Classification and evolution of bifurcation curves for a one-dimensional Neumann-Robin problem and its applications

Tsai, Chi-Chao and Wang, Shin-Hwa and Huang, Shao-Yuan: Classification and evolution of bifurcation curves for a one-dimensional Neumann-Robin problem and its applications. (2018)

[img]
Preview
Cikk, tanulmány, mű
ejqtde_2018_085.pdf

Download (1MB) | Preview

Abstract

We study the classification and evolution of bifurcation curves of positive solutions for the one-dimensional Neumann–Robin boundary value problem u 00(x) + λ f(u(x)) = 0, 0 < x < 1, u 0 (0) = 0 and u 0 (1) + αu(1) = 0, where λ > 0 is a bifurcation parameter, α > 0 is an evolution parameter, and nonlinearity f satisfies f(0) ≥ 0 and f(u) > 0 for u > 0. We obtain the multiplicity of positive solutions for α > 0 and λ > 0. Applications are given.

Item Type: Journal
Publication full: Electronic journal of qualitative theory of differential equations
Date: 2018
Number: 85
ISSN: 1417-3875
Page Range: pp. 1-30
DOI: https://doi.org/10.14232/ejqtde.2018.1.85
Uncontrolled Keywords: Neumann-Robin probléma, Bifurkáció
Additional Information: Bibliogr.: p. 29-30. ; összefoglalás angol nyelven
Date Deposited: 2019. Jan. 25. 10:14
Last Modified: 2020. Jul. 29. 12:29
URI: http://acta.bibl.u-szeged.hu/id/eprint/56897

Actions (login required)

View Item View Item