Wang Li; Wang Jixiu; Li Xiongzheng: Infinitely many solutions to quasilinear Schrödinger equations with critical exponent. (2019)
Előnézet |
Cikk, tanulmány, mű
ejqtde_2019_005.pdf Letöltés (470kB) | Előnézet |
Absztrakt (kivonat)
This paper is concerned with the following quasilinear Schrödinger equations with critical exponent: −∆pu + V(x)|u| p−2u − ∆p(|u| 2ω)|u| 2ω−2u = ak(x)|u| q−2u + b|u| 2ωp ∗−2u, x ∈ R N. Here ∆pu = div(|∇u| p−2∇u) is the p-Laplacian operator with 1 < p < N, p N p N−p is the critical Sobolev exponent. 1 ≤ 2ω < q < 2ωp, a and b are suitable positive parameters, V ∈ C(RN, [0, ∞)), k ∈ C(RN, R). With the help of the concentration-compactness principle and R. Kajikiya’s new version of symmetric Mountain Pass Lemma, we obtain infinitely many solutions which tend to zero under mild assumptions on V and k.
| Mű típusa: | Folyóirat |
|---|---|
| Folyóirat/könyv/kiadvány címe: | Electronic journal of qualitative theory of differential equations |
| Dátum: | 2019 |
| Szám: | 5 |
| ISSN: | 1417-3875 |
| Oldalak: | pp. 1-16 |
| DOI: | 10.14232/ejqtde.2019.1.5 |
| Kulcsszavak: | Schrödinger egyenlet |
| Megjegyzések: | Bibliogr.: p. 14-16. ; összefoglalás angol nyelven |
| Feltöltés dátuma: | 2019. máj. 31. 07:15 |
| Utolsó módosítás: | 2021. szep. 16. 10:42 |
| URI: | http://acta.bibl.u-szeged.hu/id/eprint/58112 |
![]() |
Tétel nézet |

