Csizmadia, László: On stabilizability of the upper equilibrium of the asymmetrically excited inverted pendulum. (2018)
|
Cikk, tanulmány, mű
ejqtde_2018_045.pdf Download (1MB) | Preview |
Abstract
Using purely elementary methods, necessary and sufficient conditions are given for the existence of T-periodic and 2T-periodic solutions around the upper equilibrium of the mathematical pendulum when the suspension point is vibrating vertically with asymmetric high frequency. The equation of the motion is of the form 1 l (g + a(t)) θ = 0, where a(t) := Ah , if kT ≤ t < kT + Th −Ae , if kT + Th ≤ t < (kT + Th ) + Te (k = 0, 1, . . .); Ah , Ae , Th , Te are positive constants (Th + Te = T); g and l denote the acceleration of gravity and the length of the pendulum, respectively. An extended Oscillation Theorem is given. The exact stability regions for the upper equilibrium are presented.
Item Type: | Journal |
---|---|
Publication full: | Electronic journal of qualitative theory of differential equations |
Date: | 2018 |
Number: | 45 |
ISSN: | 1417-3875 |
Page Range: | pp. 1-19 |
DOI: | https://doi.org/10.14232/ejqtde.2018.1.45 |
Uncontrolled Keywords: | Differenciálegyenlet |
Additional Information: | Bibliogr.: p. 17-19. ; összefoglalás angol nyelven |
Date Deposited: | 2019. Jun. 03. 06:10 |
Last Modified: | 2020. Jul. 29. 12:29 |
URI: | http://acta.bibl.u-szeged.hu/id/eprint/58140 |
Actions (login required)
![]() |
View Item |