
Challenges for Analysis of the Economy, the Businesses, and Social Progress

Péter Kovács, Katalin Szép, Tamás Katona (editors) - Reviewed Articles

1343

Using Massively Parallel Processing in the Testing of the

Robustness of Statistical Tests with Monte Carlo

Simulation

Tamás Ferenci
1
 – Balázs Kotosz

2

In this paper, we will examine the application of the Monte Carlo method in the testing of the

robustness of statistical tests. The very computation-intensive Monte Carlo testing was im-

plemented using the so-called GP-GPU method, which utilises the video cards’ GPU

(Graphical Processing Unit) to perform the necessary calculations.

The robustness of a statistical test is defined as its property to remain valid even if its

assumptions are not met. (We call a test valid if its significance level is equal to its Type I

Error Rate.) One way to investigate the robustness of a statistical test (especially useful if the

test’s complicated structure makes analytic handling infeasible or impossible) is to employ

the so-called Monte Carlo method. Here, we generate many random samples (meeting or

violating the assumptions, which we can arbitrarily set), perform the statistical test many

times on them, and then check whether the empirically found Type I Error Rate converges to

the specified significance level or not. This way, we give up exactness for the complete insen-

sitivity to the complexity of the examined statistical test.

This method (by requiring enormous amount of random number generations and sta-

tistical testings for reliable results) is very computation-intensive; traditionally only super-

computers could be used effectively, limiting the availability of this method. However a new

approach, called GP-GPU, makes it possible to harness the extremely high computing per-

formance of – even ordinary, widely available – video cards found in every modern PC.

We implemented a framework that performs the abovementioned MC-testing of the

robustness of statistical tests. We call our program “framework”, because it can be easily

expanded with virtually any statistical test (to which no GP-GPU knowledge is needed), and

be tested with very high performance – even with widely available tools.

As an example, we performed the analysis of the well known Student’s t-test; and –

using this as a starting point – we demonstrated the main advantages of our framework.

Keywords: robustness of statistical tests, Monte Carlo method, GP-GPU, simulation

1 Tamas Ferenci, MSc, Corvinus University of Budapest, Faculty of Economics, Department of Statis-

tics (Budapest)
2 Balazs Kotosz, PhD, assistant professor, Corvinus University of Budapest, Faculty of Economics

(Budapest)

Tamás Ferenci – Balázs Kotosz

1344

1. On the robustness of statistical tests and its empirical investigation with

Monte Carlo simulation

1.1. Introduction

Statistical hypothesis testing, a method of inductive statistics, is of central impor-

tance in both theoretical and applied statistics (Hunyadi–Vita 2006). Since its intro-

duction by Ronald Fisher, Jerzy Neyman and the two Pearsons in the early 20th cen-

tury (Hald 1998) it became a cornerstone of modern statistics, widely used in nearly

every area of nature-, life- and social sciences and technological practice. (Despite

receiving challengers, mainly the Bayesian approach – for an introduction see (Lee

2009) – in the late 20th century.)

Statistical hypothesis testing is performed using so-called statistical tests, of

which hundreds (Hunyadi 2001) have been developed throughout the decades for a

variety of purposes. These tests are usually based on assumptions, typically regard-

ing the populations from which the samples are coming on which the test operates.

The test behaves the way it was specified only if these assumptions are met.

To illustrate the abovementioned, Table 1 shows some statistical tests for test-

ing the equality of the means (expected values) of two populations, from which in-

dependent samples are available. Table 1 also gives the assumptions of these statisti-

cal tests.

Table 1. Selected statistical tests for testing the equality of population means (ex-

pected values)

Name of the test Assumptions

Student’s t-test Populations normally distributed, having equal variances

Welch-test Populations normally distributed

Mann-Whitney U-test
Populations arbitrarily distributed, but PDFs having the

same shape

Brunner-Munzel test None

Source: own creation

As it can be well seen, tests being lower in Table 1 have fewer assumptions.

This is not a universal advantage however: these tests also have less statistical

power. (So, when selecting a statistical test for a purpose
3
, it has to be carefully con-

sidered, which are the assumptions that can be either a priori accepted or tested

(preferably on an independent sample), and select a test that is based only on those –

no less (loss of power), no more (wrong behaviour).)

3 See (Ferenci 2009b) for a brief discussion of these questions in connection with a (biostatistical) ap-

plication.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1345

1.2. Validity and robustness of statistical tests

In the previous subsection, we said “The test behaves the way it was specified only

if these assumptions are met”. This can be made more precise as follows.

A test is guaranteed to be valid only when its assumptions are met. The valid-

ity of a statistical test is defined as its property of having Type I Error Rate equal to

its significance level.

When a statistical test’s assumptions are not met, it is no longer mathemati-

cally guaranteed that the test is valid. However, statistical tests can show quite dif-

ferent behaviours when being operated on samples violating the assumptions: some

tests still remain valid to some extent, even if their assumptions are not met. This

property of a statistical test is called robustness; we call a statistical test robust, if it

has this property.

Validity can be obviously checked not only when the assumptions are met,

but also when they are violated (logically it needs to be – necessarily – confirmed

only in the former case). Hence the checking of robustness can be viewed as an ex-

tension of the checking of validity: we can conclude on robustness by performing

many checkings of validity (with assumptions violated to different extent).

1.3. Using Monte Carlo (MC) method to examine the robustness of a statistical

test

One way to check the robustness of a statistical test is to analyse its mathematical

structure: suppose some assumption-violating property of the samples (which can be

formalised mathematically), expose the test to such samples, and – still purely

mathematically – derive how the test would operate on those samples. (E.g. what

Type I Error Rate would it produce with a given significance level.)

The advantage of this method is that it results in exact analysis. However,

there is one serious limitation: it becomes increasingly infeasible (if not impossible)

when used on tests that have more and more complex algebraic structure – typical

for today’s statistical tests. This might even make exact, mathematical analysis im-

possible.

An alternative approach is to use the so-called Monte Carlo (MC) method for

checking robustness: it gives up the exactness, but in exchange it provides a testing

method which is completely insensitive to the complexity of the examined statistical

test (Rubinstein–Krose 2008).

MC method (which is a general approach used in many other areas of scien-

tific research) is based on the idea of empirically exploring a system: instead of de-

scribing the system with rigorous mathematical formalism, it is investigated stochas-

tically, i.e. the system is faced with many randomly selected inputs, and its “opera-

tion” is reconstructed by the outputs it generates as an answer to the random inputs.

Consequently, this is a stochastical approach, and it can be effective if a very high

number of random inputs are given, so that the system can be mapped appropriately.

Tamás Ferenci – Balázs Kotosz

1346

The MC method is employed in applications where deterministic examination is in-

feasible or impossible due to the complexity of the problem. (A classical example

for the application of MC is high dimensional numerical integration: while it is al-

most impossible to perform a numerical integration in 100 dimensions with classical

mathematical tools (
10010 points would be needed just to have 10 integration point

on each axis!), it is well possible with MC, in which points are randomly selected in

the 100 dimensional space and then checked whether they are “above” or “below” of

the function – this avoids the exponential increase in the number of required points.)

In our context (checking the validity/robustness of statistical tests), this means

the following. We generate a random sample and then apply the statistical test.

Then, we record the result (accept or reject) and repeat this procedure (“test-cycle”)

many times. Thus, we obtain a Type I Error Rate, which we can compare to the sig-

nificance level: as stated, the test is valid if these two are equal. An important side

note is however, that “equality” has to be understood in its statistical sense: as Type

I Error Rate was determined empirically (i.e. by testing samples), this rate will be

exposed to statistical fluctuation. (Caused by the fact that the rate depends on which

samples we actually test.) When comparing this with the fixed significance level, we

can never say “surely” that they are equal; rather we can only draw a statistical con-

clusion. (Using another statistical test, as a matter of fact…) However, we can very

well aim to draw a conclusion that they are “extremely highly likely” to be equal.

This can be achieved by using very high number of random samples. Thus, we actu-

ally examine whether the empirically found Type I Error Rate converges to the sig-

nificance level as the number of test-cycles increases.

This operation makes it understandable why it is also called MC-simulation.

A critical aspect of this approach is that we have full control on the properties

of the samples. (As we generate them, we can arbitrarily parameterise the random

number generator algorithm.) Hence for any statistical test, we can generate samples

that meet the test’s assumptions, and samples that do not. From this point, the com-

pletion of the MC method for checking validity/robustness is quite straightforward:

if we generate samples that meet the investigated test’s assumptions, we can test va-

lidity, if we generate samples that do not meet these assumptions, we can test ro-

bustness.

Moreover, if the extent, to which the assumptions are not met, can be quanti-

fied, we can also iterate through different levels of departure from the assumptions,

hence “mapping” the robustness of the test. (A prime example for this is the viola-

tion of normality, which can be well quantified with skewness and kurtosis. We will

return to this question later in this paper.)

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1347

1.4. Our demonstrational example: checking the robustness of the t-test for non-

normality

We chose Student’s two independent samples t-test as a demonstrational example

for MC-simulational testing. It is solely a demonstration: the results obtained will

not be of scientific value, as this test has been completely analysed long ago – the

method, the MC-simulational testing itself is interesting now. And for demonstra-

tion, it seemed logical to choose a simple, well-known statistical test (Hunyadi–Vita

2006). This is in fact the most well-known statistical test, and perhaps also the most

widely used ever developed. It can be used to check the equality of the means (ex-

pected values) of two populations, from which independently drawn samples are

available.

The test assumes (among others) that the populations are normally distributed.

(See also Table 1.) Our aim will be to check robustness in respect to this assumption.

(I.e. we will let every other assumption be met, but violate this one.) Furthermore,

we will quantify the violation of this normality assumption (by the skewness and

kurtosis of the population’s distributions), so we will also be able to “map” the ro-

bustness: to check how validity alters when the test’s assumptions are more and

more violated. Thus we will be able to answer the question: how valid is the t-test

when the populations are non-normal, i.e. how robust it is to the violation of popula-

tion normality?

1.5. Problem statement

As already stated, we will use MC-simulation to answer this question. In this con-

text, it means that we will randomly generate many samples coming from distribu-

tions having specified skewness and kurtosis, and test them. By recording empirical

Type I Error Rate, we can judge the validity of the test. And by iterating through dif-

ferent levels of skewness and kurtosis, we can test robustness.

The problem is that this is very time-consuming, even on modern personal

computers. This can be traced back to the fact that even modern PCs have inade-

quate computing performance when using very high number of test cycles. (Which

is needed however to achieve low statistical fluctuation in empirical Type I Error

Rate, a question which we already discussed.) If multiple parameters govern the

level of violation of the assumptions (two in our demonstrational example: skewness

and kurtosis), and we want to check every possible combination of them, it will also

exponentially raise the number of needed tests.

In this paper we use a novel approach to handle this situation. Traditionally,

the only resolution would have been to employ a supercomputer, grid computing

etc., available only to a few researchers. Now, we will show a solution which is

widely available (both technically and financially), but still produces impressive per-

formance (sometimes magnitudes higher computing performance than the CPU!),

Tamás Ferenci – Balázs Kotosz

1348

and can be used to MC-simulational testing of the robustness of statistical tests. We

will discuss this in Section 2.

2. On GP-GPU computing and its usage in the MC-simulational examination

of statistical tests

2.1. Introduction

Since the introduction of the category in the early 1980’s, video cards (Cserny 1997)

constitute a regular part of Personal Computers (PCs). These devices (typically built

as a standalone expansion card, communicating with the host computer through

some standardised bus) are responsible for generating visual output from the com-

puter (typically displayed on monitors).

Since the mid-1990’s, an increasing demand appeared for video cards that can

perform image-generation related calculations themselves, instead of relying on the

computer’s central processing unit (CPU), thus relieving that. This was especially

true when 3D image generation became a commonplace (due to computer games,

above all). These required tremendous amount of calculations, but only from a very

few types, so it seemed logical to design a hardware specifically for that purpose (in-

stead of loading the general purpose CPU with this task), which is usually named

hardware acceleration. Hence hardware for this purpose, so-called Graphical Proc-

essing Units (GPUs) began to widely spread – typically VLSI (Very Large Scale In-

tegration) chips, designed specifically to accelerate image generation-, especially 3D

image generation-related calculations.

The early-2000s saw an enormous development in the field of GPUs. They

became more and more complex (as an illustration: the number of transistors

(Hagerdoorn 2009) grew from 1 million (Voodoo, 1996) to 1.5 billion (NVidia

GT200, 2009)!), they were able to perform more and more sophisticated tasks in the

field of hardware acceleration. Because these were highly specialized designs (as we

already mentioned, only a few types of calculations have to be done by a GPU,

compared to the general purpose CPU), their processing power grew in a much

faster rate than that of CPUs. (As only a few types of calculations have to be done…

but these have to be done very fast.)

This, along with the fact, that the GPU’s more and more complex structure

also widened the range of possible calculations, rose up the idea of using the GPU

for applications that are non-graphical, but require high computing capacity. This

led to a technique called General Purpose GPU, or GP-GPU (Owens et al. 2007).

Note however that the term “general” is a bit misleading: it is not “general” in the

sense we named CPU so. While theoretically GP-GPU in fact aims to run any pro-

gram on GPU, practically this is only useful when the program fits to the structure of

the GPU.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1349

The key point in that structure is the very highly parallel nature: a GPU con-

sists of processing units which are very simple themselves, but a very high number

of them are used. Thus logically those programs can be effectively recoded to run on

GPU (with the GP-GPU approach) which can be well parallelized… just like Monte

Carlo simulation! (In addition to that, a range of other tasks might be solved effec-

tively with GP-GPU, from signal processing to cryptography.) For these tasks,

GPUs can be used essentially as “supercomputers”.

This approach can be related to the Massively Parallel Processing (MPP) con-

cept in the theory of computer architectures.

2.2. Usage of GP-GPU in the MC-simulational examination of statistical tests

It has to be strongly emphasized, that even cheap, widely available video cards

(more precisely: their GPUs) can provide extremely high computing performance for

applications that can utilise it. As we just pointed it out, Monte Carlo simulation is a

prime example for this, so we decided to undertake this (i.e. GP-GPU) approach to

resolve the problem of obtaining high computing performance (which is needed in

MC-simulation), but still creating a solution available to virtually any interested

user.

The video card we selected was based on NVidia’s GeForce 9600 GT GPU

(from the GeForce 9 series), based on the G94a/b GPU core (NVidia 2009a). This is

a low-middle class video card, sold at around 20 000 HUF (available at any online

store at around 100 €). It

- has 505 million transistors,

- a core clock rate of 650 MHz,

- 64 stream processors, each running at 1 625 MHz,

- memory bandwidth of 57,6 GB/sec, and

- a theoretical processing rate of 312 GFlops!

The last feature is perhaps the most important for us at first glance: it tells that

the GPU is (theoretically) able to perform more than 300 billion floating point op-

erations per second!

2.3. The usage of CUDA in developing GP-GPU programs

Even if the video card and the concept of the program to be run on the GPU are pro-

vided, it is still a question how we can in fact code a program to run on GPU.

In the first era of GP-GPU, programs had to be written to “mimic” the graphi-

cal operations, making development very complicated. (Programs have to be written

“as if” they were performing graphical operations, as GPUs only understood such

(i.e. graphics-related) commands.) However, GPU manufacturers soon realised the

power of GP-GPU and began developing architectures which more naturally sup-

ported the development of non-graphical programs for GPUs. (This tendency be-

Tamás Ferenci – Balázs Kotosz

1350

came so pronounced, that lately even such “video” cards have been released that

were specifically designed for GP-GPU, lacking even video output.)

NVidia’s such architecture is called Compute Unified Device Architecture

(NVidia 2009b), or CUDA for short. This is not only a programming language, but a

complete environment for GP-GPU. Naturally it also includes a programming lan-

guage, called “C for CUDA” which can be used to develop programs for GPU. This

is the approach we employed for coding our MC-simulational program; an excerpt

from the code is shown on Figure 1.

Figure 1. Excerpt from the CUDA program performing MC-simulation

Source: own creation

2.4. On our testing framework

From this point on, we will refer to our program as “framework”. This is to empha-

size that the most important part of our work is not the coding of statistical tests, but

the coding of the MC-simulation robustness-checking module. (This also foreshad-

ows that we took huge effort to write a modular program, i.e. a program in which

the MC-simulational part and the description of the statistical test itself is separated.

We will discuss this question in detail in the next section.)

In its current version, our program includes two statistical tests (Student’s two

independent sample t-test, and the Mann-Whitney U-test, as we will later discuss),

which may be used as demonstrational subjects to the MC-simulational module.

(Results from these investigations will be shown in Section 5.)

Another advantage of the “framework” approach is that new statistical tests

might be added by a description in standard C language – no CUDA or parallel

computing knowledge is needed at all.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1351

3. Technical details on the coding of our testing framework

As we explained in the previous section, our investigations were not purely theoreti-

cal: we also developed a “testing framework” as a program which can be used to

check the robustness of statistical tests with the described Monte Carlo simulation

method. In this section, we will review a few considerations that cropped up during

the actual implementation of this program.

3.1. Development environment

We developed the program under Microsoft’s Visual Studio 2008 integrated devel-

opment environment (Microsoft 2009).

As we have already mentioned, NVidia’s CUDA architecture uses the so-

called “C for CUDA” programming language, which is a minimal extension to the

standard C language to support the coding of the GPU (NVidia 2009b). This can be

comfortably handled within the MS Visual Studio environment, where coding, de-

bugging and compiling can be performed at the same interface.

3.2. Random number generation

The key idea of Monte Carlo methods is to use random inputs (in our case: random

samples) to explore the behaviour of the system (in our case: the statistical test).

Thus, it is necessary to generate random numbers (lots of random numbers actually,

as this has to be repeated many times) in our program.

Random number generators (RNGs) have a library-wide literature – for a

relevant review, see for example (Gentle 2004) – and random number generation in

a parallel environment is an even more non-trivial question.

We used the RNG employed in the CUDA’s own Software Development Kit

(SDK), the so-called Mersenne Twister algorithm (Podlozhnyuk 2007). It is one of

the most widely used RNGs nowadays, mathematically guaranteed to be equidistrib-

uted up to 623 dimensions (Matsumoto–Nishimura 1998), passing all modern ran-

domness test, including the diehard (Matsumoto–Nishimura 1998) and the even

more stringent TestU01 (McCullough 2006). This – together with its speed – makes

Mersenne Twister especially fit for Monte Carlo simulations.

However, in itself, it is not suitable for use in parallel environment. This was

resolved by the so-called DCMT algorithm, which is also employed (Matsumoto–

Nishimura 2000).

The Mersenne Twister with DCMT produces uniformly distributed numbers.

As we will see in the next subsection, we need random numbers from standard nor-

mal distribution for our purpose, so we applied the well known Box-Mueller trans-

form (Ketskeméty 2005).

Tamás Ferenci – Balázs Kotosz

1352

3.3. Fleishman’s polynomial transformation method

As we have already pointed it out, the departure from the assumptions of the test

will be quantified by the level of non-normality in our demonstrational example

(logically, as the assumption was normality in that example). To quantify non-

normality, we will apply the most widely used indicators: skewness and kurtosis (i.e.

the third and fourth standardized central moments, but see Subsection 3.6 as well).

Note that distributions can be viewed as points on the skewness/kurtosis space

(or plane, to be more specific).

If we recall the procedure of MC-testing the robustness (Section 2.3), it is

immediately obvious that we will need to generate samples from distributions hav-

ing arbitrary kurtosis and skewness. (In other words we have to iterate through the

points (distributions) of the skewness/kurtosis space, and generate samples at every

point.) This is a nontrivial problem, as the widely used distributions either have

given kurtosis and/or skewness (like normal or exponential distribution) or only one

parameter
4
 governs kurtosis and skewness (like gamma or lognormal distribution).

There are many solutions for this problem. We might well go back to Karl

Pearson when reviewing the history of this question, as the system of Pearson distri-

butions (developed in the early 20th century) can be viewed as an answer to this

problem. Since then, many other solutions have been developed, more or less fit for

our purpose. (As an example: the Pearson distribution is largely unfit, as it involves

distributions that have diverse algebraic structure, so the generating algorithm would

have to change between essentially different distributions when iterating through the

skewness/kurtosis space.)

The solution we employ now was published in 1978 by Allen I. Fleishman

(Fleishman 1978). As it might be unknown to the reader, we will discuss it in detail.

The key idea behind Fleishman’s solution is the following. When generating

samples from a standard normal distribution we can control neither the mean, nor

standard deviation, nor the skewness, nor the kurtosis of the distribution. However,

if we add a constant to every generated sample, we can arbitrarily set the mean of

the distribution. Similarly, by multiplying the samples we can arbitrarily set the

standard deviation of the distribution. (With this, we essentially switched from stan-

dard normal distribution to general normal distribution.) But the multiplication and

the adding of a constant is simply a linear transformation, a subclass of polynomial

transformation. The crucial point is to note that when the transforming polynomial

has an order of zero (i.e. adding of a constant), we can only set the mean (i.e. the

first moment), when it has an order of one (i.e. multiplication and adding of a con-

stant), we can set the mean and the standard deviation (i.e. the first and second mo-

ments). One would expect that by transforming the sample with a polynomial having

4 Obviously, in this case the two indicators cannot be set independently, to the contrary: setting one of

them automatically defines the other.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1353

an order of two (i.e. quadratic term), we would be able to arbitrarily set the first

three moments, that is, mean, standard deviation and skewness.

To investigate this, Fleishman analytically derived the first four standardized

central moment of the distribution generated with the
32

dXcXbXaY +++=

transformation, where ()1;0~ NX . (Obviously, he used a polynomial having an or-

der of three, as the aim was to set the first four moments arbitrarily.) He obtained the

following equations for the mean, variance, and 3µ and 4µ indicators of skewness

and kurtosis:

()
[] []()22222

4

22

3

2222

255141481228124

2105242

1526

dcbddbdbcbd

dbdbc

dcbdb

ca

+++++++=

+++=

+++=

+=

µ

µ

σ

µ

Now we can answer the previous question: this power transformation method

can be used to generate a distribution with arbitrary 3µ skewness and 4µ kurtosis if

and only if the above system of equations can be solved for the 3µ / 4µ skew-

ness/kurtosis in question. (Mean might be chosen to 0 and variance to 1, without loss

of generality. Our figures will follow this convention, i.e. we will only plot skewness

and kurtosis on them; mean will be assumed to be 0, variance to be 1, everywhere.)

It can be demonstrated that as a result we obtain a skewness/kurtosis plane

that may be generated (i.e. where the above system of equations may be solved) be-

ing quite close to the theoretically possible
5
 one.

Another favourable aspect of Fleishman’s method is that it only requires ran-

dom numbers from standard normal distribution – exactly what we obtain from our

random number generator.

Clearly, the only complicated part is the solution of the above system of equa-

tion. Although it is a complex, non-linear system of equations, and can be solved

only numerically (not analytically), it can luckily be solved off-line: the necessary

coefficients can be calculated before the MC-simulation. This is important, as the

solution of the equation is time-consuming. To sum up, the correct approach is to

solve these equations for every possible skewness/kurtosis combination we will

need, store the results and then give them to the simulation routine as a constant.

We used the GNU Scientific Library (GSL) to solve the non-linear system of

equations. It is a free C library designed to support mathematical/scientific computa-

5 There are skewness/kurtosis combinations which do not represent a distribution at all. In other words,

correct probability distributions cannot have arbitrary skewness and kurtosis, namely

12

34 +≥ µµ stands for every probability distribution. See (Ferenci 2009a) for more detail.

Tamás Ferenci – Balázs Kotosz

1354

tions, developed under the GNU project, and licensed under GNU GPL (GNU

2009). We employed version 1.13.

We used gsl_multiroot_fsolver to solve the system of equations
6
 with

initial values set to (0.0,1.0,0.5,0.5). (These were chosen to ensure that in normal

case, the solution would be in fact the trivial transformation.) We used a simple

solver algorithms (not using the derivatives, obviously), the so-called discrete New-

ton algorithm (gsl_multiroot_fsolver_dnewton). The solution was naturally

iterative; we defined to stopping criteria: the number of iteration steps exceeds 1 000

(this was a backup, normally never active), and the residual is less then
510−

.

3.4. User interface

As our program is computation-oriented with minimal user interaction, we designed

a rather simple character-based user interface. (This also made coding easier, as we

could write the program as a simple console application.)

The user interface has a dual purpose. First, it continuously informs the user

on the progress of the computations. (This is especially important when calculations

take more than minutes.) The user receives information on the current activity, and –

in case of the most time-consuming GPU-computation – is also informed on the

progress of that activity (with a “percentage complete” type feedback). The screen-

shot on Figure 2 shows this state of the user interface.

Figure 2. Screenshot of our program during the calculation phase

Source: own creation

6 Multiroot stands for multidimensional root-finding.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1355

The other aim of the user interface is to provide summary statistics when the

calculation is finished. This is shown on Figure 3.

These statistics detail the parameters of MC-simulation (checked skewness

and kurtosis levels, sample size etc.), the number of random number generations

based on this and the time needed to complete the simulation. Based on the two lat-

ter information, the program displays the estimated speed of the computation in hy-

potheses testing/sec. It also provides a minimum estimate
7
 for the speed of random

number generation (in random numbers generated/sec).

Figure 3. Summary statistics provided by our program at the end of calculations

Source: own creation

No result is displayed on the console: the program saves every numerical re-

sult to file on the hard disk.

3.5. Visualisation

As we previously mentioned, the program saves the results as plain-text files. Al-

though these can be viewed with any text editor (and their content interpreted), it

makes analysis much simpler if we visualise their content. In other word, further

(post)processing is needed, which we fulfilled with R scripts (R 2009) that we have

written specifically for the purpose. We used R version 2.9.1; every figure showing

results in this paper was generated this way.

7 While the speed of hypothesis testing is a real, trustworthy indicator (as the random number genera-

tions form a part of hypothesis testing in this context), the speed of random number generation is well

underestimated this way (as the time also includes calculations not related to random number genera-

tion, e.g. the performing of the statistical test).

Tamás Ferenci – Balázs Kotosz

1356

3.6. On the measuring of kurtosis

Kurtosis – as a concept – is a complex abstraction, and its measuring is not at all un-

ambiguous. (See (Hunyadi 2009) on this question.)

Classically the fourth standardized central moment (i.e.
[]()[]

k

k
XEXE

σ

−
 for

k=4) is used to measure the kurtosis of a distribution. This takes the value of 3 for

normal distribution, so sometimes the so-called excess kurtosis is also introduced:

[]()[]
3

4

4

−
−

σ

XEXE

This way, positive (excess) kurtosis indicates a leptokurtic, negative indicates

a platykurtic distribution.

For our goals, these definitions are not fortunate. As we will generate distribu-

tions with substantial skewness, we cannot forget about the theoretical minimum of

skewness. (See Footnote 5) When skewness equals just 5, the minimum possible

kurtosis is 26 (compare to the minimum value of 1, in case of distributions that are

not skewed at all). Should we use these kurtosis-measures, graphical representation

would be overly complicated, as kurtosis would span over – literally – magnitudes.

Interpretation would be also rendered more difficult, as the results for the higher

values of skewness would be “shifted up”. (Quite drastically, due to the quadratic

nature of the theoretical minimum.)

A natural solution would be to subtract the theoretical minimum (determined

utilizing the skewness) from every kurtosis value, in other words to switch from

“kurtosis” to “kurtosis above the theoretical minimum”. Formally this suggests a

new kurtosis-definition that has the form ()12

34 +− µµ . (Graphically, this means to

subtract the 12

3 +µ parabola from every 4µ coordinate.)

However, instead of that we chose to use the

()32

34 +− µµ

new kurtosis definition. We will name this “FK-kurtosis”.

This has two advantages over the previous one. First, those distributions that

have a positive FK-kurtosis can be surely generated by Fleishman’s method, as it

has problems
8
 only with those distributions that are close to the theoretical mini-

mum. Second, we ensure this way that the “zero skewness, zero kurtosis” point be-

longs to the normal distribution (just as with excess kurtosis).

8 I.e. the necessary system of equations cannot be solved, see Subsection 4.2.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1357

4. Results

Figure 4 shows the central result for our demonstrational example: the robustness of

the Student’s t-test for the violation of the normality assumption.

Figure 4. Robustness of the t-test for non-normality

Source: own creation

On the z-axis, we indicated the empirically found Type I Error Rate, while the

x-y plane is a representation of the skewness/kurtosis space. (Using FK-kurtosis, as

described in Subsection 3.6.)

One can clearly see that in case of normal distribution (zero skewness, zero

excess kurtosis) the empirically found Type I Error Rate is almost exactly 0.05, the

significance level. This confirms that the test is valid if its assumptions are met.

It is interesting to see how the empirically found Type I Error Rate deviates

from the specified 0.05 as the samples become more and more non-normal. (To be

Tamás Ferenci – Balázs Kotosz

1358

more precise: the populations become more and more non-normal from which the

samples are obtained.) This suggests that the test is not robust for the violations of

the normality assumption: it loses its validity in case of samples where that assump-

tion is not met. But we can be even more specific: it can be clearly seen that the test

is far more sensitive for skewness than for kurtosis.

These results are all consistent with the literature data (Vargha 1996).

Note how smooth the figure is! This illustrates that the extremely high number

of sample-pairs generated at each skewness/kurtosis point diminished the statistical

fluctuation (due to the sampling error
9
) to almost zero. This is why very high com-

puting performance was needed, what could be reached only with supercomputers,

grid computing etc. traditionally, but what became widely available with our method

based on GP-GPU.

As we always emphasized, the above results are uninteresting themselves.

(These have been known virtually since the t-test has been introduced; long before

not only MC-simulation, but also computers.) What is important: the performance

we could reach when generating the results. (Because these are not scientific results

nowadays, but our aim was to develop a framework for testing – that’s the reason

why we always called it only a demonstrational example. What we have to analyze

is the framework itself, not the obtained results.) So now we will have a closer look

on performance data.

4.1. Performance of the MC-testing

In the demonstrational example, we performed tests with populations having skew-

ness from 0.0 to 4.0 (with 0.2 step size) and excess kurtosis from 0.0 to 10.0 (with

0.5 step size). It is important to note that we tested every possible combination of

them (in other words, we completely “mapped” the skewness/kurtosis space, we it-

erated through every possible combination); hence, we had to perform

4002020 =⋅ checking of validity.

For each checking we generated 10 million sample pairs. This meant

400010400 =⋅ million, or 4 billion hypothesis testing. Taking into account that the

sample size was 10 (and sample-pairs were generated), it meant 802104 =⋅⋅ bil-

lion random number generation.

And this all was done in 389 seconds – again: on our 100€, middle-class,

available-from-every-shop video card. In terms of speed, this means in excess to 10

million hypotheses testing per second! (Purely the RNG itself has to produce a speed

greater than 200 million random numbers generated a second.)

According to our measurements (performed by executing the very same simu-

lation on both GPU and CPU), the GP-GPU computation is about 38 times faster

9 As such, this could be quantified, but the standard deviation due to sampling would be likely much

smaller than even a single pixel.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1359

than traditional CPU computation – even though the CPU in the comparison was a

modern, dual-core processor.

This performance of GP-GPU is well enough for every common task, even if

multiple parameters describe the departure from the assumptions and we have to it-

erate on them in a combinatorial way (i.e. using every possible combination; just as

in our example).

4.2. On the flexibility of our framework

We already emphasised that flexibility was one of the primary priorities when de-

signing our framework; now we will show two demonstrations for this principle.

Perhaps the most important manifestation of this effort is the modularity of

our program: we tried to isolate the description of the statistical test and the MC-

testing parts as much as possible. This has two advantageous aspects: first, one can

change the parameters of the testing by simply altering a few constants in the pro-

gram; second, it is possible to add other statistical tests to be tested with leaving

every other part of the program unchanged.

This means that our program is highly scalable: virtually any other test can be

added (and, as we will see in 4.2.2 in more detail, there is no CUDA knowledge

needed for this). Thus, we can use the framework to test any statistical test, and ob-

tain results more interesting than our demonstrational example.

4.2.1. The effect of Central Limit Theorem

To demonstrate how simple it is to change the parameters of an MC-simulational

testing, we re-run the test on the same example, but with sample sizes raised to 20,

50 and 100. Results are shown on Figures 5, 6 and 7.

Tamás Ferenci – Balázs Kotosz

1360

Figure 5. The robustness of the t-test for non-normality with sample size 20

Source: own creation

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1361

Figure 6. The robustness of the t-test for non-normality with sample size 50

Source: own creation

Tamás Ferenci – Balázs Kotosz

1362

Figure 7. The robustness of the t-test for non-normality with sample size 100

Source: own creation

One can clearly see the effect of the Central Limit Theorem: as it is well

known from probability theory, with increasing sample sizes the sample mean fol-

lows more and more normal distribution, even if the population distribution was

non-normal. As the test statistic of the t-test is based on the sample mean, this result

in a higher robustness (increasing with sample size). At sample size=100, the test

was virtually completely valid at every explored non-normality.

Again, not this “result” is interesting itself (it has also been known since the

introduction of the t-test), but the way we obtained it: only a single number had to be

changed in the program code for the above tests!

4.2.2. Expansion with other statistical tests

Perhaps even more important is the feature that our program can be very simply ex-

tended with other statistical tests. The adding of a statistical test to the framework

only requires the specification of the test (as this part is completely separated from

the code responsible for the MC-simulational testing).

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1363

To demonstrate this, we added the Mann-Whitney U-test (or Mann-Whitney-

Wilcoxon test) to our framework, and then run exactly the same MC-simulational

testing. Results are shown on Figure 8.

Figure 8. The robustness of the Mann-Whitney U-test for non-normality

Source: own creation

It is also important that this specification has to be done in standard C lan-

guage – no CUDA or parallel computing knowledge is needed. (Parallelity is coded

in other parts of the program.) The result is that other statistical tests can be added to

our program with ease.

It can be clearly seen the Mann-Whitney U-test remains valid regardless of

non-normality: it is robust from this point of view. This again empirically confirms

the theoretical knowledge: if the PDFs of the populations have the same shape (they

are just shifted) the non-parametric Mann-Whitney U-test is essentially distribution-

free.

Tamás Ferenci – Balázs Kotosz

1364

5. Conclusions and possibilities for further development

5.1. Summary

In this paper we discussed the question of testing the robustness of statistical tests,

and especially the using of the so-called Monte Carlo (MC) method for that end. We

have shown that this is an extremely computation-intensive method, which tradition-

ally required supercomputers, grids etc., which made it available only to a few re-

searchers.

However, a new approach, called GP-GPU can harness the extreme perform-

ance of modern – even low and middle class – video cards which can be magnitudes

higher than that of CPU, for appropriate programs – just like MC-simulation. Envi-

ronments for developing programs for GP-GPU are available (e.g. NVidia’s

CUDA).

Based on this idea, we developed a CUDA program for MC-testing the ro-

bustness of statistical tests. This can be run even with cheap, widely available video

cards in ordinary PCs, despite that, it provides very high performance.

The true power of our work lies in the fact that the program we developed acts

as a framework: virtually any statistical test may be included and tested – for which,

no CUDA knowledge is needed at all.

Finally – as a demonstration – we performed the analysis of the well known

Student’s t-test; and – using this as a starting point – we also exhibited the main ad-

vantages of our framework.

5.2. Possibilities for further development

There are many ways to continue and improve this work. In this subsection, we will

show those that seem to be the most promising.

There are many parameters we can experiment with – even in the case of the

overly simple t-test, there is sample size and variance; from which, we have only in-

vestigated the effects of sample size. In case of more complex statistical tests, there

might be far more parameters that might be changed.

The fact, that we can almost freely set the parameters of sample-generation

might be used in other, essentially new ways, in addition to changing sample size

and other simple descriptors. We might, for example, generate samples that deliber-

ately do not meet the investigated test’s null hypothesis – hence we can examine the

power of the test. By generating samples representing different alternative hypothe-

ses, we can also plot the approximate power function of the tests.

Fleishman’s method (although having many advantageous properties) is not

without problems. There are many alternatives (like Tukey’s Generalized λ Distribu-

tion) which might be tried for the same end.

Using Massively Parallel Processing in the Testing of the Robustness of Statistical Tests with

Monte Carlo Simulation

1365

Finally, our framework might be in fact supplemented with statistical tests,

i.e. a “test-bank” might be constructed by adding new and interesting tests to the al-

ready coded two. Such test-bank would be useful not only for research but also for

education.

References

Cserny, L. 1997: Mikroszámítógépek. LSI Oktatóközpont, Budapest.

Ferenci, T. 2009a: Kismintás biostatisztikai vizsgálatok néhány módszertani kérdése.

BCE TDK dolgozat, Budapest.

Ferenci, T. 2009b: Kiskorú magyar populáció obesitassal összefüggő paraméterei-

nek biostatisztikai elemzése. BME VIK Diplomaterv, Budapest.

Fleishman, A. I. 1978: A Method for Generating Non-normal Distributions. Psy-

chometrika, Vol. 43, Issue 4, 521-532. p.

Gentle, J. E. 2004: Random Number Generation and Monte Carlo Methods.

Springer, New York.

GNU 2009: GSL-GNU Scientific Library. http://www.gnu.org/software/gsl/, 2009-

12-31.

Hald, A. 1998: A History of Mathematical Statistics from 1750 to 1930. Wiley-

Interscience, New York.

Hagerdoorn, H. 2009: The history of Guru3D.com Part II. http://

www.guru3d.com/article/the-history-of-guru3dcom-part-ii, 2009-12-31.

Hunyadi, L. 2001: Statisztikai következtetéselmélet közgazdászoknak. Központi Sta-

tisztikai Hivatal, Budapest.

Hunyadi, L. – Vita, L. 2006: Statisztika közgazdászoknak. AULA Kiadó, Budapest.

Hunyadi, L. 2009: A negyedik mutatóról. Statisztikai Szemle, Vol. 87, Issue 3, 262-

286. p.

Ketskeméty, L. 2005: Valószínűségszámítás. Műegyetemi Kiadó, Budapest.

Lee, P. M. 2009: Bayesian Statistics: An Introduction. Wiley, New York.

Matsumoto, M. – Nishimura, T. 1998: Mersenne Twister: A 623-dimensionally

equidistributed uniform pseudorandom number generator. ACM Transactions

on Modeling and Computer Simulation, Vol. 8, Issue 1, 3-30. p.

Matsumoto, M. – Nishimura, T. 2000: Dynamic Creation of Pseudorandom Number

Generators. In Niederreiter H. – Spanier J. (eds.): Monte Carlo and Quasi-

Monte Carlo Methods 1998. Springer Verlag, Berlin, 56-69. p.

McCullough, B. D. 2006: A Review of TESTU01. Journal of Applied Econometrics,

Vol. 21, Issue 5, 677-682. p.

Microsoft 2009: Microsoft Visual Studio. http://msdn.microsoft.com/hu-

hu/vstudio/default(en-us).aspx, 2009-12-31.

NVidia 2009a: GeForce 9600 GT Specifications. http://www.nvidia.com/object/

product_geforce_9600gt_us.html, 2009-12-31.

Tamás Ferenci – Balázs Kotosz

1366

NVidia 2009b: NVidia CUDA Programming Guide Version 2.3.1.

http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDI

A_CUDA_Programming_Guide_2.3.pdf, 2009-12-31.

Owens, J. D. – Luebke, D. – Govindaraju, N. – Harris, M. – Krüger, J. – Lefohn, A.

E. – Purcell, T. J. 2007: A Survey of General-Purpose Computation on Graph-

ics Hardware. Computer Graphics Forum, Vol. 26, Issue 1, 80-113. p.

Podlozhnyuk, V. 2007: Parallel Mersenne Twister.

http://developer.download.nvidia.com/compute/cuda/sdk/website/projects/Me

rsenneTwister/doc/MersenneTwister.pdf, 2009-12-31.

R 2009: The R Project for Statistical Computing. http://www.r-project.org/, 2009-

12-31.

Rubinstein, R. Y. – Krose, D. P. 2008: Simulation and the Monte Carlo Method.

Wiley, Hoboken.

Vargha, A. 1996: Az egymintás t-próba érvényessége és javíthatósága. Magyar

Pszichológiai Szemle, Vol. 36, Issue 4-6, 317-345. p.

