Control of epidemic propagation on networks by using a mean-field model

Bodó, Ágnes and Simon, Péter L.: Control of epidemic propagation on networks by using a mean-field model. Electronic journal of qualitative theory of differential equations 41. pp. 1-13. (2018)

[img] Cikk, tanulmány, mű
ejqtde_2018_041.pdf

Download (451kB)

Abstract

Epidemic propagation is controlled conventionally by vaccination or by quarantine. These methods have been widely applied for different compartmental ODE models of epidemic propagation. When epidemic spread is considered on a network, then it is natural to control the propagation process by changing the network structure. Namely, SI links, connecting a susceptible individual to an infected one, can be deleted. This would lead to a disconnected network, which is not realistic, hence new SS links can be created in order to keep the network well connected. Thus it seems to be promising to drive the process to a target with no infection and a prescribed average degree by deleting SI links and creating SS links in an appropriate way. It was shown previously that this can be done for the pairwise ODE approximation of SIS epidemic propagation. In this paper this is extended to the original stochastic process by using the control signals computed from the ODE approximation.

Item Type: Article
Journal or Publication Title: Electronic journal of qualitative theory of differential equations
Date: 2018
Number: 41
Page Range: pp. 1-13
ISSN: 1417-3875
DOI: https://doi.org/10.14232/ejqtde.2018.1.41
Uncontrolled Keywords: Matematikai modell
Additional Information: Bibliogr.: p. 12-13. ; összefoglalás angol nyelven
Date Deposited: 2019. Jun. 03. 06:26
Last Modified: 2019. Jun. 03. 06:26
URI: http://acta.bibl.u-szeged.hu/id/eprint/58144

Actions (login required)

View Item View Item