394 IV. Magyar Szdmitégépes Nyelvészeti Konferencia

Referent Systems and Argument Structure

Kracht Marcus

Magyar Tudoményos Akadémia, Nyelvtudoményi Intézet,
Benczur u. 33, 1068 Budapest, e-mail: kracht@nytud.hu
and Department of Linguistics, UCLA, 3125 Campbell Hall, PO Box 951543,
Los Angeles, CA 90095-1543, email: kracht@humnet.ucla.edu

Abstract. The assignment of variables plays a pivotal role in the con-
struction of semantics of complex expressions. In this paper we dis-
cuss the theory and implementation of an algorithm to identify variable
names. It is based on referent systems, introduced in [5]. The theory is
exposed in [3] and discusses in-depth the properties of referent systems.
1

Keywords: argument structure, referent systems

1 Introduction

A crucial problem in the composition of meanings is the problem of variable
names. Montague originally devised a semantics that assigned closed expres-
sions to each word, thus relegating the problem to the A-calculus. However, [1]
has pointed out that this is problematic in view of transsentential binding. He
proposed an alternative that led to the development of discourse representation
theory (DRT), which uses—at least in its original form—mno A-binding mecha-
nism at all. All unquantified variables where free. What needed to be solved,
then, was the assignment of variable names.

Kamp and Reyle describe in [2] an algorithm to derive the semantics of a
sentence. This algorithm needs a parser that not only produces a structure but
also distributes indices to the constituents. Thus, the input to the semantical
translation of (1.a) is (1.b) rather than (1.c).

(a) Egy fekete macska latja az egeret.
(1) (b) [[egy, [fekete; macskai]| [lat]a, , [az2 egeret,]]]
(¢) [[egy [fekete macskal] [1atja [az egeret]]]

The reason for this is that in DRT every variable is global. The variable x points
to the same object independently of the DRS in which it occurs. To see this,

! The author wishes to thank Véaradi Taméas and Kenesei Istvén for their generous
support.

Szeged, 2006. december 7-8. 395

look at the way two DRSs are merged. The phrase egy fekete macska consists
of three DRRs, each of which uses at least one variable.

/egy/ /fekete/ /macska/
(2)| x 1) &
%) black’(x) cat(x)

Merge is associative and consists in taking the set union of the upper and the
low box, respectively. Merging the first two, for example, results in accidental
capture of the variables of the second DRS by the quantifier of the first, like this:

/egy macska/
3) X
black’(x).

Merging the upper three we get

/egy fekete macska/
(4) X
black’(x); cat’(z).

The problem with this approach is that if, for example, the middle DRS uses
y in place of x we get an incorrect result:

/egy fekete macska/
() X
black’(y); cat’(z).

This is because the merge operation cannot know whether two variables in dif-
ferent DRSs are meant to be ‘the same’ or not. To solve this problem, [2] simply
relegated the problem to the parser; it was the responsibility of the parser to
distribute the correct indexation to each lexical entry. The indices, in addition
to being useful for syntax, provided the essential information to insert the cor-
rect names for the variables. The index 4 is simply translated by the variable x;.
(Notice, by the way, that entries with several free variables need several indices,
and the order matters.)

2 Referent Systems

[5] has shown that from a logical point of view there is no need to do indexing
if variables are instead considered local. Instead of considering two variables of
two DRSs identical if they carry the same string, we assume by default that
the variables of distinct DRSs are different unless stated otherwise. To say that
two variable are to be identified, we associate a so-called ‘name’ with a variable.
(Names are optional; if a variable has no name, it simply cannot be identified.)
In OCaML, such names have effectively the same mechanics (and are used for

396 IV. Magyar Szamitégépes Nyelvészeti Konferencia

similar purposes) as labels. Names can be everything, but the idea is that in nat-
ural languages names are morpho-sytactic properties, like cases and grammatical
roles. When merging two structures two occurrences of the same variable (or of
two different variables) are made the same in the output DRS if (and only if)
they carry the same name. This type of variable is called a referent. With the
help of referent systems the argument structure can be enriched in such a way
that the indexation proceeds automatically. If an entry, say a verb, needs several
arguments, we want to allow it to take each argument in turn. Most syntactic
theories postulate a canonical deep order in which the arguments are consumed
in the same way as programming languages insist on the arguments being fed to
a

function in the order specified. In OCaML, for example, we may declare a
function in the following way:

(6) let £ xy=2%*x+7y;;

In this case the variables x and y are plain variables, and bound inside the
function declaration. Order matters. Evaluating £ 3 2 gives 8, evaluating £ 2
3 given 7.

Freedom from this order regime comes in the form of labels. Consider this
slightly different definitions using the tilde convention:

(7) let £ "x:a “y:b =2 * a + b;;

Here, “x and ~y are labels; a and b are the associated variables. The advantage is
that order is now irrelevant: £ “x:2 “y:3and £ “y:3 “x:2 both yield 7, and £
“x:3 "y:2and £ “y:2 "x:3 both yield 8. Basically, it is the order independence
of this mechanism that we exploit.

3 Argument Structure

We aspire for a surface oriented approach, that is, we want to interpret every
constituent where it actually occurs. Moreover, we require arguments to be ad-
jacent to each other. Given these requirements we must accommodate free word
order not by distinguishing two different syntactic representations, but by al-
lowing arguments to be identified by other means than their surface position.
This leads to the idea of using inherent properties of the arguments as a way
to identify them with variables of the head. These properties are, in Hungar-
ian, foremost case, but also person, number, and definiteness. A verb decides
not only the basis of position but on the basis of case which constituent is its
subject and which one is object etc. The properties thus constitute the name of
the argument.

The theory by Vermeulen is insufficient in certain respects. In its original
form it distinguishes a left incoming name from a right outgoing name; however,
the left-right distinction is relegated here to the morphology and does not figure
at all in the semantics. However, the notion of incoming and outgoing names is

Szeged, 2006. december 7-8. 397

important. Consider merging two constituents A and B. Then one of them, say
A, will assume the role of the functor, taking the other, B, as argument. The
variable x of A and y of B are identified if the outgoing name of y in B matches
the incoming name of x in A. In tandem with names, each variable is associated
with a diacritic that states whether or not the variable actually has an incoming
and/or outgoing name. For names can be dropped, in which case a variable loses
its ability to be identified with other variables in further computation. By default,
incoming names and outgoing names are the same; but they need not be. For
syntactic purposes we need to distinguish arguments from adjuncts; also, we need
to distinguish an ordinary variable from a parameter. All these characteristics
are unified into a so-called argument identification statement (AIS). For each
syntactic argument such an AIS must be issued. An argument structure (AS)
is a sequence of AISs. (To stress: it is not necessary to have an AIS for every
variable; an AIS is only needed if the variable needs to be manipulated.) It
contains the name of the variable, it contains a so-called diacritic, specifying
whether the variable is imported (V) or exported (A), or both (). Furthermore,
if a variable is imported, a name is given under which it is imported; if it is
exported, a name is given under which it is exported. Names have the form of
an attribute value structures, with usual notion of unification (thus allowing for
certain types of abstractness).

A constituent A can be merged with a constituent B only if the semantic
merge identifies at least one variable. (Two variables is also possible, for exam-
ple in control structures.) We note here that the merge of a single variable has
consequences on a different set of referents, called parameters. Unlike ordinary
variables, parameters are identified through their role (eg reference time, event
time, worlds and so on). An AIS associates with a variable two sets of parameter
statements. These have the form [role : ref], with role a role and ref a referent.
The first set describes the incoming parameters, the second the outgoing param-
eters. When A takes B as argument, and z is identified with y, then an incoming
parameter for a role p is identified with the outgoing parameter for the role p of
B. Parameters not mentioned in the lists are simply passed unchanged. It is pos-
sible to reevaluate parameters but also to make them change roles. For example,
in Russian the reference time in the subordinate clause of an indirect speech act
equals the event time of the main clause, while in English it equals the reference
time of the main clause. Thus this mechanism can be used for sequencing con-
text parameters, such as time, person, world and location (sequence-of-world,
sequence-of-time, sequence-of-person and so on, as described in [4]).

Thus, a complete entry has three components:

1. an exponent, for example a string (but more complex exponents are imple-
mented, see below);

2. an argument structure (AS). This is a sequence of argument identification
statements.

3. a semantics, for example a DRS.

The structure (1) shows all three components, the string on top, the argument
structure in the middle, and a DRS at the bottom.

398 IV. Magyar Szamitégépes Nyelvészeti Konferencia

The AS replaces not only the indexation but in fact a lot of the structure
building itself. The syntactic categories are encoded mainly in the outgoing
names. The complexity of merge is very low. Unification proceeds in O(m + n)
time. Thus to compute the semantics of a sentence is very fast (O(n?) for context
free grammars). This is not true of our implementation, since the implementation
also returns all parse terms and evaluates them into meanings. Since structural
ambiguities can in worst cases be exponential in the length of the string the
implementation runs in exponential time as worst case. (This is mainly due to
the fact that the implementation is meant to reflect the theory as accurately as
possible.)

4 Agreement

Fig. 1 gives an example of an entry. The referent x belongs to an argument
(V) which has to be a thing (cat : ob), in the nominative (case : nom) and
singular (num : sg). The e referent however has a A, which means that it does
not belong to an argument. Thus it is indicated that the denotation of the
word latja is an event (cat : ev). The surface orientation of our approach

Fig. 1. The argument structure and semantics of the word ‘latja’

/latja/
(e:n: [cat : ev])
cat ob
(x:V:|num : sg)
case : mnom
cat : ob
(y:V:|case : accl|)
def : 4+
e
now’ = t; see’(e);
exp’(e) =x; thm'(e) =y;
time’(e) = now’.

has the following consequence. Names are needed to identify referents across
structures; they must therefore be computable properties of the argument itself.
The appearance of incoming names for the arguments is therefore correlated with
surface differences in the arguments themselves. We see definiteness figure in the
identification statement for the object for the reason that there is a different set
of endings for definite objects. The verb flags for its object to be definite. It also
flags for it to have accusative case. Here is an example from German.

(®)

Dir scharfsten Kritiker hat die Pré&sidentin in ihrer Heimat.
The harshest critics has the president in her home [country].

Szeged, 2006. december 7-8. 399

Both arguments can be both nominative and accusative. However, when the
verb shows singular agreement, excluding the first from being subject, since it
unequivocally plural.

5 The Implementation: Description

The implementation is written in OCaML, a functional programming language.
It has both a command line interface and a Tk-interface to allow for interactive
sessions. The software is designed to support Unicode and multiple languages. At
present, it can be both installed and run in English and German. Documentation
is also available in both languages.

The output is sent to a .tex-file, which is translated using LaTeX, and is then
shown to the user, but can also be stored independently for later use.

The algorithm proceeds via so-called entries, which are records consisting of
four fields corresponding to

— the morphology: this is a set of morphs;

— the argument structure, which is an array of argument identification state-
ments;

— the semantics, which is a DRS;

— the set of parse terms, which show the analysis terms of the entry.

Morphs consist of

1. an exponent, which is an array of string;
2. an array of subcategorisation statements. These consist in turn in a specifi-
cation for each argument that the entry takes of
(a) the required morphological class of the argument (possibly also its form)
(b) the class (and shape) of the element produced when the argument is
consumed,
(c) the way the functor and argument morphology need to be combined
(concatenation, reduplication and so on).

Argument identification statements consist of

1. a variable name;

2. a diacritic displaying the way in which the variable must be handled during

merge;

a syntactic class for the argument to be consumed;

a syntactic class of the element constructed if the argument is consumed;

5. a parameter statement, showing the way in which parameters are consumed
and passed up.

- w

Notice that morphs need not consist of a single string, they can consist of several
strings (thus we can accommodate circumfixes, but also the fact that in Hun-
garian the verbal prefix can be split from its verbal root). There are however
no functions that allow to change any letter, and there may not be any empty
morphs.

400 IV. Magyar Szamitégépes Nyelvészeti Konferencia

There is no inbuilt distinction between words and morphemes. The blank
is considered a symbol of its own, like punctuation. Given a string as input,
the system will match the morphs of the dictionary against any combination of
substrings. If morphs consist of at most k units (typically, & = 2 is sufficient),
then this gives O(n?*) many occurrences, where n is the length of the string.
The algorithm is a chart, which is implemented as a hash-table over pairs (¢, k),
where £ is the overall length of the occurrence (the sum over all lengths of the
parts), and k is the index of the leftmost occurrence. The chart is constructed
by induction over the length and is finished when that length equals the string
length. The output is then returned.

The chart parser operates on occurrences. These are quadruples, consisting
of an argument structure, an occurrence of a morph (an array of pairs of posi-
tions), some morphological components (stating how the element may be further
combined) and a term. The semantics is absent. It is inserted only when the suc-
cessful terms are finally evaluated. This allows to keep the burden on the parser
small. Currently, it is not very efficient, but it can be made much faster if need
be.

The most flexible session is the standalone-session. After compilation, dictio-
naries can be loaded and unloaded dynamically. A useful tool is the command
diagnose. Given two entries it documents the calculations in a step-by-step
fashion. All outputs can be saved in a file and used for different purposes.

6 Documentation and Source

The software was originally designed to allow for the evaluation of the theory of
argument structure. The software and the theory are now under simultaneous
development. At the time of writing, some developments of the software are not
yet reflected in the documentation. The current version of the software is 5.0.
Installation currently is possible for Unix platforms only and has been tested on
several of them, including MacOS X. Both the software and the manuscript can
be freely obtained from

http://kracht.humnet.ucla.edu/marcus/referent

subject only to usual open license conditions.

References

1. Kamp, Hans: A theory of truth and semantic representation, in: Groenendijk,
Jeroen (ed.): Formal methods in the study of language, Mathematisch Centrum,
(1981).

2. Kamp, Hans, Reyle, Uwe: From Discourse to Logic, Introduction to Modeltheo-
retic Semantics of Natural Language, Formal Logic and Discourse Representation
Theory, Kluwer, Dordrecht,

3. Kracht, Marcus: Agreement Mophology, Argument Structure and Syntax,
Manuscript, UCLA, 2006.

Szeged, 2006. december 7-8. 401

4. Schlenker, Philippe: A Plea for Monsters, Linguistics and Philosophy 26, 29-120,
(2003).

5. Vermeulen, Kees F. M., Merging without Mystery or: Variables in Dynamic Se-
mantics, Journal of Philosophical Logic (24), 405-450, (1995).

