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Abstract 

 

A SnO2 epitaxial thin film with thicknes of 25 nm is grown by the PLD technique on a 

(111) orientated SrTiO3 (STO) substrate. The effects of epitaxial growth on the lattice 

structure, microstructure and optical properties of oxide thin film has been studied. The film is 

out-of-plane epitaxial oriented to the substrate. The XRD difractograms show only tin dioxide 

peaks which can be assigned to the (002) and (004) reflexes of the tin dioxide phase. The 

thickness of the film is calculated from the distance of X-ray reflectivity oscillations. The 

observation of clear thickness fringes is an indication for a low surface roughness of the film. 

Atomic force microscopy (AFM) was also used to investigate the surface of the films. AFM 

images reveal a film surface that shows a flat film surface. Variable angle spectroscopic 

ellipsometry (VASE) has been used to determine the optical properties of the SnO2 film. 

 

Introduction 

 

The aim of the present project is to extend the knowledge acquired to date to study the 

main parameters for obtaining epitaxial films by various methods, determine optimum 

conditions necessary and analyze the phenomena involved during deposition, so that the 

structural and optical properties of the films they have finally qualify for applications in the 

energy and environmental industries. 

In the literature, metal oxides such as SnO2 are of major interest in solar and 

environmental applications, and it is necessary to deepen the studies in this field. 

Tin oxide in its pure form is an n-type semiconductor [Chowdhury, 2011]. Its results in 

terms of electrical conductivity are due to the existence of punctual defects (native and foreign 

atoms) acting as donors or acceptors. Some unique properties make this material extremely 

useful for many applications. Thus, increased attention is paid to studies on tin oxide, 

particularly with regard to the preparation methods, its electrical and optical properties. 

 

Experimental 

 

The tin dioxide thin film was deposited on commercial (111) oriented SrTiO3 (STO) 

substrate using the pulsed laser deposition (PLD) technique. The substrate was ultrasonically 

washed using acetone and methanol before deposition The PLD technique includes a relatively 

simple concept of ablation using laser pulses on the target material. With each pulse, an 

amount of material is removed and transported in the direction of the substrate via the plasma. 

Stoichiometric transfer of the target material to the substrate, mass propagation time 

comparable to crystallization and growth processes, atomic scale growth control of the film, 
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allow the formation of well-defined, layered structures. One of the most fascinating features of 

PLD, is a nearly stoichiometric transfer from the SnO2 target through the ablation process 

[Díaz, 2012]. During the laser ablation process, photons penetrate into the surface layers of the 

target material in accordance with the optical absorption depth and, first, by removing some of 

the atoms' valence electrons (in the PS duration). These surface-valent electrons oscillate in 

the electromagnetic field of the laser and collide with atoms and ions by neighbors, 

transferring some of their energy to the crystal lattice. Once the particles have reached the 

surface of the substrate, diffusion occurs until the atoms reach low energy levels. Since each 

pulse emits less than one layer of deposited material, sequential ablation from multiple lenses 

can be used to increase the material. PLD is considered to be one of the most widely used 

flexible research techniques for filming large-scale films. A KrF excimer laser (248 nm 

wavelength and 23 ns pulse width, Lambda Physics) was used for ablating the tin dioxide 

target with an energy density of about 2 J/cm
2
 and a repetition rate of 3 Hz. The films were 

deposited at a substrate temperature of 700 °C using an oxygen pressure of 50mTorr. After 

growth the films were annealed for 20 min and cooled down to room temperature at an oxygen 

pressure of about 0.5 atm O2. Film quality and structural properties were investigated by X-ray 

diffraction (XRD) using a high resolution thin film diffractometer. Different measurements 

were made: (1). Reflection in order to estimate the thickness of the films, (2) Normal Bragg-

Brentano geometry to obtain information about the phase and structural order of the films. 

Before every XRD analysis, the sample alignment was performed on STO (111) peaks of the 

substrate in order to avoid the peak shift due to the sample misalignment. Atomic force 

microscopy (AFM) has been employed to investigate the surface of the films. A DI Nanoscope 

III AFM in tapping mode was used for this purpose. In order to study the optical properties of 

thin films the ellipsometry technique will be employed. Ellipsometry is a non-destructive 

optical technique used in this paper for optical characterization of thin film, in which the 

sample to be characterized is illuminated with a beam of polarized light.  

 

Results and discussion 

 

1. XRD results of the SnO2 film 

The SnO2 film was grown by on-axis pulsed laser deposition from the SnO2 target on 

STO (111).  In figure 1a) the reflectivity curve of the film grown on STO (111) substrate is 

shown. The thickness of the films is calculated from the distance of the oscillations. The 

observation of clear thickness fringes is an indication for a good surface roughness of the 

films. We calculate the thickness to be 25 nm. 
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Figure 1. The reflectivity curve of the film grown on STO (111) substrate. 

 

Laue oscillations remain observable for SnO2 thin film which indicate that the structural 

quality of the film is not deteriorated. 

Wide angle θ-2θ XRD scans of the film grown on STO (111) has been recorded to 

investigate the phase-purity and epitaxial nature of the films and are plotted in figure 2a). The 

scans show only (111) substrate peaks and peaks that can be assigned to the (00l) reflexes of 

SnO2. The films are out-of-plane epitaxial oriented to the substrate. There are no peaks 

corresponding to other phases or impurities of films. 

20 40 60 80

10

100

1000

10000

100000

1000000

1E7

SnO2 (004)

 SnO
2
/SrTiO

3
(111)

In
te

n
si

ty

2 theta (degree)

SnO2 (002)

STO (111)

 
Figure 2.a) X-ray diffraction patterns (Bragg-Brentano θ-2θ) of the 25 nm film grown on STO 

(111). 

Figure 2.b) shows X-ray diffraction (XRD) ω-2θ Bragg scans along the 002 reflection of the 

as-grown film. We determined the out of plane lattice parameter to be 4.716 Å, which is close 

to that of bulk SnO2 (c = 4.73 Å) 
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Figure 2. X-ray diffraction (XRD) ω-2θ Bragg scan around the 002 reflections of the SnO2 

film and the STO (111) substrate. 

 

2. Topography of the SnO2 film 

Atomic force microscopy (AFM) was used to investigate the surface of the films. AFM 

images reveal a film surface that shows a flat film surface and with no visual droplets of 

defects.  

 
Figure 3. Surface morphology images of 25 nm films of SnO2 deposited on STO (111). 

 

3. Optical properties of the film  

Ellipsometry measures the change in polarization state of the measurement beam 

induced by reflection from (or transmission through) the sample. The change in polarization 

state is commonly characterized by the ellipsometric Psi (Ψ) and Delta (Δ) parameters. In 

Spectroscopic Ellipsometry (SE), Ψ and Δ values are acquired as a function of wavelength. 

However, to extract sample parameters such as film thickness and optical constants from the 

measured SE data set, an optical model must be built to fit the data. The CompleteEASE 

software provides a graphical user interface for building models and displaying measured data 

and model fits. It also provides a simple interface to the SE hardware, making acquisition of 

accurate SE data fast and easy.  

The optical constants of the STO substrate have been determined by a VASE 

measurement on the bare substrate and have been fixed in the two-layer model system. The 

SnO2 layer was fitted by a Kramers-Kronig consistent B-spline model. In figure 4a) we show 

the Tauc-plot of the optical absorption spectrum for 25 nm thin film. This plot allows for the 

determination of direct optical band gap by extrapolating the linear parts of the curves to zero. 
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The inset presents ellipsometric Ψ parameter function of wavelength recorded for 3 different 

angles (65, 70 and 75 degree) together with the fitting calculated curves. The band gap energy 

of the 25 nm thin SnO2 film deposited by on-axis pulsed laser on STO (111) substrate is 4.18 

eV. 

 It is observed that the band gap energy can be tunable to be bigger than the values 

observed by other researchers [Mishra, 2009] 

 
Figure 4.a) Tauc-plot of the optical absorption spectrum for 25 nm thin SnO2 film. In the inset 

ellipsometric Psi (Ψ) and Delta (Δ) parameters function of wavelength were recorded for 3 

different angles.  

 

The refractive index (n) and extinction coefficient (k) for the 25 nm SnO2 film calculated with 

Complete EASE software are presented in figure 4b). The inset presents the average values for 

n and k parameters of the film. 

 
Figure 4. b) Optical constants (n, k) of 25 nm SnO2 film. The results are in accordance with 
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the findings of Baco et al. [Baco, 2012] 

 

Conclusion 

Epitaxial films of SnO2 have been grown by on-axis pulsed laser deposition from the 

SnO2 target on (111) oriented crystalline SrTiO3 substrate with a band gap energy of 4.18 eV. 

The results demonstrate that epitaxial strain can be deployed to change optical properties of 

oxide films. This could potentially be used to produce films with properties designed for 

specific application.  
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