Raimondo Roberto: Compact operators with BMO symbols on multiply-connected domains. In: Acta scientiarum mathematicarum, (84) 3-4. pp. 643-658. (2018)
|
Cikk, tanulmány, mű
math_084_numb_003-004_643-658.pdf Restricted to: SZTE network Download (228kB) |
Abstract
In this paper we study the problem of the boundedness and compactness of the Toeplitz operator Tϕ on L 2 a(Ω), where Ω is a multiply-connected domain and ϕ is not bounded. We find a necessary and sufficient condition when the symbol is BMO. For this class we also show that the vanishing at the boundary of the Berezin transform is a necessary and sufficient condition for compactness. The same characterization is shown to hold when we analyze operators which are finite sums of finite products of Toeplitz operators with unbounded symbols.
| Item Type: | Article |
|---|---|
| Journal or Publication Title: | Acta scientiarum mathematicarum |
| Date: | 2018 |
| Volume: | 84 |
| Number: | 3-4 |
| ISSN: | 0001-6969 |
| Page Range: | pp. 643-658 |
| Official URL: | http://www.acta.hu |
| Related URLs: | http://acta.bibl.u-szeged.hu/56872/ |
| DOI: | 10.14232/actasm-017-283-0 |
| Uncontrolled Keywords: | Operátorok, Operátorelmélet |
| Additional Information: | Bibliogr.: p. 657-658. ; összefoglalás angol nyelven |
| Date Deposited: | 2019. Jan. 30. 06:15 |
| Last Modified: | 2021. Mar. 25. 15:45 |
| URI: | http://acta.bibl.u-szeged.hu/id/eprint/56933 |
Actions (login required)
![]() |
View Item |

