Thanh Chung, Nguyen: Existence of solutions for perturbed fourth order elliptic equations with variable exponents. (2018)
|
Cikk, tanulmány, mű
ejqtde_2018_096.pdf Download (492kB) | Preview |
Abstract
Using variational methods, we study the existence and multiplicity of solutions for a class of fourth order elliptic equations of the form 2 p(x) u − M �R 1 p(x) |∇u| p(x) dx� ∆p(x)u = f(x, u) in Ω, u = ∆u = 0 on ∂Ω, where Ω ⊂ RN, N ≥ 3, is a smooth bounded domain, ∆ 2 p(x) u = ∆(|∆u| p(x)−2∆u) is the operator of fourth order called the p(x)-biharmonic operator, ∆p(x)u = div |∇u| p(x)−2∇u is the p(x)-Laplacian, p : Ω → R is a log-Hölder continuous function, M : [0, +∞) → R and f : Ω × R → R are two continuous functions satisfying some certain condition.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2018 |
Number: | 96 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-19 |
DOI: | https://doi.org/10.14232/ejqtde.2018.1.96 |
Uncontrolled Keywords: | Differenciálegyenlet - elliptikus, Kirchhoff típusú problémák |
Additional Information: | Bibliogr.: p. 16-19. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Jan. 25. 12:02 |
Last Modified: | 2020. Jul. 29. 12:29 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/56908 |
Actions (login required)
![]() |
View Item |