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Abstract. In this work, we are interested in a nonlinear PDE of the form: −∆u =

K(x)u
n+2
n−2 , u > 0 on Ω and u = 0 on ∂Ω, where n ≥ 3 and Ω is a regular bounded

domain of Rn. Following the results of [K. Sharaf, Appl. Anal. 96(2017), No. 9, 1466–
1482] and [K. Sharaf, On an elliptic boundary value problem with critical exponent,
Turk. J. Math., to appear], we provide a full description of the loss of compactness of
the problem and we establish a general index account formula of existence result, when
the flatness order of the function K at any of its critical points lies in (1, ∞).

Keywords: nonlinear PDE, variational problem, critical points at infinity.

2010 Mathematics Subject Classification: 35J60, 35J65.

1 Introduction and main results

In this work, we consider the existence of smooth solutions of
−∆u = K(x) u

n+2
n−2 ,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.1)

where n ≥ 3, Ω is a regular bounded domain of Rn and K is a given function on Ω.
The original interest of such problem grew out of prescribing scalar curvature equations,

see for example [1, 3, 7–9, 11, 12, 15, 16, 22] and the references therein.
Equation (1.1) can be expressed as a variational problem in H1

0(Ω). However, the varia-
tional structure presents a loss of compactness since the exponent n+2

n−2 is critical and H1
0(Ω) ↪→

L
2n

n−2 (Ω) is not compact.
The first contributions to (1.1) concern the case K = 1, where Bahri-Coron and Pohozaev

proved that the resolution of (1.1) depends on the topology of the domain Ω, see [4] and [17].
For K 6= 1, many conditions on K were provided to ensure existence of solutions of (1.1), see
for example [6, 13, 14, 18–21].

Recently in [19] and [21], we studied problem (1.1) and provided existence and compact-
ness results under the following four conditions:
BEmail: kh-sharaf@yahoo.com
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(A) ∂K
∂ν (x) < 0, ∀x ∈ ∂Ω.

Here ν is the unit outward normal vector on ∂Ω.

( f )β K is a C1-positive function such that at any critical point y of K, there exists a real number
β = β(y) satisfying the following expansion:

K(x) = K(y) +
n

∑
k=1

bk|(x− y)k|β + o(|x− y|β),

for all x ∈ B(y, ρ0) where ρ0 is a positive fixed constant, bk = bk(y) ∈ R \ {0}, ∀k =

1 . . . , n, and 
−n− 2

n
c1

K(y)

n

∑
k=1

bk(y) + c2
n− 2

2
H(y, y) 6= 0, ∀y ∈ Kn−2,

n

∑
k=1

bk(y) 6= 0, ∀y ∈ K<n−2.

Here

Kn−2 := {y ∈ Ω,∇K(y) = 0 and β(y) = n− 2},
K<n−2 := {y ∈ Ω,∇K(y) = 0 and β(y) < n− 2},

c1 =
∫

Rn

|z1|n−2

(1 + |z|2)n dz, c2 =
∫

Rn

dz

(1 + |z|2) n+2
2

,

and H(·, ·) is the regular part of the Green function G(·, ·) of (−∆) under the zero-
Dirichlet boundary condition. Let us denote also

K+
n−2 :=

{
y ∈ Kn−2, −n− 2

n
c1

K(y)

n

∑
k=1

bk(y) + c2
n− 2

2
H(y, y) > 0

}
,

K>n−2 := {y ∈ Ω,∇K(y) = 0 and β(y) > n− 2}.

For any τp := (y`1 , . . . , y`p) ∈ (K+
n−2∪K>n−2)

p, p ≥ 1, such that y`i 6= y`j , ∀1 ≤ i 6= j ≤ p,
we set the matrix M(τp) = (mij)1≤i,j≤p defined by

mii = m(y`i , y`i)

=


− 1

K(y`i)
n−2

2

(
n− 2

n
c1

K(y`i)

n

∑
k=1

bk(y`i)− c2
n− 2

2
H(y`i , y`i)

)
if β(y`i) = n− 2,

n− 2
2

c2

K(y`i)
n−2

2
H(y`i , y`i) if β(y`i) > n− 2,

∀i = 1, . . . , p and

mij = m(y`i , y`j) = −
n− 2

2
c2

G(y`i , y`j)(
K(y`i)K(y`j)

) n−2
4

, for 1 ≤ i 6= j ≤ p.

(B) Assume that the least eigenvalue ρ(τp) of M(τp) is not zero.
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The last assumption is

(C)


β(y) ∈ (1, n− 2] ∀y s.t.∇K(y) = 0,

or

β(y) ∈ [n− 2, ∞) ∀y s.t.∇K(y) = 0.

Thus, it becomes of interest to study the equation (1.1) in the mixed case situation; that is when
there exists some critical points y of K having β(y) < n− 2 and other having β(y) ≥ n− 2
and therefore get global compactness and existence results under ( f )β-condition for β varies
in (1, ∞). Define

C∞
<n−2 :=

{
(y`1 , . . . , y`p)∈K

p
<n−2, p ≥ 1, y`i 6= y`j , ∀i 6= j and −

n

∑
k=1

bk(y`i) > 0, ∀i = 1, . . . , p

}
,

C∞
≥n−2 :=

{
(y`1 , . . . , y`p) ∈ (K+

n−2 ∪K>n−2)
p, p ≥ 1, y`i 6= y`j , ∀i 6= j and ρ(y`1 , . . . , y`p) > 0

}
.

The first result of this paper describes the loss of compactness and the concentration phe-
nomenon of the problem (1.1).

For a ∈ Ω and λ � 1, let Pδ(a,λ) be the almost solution of the Yamabe-type problem
defined in the next section.

Theorem 1.1. Assume that (1.1) has no solution. Under conditions (A), (B) and ( f )β, β > 1, the
critical points at infinity of the associated variational problem (see definition (2.1)) are:

(y`1 , . . . , y`p)∞ :=
p

∑
j=1

1

K(y`j)
n−2

2
Pδ(y`j

,∞),

where (y`1 , . . . , y`p) ∈ C∞
<n−2 ∪ C∞

≥n−2 ∪ C∞
<n−2 × C∞

≥n−2. The index of (y`1 , . . . , y`p)∞ is
i(y`1 , . . . , y`p)∞ = p− 1 + ∑

p
i=1 n− ĩ(y`i), where ĩ(y) = ]{bk(y), 1 ≤ k ≤ n, s. t. bk(y) < 0}.

The above characterization allow us to derive a global index formula of existence.

Theorem 1.2. Let Ω be a regular bounded domain of Rn, n ≥ 3 and let K : Ω → R be a given
function satisfying (A), (B) and ( f )β, β ∈ (1, ∞). If

∑
(y`1

,...,y`p )∈C∞
<n−2∪C∞

≥n−2∪(C∞
<n−2×C∞

≥n−2)

(−1)i(y`1
,...,y`p )∞ 6= 1,

then (1.1) has a solution.

Remark 1.3. For an explicit example of function K satisfying the hypotheses of Theorem 1.2,
let Ω be the unit ball Bn of Rn, n ≥ 4 and let β be a real larger than n− 2. For any X ∈ Rn,
we define

f1(X) = 1−
n

∑
k=1
|xk|β and f2(x) =

n

∑
k=1
|xk|

3
2 .

For any integer k0 ≥ 2, we denote yk0 =
( 1

k0
, 0, . . . , 0

)
. Let θ be the cut-off function defined by:

θ(t) = 1 if t <
1

4k0
, θ(t) = 0 if t >

1
2k0

and θ′(t) < 0 if
1

4k0
< t <

1
2k0

.
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Now let K : Bn → R, such that ∀X ∈ Bn:

K(X) = θ(‖X− yk0‖) f1(X− yk0) + θ(‖X + yk0‖) f1(X + yk0)

+ θ(‖X‖) f2(X)−
(

1− θ(‖X− yk0‖)− θ(‖X + yk0‖)− θ(‖X‖)
)
‖X‖2.

Observe that K admits three critical points yk0 ,−yk0 and 0Rn . By construction K satisfies ( f )β

condition near its critical points with

β(yk0) = β(−yk0) = β > n− 2 and β(0Rn) =
3
2
< n− 2.

According to the result of Theorem 1.1, 0Rn does not give a critical point at infinity since
−∑n

k=1 bk(0Rn) = −n < 0. However yk0 and −yk0 correspond to two critical points at infinity
(yk0)∞ and (−yk0)∞ respectively. In addition, the pair (yk0 ,−yk0) corresponds to a critical point
at infinity if and only if ρ(yk0 ,−yk0) > 0 where ρ is the least eigenvalue of the matrix

M =
n− 2

2

(
H(yk0 , yk0) −G(yk0 ,−yk0)

−G(yk0 ,−yk0) H(−yk0 ,−yk0)

)
It is easy to see that ρ(yk0 ,−yk0) > 0 if and only if

H(yk0 , yk0)H(−yk0 ,−yk0)− G2(yk0 ,−yk0) > 0,

since Tr(M) > 0. We know from [5, Remark 3, p. 72] , that G(X, Y) → −∞ if |X − Y| → 0.
Thus for k0 large enough, ρ(yk0 ,−yk0) < 0. Therefore, the only critical points at infinity in our
statement are,

(yk0)∞ and (−yk0)∞ with ĩ(yk0) = ĩ(−yk0) = n.

It follows that the function K satisfies the index formula of Theorem 1.2 and the assump-
tion (B). Concerning the assumption (A), observe that outside B

(
yk0 , 1

2k0

)
∪ B

(
− yk0 , 1

2k0

)
∪

B
(
0Rn , 1

2k0

)
, the function K is equals to−‖X‖2. Therefore, DK(X) = −2X and on the boundary

of Bn, νX = X and hence
∂K
∂ν

(X) = 〈Dk(X), νX〉 = −2.

Our argument follows the critical points at infinity theory of A. Bahri [2]. In the next
section, we will state the general framework of the variational structure of (1.1). After that we
will characterize the critical points at infinity and prove Theorems 1.1 and 1.2.

2 General framework

Equation (1.1) is equivalent to finding the critical points of the following functional

J(u) =

∫
Ω |∇u|2(∫

Ω K(x) u
2n

n−2 dx
) n−2

n
, u ∈ Σ+.

Here

Σ =

{
u ∈ H0

1(Ω) , s.t. ‖u‖H0
1 (Ω) =

(∫
Ω
|∇u(x)|2dx

) 1
2

= 1

}
,
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and
Σ+ =

{
u ∈ Σ , u > 0

}
.

It is known that J fails the Palais–Smale condition. The sequences which violate the (P. S)
condition has been analyzed as follows. For a ∈ Ω and λ > 0, define

δa,λ(x) = c0

(
λ

1 + λ2|x− a|2

) n−2
2

, (2.1)

where c0 is a fixed positive constant. The family δa,λ, a ∈ Ω and λ > 0 are the only solutions
of {

−∆u = u
n+2
n−2 ,

u > 0 in Rn.
(2.2)

Define Pδa,λ on Ω be the unique solution of
−∆u = δ

n+2
n−2
a,λ

u > 0 in Ω,

u = 0 on ∂Ω.

(2.3)

By the maximum principal and regularity arguments, Pδa,λ is smooth and positive on Ω.
For ε > 0 and p ∈ N∗, let V(p, ε) be the set of all functions u ∈ Σ+ such that there exists
(a1, . . . , ap) ∈ Ωp, λ1, . . . , λp > ε−1 and α1, . . . , αp > 0 satisfying∣∣∣∣∣u− p

∑
i=1

αiPδai, λi

∣∣∣∣∣ < ε,

with
∣∣J(u) n

n−2 α
4

n−2
i K(ai)− 1

∣∣ < ε and ε ij =
( λi

λj
+

λj

λi
+ λiλj|ai − aj|2

)−(n−2)
2 < ε ∀i 6= j.

For any sequence (uk)k in Σ+ failing the (P.S) condition, there exists an extracted subse-
quence (uk`)` such that uk` ∈ V(p, εk`), ∀` ∈N. Here p ∈N∗ and εk` → 0 when `→ +∞. See
[4] and [23].

The following parametrization of V(p, ε) was given in [4]. For any u ∈ V(p, ε), u can be
written as

p

∑
i=1

ᾱiPδāi ,λ̄i
+ v,

where v ∈ H1
0(Ω) and satisfies

(V0) 〈v, ψ〉 = 0 for ψ ∈
{

Pδai ,λi ,
∂Pδai ,λi

∂λi
,

∂Pδai ,λi

∂ai
, i = 1, . . . , p

}
,

〈·, ·〉 denotes the inner product on H1
0(Ω) associated to the norm ‖ · ‖, and ᾱi, āi, λ̄i, i = 1, . . . , p

are the unique solution of

min
∑

p
i=1 αi Pδai ,λi∈V(p,ε)

∥∥∥∥∥u−
p

∑
i=1

αiPδai ,λi

∥∥∥∥∥ .

In the following, we show that the v-part of u is negligible with respect to the concentration
phenomenon. See [2, 4].
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There is a C1-map which to each (αi, ai, λi) such that ∑
p
i=1 αiPδai ,λi belongs to V(p, ε) asso-

ciates v = v(αi, ai, λi) such that v is the unique solution of the following minimization problem

min

{
J

(
p

∑
i=1

αiPδai ,λi + v

)
, v ∈ H1

0(Ω) and satisfies (V0)

}
.

Moreover, there exists a change of variables v− v→ V such that

J

(
p

∑
i=1

αiPδai ,λi + v

)
= J

(
p

∑
i=1

αiPδai ,λi + v

)
+ ‖V‖2.

The following definition is extracted from [2].

Definition 2.1 ([2]). A critical point at infinity of J is a limit of a non-compact flow line u(s)
of the gradient vector field (−∂J). By the above argument, u(s) can be written as:

u(s) =
p

∑
i=1

αi(s)Pδai(s), λi(s) + v(s).

Denoting by yi = lims→+∞ ai(s) and αi = lims→+∞ αi(s), we then denote by

p

∑
i=1

αiPδyi ,∞ or (y1, . . . , yp)∞

such a critical point at infinity.

3 Critical points at infinity

In this section we prove Theorems 1.1 and 1.2. We start by the following result which describes
the concentration phenomenon of the variational structure associated to the problem (1.1).

Theorem 3.1. Under the assumptions (A), (B) and ( f )β, β > 1. There exists a decreasing bounded
pseudo-gradient W in V(p, ε), p ≥ 1, satisfying the following:

There exists c > 0 such that for any u = ∑
p
i=1 αiPδai, λi

∈ V(p, ε) we have

(i) 〈∂J(u), W(u)〉 ≤ −c

(
p

∑
i=1

(
1

λ
min(n,β)
i

+
|∇K(ai)|

λi

)
+ ∑

j 6=i
ε ij

)
,

(ii)
〈

∂J(u + v̄), W(u) +
∂v̄

∂(αi, ai, λi)
(W(u))

〉
≤ −c

(
p

∑
i=1

(
1

λ
min(n,β)
i

+
|∇K(ai)|

λi

)
+ ∑

j 6=i
ε ij

)
.

Moreover, the only case where λi(t), i = 1, . . . , p, tends to ∞ is when ai(t) goes to y`i , ∀i = 1, . . . , p
such that (y`1 , . . . , y`p) ∈ C∞

<n−2 ∪ C∞
≥n−2 ∪ (C∞

<n−2 × C∞
≥n−2).

Here (C∞
<n−2 and C∞

≥n−2) are defined in the first section.

Before presenting the proof of Theorem 3.1, we recall the following result which describes
the concentration phenomena of the problem when β ∈ (1, n− 2), see [19, Section 3].

Theorem 3.2 ([19]). Under the assumptions of Theorem 3.1 with β ∈]1, n− 2[, there exists a decreas-
ing bounded pseudo-gradient W1 satisfying (i) of Theorem 3.1, for any u = ∑

p
i=1 αiPδai ,λi ∈ V(p, ε)

and the only case where λi(t) goes to +∞, i = 1, . . . , p is when ai(t) goes to y`i with (y`1 , . . . , y`p) ∈
C∞
<n−2.
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Notice that the case of β = n− 2 was handled also in [19].
Recently we proved the following result which describes the concentration phenomena in

the case where β ∈ [n− 2,+∞).

Theorem 3.3 ([21]). Under the assumptions of Theorem 3.1 with β ∈ [n − 2, ∞), there exists a
decreasing bounded pseudo-gradient W2 satisfying (i) of Theorem 3.1, for any u = ∑

p
i=1 αiPδai, λi

∈
V(p, ε) and the only case, where λi(t), i = 1, . . . , p goes to +∞ is when ai(t) goes to y`i with
(y`1 , . . . , y`p) ∈ C∞

≥n−2.

The complete construction of the required pseudo-gradient W2 in V(p, ε) was given in [21].
We provide in the next the construction of W2 in a specific region Rδ

>n−2(p, ε) where

Rδ
>n−2(p, ε) :=

{
u =

p

∑
i=1

αiPδ
(ai , λi)

∈ V(p, ε), ai ∈ B(y`i , ρ0)

y`i ∈ K>n−2, λn−2
i |ai − y`i |

β(y`i
) < δ, ∀i = 1, . . . , p and y`i 6= y`j , ∀i 6= j

}
.

Here δ is a small positive constant. Let u = ∑
p
i=1 αiPδ

(ai , λi)
∈ Rδ

>n−2(p, ε).

Case 1: If ρ(y`1 , . . . , y`p) > 0. We use the expansion (3.1) below. Since J(u)
n

n−2 α
4

n−2
j K(aj) =

1 + o(1), ∀j = 1, . . . , p, (3.1) becomes〈
∂J(u), αiλi

∂Pδ(ai ,λi)

∂λi

〉
= − 2c2 J(u)

2−n
2

[
∑
i 6=j

1

(K(ai)K(aj))
n−2

4

(
λi

∂ε ij

∂λj
+

n− 2
2

H(ai, aj)

(λiλj)
n−2

2

)

+
n− 2

2
1

K(ai)
n−2

2

H(y`i , y`i)

λn−2
i

]

+ O
(
|ai − y`i |

β(y`i
)
)
+ o

(
∑
k 6=j

(
ε jk +

H(ai, ak)

(λiλk)
n−2

2

))
.

Observe that as δ small we have,

|ai − y`i |
β(y`i

) = o

(
1

λn−2
i

)
.

Moreover, since |ai − aj| ≥ ρ0, ∀i 6= j, we have

λi
∂ε ij

∂λi
= −n− 2

2
1

(λiλj|ai − aj|2)
n−2

2
(1 + o(1)).

Therefore ,

λi
∂ε ij

∂λi
+

n− 2
2

H(ai, aj)

(λiλj)
n−2

2
= −n− 2

2

G(y`i , y`j)

(λiλj)
n−2

2
(1 + o(1)).

Thus 〈
∂J(u), αiλi

∂Pδ(ai ,λi)

∂λi

〉
= −2J(u)

2−n
2

[
∑
i 6=j

m(y`i , y`j)

(λiλj)
n−2

2
+

m(y`i , y`i)

λn−2
i

]
+ o

(
p

∑
k=1

1
λn−2

k

)
,

where the coefficients m(y`i , y`j), 1 ≤ i, j ≤ p are defined in the first section.
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For any i = 1, . . . , p we set λ̇i = λi. The corresponding pseudo-gradient is

W2(u) =
p

∑
i=1

αiλi
∂Pδ(ai ,λi)

∂λi
.

From the latest expansion, W2 satisfies〈
∂J(u), W2(u)

〉
= − 2J(u)

2−n
2

 1

λ
n−2

2
1

, . . . ,
1

λ
n−2

2
p

M(y`1 , . . . , y`p)

 1

λ
n−2

2
1

, . . . ,
1

λ
n−2

2
p

t

+ o

(
p

∑
k=1

1
λn−2

k

)

≤ − ρ(y`1 , . . . , y`p)
p

∑
i=1

1
λn−2

i
,

since ρ(y`1 , . . . , y`p) is the least eigenvalue of M(y`1 , . . . , y`p). Using the fact that

|∇K(aj)|
λj

∼
|aj − y`j |β−1

λj
= O

(
1

λn−2
j

)

and for any i 6= j, we have

ε ij ∼
1

(λiλj)
n−2

2
= O

(
1

λn−2
i

)
+ O

(
1

λn−2
j

)
,

we get 〈
∂J(u), W2(u)

〉
≤ −c

(
p

∑
i=1

(
|∇K(ai)|

λi
+

1
λn−2

i

)
+ ∑

i 6=j
ε ij

)
.

Case 2: If ρ(y`1 , . . . , y`p) < 0. This is the opposite situation od the case 1. Thus

W2(u) = −
p

∑
i=1

αiλi
∂Pδ(ai ,λi)

∂λi
,

satisfies the requirement of Theorem 3.3.

Proof of Theorem 3.1. Let u = ∑
p
i=1 αiPδai, λi

∈ V(p, ε), p ≥ 1. Following the above two results,
the only case that we will consider here is when u can be written as

u =
q

∑
i=1

αiPδai, λi
+

p

∑
i=q+1

αiPδai, λi
=: u1 + u2,

where 1 ≤ q < p and

u1 ∈ R1 :=
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ V(s, ε), s ≥ 1, s.t. ai ∈ B(y`i , ρ0),

with β(y`i) < n− 2, ∀i = 1, . . . , s
}

,
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u2 ∈ R2 :=
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ V(s, ε), s ≥ 1, s.t. ai ∈ B(y`i , ρ0),

with β(y`i) ≥ n− 2, ∀i = 1, . . . , s
}

.

Let us denote by W1 the pseudo-gradient given by Theorem 3.2 and W2 the pseudo-gradient
given by Theorem 3.3. In order to construct the required pseudo-gradient W of Theorem 3.1,
we distinguish three cases. Let δ be a fixed positive constant small enough.

• Case 1.

u1 ∈
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ R1, s.t., λi|ai − y`i | < δ, ∀i = 1, . . . , s, and (y`1 , . . . , y`s) ∈ C∞
<n−2

}
and

u2 ∈
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ R2, s.t., λi|ai − y`i | < δ, ∀i = 1, . . . , s, and (y`1 , . . . , y`s) ∈ C∞
≥n−2

}
.

According to the construction of [19] and [21], the vector fields W1 and W2 in these regions
are defined as follows:

W1(u1) :=
q

∑
i=1

αiλi
∂Pδ(ai ,λi)

∂λi
and W2(u2) =

p

∑
i=q+1

αiλi
∂Pδ(ai ,λi)

∂λi
.

Observe that all the components λi of the corresponding flow lines satisfies the differential
equation

λ̇ = λi, ∀i = 1, . . . , p.

In this case, we set
W(u) = W̃1(u) + W̃2(u),

where W̃1(u) := W1(u1) and W̃2(u) := W2(u2). Following the computation of [19] and [20],
we have〈

∂J(u), αiλi
∂Pδai ,λi

∂λi

〉
= − 2c2

J(u)
K(ai)

∑
j 6=i

αiαj

(
λi

∂ε ij

∂λi
+

H(ai, aj)

(λiλj)
n−2

2

)

+ 2α2
i

J(u)
K(ai)



n− 2
2

c1
∑n

k=1 bk(y`i)

λ
β(y`i

)

i

, if β(y`i) < n− 2

n− 2
2

c1
∑n

k=1 bk(y`i)

λ
β(y`i

)

i

− c2
H(y`i , y`i)

λn−2
i

, if β(y`i) = n− 2

−c2
H(y`i , y`i)

λn−2
i

, if β(y`i) > n− 2

+ O
(
|ai − y`i |

β
)
+ o

(
∑
j 6=i

(
ε ij +

H(ai, aj)

(λiλj)
n−2

2

)
+

1
λn−2

i

)
. (3.1)

Since we have |ai − aj| ≥ ρ0, ∀i 6= j, we obtain

λi
∂ε ij

∂λi
= −n− 2

2
1(

|ai − aj|2λiλj
) n−2

2
+ o

(
1

(λiλj)
n−2

2

)
≤ −cε ij. (3.2)
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Using the fact that K satisfies ( f )β assumption around each y`i , we derive

|∇K(ai)| ∼ |ai − y`i |
β−1. (3.3)

Estimate (3.3) with the fact that λi|ai − y`i | ≤ δ yield

∇K(ai)

λi
= o

(
1

λ
β
i

)
and |ai − y`i |

β = o
(

1
λ

β
i

)
.

We therefore have

〈∂J(u), W̃1(u)〉 ≤ −c

(
q

∑
i=1

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

1≤j 6=i≤q
ε ij

)
+ O

(
∑

1≤i≤q, q+1≤j≤p
ε ij

)
, (3.4)

and〈
∂J(u), W̃2(u)

〉
≤ −c

(
p

∑
i=q+1

(
1

λ
min(n,β)
i

+
|∇K(ai)|

λi

)
+ ∑

q+1≤j 6=i≤p
ε ij

)
+ O

(
∑

q+1≤i≤p, 1≤j≤q
ε ij

)
. (3.5)

For any 1 ≤ i ≤ q and for any q + 1 ≤ j ≤ p we claim that

ε ij = o
(

1
λ

β
i

)
+ o
(

1
λn−2

j

)
. (3.6)

Indeed, since |ai − aj| ≥ ρ0, we have ε ij ∼ 1
(λiλj)

n−2
2

. Let M� 1. If λi < Mλj, then

1
(λiλj)

n−2
2

≤ M
n−2

2

λn−2
i

= o
(

1
λ

β
i

)
,

since β < n− 2 for 1 ≤ i ≤ q. If λi > Mλj, then

1
(λiλj)

n−2
2

≤ 1

M
n−2

2

1
λn−2

j
= o

(
1

λn−2
j

)
, as M large.

Thus (3.6) follows. The inequalities (3.4) and (3.5) with estimates (3.6) yield

〈∂J(u), W(u)〉 ≤ −c
( p

∑
i=1

(
1

λ
min(n,β)
i

+
|∇K(ai)|

λi

)
+ ∑

j 6=i
ε ij

)
.

Observe that through W, λi(t) tends to ∞, ∀i = 1, . . . , p; it is a concentration phenomenon.

• Case 2.

u1 6∈
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ R1, s.t., λi|ai − y`i | < δ, ∀i = 1, . . . , s, and (y`1 , . . . , y`s) ∈ C∞
<n−2

}
.

Three possibilities may occur. Either there exists i0, 1 ≤ i0 ≤ q such that λi0 |ai0 − y`i0
| ≥ δ or

there exists i1, 1 ≤ i1 ≤ q such that −∑n
k=1 bk(yi1) < 0 or there exist i 6= j such that y`i = y`j .
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In all possibilities, it was constructed in [19], section 3, a pseudo-gradient W1 along which the
max1≤i≤q(λi(s)) remains bounded and satisfies

〈∂J(u1), W1(u1)〉 ≤ −c

(
q

∑
i=1

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

1≤j 6=i≤q
ε ij

)
. (3.7)

Therefore, for W̃1(u) = W1(u1), we set

〈
∂J(u), W̃1(u)

〉
≤ −c

(
q

∑
i=1

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

1≤j 6=i≤q
ε ij

)
+ O

(
∑

1≤i≤q, q+1≤j≤p
ε ij

)
. (3.8)

Denote by i1 an index such that

λ
β
i1
= inf{λβ

i , i = 1, . . . , q}

and let us denote

L =

{
j, 1 ≤ j ≤ p; λ

β
j ≥

1
2

λ
β
i1

}
.

It is easy to see that we can appear all − 1
λ

β
i

, i ∈ L in the upper bound of (3.8). In order to

make appear all − |∇K(ai)|
λi

, i ∈ L, let us recall the following estimate obtained in [19, Section 3].〈
∂J(u), αi

1
λi

∂Pδai ,λi

∂(ai)k

〉
= − (n− 2)α2

i J(u)
bk

λiK(ai)
β sign(ai − y`i)k|(ai − y`i)k|β−1

+ O

(
[β]

∑
j=2

|ai − y`i |β−j

λ
j
i

)
+ O

(
1

λ
β
i

)
+ O

(
∑
j 6=i

∣∣∣∣ 1
λi

∂ε ij

∂ai

∣∣∣∣
)

.
(3.9)

Let

Yi(u) =
n

∑
k=1

bk sign (ai − y`i)k
1
λi

∂Pδ(ai ,λi)

∂(ai)k
.

For each index i ∈ L \ {1, . . . , q}, we move the concentration point ai with respect to Yi. Using
(3.9), the corresponding variation of J is given by:

〈∂J(u), Yi(u)〉 ≤ −
c3

K(ai)
α2

i J(u)
n

∑
k=1

b2
k
|ai − y`i |β−1

λi

+ O

(
[β]

∑
j=2

|ai − y`i |β−j

λ
j
i

)
+ O

(
1

λ
β
i

)
+ O

(
∑
j 6=i

ε ij

)
.

(3.10)

For any j = 2, . . . , [β], we claim that

|ai − y`i |β−j

λ
j
i

= O
(

1
λ

β
i

)
+ o

(
|ai − y`i |β−1

λi

)
. (3.11)

Indeed, let M� 1. If |λi(ai − y`i)| ≤ M, we have

|ai − y`i |β−j

λ
j
i

= O
(

1
λ

β
i

)
,
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and if |λi(ai − y`i)| ≥ M, we have

|ai − y`i |β−j

λ
j
i

= o

(
|ai − y`i |β−1

λi

)
, as M large enough.

Hence (3.11) follows. From this and (3.3), (3.10) becomes

〈∂J(u), Yi(u)〉 ≤ −c
|∇K(ai)|

λi
+ O

(
1

λ
β
i

)
+ O

(
∑
j 6=i

ε ij

)
. (3.12)

The inequalities (3.8) and (3.12) with the estimates (3.6) yield for m > 0 small enough〈
∂J(u), W̃1(u) + m ∑

i∈L\{1,...,q}
Yi(u)

〉
≤ − c

(
∑
i∈L

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

1≤j 6=i≤q
ε ij

)

+ o

(
∑
j 6=i

ε ij

)
+ o

 p

∑
j=1

1

λ
β
j

 . (3.13)

We now appear −∑i 6=j, i,j∈L ε ij in the last upper bound. For this, we decrease all λi such that
i ∈ L \ {1, . . . , q}. Define

Z(u) = ∑
i∈L\{1,...,q}

−2iλi
∂Pδai ,λi

∂λi
.

Without loss of the generality, we can assume that if i < j then λi ≤ λj. In that case we have

2iλi
∂ε ij

∂λi
+ 2jλj

∂ε ij

∂λj
≤ −cε ij, ∀i 6= j ∈ L \ {1, . . . , q}.

Therefore,

〈∂J(u), Z(u)〉 ≤ − c

 ∑
i 6=j∈L\{1,...,q}

ε ij

+ O

 ∑
i∈L\{1,...,q}

1

λ
β
i


+ O

 ∑
i∈L\{1,...,q}

[β]

∑
j=2

|ai − y`i |β−j

λ
j
i

 . (3.14)

The inequalities (3.13) and (3.14) with the estimate (3.11) yield for m′ > 0 and small〈
∂J(u), W̃1(u) + m ∑

i∈L\{1,...,q}
Yi(u) + m′Z(u)

〉

≤ −c

(
∑
i∈L

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

i,j∈L,j 6=i
ε ij

)
+ o

(
∑

i∈L,j 6∈L
ε ij

)
+ o

∑
j 6∈L

1

λ
β
j

 . (3.15)

To add the left indices, we denote

ũ = ∑
i 6∈L

αiPδai ,λi .

It is easy to see that ũ ∈ R2. Set
W̃2(u) = W2(ũ).
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Observe that the max1≤i≤p λi(s) does not move along W̃2, since it acts only on the indices
i 6∈ L. Using the above techniques (see also [21] for more details), we have

〈
∂J(u), W̃2(u)

〉
≤ −c

(
∑
i 6∈L

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

i 6∈L,j 6=i
ε ij

)
+ O

(
∑

i 6∈L,j∈L
ε ij

)
. (3.16)

For m′′ > 0 and small, define

W(u) = W̃1(u) + m ∑
i∈L\{1,...,q}

Yi(u) + m′Z(u) + m′′W̃2(u).

We obtain from (3.15) and (3.16)

〈∂J(u), W(u)〉 ≤ −c

(
p

∑
i=1

(
1

λ
β
i

+
|∇K(ai)|

λi

)
+ ∑

j 6=i
ε ij

)
.

• Case 3.

u2 6∈
{

u =
s

∑
i=1

αiPδ(ai ,λi) ∈ R2, s.t., λi|ai − y`i | < δ, ∀i = 1, . . . , s, and (y`1 , . . . , y`s) ∈ C∞
≥n−2

}
.

In this case, either W2(u2) = −∑
p
i=q+1 αiλi

∂Pδai ,λi
∂λi

or W2(u2) is as the one defined in [19,
Section 3]. In both cases, maxq+1≤i≤p λi remains bounded along W2. Let

W̃2(u) = W2(u2).

It satisfies

〈
∂J(u), W̃2(u)

〉
≤ −c

 p

∑
j=q+1

 1

λ
β
j

+
|∇K(ai)|

λi

+ ∑
q+1≤j 6=i≤p

ε ij

+ O

(
∑

1≤j≤q,q+1≤i≤p
ε ij

)
.

Let i1 be an index such that

λ
β
i1
= inf{λβ

i , q + 1 ≤ i ≤ p},

and let

L =

{
j, 1 ≤ j ≤ p such that λ

β
j ≥

1
2

λ
β
i1

}
.

Using the same argument as in Case 2, we obtain for

W(u) = W̃2 + m ∑
i∈L\{q+1,...,p}

Yi(u) + m′Z(u) + m′′W̃1(u),

the required estimate of Theorem 3.1.
Finally observe that the Palais–Smale condition is satisfied along the decreasing flow lines

of the pseudo-gradient W as long as the concentration points of the flow do not enter in
some neighborhood of (y`1 , . . . , y`p) ∈ C∞

<n−2 ∪ C∞
≥n−2 ∪ C∞

<n−2 × C∞
≥n−2 since max1≤i≤p λi(t)

remains bounded in this region. However, if the concentration points are near critical points
(y`1 , . . . , y`p) ∈ C∞

<n−2 ∪ C∞
≥n−2 ∪ C∞

<n−2 × C∞
≥n−2, λi(s) increases on the flow line and goes to

+∞. Thus, we obtain a critical point at infinity. This finishes the proof of Theorem 3.1.
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Proof of Theorem 1.1. Using the result of Theorem 3.1, we observe that the only case where
λi(t), i = 1, . . . , p, tends to ∞ is when ai(t) goes to y`i , ∀i = 1, . . . , p, such that (y`1 , . . . , y`p) ∈
C∞
<n−2 ∪ C∞

≥n−2 ∪ (C∞
<n−2 × C∞

≥n−2). Thus, the critical points at infinity of J are in one to one
correspondence with the elements τp = (y`1 , . . . , y`p) such that τp ∈ C∞

<n−2 ∪ C∞
≥n−2 ∪ (C∞

<n−2×
C∞
≥n−2).

Concerning the Morse index of the critical point at infinity (τp)∞, it follows from the
following expansion of J(u) where u is close to (τp)∞:

J(u) =
( p

∑
i=1

1

K(y`i)
n−2

2

) 2
n
(

1− ‖h‖2
Rp−1 +

p

∑
i=1

(
|a−i |

2 − |a+i |
2
))

.

Here h ∈ Rp−1, a+i and a−i are the coordinates of ai along the stable and unstable manifold of
K at y`i .

Proof of Theorem 1.2. Assume that (1.1) has no solution. Using the result of Theorem 1.1, Σ+

retracts by deformation on

⋃
τp∈C∞

<n−2∪C∞
≥n−2∪(C∞

<n−2×C∞
≥n−2)

W∞
u (τp)∞,

where W∞
u (τp)∞ denotes the unstable manifold of the critical point at infinity (τp)∞. Using an

Euler–Poincaré characteristic argument, we get after recalling that Σ+ is a contractible set

1 = ∑
τp∈C∞

<n−2∪C∞
≥n−2∪(C∞

<n−2×C∞
≥n−2)

(−1)i(τp)∞ .

This is a contradiction. The proof of Theorem 1.2 is thereby completed.

Acknowledgements

This work was supported by the Deanship of Scientific Research (DSR) King Abdulaziz Uni-
versity, Jeddah, under grant No. (D-065-130-1437). The authors, therefore, gratefully acknowl-
edge the DSR technical and financial support.

References

[1] T. Aubin, A. Bahri, Méthodes de topologie algébrique pour le problème de la cour-
bure scalaire prescrite (in French) [Methods of algebraic topology for the problem
of prescribed scalar curvature], J. Math. Pures Appl. 76(1997), No. 6, 525–849. https:
//doi.org/10.1016/S0021-7824(97)89961-8; MR1465609

[2] A. Bahri, Critical points at infinity in some variational problems, Pitman Research Notes in
Mathematics Series, Vol. 182, Longman Scientific & Technical, Harlow, 1989. MR1019828

[3] A. Bahri, An invariant for Yamabe-type flows with applications to scalar curvature prob-
lems in high dimensions, A celebration of J. F. Nash Jr., Duke Math. J. 81(1996), 323–466.
https://doi.org/10.1215/S0012-7094-96-08116-8; MR1395407

https://doi.org/10.1016/S0021-7824(97)89961-8
https://doi.org/10.1016/S0021-7824(97)89961-8
https://www.ams.org/mathscinet-getitem?mr=1465609
https://www.ams.org/mathscinet-getitem?mr=1019828
https://doi.org/10.1215/S0012-7094-96-08116-8
https://www.ams.org/mathscinet-getitem?mr=1395407


A note on a second order PDE with critical nonlinearity 15

[4] A. Bahri, J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev
exponent: the effect of topology of the domain, Comm. Pure Appl. Math. 41(1988), 255–
294. https://doi.org/10.1002/cpa.3160410302; MR929280

[5] A. Bahri, Y. Li, O. Rey, On a variational problem with lack of compactness: the topolog-
ical effect of the critical points at infinity, Calc. Var. Partial Differential Equations 3(1995),
67–94. https://doi.org/10.1007/BF01190892; MR1384837

[6] Z. Bouchech, H. Chtioui, Multiplicity and existence results for a nonlinear ellip-
tic equation with Sobolev exponent, Adv. Nonlinear Stud. 10(2010), 537–572. https:
//doi.org/10.1515/ans-2010-0302; MR2676632

[7] R. Ben Mahmoud, H. Chtioui, Existence results for the prescribed scalar curvature on
S3, Ann. Inst. Fourier (Grenoble) 61(2011), 971–986. https://doi.org/10.5802/aif.2634;
MR2918723

[8] R. Ben Mahmoud, H. Chtioui, Prescribing the scalar curvature problem on higher-
dimensional manifolds, Discrete Contin. Dyn. Syst. 32(2012), No. 5, 1857–1879. https:
//doi.org/10.3934/dcds.2012.32.1857; MR2871339

[9] S. A. Chang, P. C. Yang, A perturbation result in prescribing scalar curvature on
Sn, Duke Math. J. 64(1991), 27–69. https://doi.org/10.1215/S0012-7094-91-06402-1;
MR1131392

[10] H. Chtioui, Prescribing the scalar curvature problem on three and four manifolds, Adv.
Nonlinear Stud. 3(2003), 457–470. https://doi.org/10.1515/ans-2003-0404; MR2017242

[11] H. Chtioui, H. Hajaiej, M. Soula The scalar curvature problem on four dimensional
manifolds, preprint.

[12] H. Chtioui, R. Ben Mahmoud, D. A. Abuzaid, Conformal transformation of metrics on
the n-sphere, Nonlinear Anal. 82(2013), 66–81. https://doi.org/10.1016/j.na.2013.01.
003; MR3020896

[13] J. Dávila, J. Faya, F. Mahmoudi, New type of solutions to a slightly subcritical Hénon
type problem on general domains, J. Differential Equations, 263(2017), 7221–7249. https:
//doi.org/10.1016/j.jde.2017.08.005; MR3705679

[14] E. Hebey, La méthode d’isométries-concentration dans le cas d’un problème non linéaire
sur les variétés compactes à bord avec exposant critique de Sobolev (in French) [The
isometry concentration method in the case of a nonlinear problem with Sobolev criti-
cal exponent on compact manifolds with boundary], Bull. Sci. Math. 116(1992), 35–51.
MR1154371

[15] Y. Y. Li, Prescribing scalar curvature on Sn and related problems. I, J. Differential Equations,
120(1995), 319–410. https://doi.org/10.1006/jdeq.1995.1115; MR1347349

[16] Y. Y. Li, Prescribing scalar curvature on Sn and related problems. II. Existence and com-
pactness, Comm. Pure Appl. Math. 49(1996), 541–579. https://doi.org/10.1002/(SICI)
1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A; MR1383201

[17] S. Pohozaev, Eigenfunctions of the equation ∆u + λ f (u) = 0, Soviet Math. Dokl. 6(1965),
1408–1411.

https://doi.org/10.1002/cpa.3160410302
https://www.ams.org/mathscinet-getitem?mr=929280
https://doi.org/10.1007/BF01190892
https://www.ams.org/mathscinet-getitem?mr=1384837
https://doi.org/10.1515/ans-2010-0302
https://doi.org/10.1515/ans-2010-0302
https://www.ams.org/mathscinet-getitem?mr=2676632
https://doi.org/10.5802/aif.2634
https://www.ams.org/mathscinet-getitem?mr=2918723
https://doi.org/10.3934/dcds.2012.32.1857
https://doi.org/10.3934/dcds.2012.32.1857
https://www.ams.org/mathscinet-getitem?mr=2871339
https://doi.org/10.1215/S0012-7094-91-06402-1
https://www.ams.org/mathscinet-getitem?mr=1131392
https://doi.org/10.1515/ans-2003-0404
https://www.ams.org/mathscinet-getitem?mr=2017242
https://doi.org/10.1016/j.na.2013.01.003
https://doi.org/10.1016/j.na.2013.01.003
https://www.ams.org/mathscinet-getitem?mr=3020896
https://doi.org/10.1016/j.jde.2017.08.005
https://doi.org/10.1016/j.jde.2017.08.005
https://www.ams.org/mathscinet-getitem?mr=3705679
https://www.ams.org/mathscinet-getitem?mr=1154371
https://doi.org/10.1006/jdeq.1995.1115
https://www.ams.org/mathscinet-getitem?mr=1347349
https://doi.org/10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
https://doi.org/10.1002/(SICI)1097-0312(199606)49:6<541::AID-CPA1>3.0.CO;2-A
https://www.ams.org/mathscinet-getitem?mr=1383201


16 K. Sharaf

[18] K. Sharaf, Existence of solutions for elliptic nonlinear problems on the unit ball of R3,
Electron. J. Diff. Equ. 2016, No. 229, 1–9. MR3547418

[19] K. Sharaf, On a nonlinear problem with zero Dirichlet boundary condition, Appl.
Anal. 96(2017), No. 9, 1466–1482. https://doi.org/10.1080/00036811.2016.1220548;
MR3647252

[20] K. Sharaf, A perturbation result for a critical elliptic equation with zero Dirichlet bound-
ary condition, Discrete Contin. Dyn. Syst. 37(2017), No. 3, 1691–1706. https://doi.org/
10.3934/dcds.2017070; MR13640570

[21] K. Sharaf, On an elliptic boundary value problem with critical exponent, Turk. J. Math.,
to appear.

[22] K. Sharaf, On the prescribed scalar curvature problem on Sn: Part 1, asymptotic esti-
mates and existence results, Differential Geom. Appl. 49(2016), 423–446. https://doi.org/
10.1016/j.difgeo.2016.09.007; MR3573843

[23] M. Struwe, A global compactness result for elliptic boundary value problem involv-
ing limiting nonlinearities, Math. Z. 187(1984), 511–517. https://doi.org/10.1007/
BF01174186; MR760051

[24] R. C. A. M. van der Vorst, Variational identities and applications to differential systems,
Arch. Rational Mech. Anal. 116(1991), 375–398. https://doi.org/10.1007/BF00375674;
MR1132768

https://www.ams.org/mathscinet-getitem?mr=3547418
https://doi.org/10.1080/00036811.2016.1220548
https://www.ams.org/mathscinet-getitem?mr=3647252
https://doi.org/10.3934/dcds.2017070
https://doi.org/10.3934/dcds.2017070
https://www.ams.org/mathscinet-getitem?mr=13640570
https://doi.org/10.1016/j.difgeo.2016.09.007
https://doi.org/10.1016/j.difgeo.2016.09.007
https://www.ams.org/mathscinet-getitem?mr=3573843
https://doi.org/10.1007/BF01174186
https://doi.org/10.1007/BF01174186
https://www.ams.org/mathscinet-getitem?mr=760051
https://doi.org/10.1007/BF00375674
https://www.ams.org/mathscinet-getitem?mr=1132768

	Introduction and main results
	General framework
	Critical points at infinity

