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Abstract. In this paper, we find new conditions to ensure the existence of one nontrivial
homoclinic solution and also infinitely many homoclinic solutions for the second order
Hamiltonian system

ü− a(t)|u|p−2u +∇W(t, u) = 0, t ∈ R,

where p > 2, a ∈ C(R, R) with inft∈R a(t) > 0 and
∫

R

( 1
a(t)

)2/(p−2)dt < +∞, and
W(t, x) is, as |x| → ∞, superquadratic or subquadratic with certain hypotheses different
from those used in previous related studies. Our approach is variational and we use
the Cerami condition instead of the Palais–Smale one for deformation arguments.

Keywords: homoclinic solutions, Hamiltonian systems, variational methods, weighted
Lp space.
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1 Introduction

Consider the second order Hamiltonian system

ü(t)− a(t)|u(t)|p−2u(t) +∇W(t, u(t)) = 0, (HS)

where p > 2, t ∈ R, u ∈ RN , W ∈ C1(R×RN , R) and ∇W(t, x) denotes the gradient of
W(t, x) with respect to x. As usual, we say that a solution u of (HS) is homoclinic (to 0) if
u(t)→ 0 as |t| → ∞. Furthermore, if u 6≡ 0, then u is called a nontrivial homoclinic solution.

Homoclinic orbits of nonlinear differential equations have long been studied in the dy-
namical systems literature, generally in a setting involving perturbations and using a Mel-
nikov function. The existence of many homoclinic orbits is a classical problem and the first
multiplicity results go back to Poincaré [19] and Melnikov [17]. They proved, by means of
perturbation techniques, that the system possesses infinitely many homoclinic orbits in the
case of N = 1 when the potential depends periodically on time.
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If p = 2, system (HS) reduces to

ü(t)− a(t)u(t) +∇W(t, u(t)) = 0. (1.1)

During the past twenty years a large quantity of papers has been devoted to the use of varia-
tional methods to seek homoclinic motions of (1.1), see [2,3,5–9,11,15,16,18,20,22–27,30–33,35]
and the references therein. The case where a(t) and W(t, x) are either periodic in t or inde-
pendent of t were studied in [2, 3, 7, 9, 11, 15, 20, 22, 32]. The existence of one homoclinic
solution can be obtained by going to the limit of periodic solutions of approximating prob-
lems on expending interval; in this argument the variational method can be applied to solve
the approximated problems as well as to obtain a good estimates for their solutions, see
[2, 3, 11, 20]. Problem (1.1) without periodicity assumption on both a and W was considered
in [5, 6, 8, 16, 18, 23–27, 30–32, 35]. Applying a symmetric mountain pass theorem, Omana and
Willem [18] proved the existence of infinitely many homoclinic orbits of (1.1) provided that
a(t) → +∞ as |t| → ∞ and W(t, x), besides other technical assumptions, satisfies the growth
conditions W(t, x)/|x|2 → +∞ (resp. 0) as |x| → +∞ (resp. |x| → 0).

Nevertheless, to our knowledge, results obtained on system (HS) are considerably less, see
[6, 24, 25]. Salvatore [24] constructed the existence and multiplicity results of system (HS) by
applying a compact embedding between suitable weighted Sobolev spaces.

Theorem 1.1 (see Theorem 1.3 in [24]). Assume that the following conditions are satisfied:

(V1) a(t) is a continuous, positive function on R such that for all t ∈ R

a(t) ≥ γ|t|α with α >
p− 2

2
, γ > 0;

(W ′1) there exists a constant µ > p such that

0 < µW(t, x) ≤ (∇W(t, x), x), ∀(t, x) ∈ R×RN\ {0} ;

(W2) ∇W(t, x) = o(|x|p−1) as x → 0 uniformly in t;

(W3) there exists W ∈ C(RN , R+) such that

|W(t, x)|+ |∇W(t, x)| ≤W(x), ∀(t, x) ∈ R×RN .

Then there exists a nontrivial homoclinic solution of system (HS). Moreover, if W(t, x) is even in x, i.e.,
W(t,−x) = W(t, x) for all (t, x) ∈ R×RN , then there exists an unbounded sequence of homoclinic
solutions of system (HS).

Observe that condition (W ′1) characterizes the potential W as superquadratic at infinity,
that is,

(W1) W(t, x)/|x|p → +∞ as |x| → ∞ for a.e. t ∈ R;

and is important in the argument for showing particularly the boundedness of Palais-Smale
sequences. This kind of technical condition was first introduced by Ambrosetti and Rabi-
nowitz [1], and often appears as necessary to solve superlinear differential equations such as
elliptic problems, Hamiltonian systems and wave equations.

Chen and Tang [6] generalized Theorem 1.1 by relaxing the conditions imposed on W(t, x).
They proved the same conclusion by using the mountain pass theorem and the symmetric
mountain pass theorem.
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Theorem 1.2 (see Theorems 1.1 and 1.3 in [6]). Assume that (V1) holds and W(t, x) satisfies the
following:

(H1) W(t, x) = W1(t, x) −W2(t, x), W1, W2 ∈ C1(R × RN , R) and there is R > 0 such that
|∇W(t, x)|/a(t) = o(|x|p−1) as x→ 0 uniformly in t ∈ (−∞,−R]

⋃
[R,+∞).

(H2) There is a constant µ > p such that 0 < µW1(t, x) ≤ (∇W1(t, x), x) for all (t, x) ∈ R×
RN\ {0}.

(H3) W2(t, 0) ≡ 0 and there is a constant $ ∈ (p, µ) such that W2(t, x) ≥ 0 and (∇W2(t, x), x) ≤
$W2(t, x) for all (t, x) ∈ R×RN .

Then system (HS) has a nontrivial homoclinic solution. Moreover, if W(t, x) is even in x, then system
(HS) has an unbounded sequence of homoclinic solutions.

Theorem 1.3 (see Theorems 1.2 and 1.4 in [6]). The conclusion of Theorem 1.2 is valid if we replace
assumption (H1) with

(H′1) W(t, x) = W1(t, x)−W2(t, x), W1, W2 ∈ C1(R×RN , R) and |∇W(t, x)|/a(t) = o(|x|p−1)

as x→ 0 uniformly in t ∈ R.

and assumption (H3) with

(H′3) W2(t, 0) ≡ 0 and there is a constant $ ∈ (p, µ) such that (∇W2(t, x), x) ≤ $W2(t, x) for all
(t, x) ∈ R×RN .

Although [6] improved Theorem 1.1 by relaxing conditions (W ′1) and (W2) and removing
(W3), it still requires the potential W satisfies:

∃$ > p such that (∇W(t, x), x) ≥ $W(t, x) for all (t, x) ∈ R×RN (1.2)

(see (H2) and (H3) (or (H′3))). Hence it is somewhat restrictive and eliminates the su-
perquadratic potentials, for example,

Ex 1.

W(t, x) =

{
|x|q ln |x| − |x|2 + p

p+1 , |x| > 1,

−|x|p+1/(p + 1), |x| ≤ 1,

where q > p;

Ex 2. W(t, x) = g(t)|x|p ln(1 + |x|2), where g : R → R+ is a continuous bounded function
with inft∈R g(t) > 0;

Ex 3. W(t, x) = g(t)
(
|x|µ + (µ− p)|x|µ−ε sin2 (|x|ε/ε)

)
, where µ > p, ε ∈ (0, µ − p) and g :

R→ R+ is a continuous bounded function with inft∈R g(t) > 0;

and the subquadratic potentials, for example,

Ex 4. W(t, x) = |x|2 + b(t)|x|γ for all t ∈R and |x| ≤ δ, where γ ∈ (1, 2) and b ∈ L2/(2−γ)(R, R+)

with meas {t ∈ R : b(t) > 0} > 0;

Ex 5. W(t, x) = 1
γ b(t)|x|γ + 1

s c(t)|x|s for all t ∈ R and |x| ≤ δ, where γ, s ∈ (1, 2), b ∈
L2/(2−γ)(R, R+) and c ∈ L2/(2−s)(R, R+) with meas {t ∈ R : c(t) > 0} > 0.



4 Y. Ye

Motivated by the works mentioned above, the main goal of this paper is to find new condi-
tions to guarantee the existence of homoclinic solutions of problem (HS). We are particularly
interested in the cases where a(t) satisfies:

(V) a ∈ C(R, R) with a0 := inf
t∈R

a(t) > 0 and
∫

R

(
1

a(t)

) 2
p−2 dt < +∞,

and W(t, x) satisfies conditions which are more general than (W ′1). Typical examples, which
match our setting but not satisfying Theorems 1.1–1.3, are Examples 1–5.

Remark 1.4. Assumption (V) is weaker than (V1). There are functions a which match our
setting but not satisfying (V1). For example, let

a(t) =


(

1− n2|t− n|+ e−
t2
2

)(2−p)/2
, |t− n| ≤ 1

n2 (n ∈ Z, |n| ≥ 2),

e(p−2)t2/4, elsewhere.

We first handle the superquadratic case. Assume furthermore the following hypotheses:

(W4) There exist µ > p and L > 1 such that

µW(t, x) ≤ (∇W(t, x), x), ∀t ∈ R, |x| ≥ L, (1.3)

and
inf

t∈R,|x|=L
W(t, x) > 0.

(W5) For any 0 < α < β,

Cβ
α := inf

{
W(t, x)
|x|p

∣∣∣∣ t ∈ R, α ≤ |x| < β

}
> 0,

whereW(t, x) := 1
p (∇W(t, x), x)−W(t, x).

(W6) There exist a > 0, L1 > 0 and σ ∈ (0, p− 1) such that

(∇W(t, x), x) ≤ aW(t, x)|x|p−σ, ∀t ∈ R, |x| ≥ L1.

(W7) W(t, 0) ≡ 0 for all t ∈ R, and there is θ ≥ 1 such that

θW(t, x) ≥ W(t, sx), ∀(t, x) ∈ R×RN , s ∈ [0, 1].

Theorem 1.5. Assume that (V) holds and W ∈ C1(R×RN , R) satisfies (W2)–(W4). Then problem
(HS) possesses at least one nontrivial homoclinic solution. Moreover, if W(t, x) is even in x, then
problem (HS) possesses an unbounded sequence of homoclinic solutions (uk) such that∫

R

[
1
2
|u̇k|2 +

1
p

a(t)|uk|p −W(t, uk)

]
dt→ +∞ as k→ ∞.

Remark 1.6. The potential W in Theorem 1.5 allows to be sign-changing. Example 1 verifies
(W2)–(W4) if p < µ < min {q, p + 1}. One can check this fact by noting that

(∇W(t, x), x)− µW(t, x) = |x|q[(q− µ) ln |x|+ 1] + (µ− 2)|x|2 − µp
p + 1

for all t ∈ R and |x| > 1.
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Theorem 1.7. Assume that (V) holds and W ∈ C1(R×RN , R) satisfies (W1)–(W3) and (W5)–
(W6). Then problem (HS) possesses at least one nontrivial homoclinic solution. Moreover, if W(t, x) is
even in x, then problem (HS) possesses an unbounded sequence of homoclinic solutions (uk) such that∫

R

[
1
2
|u̇k|2 +

1
p

a(t)|uk|p −W(t, uk)

]
dt→ +∞ as k→ ∞.

Remark 1.8. Condition (W ′1) implies the ones (W1) and (W6). Indeed, assuming (W ′1) holds,
it is clear that (W1) is satisfied. Setting L1 ≥ 1 so large that

1
µ
<

1
p
− 1
|x|p−σ

whenever |x| ≥ L1.

Then, for such |x|,

W(t, x) ≤
(

1
p
− 1
|x|p−σ

)
(∇W(t, x), x),

and hence

(∇W(t, x), x) ≤ |x|p−σ

[
1
p
(∇W(t, x), x)−W(t, x)

]
= |x|p−σW(t, x).

Remark 1.9. The functions of Examples 2–3 verify the conditions (W1)–(W3) and (W5)–(W6).
One can check this fact for Example 2 by noting that

∇W(t, x) = g(t)
[

p|x|p−2x ln(1 + |x|2) + 2|x|px
1 + |x|2

]
, W(t, x) = g(t)|x|p 2|x|2

p(1 + |x|2) ,

and for Example 3 by noting that

∇W(t, x) = µ|x|µ−2x + (µ− p)|x|µ−ε

[
(µ− ε)|x|−2x sin2

(
|x|ε

ε

)
+ |x|ε−2x sin

(
2|x|ε

ε

)]
,

W(t, x)
|x|µ−ε

=
µ− p

p
g(t)

[
|x|ε

(
1 + sin

(
2|x|ε

ε

))
+ (µ− p− ε) sin2

(
|x|ε

ε

)]
.

Theorem 1.10. Assume that (V) holds and W ∈ C1(R×RN , R) satisfies (W1)–(W3) and (W7).
Then problem (HS) possesses at least one nontrivial homoclinic solution. Moreover, if W(t, x) is even
in x, then problem (HS) possesses an unbounded sequence of homoclinic solutions (uk) such that∫

R

[
1
2
|u̇k|2 +

1
p

a(t)|uk|p −W(t, uk)

]
dt→ +∞ as k→ ∞.

Remark 1.11. We mention that the monotonicity condition like (W7) was used in Jeanjean
[12] to obtain one positive solution for a semilinear problem in RN , in [14] to get infinitely
many solutions for quasilinear elliptic problems setting on a bounded domain, and in [10] to
compute the critical points of the energy functional and obtain nontrivial solutions via Morse
theory. It turns out that if for fixed (t, x) ∈ R×RN\ {0},

s 7→ (∇W(t, sx), x)
sp−1 is increasing in s ∈ (0, 1],

then (W7) is satisfied.
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Remark 1.12. Hypotheses (W2) and (W5) (or (W7)) yield that

W(t, x) ≥ 0, ∀(t, x) ∈ R×RN . (1.4)

In fact, it follows from (W5) (or (W7)) that

W(t, x) =
1
p
(∇W(t, x), x)−W(t, x) ≥ 0, ∀(t, x) ∈ R×RN .

Hence, for (t, x) ∈ R×RN and s > 0, we have

d
ds

(
W(t, sx)

sp

)
=

(∇W(t, sx), sx)− pW(t, sx)
sp+1 ≥ 0. (1.5)

Besides, (W2) implies that
lim

s→0+
W(t, sx)/sp = 0,

which, jointly with (1.5), shows that (1.4) holds.

Next we consider the subquadratic case. Assume that:

(W8) W ∈ C1(R× Bδ(0), R), W(t,−x) = W(t, x) for all (t, x) ∈ R× Bδ(0), where Bδ(0) is the
ball in RN centered at 0 with radius δ > 0.

(W9) W(t, 0) ≡ 0, and there exist constants a1 > 0, γ ∈ (1, 2) and a function b1 ∈ L
2

2−γ (R, R+)

such that
|∇W(t, x)| ≤ a1|x|+ b1(t)|x|γ−1, ∀t ∈ R, |x| ≤ δ.

(W10) There exist t0 ∈ R, two sequences {δn}, {Mn} and constants a2, d > 0 such that δn > 0,
Mn > 0 and

lim
n→∞

δn = 0, lim
n→∞

Mn = +∞,

|x|−2W(t, x) ≥ Mn for |t− t0| ≤ d and |x| = δn,

|x|−2W(t, x) ≥ −a2 for |t− t0| ≤ d and |x| ≤ δ.

Theorem 1.13. Suppose that (V) and (W8)–(W10) are satisfied. Then problem (HS) possesses in-
finitely many nontrivial homoclinic solutions (uk) such that maxt∈R |uk(t)| → 0 as k→ ∞.

Remark 1.14. Theorem 1.13 improves [24, Theorem 1.2]. The functions of Examples 4–5 satisfy
(W8)–(W10) but do not satisfy the results in [6,24,25]. It is trivial for Example 4. To check this
fact for Example 5, note that

|∇W(t, x)| ≤ b(t)|x|γ−1 +
2− s
2− γ

(
c(t)|x|

2−s
2−γ (γ−1)

) 2−γ
2−s

+
s− γ

2− γ

(
|x|

s−γ
2−γ

) 2−γ
s−γ

≤
(

b(t) +
2− s
2− γ

c(t)
2−γ
2−s

)
|x|γ−1 +

s− γ

2− γ
|x|

for all t ∈ R and |x| ≤ δ.

The paper is organized as follows. After presenting some preliminaries, we prove the
above existence and multiplicity results for the superquadratic and subquadratic cases in turn.

Notation. Throughout the paper we denote by c, ci the various positive constants which may
vary from line to line and are not essential to the problem.
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2 Preliminaries

We shall construct the variational setting under condition (V). For a nonnegative measurable
function a and a real number s > 1, define the weighted Lebesgue space

Ls
a = Ls(R, RN ; a) =

{
u : R→ RN is measurable

∣∣∣∣ ∫
R

a(t)|u(t)|sdt < +∞
}

and associated with it the norm

‖u‖a,s =

(∫
R

a(t)|u(t)|sdt
)1/s

.

We define, for any r ∈ [1,+∞],

Lr = Lr(R, RN), H1 = H1(R, RN)

with the usual norms

‖u‖r =

(∫
R
|u(t)|rdt

)1/r

, ‖u‖∞ = sup
t∈R

|u(t)|, ‖u‖H1 =

(∫
R
(|u̇|2 + |u|2)dt

)1/2

.

Let E := H1 ⋂ Lp
a , where a(t) is the function introduced in (V). It is easy to check that E is a

reflexive Banach space under the norm

‖u‖ = ‖u̇‖2 + ‖u‖a,p =

(∫
R
|u̇|2dt

)1/2

+

(∫
R

a(t)|u(t)|pdt
)1/p

.

Observing ∫
R
|u(t)|2dt =

∫
R

a(t)−
2
p · a(t)

2
p |u|2dt

≤
(∫

R

(
1

a(t)

) 2
p−2

dt

) p−2
p

·
(∫

R
a(t)|u|pdt

) 2
p

≤ ‖a(t)−1‖2/p
2/(p−2)

(∫
R

a(t)|u|pdt
) 2

p

, (2.1)

we have ∫
R
(|u̇|2 + |u|2)dt ≤

∫
R
|u̇|2dt + ‖a(t)−1‖2/p

2/(p−2)

(∫
R

a(t)|u|pdt
) 2

p

≤ c

[∫
R
|u̇|2dt +

(∫
R

a(t)|u|pdt
) 2

p
]

≤ c‖u‖2,

which implies that E is continuously embedded into H1. So E is continuously embedded into
Lr for 2 ≤ r ≤ +∞, and hence, for each r ∈ [2,+∞], there is τr > 0 such that

‖u‖r ≤ τr‖u‖, ∀u ∈ E. (2.2)

Furthermore, we have the following lemma.
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Lemma 2.1. If assumption (V) is satisfied, then the embedding E ↪→ Lr is compact for 2 ≤ r ≤ +∞.

Proof. We adapt an argument in Ding [8]. Let K ⊂ E be a bounded set. Then there is C0 > 0
such that

‖u‖ ≤ C0, ∀u ∈ K. (2.3)

We shall show that K is precompact in Lr for 2 ≤ r ≤ +∞.
Since (V) implies that ∫

|t|≥R

(
1

a(t)

) 2
p−2

dt→ 0 as R→ +∞, (2.4)

for any ε > 0, we take R0 > 0 large enough such that[∫
|t|≥R

(
1

a(t)

) 2
p−2

dt

] p
p−2

<
ε

8C2
0

, ∀R ≥ R0. (2.5)

Noting the embedding E ↪→ H1 is continuous, K is bounded in H1. Applying the Sobolev com-
pact embedding theorem, H1((−R0, R0), RN) is compactly embedded in Lr((−R0, R0), RN)

for all 1 ≤ r ≤ +∞. Thus, there are u1, u2, . . . , um ∈ K such that for any u ∈ K, there is ui
(1 ≤ i ≤ m) such that ∫

|t|≤R0

|u− ui|2dt <
ε

2
.

Hence, using Hölder’s inequality, (2.5) and (2.3), we obtain∫
R
|u− ui|2dt ≤

∫
|t|≤R0

|u− ui|2dt +
∫
|t|>R0

|u− ui|2dt

≤ ε

2
+

[∫
|t|>R0

(
1

a(t)

) 2
p−2

dt

] p−2
p (∫

|t|>R0

a(t)|u− ui|pdt
) 2

p

≤ ε

2
+

ε

8C2
0
‖u− ui‖2

< ε.

The above arguments yield that K has a finite ε-net and so is precompact in L2.
For any n ∈N, t ∈ R and u ∈ E, one has

u(t) =
∫ t+1

t
[−u̇(s)(t + 1− s)n+1 + u(s)(n + 1)(t + 1− s)n]ds,

which implies that

|u(t)| ≤ 1√
2n + 3

(∫ t+1

t
|u̇|2ds

)1/2

+
n + 1√
2n + 1

(∫ t+1

t
|u|2ds

)1/2

by the Hölder inequality. Particularly, for any R > 0 and u, v ∈ K, we obtain

|u(t)− v(t)| ≤ 1√
2n + 3

(∫
|s|≥R

|u̇− v̇|2ds
)1/2

+
n + 1√
2n + 1

(∫
|s|≥R

|u− v|2ds
)1/2

≤ 1√
2n + 3

‖u− v‖+ n + 1√
2n + 1

[∫
|s|≥R

(
1

a(t)

) 2
p−2

ds

] p−2
2p (∫

|s|≥R
a(t)|u− v|pds

) 1
p

≤ 2C0√
2n + 3

+
2C0(n + 1)√

2n + 1

[∫
|s|≥R

(
1

a(t)

) 2
p−2

ds

] p−2
2p

, ∀|t| ≥ R.
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For any ε > 0, first choosing n sufficiently large such that

2C0√
2n + 3

<
ε

2
,

and then R1 large enough satisfying

2C0(n + 1)√
2n + 1

[∫
|s|≥R1

(
1

a(t)

) 2
p−2

ds

] p−2
2p

<
ε

2

by (2.4). It follows that
sup
|t|≥R1

|u(t)− v(t)| < ε, ∀u, v ∈ K. (2.6)

Again, using the Sobolev compact embedding theorem, there are u1, u2, . . . , um ∈ K such that
for any u ∈ K, there is ui (1 ≤ i ≤ m) such that

max
|t|≤R1

|u(t)− ui(t)| < ε,

which, together with (2.6), shows that

‖u− ui‖∞ < ε.

Thus, K is precompact in L∞.
Now for any r ∈ (2,+∞), since∫

R
|u|rdt ≤ ‖u‖r−2

∞

∫
R
|u|2dt, ∀u ∈ K,

we see immediately that K is precompact in Lr.

Lemma 2.2.

(i) For u ∈ E, there holds

1
2

∫
R
|u̇|2dt +

1
p

∫
R

a(t)|u|pdt ≤ c(‖u‖2 + ‖u‖p).

(ii) Given α, β > 0, there is c > 0 such that for every u ∈ E, there holds

α
∫

R
|u̇|2dt + β

∫
R

a(t)|u|pdt ≥
{

c‖u‖p, if ‖u‖ ≤ 1,

c‖u‖2, if ‖u‖ ≥ 1.

Proof. The conclusion follows easily from the definition of ‖ · ‖.

3 The superquadratic case

By assumptions (V) and (W2), the energy functional associated to problem (HS) on E given
by

I(u) =
∫

R

(
1
2
|u̇|2 + 1

p
a(t)|u|p

)
dt−

∫
R

W(t, u)dt
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is of C1-class, and

〈I′(u), v〉 =
∫

R

[
(u̇, v̇)− a(t)|u|p−2(u, v)

]
dt−

∫
R
(∇W(t, u), v)dt

for all u, v ∈ E. It is routine to show that any nontrivial critical point of I is a classical solution
of system (HS) with u(±∞) = 0.

To find the critical points of I, we shall show that I satisfies the Cerami condition, i.e.,
(un)⊂E has a convergent subsequence whenever {I(un)} is bounded and (1+‖un‖)‖I′(un)‖→0
as n→ ∞. Such a sequence is then called a Cerami sequence.

Lemma 3.1. Let (V) and (W2)–(W4) be satisfied. Then I satisfies the Cerami condition.

Proof. Let (un) be a Cerami sequence, i.e.,

sup
n
|I(un)| < c and ‖I′(un)‖(1 + ‖un‖)

n−→ 0. (3.1)

We show that (un) is bounded. Arguing indirectly, assume that ‖un‖ → ∞ as n → ∞. We
consider wn := un/‖un‖. Then, up to a subsequence, we get

wn ⇀ w in E, wn → w in Lr (2 ≤ r ≤ +∞), wn(t)→ w(t) a.e. t ∈ R. (3.2)

Case 1. w ≡ 0 in E. From (W2), for any ε > 0, there exists δ = δ(ε) ∈ (0, 1) such that

|∇W(t, x)| ≤ ε|x|p−1, ∀t ∈ R, |x| < δ, (3.3)

and
|W(t, x)| ≤ ε|x|p, ∀t ∈ R, |x| ≤ δ. (3.4)

Combining this with (W3), we obtain

|(∇W(t, x), x)− µW(t, x)| ≤ (µ + 1)
(

ε + δ−p max
δ≤|x|≤L

W(x)
)
|x|p, ∀t ∈ R, |x| ≤ L,

and then, using (W4),

(∇W(t, x), x)− µW(t, x) ≥ −c|x|p, ∀(t, x) ∈ R×RN .

Hence we obtain

o(1) =
1

‖un‖p

(
I(un)−

1
µ
〈I′(un), un〉

)
=

(
1
2
− 1

µ

)
1

‖un‖p

∫
R
|u̇n|2dt +

(
1
p
− 1

µ

) ∫
R

a(t)|wn|pdt

+
1

‖un‖p

∫
R

[
1
µ
(∇W(t, un), un)−W(t, un)

]
dt

≥ o(1) +
(

1
p
− 1

µ

) ∫
R

a(t)|wn|pdt− c
∫

R
|wn|pdt,

which implies that ∫
R

a(t)|wn|pdt→ 0 as n→ ∞ (3.5)
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by the second limit of (3.2). Here, and in what follows, o(1) denotes a quantity which goes to
zero as n→ ∞. On the other hand, (W4) implies

W(t, x) ≥ c1|x|µ, ∀t ∈ R, |x| ≥ L, (3.6)

where c1 = L−µ inf
t∈R,|x|=L

W(t, x) > 0. Thus

W(t, x) ≥ 0, ∀t ∈ R, |x| ≥ L, (3.7)

and
W(t, x)
|x|p → +∞ as |x| → ∞ uniformly for t ∈ R. (3.8)

It follows from (3.3), (3.4) and (W3) that

|(∇W(t, x), x)− pW(t, x)|

≤ (p + 1)
(

ε + δ−p max
δ≤|x|≤L

W(x)
)

Lp−2|x|2 ≤ c|x|2, ∀t ∈ R, |x| ≤ L,

and, using (3.7) and (1.3),

(∇W(t, x), x)− pW(t, x) ≥ −c|x|2, ∀(t, x) ∈ R×RN .

Therefore,

o(1) =
1
‖un‖2

(
I(un)−

1
p
〈I′(un), un〉

)
=

(
1
2
− 1

p

) ∫
R
|ẇn|2dt +

1
‖un‖2

∫
R

[
1
p
(∇W(t, un), un)−W(t, un)

]
dt

≥
(

1
2
− 1

p

) ∫
R
|ẇn|2dt− c

∫
R
|wn|2dt,

which yields that ∫
R
|ẇn|2dt→ 0 as n→ ∞.

This, jointly with (3.5), contradicts the fact ‖wn‖ = 1.

Case 2. w 6= 0 in E. Taking Θ := {t ∈ R : w(t) 6= 0}, then the set Θ has positive measure. For
t ∈ Θ, we have |un(t)| → ∞, and then, using (3.8),

W(t, un(t))
|un(t)|p

|wn(t)|p → +∞ as n→ ∞.

It follows from the Fatou lemma (see [34]) that∫
Θ

W(t, un)

|un|p
|wn|pdt→ +∞ as n→ ∞. (3.9)

Moreover, it follows from (3.7) and (W2)–(W3) that

W(t, x) ≥ −c|x|p, ∀(t, x) ∈ R×RN .
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So, by (2.2),∫
R\Θ

W(t, un)

‖un‖p dt ≥ −
∫

R\Θ

c|un|p
‖un‖p dt ≥ −c

∫
R
|wn|pdt ≥ −cτ

p
p , ∀n ∈N. (3.10)

Consequently, using (3.10), (3.9) and the first inequality of (3.1),

1
p

∫
R

a(t)|wn|pdt + o(1) =
∫

R

W(t, un)

‖un‖p dt

=

(∫
Θ
+
∫

R\Θ

)
W(t, un)

|un|p
|wn|pdt

→ +∞ as n→ ∞,

a contradiction again. This completes the proof of the boundedness of (un).
Passing to a subsequence, un ⇀ u weakly in E, un → u in L2 and un(t) → u(t) for a.e.

t ∈ R. The boundedness of (un) implies that

‖un‖∞, ‖u‖∞ ≤ M, ∀n ∈N

for some M > 1. Thus, using (3.3) and (W3),∫
R
|∇W(t, un)−∇W(t, u)|2dt ≤

∫
R

c(|un|+ |u|)2dt ≤ 2c(‖un‖2
2 + ‖u‖2

2), (3.11)

where c2 := εMp−2 + δ−1 maxδ≤|x|≤M W(x). It is easy to see that there holds

(|x|p−2x− |y|p−2y)(x− y) ≥ c|x− y|p, ∀x, y ∈ RN , (3.12)

and therefore by (3.11) and the fact un → u in L2 we obtain

o(1) = 〈I′(un)− I′(u), un − u〉

=
∫

R
|u̇n − u̇|2dt +

∫
R

a(t)[|un|p−2un − |u|p−2u](un − u)dt

−
∫

R
[∇W(t, un)−∇W(t, u)](un − u)dt

≥
∫

R
|u̇n − u̇|2dt + c

∫
R

a(t)|un − u|pdt− ‖∇W(t, un)−∇W(t, u)‖2‖un − u‖2

≥
∫

R
|u̇n − u̇|2dt + c

∫
R

a(t)|un − u|pdt + o(1),

which yields that un → u in E. This completes the proof.

Lemma 3.2. Let (V), (W2)–(W3) and (W5)–(W6) be satisfied. Then I satisfies the (C) condition.

Proof. Set (un) be a Cerami sequence. We verify that (un) is bounded. Assuming the contrary,
‖un‖ → ∞, wn := un/‖un‖ ⇀ w in E and wn(t) → w(t) for a.e. t ∈ R after passing to a
subsequence. We claim that

lim sup
n→∞

∫
R

(∇W(t, un), un)

‖un‖p dt < 1. (3.13)

Indeed,

c ≥ I(un)−
1
p
〈I′(un), un〉 =

(
1
2
− 1

p

) ∫
R
|u̇n|2dt +

∫
R
W(t, un)dt ≥

∫
R
W(t, un)dt, ∀n.
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Taking Ωn(α, β) := {t ∈ R : α ≤ |un(t)| < β} for 0 ≤ α < β, we obtain

c ≥
∫

R
W(t, un)dt

=
∫

Ωn(0,α)
W(t, un)dt +

∫
Ωn(α,β)

W(t, un)dt +
∫

Ωn(β,+∞)
W(t, un)dt (3.14)

for all n. By (W2), for any ε > 0 (< 1/3), there exists aε > 0 such that

|∇W(t, x)| ≤ (ε/τ
p
p )|x|p−1, ∀t ∈ R, |x| ≤ aε,

which implies that∫
Ωn(0,aε)

|∇W(t, un)|
|un|p−1 |wn|pdt ≤

∫
Ωn(0,aε)

ε

τ
p
p
|wn|pdt ≤ ε

τ
p
p
‖wn‖p

p < ε, ∀n. (3.15)

Since σ > 0, using (W6), (3.14) and (2.2), we can take bε ≥ L1 so large that∫
Ωn(bε,+∞)

(∇W(t, un), un)

‖un‖p dt ≤
∫

Ωn(bε,+∞)

a|wn|pW(t, un)

|un|σ
dt

≤ a‖wn‖p
∞

bσ
ε

∫
Ωn(bε,+∞)

W(t, un)dt

≤ c
bσ

ε

< ε (3.16)

for all n. It follows from (W5) that W(t, un) ≥ Cbε
aε
|un|p for t ∈ Ωn(aε, bε). Since Cbε

aε
> 0, we

have∫
Ωn(aε,bε)

|wn|pdt =
1

‖un‖p

∫
Ωn(aε,bε)

|un|pdt ≤ 1

Cbε
aε
‖un‖p

∫
Ωn(aε,bε)

W(t, un)dt ≤ c

Cbε
aε
‖un‖p

n−→ 0,

and then, using (W3),∫
Ωn(aε,bε)

|∇W(t, un)|
|un|p−1 |wn|pdt ≤ a1−p

ε max
|x|∈[aε,bε]

W(x)
∫

Ωn(aε,bε)
|wn|pdt n−→ 0. (3.17)

Therefore, a combination of (3.15)–(3.17) shows that∫
R

(∇W(t, un), un)

‖un‖p dt ≤
∫

R

|∇W(t, un)|
|un|p−1 |wn|pdt ≤ 3ε < 1 for n sufficiently large,

and consequently (3.13) holds.
Now, noting

〈I′(un), un〉/‖un‖p = o(1),

it follows that

o(1) =
∫

R
a(t)|wn|pdt−

∫
R

(∇W(t, un), un)

‖un‖p dt,

which, jointly with (3.13), shows that

lim sup
n→∞

∫
R

a(t)|wn|pdt < 1. (3.18)
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On the other hand, by (W5), we have

o(1) =
1
‖un‖2

[
I′(un)−

1
p
〈I′(un), un〉

]
=

(
1
2
− 1

p

) ∫
R
|ẇn|2dt +

1
‖un‖2

∫
R
W(t, un)dt

≥
(

1
2
− 1

p

) ∫
R
|ẇn|2dt,

which yields that ∫
R
|ẇn|2dt = o(1).

This, jointly with (3.18), produces a contradiction since ‖wn‖ = 1. Thus (un) is bounded in
E, and hence contains a subsequence, relabeled (un) which converges to some u ∈ E weakly
in E and strongly in L2. Arguing as in the latter part of the proof of Lemma 3.1, we conclude
that the (C) condition is satisfied.

Lemma 3.3. Let (V), (W1)–(W3) and (W7) be satisfied. Then I satisfies the (C) condition.

Proof. As in the proof of Lemma 3.1, it suffices to consider the case w = 0 and w 6= 0.
If w = 0, inspired by [12], we choose a sequence (sn) ⊂ R such that

I(snun) = max
s∈[0,1]

I(sun).

For any m ≥ 1 and w̄n :=
√

mwn, we have w̄n ⇀ 0 in E and w̄n → 0 in L∞. Combining this
with (V) and (3.4), we have, for sufficiently large n,∫

R
W(t, w̄n)dt ≤ ε

∫
R
|w̄n|pdt ≤ ε

a0

∫
R

a(t)|w̄n|pdt,

and then, using Lemma 2.2 (ii),

I(snun) ≥ I(w̄n)

≥
∫

R

[
1
2
|ẇn|2 +

(
1
p
− ε

a0

)
a(t)|w̄n|p

]
dt

≥ c‖w̄n‖2

≥ cm

which implies that

lim
n→∞

I(snun) = +∞ (3.19)

by the arbitrariness of m. Observing I(0) = 0 and {I(un)} is bounded, one sees that for n
large enough, sn ∈ (0, 1) and

〈I′(snun), snun〉 = sn
d
ds

∣∣∣∣
s=sn

I(sun) = 0.
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Combining this with (W7), we obtain

I(snun) = I(snun)−
1
p
〈I′(snun), snun〉

=

(
1
2
− 1

p

) ∫
R

s2
n|u̇n|2dt +

∫
R

[
1
p
(∇W(t, snun), snun)−W(t, snun)

]
dt

≤
(

1
2
− 1

p

) ∫
R
|u̇n|2dt + θ

∫
R
W(t, un)dt

≤ θ

[
I(un)−

1
p
〈I′(un), un〉

]
< +∞,

a contradiction with (3.19).
If w 6= 0, the proof follows the same lines as that of Lemma 3.1, and therefore is omitted.

We shall apply the mountain pass theorem (see [21, Theorem 2.2]) and the symmetric
mountain pass theorem (see [21, Theorem 9.12]) to prove our results. In the linking theorem,
it is usually supposed that the functional Φ satisfies the stronger Palais–Smale condition.
Nevertheless, the Cerami condition is sufficient for the deformation lemma (see [4]), and
therefore for the linking theorem to hold.

Proposition 3.4. Let E be a real Banach space and Φ ∈ C1(E, R) satisfying the Cerami condition (C).
Suppose that Φ(0) = 0 and:

(i) there exist ρ, α > 0 such that Φ|∂Bρ(0) ≥ α;

(ii) there is an e ∈ E\Bρ(0) such that Φ(e) ≤ 0.

Then Φ possesses a critical value c ≥ α.

Proposition 3.5. Let E be an infinite dimensional Banach space and Φ ∈ C1(E, R) be even, satisfy
the Cerami condition (C) and Φ(0) = 0. If E = Y

⊕
Z, where Y is finite-dimensional, and Φ satisfies:

(i) there are constants ρ, α > 0 such that Φ|∂Bρ
⋂

Z ≥ α;

(ii) for each finite dimensional subspace Ẽ ⊂ E, there exists an r = r(Ẽ) such that Φ ≤ 0 on
Ẽ\Br(0).

Then Φ possesses an unbounded sequence of critical values.

Lemma 3.6. Let (V) and (W2) be satisfied. Then there exist constants α, ρ>0 such that I(u)|‖u‖=ρ≥α.

Proof. It follows from (V), (3.4) and (2.2) that, for u ∈ E with ‖u‖ ≤ δ/τ∞,

I(u) ≥
∫

R

(
1
2
|u̇|2 + 1

p
a(t)|u|p

)
dt− ε

∫
R
|u|pdt

≥ 1
2

∫
R
|u̇|2dt +

(
1
p
− ε

a0

) ∫
R

a(t)|u|pdt.

Thus the desired result follows when ε > 0 sufficiently small.
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Lemma 3.7. Let (V) and (W2)–(W4) be satisfied. Then, for any finite dimensional subspace Ẽ ⊂ E,
there holds

I(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ.

Proof. The equivalence of the norms on the finite dimensional space Ẽ implies there exists
C0 = C0(Ẽ) > 0 such that

‖u‖µ ≥ C0‖u‖, ∀u ∈ Ẽ. (3.20)

Combining (3.6) with (W3) and (3.4), we obtain

W(t, x) ≥ c1|x|µ − c3|x|p, ∀(t, x) ∈ R×RN , (3.21)

where c3 = c1Lµ−p + ε + δ−p max|x|∈[δ,L] W(x). Consequently, using (3.21), (3.20) and (2.2), we
obtain,

I(u) ≤ 1
2
‖u‖2 +

1
p
‖u‖p −

∫
R

W(t, u)dt

≤ 1
2
‖u‖2 +

1
p
‖u‖p − c1‖u‖

µ
µ + c3‖u‖p

p

≤ 1
2
‖u‖2 +

(
1
p
+ c3τ

p
p

)
‖u‖p − c1Cµ

0 ‖u‖
µ

→ −∞ as ‖u‖ → ∞.

Lemma 3.8. Let (V) and (W1) be satisfied and

W(t, x) ≥ 0, ∀(t, x) ∈ R×RN . (3.22)

Then, for any finite dimensional subspace Ẽ ⊂ E, there holds

I(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ.

Proof. We claim that ∫
R

W(t, u)
‖u‖p dt→ +∞ ‖u‖ → ∞, u ∈ Ẽ. (3.23)

If (3.23) is true, then there is L2 > 0 such that∫
R

W(t, u)dt ≥ ‖u‖p, ‖u‖ ≥ L2,

so that

I(u) ≤ 1
2
‖u‖2 +

1
p
‖u‖p −

∫
R

W(t, u)dt ≤ 1
2
‖u‖2 − p− 1

p
‖u‖p → −∞ as ‖u‖ → ∞.

Now we turn to showing that (3.23) holds. By contradiction, we assume that for some (un) ⊂ Ẽ
with ‖un‖ → ∞, there is c4 > 0 such that

sup
n

∫
R

W(t, un)

‖un‖p dt ≤ c4. (3.24)
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Taking vn = un/‖un‖, then ‖vn‖ = 1. Noting dim Ẽ < +∞, there exists v0 ∈ Ẽ\ {0} such that

vn → v0 in Ẽ and vn(t)→ v0(t) a.e. t ∈ R,

after passing to a subsequence. Let

Ω1 = {t ∈ R : W(t, x)/|x|p → +∞ as |x| → ∞}

and Ω2 = {t ∈ R : v0(t) 6= 0}. We have Ω1
⋂

Ω2 6= ∅, and for t ∈ Ω1
⋂

Ω2,

W(t, un(t))
|un(t)|p

|vn(t)|p → +∞ as n→ ∞.

Consequently, using (3.22) and Fatou’s lemma (see [34]),∫
R

W(t, un)

‖un‖p dt =
(∫

Ω1
⋂

Ω2

+
∫

R\(Ω1
⋂

Ω2)

)
W(t, un)

‖un‖p dt ≥
∫

Ω1
⋂

Ω2

W(t, un)

|un|p
|wn|pdt n−→ +∞,

a contradiction with (3.24).

Particularly, we have the following results.

Lemma 3.9. Let (V) and (W2)–(W4) be satisfied. Then there exists e ∈ E with ‖e‖ > ρ such that
I(e) < 0.

Lemma 3.10. Let (V), (W1) and (3.22) be satisfied. Then there exists e ∈ E with ‖e‖ > ρ such that
I(e) < 0.

Proof of Theorem 1.5. (Existence) Lemma 3.1 shows that I satisfies the Cerami condition. It
follows from Lemmas 3.6 and 3.9 that the mountain pass geometry is satisfied. Consequently,
in virtue of Proposition 3.4, I admits at least one nontrivial critical point.

(Multiplicity) Suppose that W is even in x, then I is even, I(0) = 0, and satisfies the
conditions of Proposition 3.5 by Lemmas 3.1, 3.6 and 3.7. Therefore, I has an unbounded
sequence of critical values ck = I(uk). Obviously,∫

R
(|u̇k|2 + a(t)|uk|p)dt =

∫
R
(∇W(t, uk), uk)dt, ∀k ∈N. (3.25)

Hence we obtain, by (W3), (3.4) and (2.1),∣∣∣∣∫|uk |≤L
W(t, uk)dt

∣∣∣∣ ≤ c
∫

R
|uk|2dt ≤ c

(∫
R

a(t)|uk|pdt
)2/p

,

and then, using (3.25) and (3.7),

ck = I(uk)

=
1
2

∫
R
|u̇k|2dt +

1
p

∫
R

a(t)|uk|pdt−
∫
|uk |≥L

W(t, uk)dt−
∫
|uk |≤L

W(t, uk)dt

≤ 1
2

∫
R
|u̇k|2dt +

1
p

∫
R

a(t)|uk|pdt + c
(∫

R
a(t)|uk|pdt

)2/p

.

Since ck → +∞ as k→ ∞, it follows that (uk) is unbounded in E.

Proof of Theorem 1.7. Since (W5), jointly with (W2), implies (3.22) (see Remark 1.12), the proof
follows the same lines as that of Theorem 1.5 with Lemmas 3.1, 3.7 and 3.9 replaced by
Lemmas 3.2, 3.8 and 3.10, respectively.

Proof of Theorem 1.10. Because (W7), together with (W2), yields (3.22) (see Remark 1.12), the
proof follows the same lines as that of Theorem 1.5 with Lemmas 3.1, 3.7 and 3.9 replaced by
Lemmas 3.3, 3.8 and 3.10, respectively.



18 Y. Ye

4 The subquadratic case

Inspired by [28], we shall extend W to an appropriate W̃ ∈ C1(R×RN , R) and introduce the
following Hamiltonian systems

ü− a(t)|u|p−2u +∇W̃(t, u) = 0, ∀t ∈ R. (4.1)

Then, applying variational methods, we show that system (4.1) possesses a sequence of ho-
moclinic solutions, which converges to zero in L∞ norm, and consequently, obtain infinitely
many solutions for the original problem (HS).

Let χ ∈ C∞(R, [0, 1]) be a function satisfying

χ(s) =

{
0 if s ≤ δ/4,

1 if s ≥ δ/2,
(4.2)

and 0 < χ′(s) ≤ 8/δ for t ∈ (δ/4, δ/2). We define a function W̃ : R×RN → R by:

W̃(t, x) = (1− χ(|x|))W(t, x) + χ(|x|)|x|2.

Then the following lemma holds.

Lemma 4.1. Assume that (W8)–(W10) hold. Then W̃ possesses the following properties:

(C1) W̃ ∈ C1(R×RN , R), W̃(t,−x) = W̃(t, x) for all (t, x) ∈ R×RN .

(C2) W̃(t, 0) ≡ 0, and there exist constants a1 > 0, γ ∈ (1, 2) and a function b1 ∈ L
2

2−γ (R, R+)

such that

|∇W̃(t, x)| ≤ a1|x|+ b1(t)|x|γ−1, ∀(t, x) ∈ R×RN .

(C3) There exist t0 ∈ R, two sequences {δn}, {Mn} and constants a2, δ, d > 0 such that δn > 0,
Mn > 0 and

lim
n→∞

δn = 0, lim
n→∞

Mn = +∞,

|x|−2W̃(t, x) ≥ Mn for |t− t0| ≤ d and |x| = δn,

|x|−2W̃(t, x) ≥ −a2 for |t− t0| ≤ d and |x| ≤ δ.

Proof. By definition, it is clear that

W̃(t, x) = W(t, x), ∀t ∈ R, |x| ≤ δ/4,

and
W̃(t, x) = |x|2, ∀t ∈ R, |x| ≥ δ/2.

Then W̃(t, 0) = W(t, 0) ≡ 0 and W̃ satisfies (C3) by (W10). From (W9), we get

|W(t, x)| ≤ a1

2
|x|2 + 1

γ
b1(t)|x|γ, ∀t ∈ R, |x| ≤ δ. (4.3)

Note that

∇W̃(t, x) = (1− χ(|x|))∇W(t, x) + χ′(|x|)(|x| −W(t, x)/|x|)x + 2χ(|x|)x,

which, together with (4.3), (4.2) and (W9), implies that

|∇W̃(t, x)| ≤ c(a1|x|+ b1(t)|x|γ−1), ∀(t, x) ∈ R×RN ,

i.e., (C2) holds.
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Now we define the variational functional Φ associated to system (4.1) by:

Φ(u) =
∫

R

(
1
2
|u̇|2 + 1

p
a(t)|u|p

)
dt− ψ(u), where ψ(u) =

∫
R

W̃(t, u)dt.

It follows from (C2) that

W̃(t, x) ≤ a1

2
|x|2 + 1

γ
b1(t)|x|γ, ∀(t, x) ∈ R×RN , (4.4)

and then, using the Hölder inequality,∫
R

W̃(t, u)dt ≤ c
∫

R
(|u|2 + b1(t)|u|γ)dt ≤ c

(
‖u‖2

2 + ‖b1‖ 2
2−γ
‖u‖γ

2

)
< +∞.

Thus Φ is well defined. In addition, we have the following lemma.

Lemma 4.2. Let (V) and (C2) be satisfied. Then Φ ∈ C1(E, R) and

〈Φ′(u), v〉 =
∫

R
[(u̇, v̇) + a(t)|u|p−2(u, v)− (∇W̃(t, u), v)]dt

for all u, v ∈ E. The critical point u of Φ is a homoclinic orbit of problem (4.1) with u(±∞) = 0.

Proof. For Φ ∈ C1(E, R), it suffices to show it for the functional ψ(u) =
∫

R
W̃(t, u)dt. It follows

from (C2) and the Young inequality that, for u, v ∈ E and s ∈ [0, 1],

|(∇W̃(t, u + sv), v)| ≤ a1|u + sv||v|+ b1(t)|u + sv|γ−1|v|

≤ c
(
|u||v|+ |v|2 + b1(t)|u|γ−1|v|+ b1(t)|v|γ

)
≤ c

[
|u|2 + |v|2 + b1(t)2/(2−γ) +

(
|u|γ−1|v|

)2/γ
+ |v|2

]
≤ c

(
|u|2 + |v|2 + b1(t)2/(2−γ)

)
∈ L1,

which implies that

〈ψ′(u), v〉 = lim
s→0

ψ(u + sv)− ψ(u)
s

= lim
s→0

∫
R

W̃(t, u + sv)− W̃(t, u)
s

dt

= lim
s→0

∫
R
(∇W̃(t, u + θsv), v)dt

=
∫

R
(∇W̃(t, u), v)dt

by the mean value theorem and Lebesgue dominated convergence theorem.
To show the continuity of ψ′(u) in u, we suppose that un, u ∈ E and un

n−→ u in E.
Lemma 2.1 implies that un → u in L2. According to [29, Lemma A.1], there exists a subse-
quence, still denote by (un), and g ∈ L2 such that un(t)→ u(t) for a.e. t ∈ R and

|un|, |u| ≤ g(t), ∀n ∈N.
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Combining this with (C2) and the Young inequality, we obtain

|∇W̃(t, un)−∇W̃(t, u)|2 ≤ c[(|un|+ |u|) + b1(t)(|un|γ−1 + |u|γ−1)]2

≤ c[(|un|2 + |u|2) + b2
1(t)(|un|2(γ−1) + |u|2(γ−1))]

≤ c
[
(|un|2 + |u|2) + (2− γ)b1(t)2/(2−γ) + (γ− 1)(|un|2 + |u|2)

]
≤ c

(
g2(t) + b1(t)2/(2−γ)

)
∈ L1,

which yields that ∫
R
|∇W̃(t, un)−∇W̃(t, u)|2dt→ 0 as n→ ∞

by the dominated convergence theorem. Therefore,

‖ψ′(un)− ψ′(u)‖E∗ = sup
‖v‖=1

∣∣∣∣∫
R
(∇W̃(t, un)−∇W̃(t, u), v)dt

∣∣∣∣
≤ sup
‖v‖=1

(∫
R
|∇W̃(t, un)−∇W̃(t, u)|2dt

)1/2

‖v‖2

= o(1).

This completes the proof.

We shall make use of the new version of symmetric mountain pass lemma of Kajikiya (see
[13]) to prove Theorem 1.13. Let E be a Banach space and

Γ := {A ⊂ E\ {0} : A is closed and symmetric with respect to the origin} .

For A ∈ Γ, the genus γ(A) of A is defined as being the least positive integer k such that there
is an odd mapping h ∈ C(A, Rk)\ {0}. If k does not exist, we set γ(A) = +∞. Furthermore,
by definition, γ(∅) = 0.

In the sequel, we only recall the properties of the genus that will be need throughout the
paper. See [21] for more information on this subject.

Proposition 4.3. Let A, B ∈ Γ, then (i)–(iii) below hold.

(i) There is an odd continuous mapping from A to B, then γ(A) ≤ γ(B).

(ii) If A ⊂ B, then γ(A) ≤ γ(B).

(iii) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk–Ulam theorem.

Proposition 4.4. Let E be an infinite dimensional Banach space and Φ ∈ C1(E, R) be even, Φ(0) = 0
and satisfies the following conditions:

(i) Φ is bounded from below and satisfies the Palais–Smale condition (PS), i.e., (un) ⊂ E has a
convergent subsequence whenever {Φ(un)} is bounded and Φ′(un)→ 0 as n→ ∞.

(ii) For each k ∈N, there exists an Ak ∈ Γ such that γ(Ak) = k and supu∈Ak
Φ(u) < 0.

Then either (1) or (2) holds.

(1) There exists a sequence {uk} such that Φ′(uk) = 0, Φ(uk) < 0 and {uk} converges to zero.



Homoclinic solutions for a second order Hamiltonian systems 21

(2) There exist two sequences {uk} and {vk} such that Φ′(uk) = 0, Φ(uk) = 0, uk 6= 0,
limk→∞ uk = 0, Φ′(vk) = 0, Φ(vk) < 0, limk→∞ Φ(vk) = 0 and {vk} converges to a non-zero
limit.

Remark 4.5. From Proposition 4.4, we deduce a sequence of critical points {uk} such that
Φ(uk) ≤ 0, uk 6= 0 and limk→∞ uk = 0.

Proof of Theorem 1.13. According to Lemma 4.2 and the evenness of W̃(t, ·), we know that
Φ ∈ C1(E, R) and Φ(−u) = Φ(u). It remains to verify conditions (i) and (ii) of Proposition 4.4.

Verification of (i). By (4.4), (2.1) and Hölder’s inequality, we obtain

Φ(u) ≥
∫

R

(
1
2
|u̇|2 + 1

p
a(t)|u|p

)
dt− c

∫
R
(|u|2 + b1(t)|u|γ)dt

≥ c‖u‖p
2 − c

(
‖u‖2

2 + ‖b1‖ 2
2−γ
‖u‖γ

2

)
(4.5)

for all u ∈ E, which implies that Φ is bounded from below.
Let (un) ⊂ E be a (PS)-sequence of Φ, i.e., {Φ(un)} is bounded and Φ′(un)→ 0 as n→ ∞.

Since (4.5) implies that

c ≥ Φ(un) ≥ c‖un‖p
2 − c

(
‖un‖2

2 + ‖b1‖ 2
2−γ
‖un‖γ

2

)
,

it follows that {‖un‖2}n and
{ 1

2‖u̇n‖2
2 +

1
p‖un‖p

a,p
}

n are bounded. Thus (un) is bounded in E.
Up to a subsequence, we assume that un ⇀ u in E, un → u in L2 and un(t)→ u(t) a.e. t ∈ R.
Hence we obtain, by (C2) and the Hölder inequality,∫

R
(∇W̃(t, un)−∇W̃(t, u), un − u)dt

≤ c
∫

R

[
(|un|+ |u|)|un − u|+ b1(t)(|un|γ−1 + |u|γ−1)|un − u|

]
dt

≤ c(‖un‖2 + ‖u‖2)‖un − u‖2 + c
(∫

R
|b1(t)|

2
2−γ dt

) 2−γ
2
(∫

R
|un|

2(γ−1)
γ |un − u|

2
γ dt
) γ

2

+ c
(∫

R
|b1(t)|

2
2−γ dt

) 2−γ
2
(∫

R
|u|

2(γ−1)
γ |un − u|

2
γ dt
) γ

2

≤ o(1) + c‖b1‖ 2
2−γ

(‖un‖γ−1
2 + ‖u‖γ−1

2 )‖un − u‖2

= o(1). (4.6)

Observe that

o(1) = 〈Φ′(un)−Φ′(u), un − u〉

= ‖u̇n − u̇‖2
2 +

∫
R

a(t)[|un|p−2un − |u|p−2u](un − u)dt

−
∫

R
(∇W̃(t, un)−∇W̃(t, u), un − u)dt.

Consequently, using (4.6) and (3.12), we conclude that un → u in E.

Verification of (ii). We prove that for arbitrary k ∈ N there is an Ak ∈ Γ such that γ(Ak) = k
and supu∈Ak

Φ(u) < 0. We adapt an argument in [13]. For simplicity, we assume that t0 = 0 in
(C3). Divide [−d, d] equally into k closed subintervals and denote them by Fi with 1 ≤ i ≤ k.
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Setting d1 = 2d/k, then |Fi| = d1, where |Fi| is the Lebesgue measure of the set Fi. For
1 ≤ i ≤ k, set ti be the center of Fi and Ji be the closed interval centered at ti with |Ji| = d1/2.
Choose a function η ∈ C∞

0 (R, RN) such that |η(t)| = 1 for t ∈ [−d1/4, d1/4], η(t) = 0 for
t ∈ R\[−d1/2, d1/2] and |η(t)| ≤ 1 for t ∈ R. Define

ηi(t) = η(t− ti), t ∈ R, 1 ≤ i ≤ k.

It follows that

|ηi(t)| ≤ 1 (t ∈ R), |ηi(t)| = 1 (t ∈ Ji),

and

supp ηi ⊂ Fi, supp ηi
⋂

supp ηj = ∅ (i 6= j). (4.7)

Let

Vk =

{
(s1, s2, . . . , sk) ∈ Rk : max

1≤i≤k
|si| = 1

}
(4.8)

and

Wk =

{
k

∑
i=1

siηi(t) : (s1, s2, . . . , sk) ∈ Vk

}
.

Noticing Vk is homeomorphic to the unit sphere in Rk by an odd mapping, one has γ(Vk) = k.
Furthermore, γ(Wk) = γ(Vk) = k because the mapping (s1, s2, . . . , sk) 7→ ∑k

i=1 siηi(t) is odd
and homeomorphic. Since Wk is compact, there exists Ck > 0 such that

‖u‖ ≤ Ck, ∀u ∈Wk. (4.9)

For u = ∑k
i=1 siηi(t) ∈Wk and the sequence {δn} given in (C3), by (4.8) and (4.7), we obtain

∫
R

W̃

(
t, δn

k

∑
i=1

siηi(t)

)
dt =

k

∑
i=1

∫
Fi

W̃(t, δnsiηi(t))dt

=
∫

Ji0

W̃(t, δnsi0 ηi0(t))dt +
∫

Fi0\Ji0

W̃(t, δnsi0 ηi0(t))dt

+ ∑
i 6=i0

∫
Fi

W̃(t, δnsiηi(t))dt, (4.10)

where i0 ∈ [1, k] satisfying |si0 | = 1. It follows from (C3) and the fact |δnsi0 ηi0(t)| = δn for
t ∈ Ji0 that

∫
Fi0\Ji0

W̃(t, δnsi0 ηi0(t))dt + ∑
i 6=i0

∫
Fi

W̃(t, δnsiηi(t))dt ≥ −a2δ2
n

∣∣∣∣∣ k⋃
i=1

Fi

∣∣∣∣∣
= −a2δ2

n(2d), (4.11)

and ∫
Ji0

W̃(t, δnsi0 ηi0(t))dt ≥ Mnδ2
n |Ji0 | =

d1

2
Mnδ2

n. (4.12)
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Hence, using (4.9)–(4.12), we obtain

Φ(δnu) ≤ 1
2
‖δnu‖2 +

1
p
‖δnu‖p −

∫
R

W̃

(
t, δn

k

∑
i=1

siηi(t)

)
dt

≤ δ2
n

(
C2

k
2

+ δ
p−2
n

Cp
k

p
+ 2da2 −

d1

2
Mn

)
.

As δn → 0+ and Mn → +∞ (n → ∞), we choose n0 > 0 large enough such that the right side
of the last inequality is negative. Now, letting

Ak = δn0Wk,

We have
γ(Ak) = γ(Wk) = k and sup

u∈Ak

Φ(u) < 0.

Consequently, by Proposition 4.4, Φ has infinitely many nontrivial solutions (uk) such that
uk → 0 in E as k → ∞. By (2.2), uk → 0 in L∞. Hence, for k large, they are homoclinic
solutions of (HS). This completes the proof.
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