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Abstract 

Uranium-containing samples are in the focus of analytical research for various reasons, for 

example with regards to nuclear safeguarding, quality management or nuclear forensic 

science. In our present contribution, we overview the challenges related to the analysis of 

contaminants in uranium-containing samples and the potential solution for overcoming them. 

 

Introduction 

Radioactive materials are very useful, since nuclear power plants provide electrical energy for 

hundreds of millions people, and they are also extensively applied for diagnostic and therapic 

purposes in medicine. Nevertheless, radioactive materials can mean serious threat too. The 

radiation emitted by these materials may initiate apoptosis and can severe the DNA, causing 

tissue deformations. In the current state of the international situation, the great destructive 

power of nuclear materials should also not be overlooked. Consequently, the regulation and 

qualification of radioactive materials is an important task. Uranium is one of the most 

commonly used fuel in nuclear reactors and bombs, thus its properties – including chemical 

purity - are tested very often. 

Laser-induced breakdown spectroscopy (LIBS) is a modern, versatile trace analytical atomic 

spectroscopic technique, which is becoming increasingly popular in recent years for both 

quantitative and qualitative purposes. The light from a pulsed laser is focused onto the surface 

of a solid sample, where it ignites a microplasma. The analytical information can be retrieved 

from the optical emission of this microplasma. The use of this method usually require minimal 

or even no sample preparation and very little sample amount, furthermore the measurements 

can also be accomplished in a stand-off fashion, right in the field. All these characteristics 

make LIBS an ideal candidate for contaminants analysis in uranium-containing materials. 

 

Discussion 

Radioactive materials are typically analysed for three main causes by the methods of 

analytical atomic spectrometry. 

 

Quality management is an essential part of manufacturing products, and this also goes for 

nuclear fuel grade uranium dioxide powder and pellets. The regulations of the international 

standards concerning their physical and chemical properties are very strict [1, 2]. Elemental 

impurities are also considered to be important, because they can effectively alter the physical 

properties (density, toughness, sinterability etc.) as well as nuclear properties of the powder 

and pellets. For example, the presence of a high concentration of boron or other neutron-

capturing agents such as Gd, Eu, Dy, Sm and Cd can significantly lower the neutron flux 
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flowing through the uranium oxide, which in turn lowers the caloric value of the nuclear fuel. 

For this reason, the total boron equivalent concentration of these elements is not allowed to 

exceed 4 ppm. The maximum allowable concentration limits for other elements are usually in 

the 100-300 ppm range, but their cumulative concentration shall not exceed 1500 ppm.  

 
Table 1. Traditional impurity limits in uranium dioxide according to [2] 

 

Nuclear forensic investigations provide answers to questions concerning nuclear materials 

found outside of the regulatory control. One of such investigations is the elemental or isotopic 

“fingerprint-like” identification (assignation) of a “nuclear forensic signature” to a sample. 

This signature is characteristic for the ore, but the processing technology/facility employed 

will also impose its own signature onto the sample, the latter of which can then be used to 

identify the “manufacturer” and hence its legal status. This qualitative analytical application 

can allow the investigators to determine the origin of an unknown nuclear material [3].  

In the case of nuclear safeguards investigations the analytes are ambient samples (soil, water, 

etc.). The average concentration of uranium in the Earth’s crust is low (only about 2-4 ppm), 

so if an elevated level of U concentration is found, it indicates either a leak from a nearby 

nuclear industry facility or the usage of nuclear weapons such as fission bombs or so called 

dirty bombs [4]. Due to their purpose, safeguards measurements deal with low concentrations 

and complex matrices [5].  

Many atomic spectroscopy methods, such as graphite furnace atomic absorption spectrometry 

(GFAAS), spark- and arc atomic emission spectrometry, inductively coupled plasma atomic 

emission (ICP-AES) and mass spectrometry (ICP-MS), the latter two sometimes also 

combined with laser ablation sample introduction, were used in the literature for the above 

analyses. Unfortunately, none of these methods can be executed in the field, either because the 

instrumentation is bulky and costly, or because the instruments can only process liquid 

samples, so extensive sample preparation is needed prior to the spectroscopy measurements. 

According to recent literature, LIBS has a great potential for becoming a quick, field-

applicable, trace analytical technique for radioactive samples. For example, Campbell et al. 
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were able to discriminate different uranium oxides (UO2, U3O8, UO3) via the comparison of 

the relative intensity of some well-chosen uranium and oxygen lines [6]. Barefield et al. had 

shown that uranium and thorium can be detected by LIBS in their ores [7] and the same 

authors could also determine low concentrations of uranium in a glass matrix severe spectral 

interferences [8]. Russo et al. developed algorithms for spectral deconvolution of uranium 

isotopic spectral lines and demonstrated their usefulness in soil matrices for the fairly accurate 

determination of the 
235

U/
238

U isotope ratio [9]. LIBS limits of detection can also be adequate 

for even the most demanding technical/safeguards applications (in the sub-ppm range) [10]. 

It also has to be mentioned that since LIBS is an atomic emission spectrometry method, it 

generates line-rich spectra (it is not uncommon in complex matrices that the emission 

spectrum contains over 100,000 spectral lines!). If portable instrumentation with compact, 

conventional dispersive spectrometers are to be used for the analysis, one will face severe 

spectral interferences, especially in studies dealing with elements that have several isotopes. If 

isotope ratios are also to be determined, then the resolution of conventional spectrometers can 

cause problems, since atomic isotopic shifts are usually very small, on the order of pm only. In 

addition to this, the plasma is usually generated under atmospheric conditions (even is under a 

laser ablation chamber for safety reasons), which causes pressure-induced broadening of 

spectral lines [10].   

At the moment it seems that there are two potential solutions to these problems. For isotope-

resolving studies, laser ablation molecular isotopic spectrometry (LAMIS), introduced by 

Russo et al. [11], may be a solution. This approach uses LIBS experimental conditions 

favouring the formation/detection of molecular components and measures the molecular (e.g. 

oxide, fluoride) isotopic shifts instead of the atomic ones, because the former shift can be 100 

times larger than the latter. The other possibility is to use advanced, compact, but high 

resolution spectrometer optical arrangements, such as the spatially heterodyne spectrometer 

(SHS) for LIBS. The first studies out in this research area [12, 13] are also promising and 

suggest that isotopic resolution will indeed be possible in the field by using LIBS 

spectrometry. At present, we are pursuing both of these approaches (LAMIS and SHS) in 

order to reach our goal of developing a LIBS-based method for the analysis of contaminants in 

uranium-containing materials.    
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