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Abstract 

We report herein an attempt to generate QSAR models for a large number of structurally diverse 

compounds (1078 compounds) whose affinities for cyclooxygenase-1 (COX-1) and 

cyclooxygenase-2 (COX-2) were experimentally determined. Initially, individual QSAR models 

for COX-1 (M1) and COX-2 (M2) for biological activity were developed. A selectivity QSAR 

model, M3 was then developed using as dependent variable Y the differences in pIC50 values 

between COX-1 and COX-2. The statistical results for all three models showed a satisfactory to 

good statistical parameters where the values for squared correlation coefficient (coefficient of 

determination) for the training set are: M1: 0.872, M2: 0.797 respectively M3: 0.739. The 

predicted values of affinity in the case of all three models selected M1, M2 and respectively M3, 

are very good 84.88%, 91.12%, 79.59% which lead to very small diffrences between observed 

and predicted biological activity/selectivity (less than 0.5 logarithimic units). 
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Introduction 

Prostaglandin synthesis is promoted by the cyclooxygenase (COX), which during the '90 it was 

discovered  that this enzyme exist in two isoforms: COX-1 which is responsible for protection of  

kidney and maintenance of gastric mucosal integrity function whereas COX-2 is implicated in the 

pathophysiological reactions including inflammation and pain[1]. Nonsteroidal anti-inflammatory 

drugs (NSAIDs) are the most frequently used drugs to treat pain, inflammation and cancers [2]. 

Cyclooxygenase inhibitors have been divided over time in (1) nonselective inhibitors, which 

shows a similar affinity for both COX-1 and COX-2, i.e. aspirin which block irreversibly the 

enzyme by acetylation of Ser530, (2) nonselective acting as competitive with arachidonic acid, 

i.e. diclofenac, indomethacin, ketoprofen, naproxen, ibuprofen, phenylbutazone, and 

meclofenamate [3], (3) nonselective, which inhibit preferentially COX-2, i.e. etodolac, 

meloxicam, nabumetone and nimesulide. Side effects resulting from the use of these inhibitors in 

the treatment of various diseases can lead to severe complications and increased costs of their 

relief [3]. In last years, it was demonstrated that COX-1 isoform, but not COX-2, is over-

expressed in diverse human pathologies (ovarian, skin and colon cancer as well as in other cancer 

types) [4]. Thus, finding new drugs that are selective COX-2 and not inhibit COX-1 is a widely 

investigated topic which attracts a great interest nowadays. The present work reports the attempt 

to address the phenomenon of selectivity of COX-2 inhibitors by generating robust and predictive 

QSAR models for a large set of compounds in order to reliably predict novel selective COX-2 

inhibitors. 
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Material and Methods 

Dataset selection and preparation 

A number of 5900 inhibitors of cyclooxygenase-2 (COX-2; Assay ID: CHEMBL230) and 3763 

inhibitors of cyclooxygenase-1 (COX-1; Assay ID: CHEMBL221) were downloaded from 

ChEMBL database [5]. 1145 Compounds were selected which have experimental activities for 

both enzymes COX-1 and COX-2. All these molecules were filtered using BlockBuster software 

available in FILTER module [6-13] from OpenEye package. Totally, 1078 compounds passed the 

filter criteria (HBA=0÷13, HBD=0÷9, MW=130÷781, RBN=0÷16, XLogP=-3.0÷6.85, 

2dPSA=0÷205) and were used further in the QSAR analysis. The experimental activity for both 

protein is expressed in IC50 (nM) and for QSAR modeling it was transformed into negative 

logarithm of inhibitory concentrations, pIC50, and used later as a dependent variable. In order to 

obtain a selectivity QSAR model the Y values were obtained by taking the differences between 

pIC50 measured against COX-2 and COX-1. The LigPrep module [14] and ConfGen [15] from 

Schrödinger package [16] were used to generate the tautomers and ionization states in the pH 

range of 7.2±0.2, and conformational sampling. 

 

QSAR models generation 
QSAR modeling was performed with AutoQSAR module from Schrödinger package [15]. The 

QSAR models are constructed using different machine learning algorithms and multiple 

automatically generated random training and test sets. As function of the quality of QSAR 

models on the training and test sets, a score rank have been implemented. The predicitivity 

performance of AutoQSAR generated models is close or better than previously published results 

but show the advantage of reduced time, costs and expertise. 

For each individual QSAR model generated (M1 for COX1, M2 for COX2, and M3 for 

selectivity, modeling the difference between pIC50COX-2– pIC50COX-1, as dependent variable) 

multiple QSAR models were generated using different methods. These models are ranked based 

on high values of the statistics parameters fortraining and test set and the best ten models are 

listed.  

 

Results and discussion 

Linear regression models were built using 809 (75%) compounds in training set and 269 

compounds in test set (25%). The independent variable matrix X contain binary fingerprints 

descriptors (radial, linear, dendritic, molprint2D) and canvasMolDescriptors, whereas the Y 

matrix contained experimental values for COX-2 affinity for the model M1, experimental 

affinities for COX-1 in the case of model M2 and the selectivity values for COX2 for M3 model. 

For each case ten models were generate and the best one was selected (see Table1 and Figures1, 

2, 3).  

  

Table1. Statistical results for the best linear QSAR models 
 M1 M2 M3 

# * 5 5 5 

R
2
 0.872 0.797 0.739 

SD 0.461 0.464 0.689 

Q
2
 0.675 0.738 0.729 

RMSE 0.705 0.685 0.841 

* #  = The number of PLS factors used in the partial least squares regression model; R
2
 = R-squared value for 

the coefficient of determination for the training set; SD = Standard deviation of the model; Q
2 
= the squared value of 

the regression coefficient for the test set;RMSE = Root-mean-square error for the test set predictions. 
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Figure 1.Plot of experimental versus predicted pIC50 values for model M1 (black squares – 

training setcompounds, white triangles – test compounds) 

 

 
Figure 2. Plot of experimental versus predicted pIC50 values for model M2 (black squares – 

training compounds, white triangles – test compounds) 

. 

 
Figure 3.Plot of experimental versus predicted pIC50 values for model M3 (black squares – 

training compounds, white triangles – test compounds) 
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The best statistical results were obtained for the PLS model M1 while the best predictive power 

we observed in the case of the PLS models M2 and M3 models. The predicted values of 

affinity/selectivity of all QSAR models are very good: 84.88%, 91.12%, and 79.59% of inhibitors 

of the M1, M2 and respectively M3 models are predicted very well with a diffrence smaller than 

0.5 logarithimic units between observed and predicted biologiocal activity/selectivity.  

 

Conclusions 

A set of structurally diverse 1078 compounds downloaded from ChEMBL have been engaged to 

develop quantitative structure - activity, respectively selectivity QSAR models to correlate the 

structural features with the affinity/selectivity against COX-2 enzyme. The statistical 

performances of the QSAR models are reasonably satisfactory. The correlation coefficient (R
2
) is 

higher than 0.800 for model M1 and higher than 0.700 for models M2 and M3.  
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