Czédli Gábor: On the set of principal congruences in a distributive congruence lattice of an algebra. In: Acta scientiarum mathematicarum, (84) 3-4. pp. 357-375. (2018)
Cikk, tanulmány, mű
math_084_numb_003-004_357-375.pdf Hozzáférés: Csak SZTE egyetemi hálózatról Letöltés (355kB) |
Absztrakt (kivonat)
Let Q be a subset of a finite distributive lattice D. An algebra A represents the inclusion Q ⊆ D by principal congruences if the congruence lattice of A is isomorphic to D and the ordered set of principal congruences of A corresponds to Q under this isomorphism. If there is such an algebra for every subset Q containing 0, 1, and all join-irreducible elements of D, then D is said to be fully (A1)-representable. We prove that every fully (A1)- representable finite distributive lattice is planar and it has at most one joinreducible coatom. Conversely, we prove that every finite planar distributive lattice with at most one join-reducible coatom is fully chain-representable in the sense of a recent paper of G. Grätzer. Combining the results of this paper with another result of the present author, it follows that every fully (A1)- representable finite distributive lattice is “fully representable” even by principal congruences of finite lattices. Finally, we prove that every chain-representable inclusion Q ⊆ D can be represented by the principal congruences of a finite (and quite small) algebra.
Mű típusa: | Cikk, tanulmány, mű |
---|---|
Befoglaló folyóirat/kiadvány címe: | Acta scientiarum mathematicarum |
Dátum: | 2018 |
Kötet: | 84 |
Szám: | 3-4 |
ISSN: | 0001-6969 |
Oldalak: | pp. 357-375 |
Hivatalos webcím (URL): | http://www.acta.hu |
Befoglaló mű URL: | http://acta.bibl.u-szeged.hu/56872/ |
DOI: | 10.14232/actasm-017-538-7 |
Kulcsszavak: | Algebra, Matematika |
Megjegyzések: | Bibliogr.: p. 374-375. ; összefoglalás angol nyelven |
Feltöltés dátuma: | 2019. jan. 30. 05:07 |
Utolsó módosítás: | 2021. már. 25. 15:44 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/56919 |
Tétel nézet |