 

 

0.402 0.383 2.015 2.332 7.74 -40.62 

7 

 

0.509 0.341 2.082 2.167 6.76 -36.52 

8 

 

0.719 0.271 2.129 2.333 6.76 -16.05 

9 

 

0.604 0.405 1.995 2.167 6.76 -49.72 

10 

 

0.401 0.357 2.061 2 6.76 -83.93 

11 

 

0.303 0.398 2.03 2.167 6.76 -17.43 

12 

 

0.502 0.401 2.009 2.332 6.76 -11.65 
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13 

 

0.708 0.355 2.109 2 6.01 -19.18 

14 

 

0.826 0.286 2.116 2.167 6.01 -64.77 

15 

 

0.504 0.388 2.014 2 6.01 -58.49 

16 

 

0.705 0.416 2.041 2.167 6.01 -93.71 

17 

 

0.607 0.389 2.043 2 6.01 -45.43 

18 

 

0.608 0.386 2.034 2.167 6.01 -48.14 

* HATS8u represents everage-weighted autocorrelation of lag 8 / unweighted (GETAWAY 
descriptor); R2u - R autocorrelation of lag 2 / unweighted (GETAWAY descriptor); EEig11r - 
eigenvalue 11 from edge adj. matrix weighted by resonance integrals (Edge adjacency index); 
heat of formation (∆Hf) of the energy optimized structure. 
 
MATERIALS and METHODS 
Definition of target property and molecular structures 
 
A series of 18 trifluoromethyl-substituted 1,2,4-triazole Mannich bases containing substituted 
benzylpiperazine ring (Table 1) was used, having the fungicidal Fusarium oxysporum f. sp. 
Cucumerinum relative inhibition rate (RIR, expressed in %) as dependent variable.  
All geometries of the title fungicides were minimized with the semiempirical RM1 quantum 
chemical approach [7] using the semiempirical NDDO module of Schrödinger software 
(Schrödinger, LLC, New York, NY, 2015). The following quantum chemical descriptors were 
derived for the RM1 geometries: electronegativity, hardness, chemical potential, 
electrophilicity, HOMO and LUMO molecular orbital energies, heat of formation, dipole 
moment, molecular surface area, softness, maximum average local ionization energy on the 
molecular surface, minimum average local ionization energy on the molecular surface, mean 
average local ionization energy on the molecular surface, maximum electrostatic potential on 
the molecular surface, minimum electrostatic potential on the molecular, mean electrostatic 
potential on the molecular surface, electrophilic superdelocalizability, nucleophilic 
superdelocalizability, radical superdelocalizability, atom self polarizability. The outlines of 
the calculated quantum chemical parameters provide additional information about the activity 
of the studied compounds. 
Structural 0D, 1D, 2D and 3D descriptors were calculated for the lowest energy compounds 
using the DRAGON (Dragon Professional 5.5 (2007), Talete S.R.L., Milano, Italy), 
InstantJchem (which was used for structure database management, search and prediction) 
(InstantJchem 15.7.27, 2015, ChemAxon (http://www.chemaxon.com) and ChemProp (UFZ 
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Department of Ecological Chemistry 2014. ChemProp 6.2, 
http://www.ufz.de/index.php?en=6738) software. 
The variables were normalized using the following equation (1): 

m

mmj
mj S

XX
XT

−
=         (1) 

where for each variable m, XTmj and Xmj are the values j for the variable m after and before 

scaling respectively, mX is the mean and Sm the standard deviation of the variable. 
Structural descriptors were correlated with the fungicide relative inhibition rate by multiple 
linear regression (MLR). MLR calculations were combined with a genetic algorithm for 
variable selection included in the QSARINS v.2.2 program [8]. The RQK fitness function, 
with leave-one-out cross-validation correlation coefficient was used as constrained function to 
be optimized. The dataset was divided into training set and a randomly selected (30% of the 
total number of compounds) test set. Compounds 7, 9, 10, 13, 18 (Table 1) were included in 
the test set. Validation is a crucial aspect of any quantitative structure–activity relationship 
(QSAR) analysis [9, 10]. In this light, the developed MLR models were validated using 
internal and external validation. 
 
Model validation  
All the statistical tests were performed at a significance level of 5 %. In MLR models, outliers 
were detected by a value of residual greater than 2.5 times, the value of standard error in 
calculation.  
For internal validation results several measures of robustness were employed: leave-one-out 
cross-validation (Q2LOO), Y-scrambling and Q2LMO leave-more-out (LMO) cross-validation 
(carried out for 30% of data out of training, each run).  
Y-scrambling testing was repeated 2000 times. It is used for checking the robustness of a 
QSAR model and the statistical significance of the estimated predicted power. Satisfactory 
leave-one-out cross-validation

 

values are stable and predictive if validated by the leave-more-
out (LMO) procedure. 
The data over fitting and model applicability was controlled by comparing the root-mean-
square errors of training (RMSEtr) and validation (RMSEext) sets. To test the predictive power 
of the model, several parameters were calculated: 2

1FQ  [11], 2
2FQ [12], 2

3FQ [13], RMSEext,  

MAEext (mean absolute error for test set) and the predictive r2 ( 2
predr ) test [14]. It is considered 

that for a predictive QSAR model, the value of 2
predr  should be higher than 0.5. 

The Multi-Criteria Decision Making (MCDM) [15] is a technique that summarizes the 
performances of a certain number of criteria simultaneously, as a single number (score) 
between 0 and 1. A desirability function, takes values ranging from 0 to 1 (where 0 represents 
the worst validation criteria value and 1 the best) and is associated to every validation criteria. 
The geometric average of all the values obtained from the desirability functions gives the 
MCDM value. The ‚MCDM all’ scores were calculated using all the criteria: fitting, cross-
validated and external and were used to choose the best MLR models. 
 
 
 
RESULTS AND DISCUSSION 
A training set of 12 compounds and five test compounds (no.: 7, 9, 10, 13, 18) were used to 
build the models and to measure their performances. Compound 2 was found as outlier and 
was excluded from the final MLR models. Starting from all calculated descriptors several one 
and two descriptor models were generated (Table 2). Structural parameters derived from the 
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InstantJChem, Dragon and ChemProp programs and quantum chemical descriptors obtained 
from the RM1 geometries were employed in the MLR calculations. Variable selection was 
carried out by the genetic algorithm, using the leave-one-out fit criterion as constrained 
function to be optimized. Several fitting and predictability criteria were employed for model 
validation (see Tables 2 and 3). Satisfactory MLR models were obtained. Good fitting results 
were obtained for all MLR models. The predictive ability of models 3 and 4 is acceptable 
(except the 2

2FQ value), the “MCDM all” scores indicating as satisfactory models 3 and 4, too. 
 
Table 2. Internal validation parameters of the MLR models (training set) 
 

Model 

Variables 

2
trainingr  2

adjr  2
LOOq  RMSEtr MAEtr 2

scrr  2
scrq  2

LMOq  MCDM 
all 

F 

1 Strongest 
basic 
pKa  
HATS8u   

0.839 0.803 0.735 0.110 0.095 0.188 -0.494 0.699 0 
 

23.38 

2 Strongest 
basic 
pKa  R2u   

0.823 0.783 0.715 0.116 0.095 0.180 -0.499 0.667 0 
 

20.86 

3 Strongest 
basic 
pKa  
EEig11r   

0.818 0.777 0.683 0.117 0.105 0.183 -0.468 0.636 0.610 
 

20.16 

4 Strongest 
basic 
pKa   

0.705 0.675 0.583 0.149 0.127 0.092 -0.312 0.572 0.663 
 

23.87 

* 2
trainingr -correlation coefficient; 2

adjr -adjusted correlation coefficient;2LOOq - leave-one-out cross-validation 

correlation coefficient; RMSEtr-root-mean-square errors; MAEtr-mean absolute error; 2
scrr - correlation 

coefficient of the randomized responses; 2
scrq - cross-validation correlation coefficient of the randomized 

responses; 2
LMOq -leave-more-out cross-validation correlation coefficient; MCDM all-Multi-Criteria Decision 

Making scores using all the fitting, cross-validated and external criteria; F-Fischer test. 
 
Table 3. External validation parameters of the MLR models (test set) 

Model 2
1FQ  2

2FQ  2
3FQ  RMSEext MAEext 2

predr  

1 0.699 -0.030 0.853 0.105 0.074 0.699 

2 0.537 -0.583 0.774 0.131 0.102 0.537 

3 0.731 0.081 0.869 0.100 0.092 0.731 

4 0.811 0.352 0.908 0.084 0.072 0.810 

* 2
1FQ , 

2
2FQ , 

2
3FQ -external validation parameters; RMSEext-root-mean-square errors; MAEext-

mean absolute error; 2predr -predictive r2 

 

 The best MLR model was chosen by observing the acceptable2
trainingr , 2

adjr , 2
LOOq and 

2
predr , values, high ‘MCDM all’ scores and low residual errors. Based on these criteria, the best 

MLR model could be considered equation 3 (Table 2): 
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636.0q0.683q 0.777r 0.135SEE818.0r5N12N

1r0.10)EEig10.2445(pKabasicgest0.09)Stron0.553(-0.07)0.583(RIR
2
LMO

2
LOO

2
adj

2
trainingtesttraining =======

±+±±=
           

 
where: SEE represents the standard error of estimates, F – the Fischer test 
The differences between 2trainingr and 2

adjr of 0.0406, between 2
trainingr and 2

LOOq  of 0.1345, and 

between 2
LOOq and 2

LMOq of 0.0474, indicate that model 3 is robust and has low over fitting 

effects. The low differences between the root-mean-square errors and between the mean 
absolute errors of the training and validation sets point to good fitting results and a robust 
model (RMSEtr–RMSEext = 0.017; MAEtr–MAEext = 0.013). 
In order to check the reliability of the proposed equation, the observed versus predicted 
activities RIR values according to the QSAR equation using molecular descriptors, the 
Williams and the Y-scramble plots predicted by the MLR 3 model are outlined in Figures 1, 2 
and 3, respectively.  
 

 
 

Fig. 1. Experimental versus predicted RIR values for the MLR3 model (Table 2). 
 
Generally, the Williams plot is used to identify compounds with the greatest structural 
influence (hi > h*; hi =leverage of a given chemical; h*= the warning leverage) in developing 
the model.  The Williams plot for the training set presented in Figure 2, establishes 
applicability domain of the model within ±2.5σ and a leverage threshold h* = 0.750. It is 
obvious from Figure 2 that all the compounds in the dataset are within the applicability 
domain of the model. 
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Fig. 2. Williams plot predicted by the MLR3 model (Table 2). 
 

Y-scramble test was verified if the developed QSAR model is robust and not derived due to 
chance. The models are expected to have significant low scrambled r2 ( 2

scrr ) and cross-

validated q2 ( 2
scrq ) values for several trials, which confirm the robustness of the developed 

models. From Figure 3 one can observe that in case of all the randomized models, the values 
of 2

scrr  and 2
scrq  were < 0.5. The low calculated 2

scrr  and 2
scrq values (Table 2, Figure 3) indicate 

no chance correlation for the chosen model. 
 

 
 

Fig. 3. Y-scramble plots for the MLR 3 model. 
 
 The predictive ability of the MLR models 3 and 4 is acceptable, according to the 2

1FQ ,  
2

3FQ  and 2
predr  values, model 4 having lower fitting results compared to model 3. 
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CONCLUSIONS 
In this study we developed MLR models for a series of trifluoromethyl-1,2,4-triazole 
derivatives with fungicide activity against Fusarium oxysporum f.sp. cucumerinum. Cross-
validation (LOO and LMO), ‘MCDM all’ scores, y-scrambling test and applicability domain 
analysis validate the internal and external predictabilities of the models developed using the 
training and test sets. The y-randomization test outcomes ensure that the developed MLR 
model is robust and not derived merely due to chance. Moreover, the applicability domain 
evaluation confirms that the developed model is reliable to make predictions, which were 
checked by several external validation criteria. 
The chosen regression equation 3 indicates that low values of the ‘strongest basic pKa’ 
descriptor (more acidic fungicides) and high values of the EEIG11r descriptor increase the 
RIR values, respectively the fungicide activity. 
We conclude that GETAWAY and edge adjacency matrix descriptors provide the highest 
contribution to the fungicidal activity for the data set studied herein, the acidic ability 
influencing the fungicide inhibition rate. 
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