On the uniqueness of limit cycle for certain Liénard systems without symmetry

Hayashi, Makoto and Villari, Gabriele and Zanolin, Fabio: On the uniqueness of limit cycle for certain Liénard systems without symmetry. Electronic journal of qualitative theory of differential equations 55. pp. 1-10. (2018)

[img] Cikk, tanulmány, mű
ejqtde_2018_055.pdf

Download (434kB)

Abstract

The problem of the uniqueness of limit cycles for Liénard systems is investigated in connection with the properties of the function F(x). When α and β (α < 0 < β) are the unique nontrivial solutions of the equation F(x) = 0, necessary and sufficient conditions in order that all the possible limit cycles of the system intersect the lines x = α and x = β are given. Therefore, in view of classical results, the limit cycle is unique. Some examples are presented to show the applicability of our results in situations with lack of symmetry.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2018
Number: 55
Page Range: pp. 1-10
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2018.1.55
Uncontrolled Keywords: Matematikai modell, Liénard rendszer, Invariáns, Matematika
Additional Information: Bibliogr.: p. 9-10. ; összefoglalás angol nyelven
Date Deposited: 2019. Jun. 03. 05:36
Last Modified: 2019. Jun. 03. 05:36
URI: http://acta.bibl.u-szeged.hu/id/eprint/58130

Actions (login required)

View Item View Item