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Abstract. We shall consider weak solutions of initial-boundary value problems for
semilinear and nonlinear parabolic differential equations with certain nonlocal terms,
further, systems of elliptic functional differential equations. We shall prove theorems
on the number of solutions and find multiple solutions.

These statements are based on arguments for fixed points of some real functions
and operators, respectively, and existence-uniqueness theorems on partial differential
equations (without functional terms).
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1 Introduction

It is well known that mathematical models of several applications are functional differential
equations of one variable (e.g. delay equations). In the monograph by Jianhong Wu [8] semi-
linear evolutionary partial functional differential equations and applications are considered,
where the book is based on the theory of semigroups and generators. In the monograph
by A. L. Skubachevskii [7] linear elliptic functional differential equations (equations with non-
local terms and nonlocal boundary conditions) and applications are considered. A nonlo-
cal boundary value problem, arising in plasma theory, was considered by A. V. Bitsadze and
A. A. Samarskii in [1].

It turned out that the theory of pseudomonotone operators is useful to study nonlinear
(quasilinear) partial functional differential equations (both stationary and evolutionary equa-
tions) and to prove existence of weak solutions (see [2, 4, 5]).

In [6] we considered some nonlinear elliptic functional differential equations where we
proved theorems on the number of weak solutions of boundary value problems for such
equations and showed existence of multiple solutions.

In the present work we shall consider nonlinear parabolic functional equations and sys-
tems of elliptic functional equations. By using ideas of [6]: arguments for fixed points of
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certain real functions and operators, respectively, we shall prove theorems on the number of
solutions of such problems and show existence of multiple solutions.

First we recall the definition of weak solutions of boundary value problems for the nonlin-
ear (quasilinear) elliptic equation

−
n

∑
j=1

Dj[aj(x, u, Du)] + a0(x, u, Du) = F, x ∈ Ω (1.1)

with (zero) Dirichlet boundary condition u(x) = 0 on ∂Ω.
Let Ω ⊂ Rn be a bounded domain with sufficiently smooth boundary (e.g. ∂Ω ∈ C1),

1 < p < ∞. Denote by W1,p(Ω) the usual Sobolev space of real valued functions with the
norm

‖ u ‖=
[∫

Ω
(|Du|p + |u|p)

]1/p

.

Further, let V ⊂ W1,p(Ω) be a closed linear subspace containing C∞
0 (Ω), V? the dual space

of V, the duality between V? and V will be denoted by 〈·, ·〉.
Weak solutions of (1.1) are defined as functions u ∈ V satisfying∫

Ω

[
n

∑
j=1

aj(x, u, Du)Djv + a0(x, u, Du)v

]
dx = 〈F, v〉

for all v ∈ V where F ∈ V? is a given element and V = W1,p
0 (Ω) (the closure of C1

0(Ω) in
W1,p(Ω)) in the case of homogeneous Dirichlet boundary condition and V = W1,p(Ω) in the
case of homogeneous Neumann boundary condition

∂?νu =
n

∑
j=1

aj(x, u, Du)νj = 0 for x ∈ ∂Ω

where ν = (ν1, . . . , νn) is the outer normal on the boundary ∂Ω.
By using the theory of monotone operators, one can prove existence and uniqueness the-

orems on weak solutions of the above boundary value problems. Namely, consider the (non-
linear) operator A : V → V?, defined by

〈A(u), v〉 :=
∫

Ω

[
n

∑
j=1

aj(x, u, Du)Djv + a0(x, u, Du)v

]
dx, v ∈ V. (1.2)

One can formulate sufficient conditions on functions aj which imply that the operator A :
V → V? is bijection, i.e. for arbitrary F ∈ V? there exists a unique solution u ∈ V of the
equation A(u) = F. (See [3, 9].)

Namely, these sufficient conditions are:

(A1) the functions aj : Ω×Rn+1 → R satisfy the Carathéodory conditions;

(A2) there exist a constant c1 and a function k1 ∈ Lq(Ω) (1/p + 1/q = 1) such that

|aj(x, ξ)| ≤ c1|ξ|p−1 + k1(x);

(A3) there exists a constant c2 > 0 such that the inequality
n

∑
j=0

[aj(x, ξ)− aj(x, ξ?)](ξ j − ξ?j ) ≥ c2

n

∑
j=0
|ξ j − ξ?j |.

holds.
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A typical example, having this property, is operator A defined by p-Laplacian 4p:

A = −4pu + c0u|u|p−2 = −
n

∑
j=1

Dj[(Dju)|Du|p−2] + c0u|u|p−2

with p ≥ 2 and constant c0 > 0. (Clearly, 42u = 4u.)
Now we remind the definition of weak solutions of initial-boundary value value problems

for nonlinear parabolic differential equations

Dtu−
n

∑
j=1

Dj[aj(t, x, u, Du)] + a0(t, x, u, Du) = F (1.3)

(for simplicity) with homogeneous initial and boundary condition.
Denote by Lp(0, T; V) the Banach space of functions u : (0, T) → V (V ⊂ W1,p(Ω) is a

closed linear subspace) with the norm

‖ u ‖=
[∫ T

0
‖ u(t) ‖p

V dt
]1/p

(1 < p < ∞).

The dual space of Lp(0, T; V) is Lq(0, T; V?) where 1/p+ 1/q = 1. Weak solutions of (1.3) with
zero initial and boundary condition is a function u ∈ Lp(0, T; V) satisfying Dtu ∈ Lq(0, T; V?)

and
Dtu + A(u) = F, u(0) = 0

where F ∈ Lq(0, T; V?) is a given function,

〈[A(u)](t), v〉 =
∫

Ω

[
n

∑
j=1

aj(t, x, u, Du)Djv + a0(t, x, u, Du)v

]
dx (1.4)

for all v ∈ V, almost all t ∈ [0, T]. (For p ≥ 2, u ∈ Lp(0, T; V) and Dtu ∈ Lq(0, T; V?) imply
u ∈ C([0, T]; L2(Ω)) thus the initial condition u(0) = 0 makes sense.)

There are well-known conditions on functions aj which imply that the operator A :
Lp(0, T; V) → Lq(0, T; V?) (defined in (1.4)) is bijection, so for arbitrary F ∈ Lq(0, T; V?) there
exists a unique weak solution u ∈ Lp(0, T; V) of the problem

Dtu + A(u) = F, u(0) = 0.

(See [3, 9].) A simple example for A is

A(u) = −4pu + c0u|u|p−2

with a positive constant c0 (here A is not depending on t).

2 Parabolic equations with real valued functionals, applied to the
solution

First consider a semilinear parabolic functional equation of the form

Dtu + Au = Dtu−
n

∑
j,k=1

Dj[ajk(x)Dku] + a0(x)u = k(Mu)F1 + F2 (2.1)
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(i.e. the elliptic operator A in (1.4) is linear), where M : L2(0, T; V) → R is a given linear
continuous functional, V ⊂ W1,2(Ω), k : R → R is a given continuous function, F1, F2 ∈
L2(0, T; V?). Further, ajk, a0 ∈ L∞(Ω), ajk = akj and the functions ajk satisfy the uniform
ellipticity condition

c1|ξ|2 ≤
n

∑
j,k=1

ajk(x)ξ jξk + a0(x)ξ2
0 ≤ c2|ξ|2

for all ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, x ∈ Ω with some positive constants c1, c2. It is well known
that in this case for all F ∈ L2(0, T; V?) there exists a unique weak solution u of

Dtu−
n

∑
j,k=1

Dj[ajk(x)Dku] + a0(x)u = F, (2.2)

denoted by u = B−1F where B−1 : L2(0, T; V?) → L2(0, T; V) is a linear continuous operator.
Consequently, u ∈ L2(0, T; V) is a weak solution of (2.1) if and only if

u = k(Mu)B−1F1 + B−1F2. (2.3)

This equality implies that

Mu = k(Mu)M(B−1F1) + M(B−1F2). (2.4)

Theorem 2.1. A function u ∈ L2(0, T; V) is a weak solution of (2.1) if and only if λ = Mu satisfies
the equation

λ = k(λ)M(B−1F1) + M(B−1F2), (2.5)

and
u = k(λ)B−1F1 + B−1F2. (2.6)

Proof. If u satisfies (2.1) then by (2.4) λ = Mu satisfies the equation (2.5) and by (2.3) u satisfies
(2.6). Conversely, if λ is a solution of (2.5) then for u, defined by (2.6) we have

Mu = k(λ)M(B−1F1) + M(B−1F2) = λ

and

Dtu + Au = k(λ)[Dt(B−1F1) + A(B−1F1)] + [Dt(B−1F2) + A(B−1F2)]

= k(λ)F1 + F2 = k(Mu)F1 + F2.

Corollary 2.2. The number of weak solutions u of (2.1) (with homogeneous initial-boundary condition)
equals the number of solutions λ of equation (2.5).

E.g. assume that k ∈ C1(R) and the function h defined by

h(λ) = λ− k(λ)M(B−1F1)

has the property infλ∈R h′(λ) > 0 or supλ∈R h′(λ) < 0. Then for any F2 ∈ L2(0, T; V?) the problem
(2.1) has exactly one solution u. In this case the mapping L2(0, T; V?) → L2(0, T; V) which maps F2

to u is continuous since h−1 : R→ R is continuous.
Further, assuming M(B−1F1) 6= 0, for arbitrary N = 0, 1, . . . , ∞ we can construct continuous

functions k : R→ R such that the initial-boundary value problem (2.1) has exactly N weak solutions,
as follows. Let g : R → R be a continuous function having N zeros and define function k by the
formula

k(λ) =
g(λ) + λ−M(B−1F2)

M(B−1F1)
. (2.7)

Then, clearly, equation (2.5) has N solutions.
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Corollary 2.3. The number of solutions of (2.1), with fixed function k depends on F2 (on the value of
M(B−1F2)).

This statement can be illustrated as follows. Let F2 ∈ L2(0, T; V?) be fixed and consider
µF2 instead of F2 with some parameter µ ∈ R. Then equation (2.5) has the form

λ = k(λ)M(B−1F1) + µM(B−1F2),

thus in this case
g(λ) = gµ(λ) = k(λ)M(B−1F1) + µM(B−1F2)− λ. (2.8)

Assume that M(B−1F1) 6= 0, M(B−1F2) 6= 0. It is not difficult to construct function k such that
for µ > µ0 the function gµ has no zeros and for µ = µ0 has infinitely many zeros.

E.g. let

k(λ) =
λ

M(B−1F1)
+ sin λ,

then

gµ(λ) = M(B−1F1)

[
sin λ + µ

M(B−1F2)

M(B−1F1)

]
.

Consequently, for

µ = µ0 =
M(B−1F1)

M(B−1F2)

gµ has infinitely many zeros and for µ > µ0 it has no zeros.
It is not difficult to show that if

k(λ) =
λ

M(B−1F1)
+ sin λ +

1
λ

then for µ = µ0 the function gµ defined by (2.8) has no positive zeros but for 0 < µ/µ0 < 1
the function gµ has infinitely many zeros.

Further, by using (2.5), if M(B−1F1) 6= 0, it is not difficult to construct continuous functions
k such that for arbitrary F2 ∈ L2(0, T; V?) the problem (2.1) has 3 solutions.

Remark 2.4. Assume that k ∈ C1(R), for some F2 ∈ L2(0, T; V?) problem (2.1) has N zeros:
u1, u2, . . . , uN and for the function

g(λ) = k(λ)M(B−1F1) + M(B−1F2)− λ,

g′(λj) = k′(λj)M(B−1F1)− 1 6= 0 for j = 1, . . . , N, where λj = Muj.

Then there exist ε > 0, δ > 0 (they are independent) such that

‖ F̃2 − F2 ‖L2(0,t;V?)< δ

implies: for every j there exists a unique ũj ∈ L2(0, T; V) weak solution of (2.1) with the
property

‖ ũj − uj ‖L2(0,t;V)< ε,

where on the right hand side of (2.1) F̃2 is instead of F2. Further, ũj depends continuously on
F̃2, belonging to δ neighborhood of F2.
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Proof. Consider the function h defined by

h(λ, c) = k(λ)M(B−1F1)− λ + c

and apply the implicit function theorem to this function. Since

h(λj, M(B−1F2)) = 0, ∂1h(λj, M(B−1F2)) 6= 0 (j = 1, . . . , N),

there exist ε0, δ0 > 0 such that for every fixed j, |c̃− c| < δ0 implies that there exists a unique
λ̃j satisfying

h(λ̃j, c̃) = 0, |λ̃j − λj| < ε0

and λ̃j depends continuously on c̃ (in the δ0 neighborhood of c = M(B−1F2)). Hence we obtain
the statement of Remark 2.4.

In this case the problem (2.1) with the right hand side F̃2 may have other solutions, too.
(See the first example in Corollary 2.3.)

Remark 2.5. The linear continuous functional M : L2(0, T; V)→ R may have the form

Mu =
∫ T

0

∫
Ω

[
K0(t, x)u(t, x) +

n

∑
j=1

Kj(t, x)Dju(t, x)

]
dtdx, (2.9)

where K ∈ L2((0, T)×Ω). In this case the value of solutions of the initial-boundary problem
for (2.1) in some time t are connected with the values of u in all t ∈ [0, T].

Now consider nonlinear parabolic functional equations of the form

Dtu + [l(Mu)]γ A(u) = [l(Mu)]βF, (2.10)

where the nonlinear operator A has the form (1.4) and has the property

A(µu) = µp−1A(u), for all µ > 0 (p > 1) (2.11)

(e.g. A(u) = −4pu + c0u|u|p−1 with c0 > 0 has this property), further, M : V → R is
(homogeneous) functional with the property

M(µu) = µσ M(u) for all µ > 0 with some σ > 0; (2.12)

l is a given positive continuous function and the numbers β, γ satisfy

γ = β(2− p), β > 0.

Theorem 2.6. A function u ∈ V is a weak solution of (2.10) with zero initial and boundary condition
if and only if λ = M(u) satisfies the equation

λ = [l(λ)]βσ M[B−1(F)] and u = [l(λ)]βB−1F, (2.13)

where B is defined by B(u) = Dtu + A(u), i.e. B−1(u) is the unique weak solution of (1.3) (with zero
initial and boundary condition).
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Proof. Define uµ by µ−βu with some positive number µ. Then

u = µβuµ, Dtu = µβDtuµ, A(u) = µβ(p−1)A(uµ),

thus a function u satisfies the equation

Dtu + µγ A(u) = µβF (2.14)

if and only if
Dtuµ + A(uµ) = F. (2.15)

Consequently, a function u ∈ V satisfies (2.10) in weak sense (i.e. (2.14) with µ = l[M(u)]) if
and only if

ũ = [l(M(u))]−βu satisfies Dtũ + A(ũ) = F. (2.16)

The solution of (2.16) is ũ = B−1(F), therefore the weak solution of (2.10) is

u = [l(M(u))]βũ = [l(M(u))]βB−1F,

hence
M(u) = [l(M(u))]βσ M(ũ) = [l(M(u))]βσ M[B−1F]. (2.17)

Thus, if u satisfies (2.10) then λ = M(u) and u satisfy (2.13).
Conversely, if λ ∈ R is a solution of (2.13) then

u = [l(λ)]βB−1(F)

is a solution of (2.10) because

M(u) = [l(λ)]βσ M[B−1(F)] = λ,

so λ = M(u), further, u satisfies (2.10) in weak sense, since (2.10) holds if and only if

Dtũ + A(ũ) = F, where ũ = [l(M(u))]−βu.

Corollary 2.7. The number of weak solutions of (2.10) equals the number of roots of (2.13).
Further, assuming M[B−1(F)] > 0, for arbitrary N = 1, 2, . . . , ∞ one can construct a continuous

positive function l such that (2.10) has exactly N solutions, in the following way. Let g : R→ R be a
continuous function such that g(λ) + λ > 0 for all λ ∈ R and g has N real roots. Then for

l(λ) =
[

g(λ) + λ

M(B−1(F))

]1/(βσ)

(2.10) has N weak solutions.

Remark 2.8. Let the functional l be fixed. Then the number of solutions of (2.10) depends
on F. Similar examples can be constructed as in Corollary 2.3.

Remark 2.9. An example for functional M with property (2.12) is integral operator of the form

M(u) =
∫ T

0

∫
Ω

K(t, x)|u(t, x)|σdtdx.
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3 Parabolic equations with nonlocal operators

Now consider partial functional equations of the form

Bu = Dtu + Au = C(u), (3.1)

where A is a uniformly elliptic linear differential operator (see (2.1) or (2.2)) and C :
L2(0, T; V) → L2(0, T; V?) is a given (possibly nonlinear) operator. Clearly, u ∈ V satisfies
(3.1) if and only if

u = B−1[C(u)] =: G(u), (3.2)

where G : L2(0, T; V) → L2(0, T; V is a given (possibly nonlinear) operator, i.e. u is a fixed
point of G. Then

C(u) = B[G(u)]. (3.3)

Now we consider three particular cases for G.

1. The operator G is defined by

[G(u)](t, x) = (Lu)(t, x) + F(t, x) =
∫ T

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + F(t, x), (3.4)

where K ∈ L2([0, T]× [0, T]×Ω×Ω), u ∈ L2((0, T)×Ω).

Theorem 3.1. If K and F are sufficiently smooth and “good” then the solution u ∈ L2((0, T)×Ω) of
(3.2) with the operator (3.4) belongs to L2(0, T; V), Dtu belongs to L2(0, T; V?), u(0) = 0,

(Cu)(t, x) =
∫ T

0

∫
Ω
[DtK(t, τ, x, y) + AxK(t, τ, x, y)]u(τ, y)dτdy + DtF(t, x) + AxF(t, x)

and the equation (3.1) has the form

(Bu)(t, x) =
∫ T

0

∫
Ω
[DtK(t, τ, x, y) + AxK(t, τ, x, y)]u(τ, y)dτdy + DtF(t, x) + AxF(t, x). (3.5)

(AxK(t, τ, x, y) denotes the differential operator applied to x → K(t, τ, x, y).)
Further, if 1 is an eigenvalue of the linear integral operator L with multiplicity N then (3.5) may

have N linearly independent solutions.

Proof. Equation (3.5) is equivalent with

u(t, x) = (Gu)(t, x) =
∫ T

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + F(t, x)

which implies Theorem 3.1 since for a solution u ∈ L2((0, T)×Ω) of the last equation we have
u ∈ L2(0, T; V), Dtu ∈ L2(0, T; V?) by the assumption of the theorem.

Remark 3.2. Similarly to the problems in the previous section, the value of solutions u of (3.5)
in some time t, are connected with the values of u for t ∈ [0, T].

2. Now consider the case
(Gu)(t, x) =

∫
Ω

K(x, y)u(t, y)dy, (3.6)

where K ∈ L2(Ω×Ω), u ∈ L2((0, T)×Ω).
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Theorem 3.3. Assume that K is sufficiently smooth such that the operator G, defined by (3.6), i.e.

(Gv)(x) =
∫

Ω
K(x, y)v(y)dy,

maps V into V. Then the equation (3.1) has the form

(Bu)(t, x) =
∫

Ω
[K(x, y)Dtu(t, y) + Ax[K(x, y)]u(t, y)] dy. (3.7)

Further, if 1 is an eigenvalue of the integral operator (3.6), applied to v ∈ L2(Ω), then the equation
(3.7) with zero initial and boundary condition has infinitely many linearly independent solutions.

Proof. The equality (3.7) follows directly from (3.1) and (3.3).
Let 1 be an eigenvalue and v ∈ L2(Ω) an eigenfunction of G then by assumption v ∈ V.

Further, let τ ∈ C1[0, T] with the property τ(0) = 0 then functions u, defined by u(t, x) =

τ(t)v(x) are weak solutions of (3.7) with 0 initial condition.

Remark 3.4. In the case of equations (3.7) the value of solutions u in some t are connected
with the values of u only in t. (Compare to Remarks 2.5 and 3.2.)

3. Now consider operators G of the form

G(u) = Lu + h(Pu)F + H, (3.8)

where operator L is defined in (3.4) and its kernel has the same smoothness property, P :
L2(0, T; V) → R is a linear continuous functional, h : R → R is a given continuous function
and F, H ∈ L2(0, T; V), DtF, DtH ∈ L2(0, T; V). Here assume that 1 is not an eigenvalue of the
integral operator L : L2((0, T)×Ω)→ L2((0, T)×Ω).

Theorem 3.5. In this case equation (3.1) has the form

Bu =
∫ T

0

∫
Ω
[DtK(t, τ, x, y) + AxK(t, τ, x, y)]u(τ, y)dτdy + h(Pu)BF + BH. (3.9)

Further, u is a weak solution of (3.9) if and only if u = h(λ)P[(I − L)−1F] + (I − L)−1H where λ is
a root of the equation

λ = h(λ)P[(I − L)−1F] + P[(I − L)−1H]. (3.10)

Thus the number of solutions of (3.9) equals the number of the roots of (3.10).

Proof. Equation (3.9) is fulfilled if and only if u is a solution, belonging to L2((0, T)×Ω) of

u(t, x) =
∫ T

0

∫
Ω

K(t, τ, x, y)u(τ, y)dτdy + h(Pu)F(t, x) + H(t, x),

since by the properties of F, H and L, for such a solution u ∈ L2(0, T; V), and Dtu ∈ L2(0, T; V)

hold. Thus (3.9) is equivalent with u ∈ L2((0, T)×Ω) and

(I − L)u = h(Pu)F + H, u = h(Pu)(I − L)−1F + (I − L)−1H. (3.11)

Let uλ = h(λ)(I − L)−1F + (I − L)−1H then

P(uλ) = h(λ)P[(I − L)−1F] + P[(I − L)−1H].

Consequently, (3.11) (and so (3.9)) is satisfied if and only if λ = Pu satisfies (3.10).
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Corollary 3.6. If P[(I − L)−1F] 6= 0 then for arbitrary N (= 0, 1, . . . , ∞) we can construct h such
that (3.9) has N solutions, in the following way. Let g : R → R be a continuous functions having N
zeros. Then (3.9) has N solutions if

h(λ) =
g(λ) + λ− P[(I − L)−1H]

P[(I − L)−1F]
.

Remark 3.7. The linear functional P : L2(0, T; V)→ R may have the form (2.9).

Remark 3.8. For fixed functions h, F the number of solutions of (3.9) depends on H by (3.10). It
may happen that the number of solutions of the problem with µF (where µ is a real parameter)
is 0 for µ > µ0 and is some N (= 1, 2, . . . , ∞) for µ = µ0. (See Corollary 2.3.)

Further, assuming that for the function ϕ defined by

ϕ(λ) = λ− h(λ)P[(I − L)−1F]

we have
inf
λ∈R

ϕ′(λ) > 0 or sup
λ∈R

ϕ′(λ) < 0

then for any (sufficiently smooth) H the equation (3.9) has exactly one solution.

4 Systems of elliptic functional equations

First consider systems of semilinear elliptic functional differential equations of the form

A1u = l1(Mu)F1 + k1(Nv)G1 + H1, (4.1)

A2v = l2(Mu)F2 + k2(Nv)G2 + H2, (4.2)

where Aj : V → V? are uniformly elliptic linear differential operators (V ⊂ W1,2(Ω)),
Fj, Gj, Hj ∈ V?; M, N : V → R are linear continuous functionals and lj, k j : R → R are
continuous functions.

Clearly, u, v are weak solutions of (4.1), (4.2) with homogeneous boundary conditions if
and only if

u = l1(Mu)A−1
1 F1 + k1(Nv)A−1

1 G1 + A−1
1 H1, (4.3)

v = l2(Mu)A−1
2 F2 + k2(Nv)A−1

2 G2 + A−1
2 H2. (4.4)

Remark 4.1. Functionals M, N may have the form

Mu =
∫

Ω

[
a(x)u(x) +

n

∑
j=1

bj(x)Dju(x)

]
dx, where a, bj ∈ L2(Ω).

Theorem 4.2. Functions u, v ∈ V satisfy (4.1), (4.2) if and only if

u = l1(λ1)A−1
1 F1 + k1(λ2)A−1

1 G1 + A−1
1 H1, (4.5)

v = l2(λ1)A−1
2 F2 + k2(λ2)A−1

2 G2 + A−1
2 H2, (4.6)

where λ1 = Mu and λ2 = Nv are roots of the algebraic system

λ1 = l1(λ1)M(A−1
1 F1) + k1(λ2)M(A−1

1 G1) + M(A−1
1 H1), (4.7)

λ2 = l2(λ1)N(A−1
2 F2) + k2(λ2)N(A−1

2 G2) + N(A−1
2 H2). (4.8)
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Proof. If u, v are solutions of (4.1), (4.2) then by (4.3), (4.4)

Mu = l1(Mu)M(A−1
1 F1) + k1(Nv)M(A−1

1 G1) + M(A−1
1 H1), (4.9)

Nv = l2(Mu)N(A−1
2 F2) + k2(Nv)N(A−1

2 G2) + N(A−1
2 H2). (4.10)

Thus λ1 = Mu and λ2 = Nv satisfy (4.7), (4.8).
Conversely, if λ1, λ2 are roots of (4.7), (4.8) then for the functions u, v defined by (4.5), (4.6)

we have

Mu = l1(λ1)M(A−1
1 F1) + k1(λ2)M(A−1

1 G1) + M(A−1
1 H1) = λ1,

Nv = l2(λ1)N(A−1
2 F2) + k2(λ2)N(A−1

2 G2) + N(A−1
2 H2) = λ2

and

A1u = l1(λ1)F1 + k1(λ2)G1 + H1 = l1(Mu)F1 + k1(Nv)G1 + H1,

A2v = l2(λ1)F2 + k2(λ2)G2 + H2 = l2(Mu)F2 + k2(Nv)G2 + H2,

i.e. u and v satisfy the system (4.1), (4.2).

Corollary 4.3. The number of weak solutions of (4.1), (4.2) equals the number of roots of the algebraic
system (4.7), (4.8).

Theorem 4.4. Assume that the function χ defined by

χ(λ1) = λ1 − l1(λ1)M(A−1
1 F1) (4.11)

is strictly monotone and its range is R. Then λ1, λ2 are solutions of the system (4.7), (4.8) if and only
if λ2 is the root of the equation

λ2 = g(λ2) := l2{χ−1[k1(λ2)M(A−1
1 G1) + M(A−1

1 H1)]}N(A−1
2 F2)

+ k2(λ2)N(A−1
2 G2) + N(A−1

2 H2) (4.12)

and
λ1 = χ−1[k1(λ2)M(A−1

1 G1) + M(A−1
1 H1)]. (4.13)

Consequently, the number of solutions of the system (4.1), (4.2) equals the number of λ2 ∈ R roots of
(4.12).

Further, if N(A−1
2 G2) 6= 0 then for arbitrary continuous functions k1, l2 one can construct con-

tinuous functions k2 such that (4.1), (4.2) has N (= 0, 1, . . . , ∞) solutions as follows. Let g be any
continuous function for which λ2 = g(λ2) has N λ2 roots. If

k2(λ2) =
g(λ2)

N(A−1
2 G2)

+
−l2{χ−1[k1(λ2)M(A−1

1 G1) + M(A−1
1 H1)]}N(A−1

1 F2)− N(A−1
2 H2)

N(A−1
2 G2)

(4.14)

Then (4.1), (4.2) has N solutions.

Proof. By the assumption of our theorem, χ is a continuous bijection between R and R, thus
equation (4.7) is equivalent with (4.13), hence (4.8) is equivalent with (4.12)

Further, if N(A−1
2 G2) 6= 0 then (4.12) is equivalent with (4.14).
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Remark 4.5. From equation (4.12) one can see that with fixed functions k1, k2, l1, l2 and fixed
F1, F2, G1, H1 the number of solutions may depend on G2 and H2. One can construct examples
(e.g. by choosing appropriate function k2) such that the number of solutions with µG2 instead
of G2 (or with µH2 instead of H2), where µ is a real parameter, is 0 for µ > µ0 and is N
(= 1, 2, . . . , ∞) for µ = µ0. (See Corollary 2.3.)

Further, if for any H1 ∈ V?, the function ψ defined by ψ(λ2) = λ2 − g(λ2) (g is defined
by (4.12)), is strictly monotone and its range is R then for any H1, H2 ∈ V? there is a unique
solution of (4.1), (4.2) with zero initial and boundary condition.

Now consider the following system of nonlinear elliptic functional differential equations:

A1u = l1(M(u))k1(N(v))F1, (4.15)

A2v = l2(M(u))k2(N(v))F2, (4.16)

where the nonlinear elliptic differential operators Aj : V → V? of the form (1.2) are bijections
(V ⊂W1,p(Ω)) and have the property (2.11), i.e.

Aj(µu) = µp−1Aj(u) (µ > 0, p > 1) (4.17)

(e.g. Aj may have the form Aju = −4pu + cju|u|p−1 with constants cj > 0); k j, lj are given
continuous functions, M, N : V → R are nonnegative continuous functionals with the prop-
erty

M(µu) = µσ M(u), N(µv) = µσN(v) (µ > 0, σ > 0) (4.18)

and Fj ∈ V?.

Remark 4.6. Functionals M (and N) may have e.g. the form

M(u) =
∫

Ω
| f ||u|σ.

Clearly, u, v ∈ V are solutions of (4.15), (4.16) if and only if

u = [l1(M(u))]1/(p−1)[k1(N(v))]1/(p−1)A−1
1 (F1), (4.19)

v = [l2(M(u))]1/(p−1)[k2(N(v))]1/(p−1)A−1
2 (F2). (4.20)

Theorem 4.7. Functions u, v satisfy (4.15), (4.16) if and only if

u = [l1(λ1)]
1/(p−1)[k1(λ2)]

1/(p−1)A−1
1 (F1), (4.21)

v = [l2(λ1)]
1/(p−1)[k2(λ2)]

1/(p−1)A−1
2 (F2). (4.22)

where λ1, λ2 are roots of the algebraic system

λ1 = [l1(λ1)]
σ

p−1 [k1(λ2)]
σ

p−1 M[A−1
1 (F1)], (4.23)

λ2 = [l2(λ1)]
σ

p−1 [k2(λ2)]
σ

p−1 N[A−1
2 (F2)]. (4.24)

Proof. If u, v are solutions of (4.15), (4.16) then by (4.19), (4.20)

M(u) = [l1(M(u))]
σ

p−1 [k1(N(v))]
σ

p−1 M[A−1
1 (F1)], (4.25)

N(v) = [l2(M(u))]
σ

p−1 [k2(N(v))]
σ

p−1 M[A−1
2 (F2)], (4.26)
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thus λ1 = M(u) and λ2 = N(v) satisfy (4.23), (4.24) and (4.19), (4.20) imply (4.21), (4.22).
Conversely, if λ1, λ2 are roots of (4.23), (4.24) then for the functions u, v defined by (4.21),

(4.22) we have

M(u) = [l1(λ1)]
σ

p−1 [k1(λ2)]
σ

p−1 M[A−1
1 (F1)] = λ1,

N(v) = [l2(λ1)]
σ

p−1 [k2(λ2)]
σ

p−1 M[A−1
2 (F2)] = λ2

and

A1(u) = [l1(λ1)][k1(λ2)]F1 = [l1(M(u))][k1(N(v))]F1,

A2(v) = [l2(λ1)][k1(λ2)]F2 = [l2(M(u))][k2(N(v))]F2,

i.e. u, v satisfy the system (4.15), (4.16).

Corollary 4.8. The number of weak solutions of (4.15), (4.16) equals the number of roots of the
algebraic system (4.23), (4.24).

Theorem 4.9. Assume that the function χ defined by

χ(λ1) =
λ1

[l1(λ1)]
σ

p−1

is strictly monotone and its range is R. Then λ1, λ2 are solutions of (4.23), (4.24) if and only if λ2 is
a root of the equation

λ2 =
{

l2
[
χ−1(k1(λ2))

σ
p−1 M(A−1

1 (F1))
]} σ

p−1 × [k2(λ2)]
σ

p−1 N[A−1
2 (F2)] (4.27)

and

λ1 = χ−1
{
[k1(λ2)]

σ
p−1 M[A−1

1 (F1)]
}

. (4.28)

Consequently, the number of roots of (4.27) equals the number of solutions of system (4.15), (4.16).
Further, if N[A−1

2 (F2)] > 0 then for arbitrary continuous positive functions k1, l2 we can construct
positive continuous functions k2 such that the system has N (= 0, 1, . . . , ∞) solutions, in the following
way. Let g be a continuous function having N zeros with the property λ2 + g(λ2) > 0 for all λ2 > 0.
Then (4.15), (4.16) has N solutions if

k2(λ2) =
[λ2 + g(λ2)]

p−1
σ

l2
[
χ−1

(
(k1(λ2))

σ
p−1 M[A−1

1 (F1)]
)] × 1

{N[A−1
2 (F2)]}

p−1
σ

.

Proof. By the assumption of the theorem, χ is a continuous bijection between R and R, thus
(4.23) is equivalent with (4.28), hence (4.24) is equivalent with (4.27). The further statements
of the theorem can be proved similarly to the former theorems.

Remark 4.10. If l1 is identically 1 then χ(λ1) = λ1 and (4.27), (4.28) have the form

λ2 =
{

l2
[
(k1(λ2))

σ
p−1 M(A−1

1 (F1))
]} σ

p−1 × [k2(λ2)]
σ

p−1 N[A−1
2 (F2)],

λ1 = [k1(λ2)]
σ

p−1 M[A−1
1 (F1)].

Remark 4.11. Similarly can be considered systems of certain semilinear and nonlinear para-
bolic functional equations.



14 L. Simon

Finally, consider the system of semilinear elliptic functional differential equations

(Bu)(x) =
∫

Ω
BxK̃(x, y)u(y)dy + l(Pv)[B(F1)](x), (4.29)

(Cv)(x) =
∫

Ω
Cx L̃(x, y)v(y)dy + k(Qu)[C(F2)](x), (4.30)

where B, C are uniformly elliptic linear differential operators, K̃, L̃ ∈ L2(Ω×Ω) are sufficiently
smooth functions (in x), P, Q : V → R are linear continuous functionals, V ⊂ W1,2(Ω) is a
closed linear subspace, k, l : R→ R are continuous functions, Fj ∈ V.

Clearly, u, v ∈ V satisfy (4.29), (4.30) if and only if

u(x) =
∫

Ω
K̃(x, y)u(y)dy + l(Pv)F1(x), (4.31)

v(x) =
∫

Ω
L̃(x, y)v(y)dy + k(Qu)F2(x). (4.32)

Theorem 4.12. Assume that the operators K, L defined by

(Ku)(x) =
∫

Ω
K̃(x, y)u(y)dy, (Lv)(x) =

∫
Ω

L̃(x, y)v(y)dy, u, v ∈ L2(Ω)

map L2(Ω) into V and 1 is not eigenvalue of K and L. Then u, v are solutions of (4.29), (4.30) if and
only if

u = l(λ2)(I − K)−1F1, (4.33)

v = k(λ1)(I − K)−1F2, (4.34)

where λ1, λ2 are roots of the system

λ1 = l(λ2)P[(I − K)−1F1], (4.35)

λ2 = k(λ1)Q[(I − L)−1F2]. (4.36)

Thus the number of solutions of (4.29), (4.30) equals the number of roots of (4.35), (4.36).

Proof. System (4.29), (4.30) is equivalent with (4.31), (4.32), which is equivalent with

(I − K)u = l(Pv)F1, (4.37)

(I − L)v = k(Qu)F2. (4.38)

(By Fj ∈ V and the assumption on smoothness of K̃ and L̃, solutions u, v ∈ L2(Ω) of (4.31),
(4.32) should belong to V.) Let

uλ2 = l(λ2)(I − K)−1F1, vλ1 = k(λ1)(I − L)−1F2,

then
P(uλ2) = l(λ2)P[(I − K)−1F1], Q(vλ1) = k(λ1)Q[(I − L)−1F2].

Consequently, (4.29), (4.30) and so (4.37), (4.38) is satisfied if and only if λ1 = Qu and λ2 = Pv
satisfy (4.35), (4.36).
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Theorem 4.13. System (4.35), (4.36) is fulfilled if and only if λ2 is a root of

λ2 = k[l(λ2)P(I − K)−1F1]Q(I − L)−1F2 (4.39)

and

λ1 = l(λ2)P(I − K)−1F1, (4.40)

thus the number of solutions of (4.29), (4.30) equals the number of roots of (4.39).
If the function k is strictly monotone and its range is R, further, P(I − K)−1F1 6= 0,

Q(I − L)−1F2 6= 0 then for arbitrary N (= 0, 1, . . . , ∞) one can construct continuous functions l
such that the system (4.29), (4.30) has N solutions, as follows. Let g : R → R be a continuous
function having N zeros. Then system (4.29), (4.30) has N solutions if

l(λ2) =
1

P(I − k)−1F1
k−1

[
λ2 + g(λ2)

Q(I − L)−1F2

]
. (4.41)

Proof. Clearly, (4.35), (4.36) is fulfilled if and only if (4.39) and (4.40) are satisfied. Let

g(λ2) = k[l(λ2)P(I − K)−1F1]Q(I − L)−1F2 − λ2, (4.42)

this equality holds if and only if l(λ2) is defined by (4.41). Consequently, (4.39) has N roots if
and only if the function g defined by (4.42) has N roots.
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